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Abstract. By a recent method to estimate the derivatives |w¥(z;)|, k> 1, at
certain a-points of a meromorphic function w(z) in terms of the Ahlfors-Shimizu
characteristic and of |w'(z;)|, we improve some classical results on the growth of
meromorphic solutions of certain algebraic differential equations. Moreover, we offer
similar results for equations involving inverse derivatives and derivatives of a power
w! of a meromorphic function w.

Introduction.

Recently, a method has been established to estimate |w)(z;)| at certain
a-points z; of a meromorphic function w(z) in terms of the Ahlfors-Shimizu
characteristic A(r,w) for k=1 and in terms of |w'(z;)| for k> 1, see [3]. A
natural idea is to apply these estimates in the field of complex differential
equations. In fact, if w is a solution of P(z,w,w’,...,w#*)) =0, meromorphic in
C, then by considering this equation in the sets z;(a,w) of “good” a-points of
w, restrictions for A(r,w) appear, making possible conclusions on the growth of
meromorphic solutions for some classes of algebraic differential equations.

In Section 1 we apply the above method to improve a recent result due to
W. Bergweiler [9] and G. Frank and Y. Wang [10]. Section 2 is devoted to
considering similar equations, where the usual derivatives have been comple-
mented by the new notion of inverse derivatives, see [8]. We obtain similar
upper bounds for the growth of meromorphic solutions as in Section 1. Section
3 extends upper bound considerations to more complicated equations including
derivatives of the power w’ of w in addition to derivatives and inverse derivatives.

We assume that the reader is familiar with the Nevanlinna theory including
its geometric version due to Ahlfors, see e.g. [13], as well as with the results and
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notations of the preceding articles [3], [7] and [8]. However, for the convenience
of the reader, we shall repeat some of the key results needed below.
Concerning the notation, if s(r),#(r),p(r) >0 are real-valued functions

defined in the real axis, the notation s(r) g t(r) will be applied for the double
inequality (1/(p(r)))s(r) < t(r) < o(r)s(r).

1. Algebraic differential equations.

1.1. Revisiting a result due to Gol’dberg.
An algebraic differential equation is of the form

P(z,w,w',...,wH) =0, (1.1)

where P is a polynomial in each of its variables. The equation is of order k,
if w is the highest derivative appearing in P. An important part of the theory
of algebraic differential equations is to investigate the order p(w) of solutions w
meromorphic in C, preferably in terms of P only. For k=1, A. A. Gol'dberg
proved that w(z) must be of finite order.

The method of estimating derivatives arose in [3] where it was applied to
give a new proof for the above result of A. A. Gol’dberg. We shortly recall
the idea, see [3], Theorem 1. For certain a-points z;(a, w) of w lying in a disk
D(r) :={z:|z| <r} and for an arbitrary increasing real function ¢(r) — oo as
r — oo, we have

A2 (r,w)

\w'(z;(a, w))| > o7

. reE, (1.2)

where E is a set of finite logarithmic measure. By considering now the equation
P(z,w,w’) =0 on the sets of such a-points we obtain P(z;(a,w),a,w'(z;(a,w))) =
0 which immediately yields

\w'(z;(a,w))| < const. |z;(a,w)|” < const. r? (1.3)
with a rational exponent p. Now, combining (1.2) and (1.3) results in
A(r,w) < O(r*™, r¢E,
hence p,, <2p + 1.

1.2. Some higher order differential equations.

Concerning higher order algebraic differential equations, k > 2, the situation
is more complicated, and most of the existing results are restricted to special types
of equations or to meromorphic solutions under special assumptions, see e.g. [1],
[2], [12], [15]. In [4], order estimates for meromorphic solutions of some classes
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of second order algebraic differential equations have been given. This article
seems to be the first one to apply the Ahlfors’ theory of covering surfaces to
studying complex differential equations. A bit later, G. Barsegian extended the
results in [4] to some classes of algebraic differential equations of any order ,
simultaneously improving the estimates for p(w) in [4]. These results were first
published in a short communication [5], while complete proofs appeared much
later in [6]. To this end, let us consider

