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Abstract. A pass-move and a #-move are local moves on oriented links defined by
L. H. Kauffman and H. Murakami respectively. Two links are self pass-equivalent (resp.
self #-equivalent) if one can be deformed into the other by pass-moves (resp. #-moves),
where none of them can occur between distinct components of the link. These relations
are equivalence relations on ordered oriented links and stronger than link-homotopy
defined by J. Milnor. We give two complete classifications of links with arbitrarily many
components up to self pass-equivalence and up to self #-equivalence respectively. So our
classifications give subdivisions of link-homotopy classes.

1. Introduction.

We shall work in piecewise linear category. All links will be assumed to be
ordered and oriented.

A pass-move [5] (resp. #-move [7]) is a local move on oriented links as illustrated in
Figure 1.1(a) (resp. 1.1(b)). If the four strands in Figure 1.1(a) (resp. 1.1(b)) belong to
the same component of a link, we call it a self pass-move (resp. self #-move) ([1], [13],
[14], [15]). We note that pass-moves and #-moves are called #(II)-moves and #(I)-
moves respectively in first author’s prior papers [13], [14], [15], [16], etc. Two links are
said to be self pass-equivalent (resp. self #-equivalent) if one can be deformed into the
other by a finite sequence of self pass-moves (resp. self #-moves). Two links are said to
be link-homotopic if one can be deformed into the other by finite sequence of self
crossing changes ([6]). Since both self pass-move and self #-move are realized by self
crossing changes, self pass-equivalence and self #-equivalence are stronger than link-
homotopy. Link-homotopy classification is achieved by J. Milnor [6] for 3-component
links, by J. Levine [4] for 4-component links, and by N. Habegger and X. S. Lin [2] for
all links. In this paper we give two complete classifications of links with arbitrarily
many components up to self pass-equivalence and up to self #-equivalence respectively.
So our classifications give subdivisions of link-homotopy classes.

An n-component link / =k U---Uk, is called a proper link if the linking number
Ik(/ — ki, k;) is even for any i(=1,...,n). For a proper link / =k U---Uk,, we call
Arf(l) = >, Arf(k;) (€ Z,) the reduced Arf invariant and denote it by Arf(/),
where Arf is the Arf invariant ([11]). (The Arf invariant is sometime called the
Robertello-Arf invariant.)

2000 Mathematics Subject Classification. 5TM25.
Key Words and Phrases. #-move, pass-move, link-homotopy, Arf invariant.



940 T. SHIBUYA and A. YASUHARA

M '

—————p pass-move -|—» ———» #move
I +—>

) I
(b)

Figure 1.1.

THEOREM 1.1. Let I=kU---Uk, and I'=k{U---Uk) be n-component links.
Then the following (1) and (ii) hold.

(1) [ and ' are self pass-equivalent if and only if they are link-homotopic,
Arf(k;) = Arf(k]) for any i (i=1,...,n), and Arf(k;, U---Uk;) = Arf(k] U
---Ukl;) for any proper links ki U---Uk;, =1 and k] U---Ukl; e/l

(i) / and I are self #-equivalent if and only if they are link-homotopic and
Arf(k; U---Uk; ) = Arf(k] U Ukj) for any proper links k;U---Uk; <1
and k; U---Ukl; e/l

For two-component links, both self pass-equivalence classification and self #-
equivalence classification have been done by the first author ([15]). His proof can be
applied only to two-component links. So we need different approach to proving
Theorem T.1.

A'link | = ki U---Uk, is said to be Z,-algebraically split if 1k(k;, k;) is even for any
i,j (1<i<j<mn). Wenote thatif / =k U---Uk, is Z,-algebraically split link, then /
and k;Uk; (1 <i<j<n) are proper.

THEOREM 1.2. Let [=kU---Uk, and I'"=k{U---Uk, be n-component Z,-
algebraically split links. If | and ' are link-homotopic, then

Arf() + > Af(kUk) =Af()+ Y Arf(kjUK) (€ Z,).

I<i<j<n I1<i<j<n

By combining Theorems [L1 and L2, we have the following corollary.

CorOLLARY 1.3. Let I=kU---Uk, and I'=k{U---Uk) be n-component Z,-
algebraically split links. Then the following (i) and (ii) hold.
(1) landl are self pass-equivalent if and only if they are link-homotopic, Arf(k;) =
Arf(k}) for any i, and Arf(k;Uk;) = Arf(k[UK]) for any i,j (1 <i<j<n).
(i) [ and I are self #-equivalent if and only if they are link-homotopic and
Arf(k;Uk;) = E(k;uk;) SJor any i,j (1 <i<j<n).