Polzm)0")" + 3 Pz, wo's o w ) (w')" =0, (1.4)
j=0
where Py, ..., P, are polynomials in each of their variables of the form
P, = Z aj(n)zc(z,j(n))Wc(w,j(n))(W//)C(W”J(n)) .. (W(k))c(w(k),j(n))
j(n)
for n=1,...,m with constant coefficients a;;,). Defining now

Pn = n%a)X{zc(W//’j(n)) + -t kc(w(k),](n))}, h= 1’ ey M,
j(n

we have the following

THEOREM A ([5], [6]). All meromorphic solutions w of (1.4) are of finite order
of growth, provided p, <n for n=1,... ,m.

In fact, the proof in [6] implies that
V

<2——4+2
pny <2l
where
1 .
7 =— max {C(Z,](l/l))},
nl<n<m
1
0:=— max p,.
nil<n<m

Recently, W. Bergweiler [9] and simultaneously G. Frank and Y. Wang
applied the Zalcman lemma from the theory of normal families to obtain
results similar to [Theorem Al More precisely, they considered slightly restricted
algebraic differential equations of the form

Po(z,w)(w)™ = P(z,w,w', ..., w5y =0, (1.5)

where
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P,(z,w) are polynomials in z and w with constant coefficients and Py(z,w) # 0.
The Zalcman lemma may be applied to obtain estimates for p(w), as shown in [9]

and [10]. In fact, define
p(Dy,) :=c(l,n) +2¢(2,n)+ -+ + ke(k,n), n=1,...,N,

p(P):= max p(Dy),

I<n<N

c(z,n) :=deg, P,(z,w), n=0,...,N,
o, 1= max (O, lz,n) — ez, 0)>,

”1—1K[%)
o= Mmax o,
I<n<N
f:= max (c¢(z,n) —¢(z,0)).
I<n<N

With these notations we get

Tuaeorem B ([5], [6], [9], [10]). Let w be a meromorphic solution of (1.5). If
m > p(P), then p(w) <20+ 2, while if m=p(P) and p <0, then p(w) < 2.

Below we now apply our method to get an improvement to Theorem B. To
this end, we arrange the terms in

H N
P=> Pz, w)Dy[w]+ Y Pu(z,w)Dy[w]
n=1 n=H+1
so that p(D;) =---=p(Dy) =p(P) while p(D;) <p(P) for j=H~+1,...,N.
Define now
o' := max o,, if m > p(P)
I<n<N
and
of = Max if m=p(P) and p*:= 1Isr}flng(c(z,n) —¢(2,0)) < 0.

THEOREM 1. Let f be a meromorphic solution to (1.5). If m > p(P) or if
m=p(P) and p* <0, then p(f) <2a* + 2.

REMARK. Obviously, if f < 0, then f* <0 and o* =0. However, we may
have f* <0 with o* > 0. Therefore, is a slight improvement of
B.
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Before proving [Theorem 1, we repeat here a key result from [8] as well as
a few related notions from the earlier reference [7]. To this end, let f be
meromorphic and let ay,...,a, be distinct complex numbers. Given r > 0, let
Q(r, f) denote a subset of the a,-points, v=1,...,¢, of f in |z| <r, and use the
notation ny(Q(r, f),a,) for the number of simple a,-points, in Q(r, /). We now
call the family of sets Q(r, /) the Ahlfors set of a-points, resp. the Ahlfors set of
simple a-points, if for any r¢ E, where E is an exceptional set of finite loga-
rithmic measure,

q

Y mo(mo(Qr, ) @) = (¢ = 2)A(r, ) = o(A(r, f))

v=1

as r — oo, where

Alr, f) = sdodp.

[ e
o Jo (1+f(pei)?)
Using these notations, the essential parts of [8], Theorem 2, now read as follows:

THeOREM C. Given a meromorphic function [, a monotone increasing
function ¢(r) — oo as r — oo, and distinct complex numbers ay, ..., a,, there exists
an Ahlfors set of simple a-points. Moreover, there exist pairwise disjoint, simply
connected domains Ej(r, f), j=1,...,@(r,f), in |z| <r for r¢ E, E being an
exceptional set of finite logarithmic measure, such that the following properties
hold: ,

(1) All simple ay,..., a,-points in Uji(lr"/)Ej(r,f) form an Ahlfors set in

lz| <r, ré¢E.

(2) The number @(r, f) of the domains E;(r, f) satisfies @(r, f)/A(r, f) — 1

as r— oo for r¢ E.
(3) For any be C and a b-point z;(b, f) € E(r, f),

L AP0
B ) = o)

where d(E;(r, f)) stands for the diameter of E;(r,f).
(4) Given k> 1 and be C, zj(b, f) € Ej(r, f) as in (3) above,

)
OGN < () 1 b, )N
for all r sufficiently large.

17, )] 5

Proor or THEOREM 1. Let ay,...,a, be pairwise distinct values in C, and
let Ei(r,f), i=1,...,®(r,f) be pairwise disjoint simply connected domains as
defined in [Theorem 0. We restrict our consideration to those w which belong to
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f(Ei(r,f)) foralli=1,2,...,®(r,f). We now select ¢ and R by making use of
the geometry of E;(r,f). By [7], Proposition 1, there exists a curve

such that

sup |2/ —z"| = ¢y > 0.
zlz"ey
In fact, we may take for y the boundary of By(n) in [7], Proposition 1. Clearly,
the constant ¢, is determined by the geometry of the domains f(E;(r, f)), de-
pending on aj,...,a, only. On the other hand, by [7], Proposition 2, any of
the domains f(E;(r, f)) is contained in {w||w| < ¢}, the constant ¢; depending
on ai,...,a, only. We may now choose & < co(N + 1)*1 and R:=c¢;. By the
Cartan lemma, we find some discs

(n) . _ (n) (n)
G = A{wllw—w"] <r} = {wl||w] < R}

with >, r]@ < ¢ such that for a constant c(e, R, P,)

,R, B, _
P, (z, w)] CRE), el

as soon as |w| <R, w¢ |, Cj(") and |z| > r(e, R, P,).
Fixing now ¢* := maxo<,<ny{1,c(¢, R, P,)} we arrive at the conclusion that
there exists a point

) o(r.f)
bey UC, c ﬂlf(Ei(V;f))
jn i=

and a constant ¢*, depending on Py,...,Py and ay,...,a, only such that for
zi(b) :==z;(b, f) € Ei(r, f) and for all n=0,..., N,

IP(2:(b), b)| <= |z(b)| " (1.6)

holds as soon as |z;(h)| > maxo<,<n{l,7(&, R, P,)}. Since z;(b) € Ei(r, f), we
have |z;(h)| — o0 as i — oo and so (1.6) holds for all i > iy and all n=0,...,N.

Given z € C, consider two terms, say P, (z, f(z)) and P,(z,f(z)) in
with greatest moduli. Clearly,

1

since otherwise a contradiction to

/)

would follow immediately. We may



Complex differential equations 929

assume |P, | £ |B,|. If one of P, or P, coincides with Py(f')", say P;, then
|Po||f'|" < (N +1)P;. Otherwise, (1.7) implies that |Po||f’|" < (N + 1)|P,
Therefore, we always find e (1,...,N) such that

|[Po(z, f DI ()" = (N + 1| Pa(z, £ (2))]. (1.8)

Assume now m > p(P). By (1.6) and C(4) above, which gives upper
bounds for higher derivatives of f, we get

o|-

L @O @)™ < ¢ (F + D) CP )PP ) (1.9)

C*
for all i > iy. Therefore,

£ (zi(B))] < [(¢*)HN + 1)V =P 2 ) %5 (o) )PP/ m=p(Da))

[IA

[(c*)z(N+ 1)]1/(m—p(Dﬁ)),,ah((D(r))P(Dﬁ)/(m—P(Dﬁ)) (1.10)

and so

*

1! (zi(B))| £ [(¢*)2(N + 1)) mpPad) o
< [(¢")2(N + 1)) /P D ()PP (m=p(P).
By C(3), we now obtain
A(r, f) < [(¢*)H(N + 1))/ m=p B 20752 4 () 2P P) (m=p(P))

as r — oo, r ¢ E, where E is an exceptional set of finite logarithmic measure as in
Theorem (. Choosing now ¢(r) = r® we get the assertion.
Finally, we consider the case m = p(P) with f* < 0. If the dominant term

in (1.8) now would be such that m = p(D;), (1.9) would take the form
LS () (N + DIz (o))"