2. Preliminaries.

In this section, we collect several results in order to prove Theorems [L1 and [.2l.

Let/ =k U---Uk, and I’ = kjU---Uk' be n-component links. Let D* be the unit
4-ball, Ly a link in 0D* as illustrated in Figure 2.1, and Cy the cone with the center of
D*and Ly. Let o/ = A;U---UA, be a disjoint union of n annuli 4,,...,4,. Suppose
that there is a continuous map f :.«/ — S* x [0,1] with f(0.«7) = 8(S3 x [0,1]) such
that



Classification of links up to self pass-move 941

1) (0(S* x [0,1]), f(04;)) = (S x {0}, k) U (=83 x {1}, —k!) (i=1,...,n), and
(ii) there are finite points pi,...,p, in f(Z)N(S? x (0,1)) such that
the inverse image f~'(p;) of each p; is a set of 4 points and belongs to a
single annulus,
oo =1 S py) — S*x[0,1] is a locally flat embedding, and
each p; has a small neighborhood N(p;) in S° x [0,1] such that (N(p;),
N(p;)N.</) is homeomorphic to (D*, Cy),
where —X denotes X with the opposite orientation. Then f(.o7) is called a pass-annuli
between / and /'.

Figure 2.1.

The following is proved by the first author in [14].

LemmA 2.1.  Two links [ and I are self pass-equivalent if and only if there is a pass-
annuli between them.

It is known that a pass-move is realized by a finite sequence of #-moves ([8]).
Thus we have the following.

LemMmA 2.2. If two links | and ' are self pass-equivalent, then they are self #-
equivalent.

A I'-move denotes a local move on oriented links as illustrated in Figure 2.2.

S [P
) | r

Figure 2.2.

The following is known [5].
Lemma 2.3. A I'-move is realized by a single pass-move.

Let /=kiU---Uk, and /" =k{U---Uk,, be n-component links such that there is
a 3-ball B3 in S with B3N (IUI")=1. Let by,...,b, be mutually disjoint disks in S>
such that b;N/ = 0b;Nk; and b;NI' = 0b;Nk] are arcs for each i. Then the link
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101U (|, 0b;) — (\Jint(b; N (1U1"))) is called a band sum (or a product fusion [12]) of
[ and /" and denoted by (ki#p k{)U---U (k,#s,k,). Note that a band sum of / and /" is
Z>-algebraically split if 1k(k;, k;) = Ik(k/,k/) (mod2) (1 <i<j<n).

The following is proved by the first author in [12].

LeEmMmA 2.4, Two links [ and I" are link-homotopic if and only if there is a band sum
of | and —I' that is link-homotopic to a trivial link, where (S*,—1") =~ (=S3,=1I").

By the definition of the Arf invariant via 4-dimensional topology ([11]), we have the
following.

LEMMA 2.5. Let [ and I’ be proper links and L a band sum of | and —I'. Then L is
proper and Arf(L) = Arf(l) + Arf(l") (e Z>).

The following lemma forms an interesting contrast to the lemma above.

LEMMA 2.6. Let | = ki Uk, and ' = k{ Uk}, be 2-component links with 1k(k, k,) and
Ik(ki{,k3) odd. Let L = (ki#s,(—k])) U (katt,(—k3)) be a band sum and L' a band sum
obtained from L by adding a single full-twist to b,; see Figure 2.3. Then L and L' are
proper and link-homotopic, and Arf(L) # Arf(L’).

Figure 2.3.

Proor. Clearly L and L’ are proper and link-homotopic. So we shall show
Arf(L) # Arf(L’).
Let a; be the ith coefficient of the Conway polynomial. Then we have

as(L) — as(L') = ax((ki#tp, (—K{)) Uka U (=K3)).

It is known that the third coefficient of the Conway polynomial of a two-component
proper link is mod2 congruent to the sum of the Arf invariants of the link and the

components [9].  This and imply Arf(L) — Arf(L') = a3(L) — a3(L') (e Z,).
By [3],

ar((ki#y, (=k{)) Uk2 U (=K3))
— Kkt (), ko) K (ka, D) + Tk, —KD) TK(— G e, (—KT)
+1k(—kg, kit (= k7)) Tk (ki #s, (= k7). ko).
Thus we have Arf(L) — Arf(L') =1 (e Z>). O

A A-move i1s a local move on links as illustrated in Figure 2.4. If at least two
of the three strands in Figure 2.4 belong to the same component of a link, we call it a
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quasi self A-move ([10]). Two links are said to be quasi self A-equivalent if one can be
deformed into the other by a finite sequence of quasi self 4-moves.