Assuming that |z;(b)| > r/2 and taking ¢(r) = r?, this is a contradiction, provided
¢ is small enough, as r — co. Therefore, we have m > p(Dj;) in (1.8), and so the
preceding part may be applied with minor modifications only, i.e. by considering
the terms Pj(z, f) with j=H +1,...,N only. O

REMARK. Provided the solution w(z) of (1.4) is the derivative of a mer-

omorphic function W(z), a variant of follows. Of course, this is the
case if w(z) is entire. In fact, may be rewritten as

Po(z, WY(W"" = P(z, W' W", ..., wkiDy =,

where
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A

N
Pz, W', w", ... WD) =N " P, (2)D,[ W],

D[] = (W) O () (e e,
This results in a modified weight
(D) = c(0,n) +2¢(1,n) + -+ (k + 1)c®"  (>p(D,))

to be applied for defining modified quantities p(P), é(z,n) = deg P,(z), &y, & and .
These modified weights have been applied by W. Hayman in [14]. In fact, 1s
the most comprehensive description for the growth of entire solutions of algebraic
differential equations. As usual for entire solutions, the Wiman-Valiron method
was applied in [14].

Comparing A, resp. Mheorem 1, above to the results offered by
Hayman in [14], we observe that the term of highest weight in [1.5), resp. (1.4),
is the first term, while the highest term in [14], Theoreml C, is of no specific
form. Since [14], C, i1s restricted to entire solutions only, it is natural
to ask whether meromorphic solutions of an algebraic differential equation of the
general form (1.1) permit a counterpart to [Theorem 1. This question remains
open.

2. Complex differential equations with inverse meromorphic derivatives.

In [8], a new type of meromorphic functions FY)(w(z)) associated with w(z)
has been introduced. F(Y)(w(z)) is the composition of Fl.(U)(w) and w(z), where
for any point z; with w(z;) = a we define F;(a) to be that of the branches F;(w)
of the inverse function F(w) to w(z) for which F;(w(z;)) =z; and we denote
by E-w)(w) the U derivative of Fj(w) with respect to w. These functions
F, Y (w(z)) were called “inverse meromorphic derivatives”; they are meromor-
phic functions. Indeed, if zy is an ordinary point then clearly in a small
neighbourhood of zj, the function Fl.(U)(w(z)) is single-valued; if z is a mul-
tiple point with multiplicity k then F;(w) has a representation of the form
zo4+ai(w—w(zo) " + ar(w — w(z))** + -+ and w(z) — w(zy) a representation
of the form by (z — 20)* + brs1(z — 20)*™ + -+ so that Fl.(U)(w(z)) is single-valued
in a small neighbourhood of z;. Moreover, z; is a pole of multiplicity & — 1 for
Fi(U) (w(z)). Thus the composition Fi(U) (w(z)) of Fl-(U)(w) and w(z) is a mer-
omorphic function. In particular, Fl.(l)(w(z)) equals to 1/w'(z).

In this section we consider algebraic differential equations involving inverse
meromorphic derivatives together with usual derivatives. To this end, consider

an equation of the form

Po(z,w)(wW" = P(z,wow', ... ow® F' L FW) =0, (2.1)
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where
N
P= ZPH(Z, w)Gy[w, F|,
n=1
and Gu[w,F], n=1,2,... N, are some differential monomials of the form

(W/)c(l.,n) L (W(k))c(k,n) (F/)d(l,n) o (F(S))d(s,n)’

Here m, N, k,s € N, P,(z,w) are polynomials in z and w with constant coefficients
and Py(z,w) # 0.
The weight p(G,) of the monomial G,[w,F] is now defined as

and the weight of P as
p(P) := max p(Gy).

I<n<N
Now, similarly as to Section 1 we may arrange the terms of P to those
monomials G;[w,F] with the highest weight p(P) and to G,[w,F] with the
weights p(G,) < p(P) so that (2.1) takes the form

Po(z,w) ()" =Y PPz w)GH W+ D Puzw)Galw] = 0. (22)
n=1 n=H+1

Defining ¢(z,0) := deg. Po(z, w), c(z,n) := deg. P\ (z,w) for n=1,2,...,H and
c(z,n) :=deg, P,(z,w) for n=H +1,...,N, we obtain

c(z,n) — ¢(z,0)
)

0y 1= maxl

Finally, denote

T:= max a,, if m>p
1<n<N

T = S, if m = p(P 5 = _ |
Jmax g, if m=p(P) and f*:i= max (c(z,n) — ¢(z,0)) <0

With these notations, the following generalized version of follows:

THEOREM 2. Let w(z) be a solution of (2.2) satisfying either a) m > p(P), or
b) m=p(P) and B~ <0. Then p, <2T+2 < 0.

Proor. While deriving the inequality (1.9) we have used C(4),
to obtain upper bounds for the higher order derivatives w® (z;(h,w)) in terms of
|w'(zi(b,w))]. In the present situation, we now apply [8], Theorem 2(7), which
gives upper bounds for |Fl.(U)(w(z,-(b, w)))| in terms of |w'(z;(h))|. In fact, cor-
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responding to Theoreml C(4), the same inequality now applies with f&) £
replaced by the corresponding inverse derivatives FX), F'  see [8], Theorem 2(7),
for details and some further inequalities. Then, instead of the monomials Dj;, we
deal with Gj;, and instead of (1.9) we obtain

|

—[z:(b)] VW (zi(B)|" < ¢ (N + 1)|z(b)

! c(z,ﬁ)’W/(Z(b))’P(Gﬁ)(pP(Gﬁ)(I/)_

Similarly as to the proof of Theorem 1, we now complete the proof of Theorem
2.

3. Complex differential equations having composite terms.

Recently, composite entire and meromorphic functions have been under
a considerable interest. Moreover, several papers have been devoted to the
(pseudo)primeness of meromorphic solutions of certain classes of differential
equations. On the other hand, it is well-known that for certain differential
equations, their meromorphic solutions turn out to be composite functions.

In this section, we consider differential equations involving as variables
derivatives of the special composite function w’, te N. More precisely, let us
consider

Pi(z,wow', . ow® F L FS W ) =0, (3.1)

where P* is a polynomial in all of its variables, k,s,z,ce N and t <c¢. Sup-
pose further that for ¢ < ¢, substituting w, [w']’, ..., [w'] ©) by zero we obtain the
equation

P(z,0,w' ... . wH® F'  FYW 0,...,0)=0 (3.2)

which is of the form (2.1) and for ¢ = ¢, substituting w, [w']’,..., w']“"Y by zero
and W] by ¢l[w'|° we obtain the equation

P(z,0,w' ... ow® F' L FS 0,0, clw![) =0, (3.3)

also of the form (2.1). As in Section 2, (3.2) and (3.3) may be written in the
form

Po(z,00w)" = > PI(z,00G W] + Y Pulz,0)Gy[w] =0 (3.4)

corresponding to (2.2). Here G,S*)[w] are differential monomials with coefficients
P\(z,0) and with the highest weight

po(P) := .
Po(P) maXllgipr(Gn),H+r}13,§<Np(Gn)],
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and G,[w| are differential monomials with coefficients P,(z,0) and the weight of
the p(G,) < po(P). Set cy(z,0) = deg. P,(z,0) for n =0, co(z,n) = deg, P (z,0)
for n=1,2,...,H, cy(z,n) =deg, P,(z,0) for n=H +1,...,N, and

co(z,n) — co(z,0)

0.
m — p(G,)

d,(0) := max

Denote now

T(0) := max a,(0), if >p,(P)

qg<n<N
and

T(0) := H+1;n£a}3(£Nocn(0), if m=py(P) and

F(0) := max (co(z,n) — co(z,0)) < 0.

1<n<H

It turns out that if for such a reduced form of and , the conditions
of are satisfied, then any meromorphic solution w of (3.4) has to be of
finite order p,,, provided that the value 0 is “good” in the sense of the theory of
covering surfaces. To this notion, let Yy be a domain containing the origin and
let ny(r, Yo,w) be the number of simple islands of the covering surface F, :=
{w(z)||z| < r} over the domain Y,. Then we say that 0 € C is good if

50( ¥o) = liminf " Y0: )

minf = > 0 (3.5)

If dp(Yp) =0, this qualitatively means that the ramification of F, in a
neighbourhood of the value 0 is maximal, so that the value 0 is exceptional
indeed in the Ahlfors theory sense.

With these notations, the following result is valid.

THEOREM 3. Consider the equation (3.1), reduced over (3.2) or (3.3) to the
form (3.4) with a) m > py(P) or b) m = py(P) and p(0) < 0. If w(z) is a mer-
omorphic solution of (3.1) such that 0 is a good value, then p,, <2T(0)+ 2 < o0.

COROLLARY. Suppose that in the differential equation
Po(z,w)(w™) ™ — Pz, w,w',. . o wk F' L FOY =0 (3.6)

we have either a) m > py(P) or b) m = py(P) and p*(0) <0. If w(z) is a mer-
omorphic solution of the equation (3.6) such that 0 is a good value, then p, <
2T(0) +2 < o0.

THEOREM 4. Suppose that a differential equation

Pizywow' .. ow® F L FW) =0
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can be rewritten in the form
P(z,ww!s o w F L FY )] [gn)] ) = 0, (3.7)

where P is a polynomial in all its variables, k,s,c € N and ¢ is a meromorphic
function satisfying $(0) = ¢'(0) =--- = ¢'9(0) =0. Suppose also that by sub-
stituting w by zero in this equation we get an equation of the form (2.1) with a)
m > po(P) or b) m = py(P) and f*(0) < 0. If w(z) is a meromorphic solution of
(3.7) such that 0 is a good value, then p, <2T(0)+2 < o0.

ProOF OF THEOREM 3. We now make use of [8], Mheorem 3. By this
theorem, given ¢ > 0, if w is a meromorphic function satisfying for a domain
Yo, then by taking a; =0 we may choose aj,...,a, such that C is
true. By C(1) and the definition of the Ahlfors set, we get

no(r,0,w) > (0o(Yo) —e)A(r,w) — 1, ré¢ E, r>ry(e,w,0),

where ny(r,0,w) is the number of simple O-points z;(0,w) of w belonging to
D(r,w)
iy Ai(r,w).

Consequently, assuming 0 < ¢ < dy(Yp), we have some simple zeros z;(0,w) €
Ei(r,w) of win {z:|z| <r}, r¢ E. Consider the equation on the set of
these simple 0-points z; = z;(0,w). Thus for z; = z;(0,w), we have w(z;) =0 and
for [w'(z;)]'” simple calculations yield [w'(z;)]'” = 0 when 7 < ¢ and [w¢(z,)]' =
clw'(z;)]° when t=c. Therefore, in the case when ¢ < ¢, the equation
being considered at the points z; = z;(0,w) takes the form

P*(z;,0,w'(z), ..., w® (), F'(w(z)), ..., F¥(w(z)),0,...,0) =0.

Due to the conditions of our theorem, the equation can be rewritten in the form
(3.4). If t=c¢, the equation being considered at the points a; = z;(0, w)
takes the form

Pz, 0,0 (1), o, wR (2), F(w(z0)), - .., FO (w(2:)),0,...,0,cl[w(z)]) = 0.

Again, the equation can be rewritten in the same form (3.4). Now we are in
the same situation as for [Theorem 2 with the only difference that instead of the
constants c¢(z,n) we deal with the cy(z,n). Therefore, similarly as to the proofs
of and [Theorem 2, we obtain [Theorem 3.

To prove the it is enough to note that [w™(z;)]" = c!l[w'(z;)]"
so that the equation being considered at the points z; = z;(0,w) can be
rewritten in the form (3.4) and we may proceed as to above in the proof of

NCOrcim J.
For [Theorem 4, it is enough to note that the equation can be rewritten
in the same form (3.4).
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