IS i AN
(=,

Figure 2.4.

The following is proved by Y. Nakanishi and the first author in [10].

LemMma 2.7. Two links are link-homotopic if and only if they are quasi self A-
equivalent.

3. Proofs of Theorems 1.1 and 1.2.

PrOOF OF THEOREM 1.2. Since / is link-homotopic to /’, by [Lemma 2.7, / is quasi
self A4-equivalent to /’. It is sufficient to consider the case that /’ is obtained from / by a
single quasi self 4-move.

Suppose that the three strands of the A-move that is applied to the deformation
from / into /” belong to one component of /. Without loss of generality we may assume
that the component is k;. Note that k; and k] are ambient isotopic for any i(# 1), and
that k;Uk; and k;Uk/ are ambient isotopic for any i <j (i #1). Since a 4-move
changes the value of the Arf invariant ([8]), we have Arf(/) # Arf(!'), Arf(k;) # Arf(k{)
and Arf(k; Uk;) # Arf(kjUk/). Thus we have Arf(l) = Arf(I’) and Arf(k; Uk;) =
Arf(kjUkj). So we have the conclusion.

We now consider the other case, i.e., the three strands of the A-move belong to
exactly two components of /.  Without loss of generality we may assume that the two
components are k; and k. Note that k; and k] are ambient isotopic for any i, and that
kiUk; and k;Uk/ are ambient isotopic for any i <j ((i,/) # (1,2)). Since Arf(/) #
Arf(!") and Arf(kyUky) # Arf(kj Uky), Arf(l) + Arf(ky Uky) = Arf (') + Arf (k{ UkS)
(€ Z,). This completes the proof. O

Lemma 3.1. Let =k U---Uk, and I'"=k{U---Uk! be n-component Z,-
algebraically split links. If | and I' are link-homotopic, Arf(k;) = Arf(k]) (i=1,...,n)
and Arf(k;Uk;) = Arf(k]Uk]) (1 <i<j<n), then | and I' are self pass-equivalent.

Proor. Since / is link-homotopic to /’, by [Lemma 2.7, / is quasi self 4-equivalent
to /’. Let u be the minimum number of quasi self 4-moves which are needed to deform
[ into I’. By [Theorem 1.2, Arf(/) = Arf(!"). Since a 4-move changes the value of the
Arf invariant, u is even. It is sufficient to consider the case u = 2. Therefore, there is
a continuous map f : ./ = A;U---UA4, — S x [0,1] from a disjoint union of » annuli
Ay,..., A, with f(0.7) = 0(S* x [0,1]) such that

1) (0(S* x [0,1]), f(04;)) = (S x {0}, k) U (=83 x {1}, —k!) (i=1,...,n), and
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(ii) there are two points pi, py in f (/)N (S3 x (0,1)) such that
- the inverse image f~'(p;) of each p, is a set of 3 points and belongs to at
most two annuli,
fod —fNp)Uf1(p) = S3x[0,1] is a locally flat, level-preserving
embedding, and
each p, has a small neighborhood N(p,) in S3 x [0,1] such that (N(p,),
N(p;)N f(27)) is homeomorphic to (D* C4), where C, is the cone with the
center of the unit 4-ball D* and the Borromean rings in 0D*.
A singular point p; is called type (i) if f~'(p;) = A;, and type (i, ) (i <j)if f~'(p;) =
A;UA4;. Note that if p, is type (i) (resp. type (i,j)), then (N (p,) N f()) < f(4;)
(resp. = f(A4;U4;)). For each i (resp. i, ), let u; (resp. u; ;) be the number of the
singular points of type (i) (resp. type (i,j)). We note that a number of A-moves
which are needed to deform k; into k; (resp. k;Uk; into k/Uk/) is equal to u; (resp.
u; j + u; +u;). By the hypothesis of this lemma, we have u; and wu;;+ u; +u; are
even. Hence u; and wu;; are even. This implies that both p; and p, are the same
type.

Suppose that p; and p, are type (7, j). Without loss of generality we may assume
that (7, j) = (1,2) and two components of the Borromean rings d(N(p;) N f(.«7)) belong
to f(A42). Let a be an arc in f(4;)N(S? x (0,1)) that connects two singular points p;
and p, of type (1,2), and let (S3, L) = (ON(2),0(N(«) N f(A;UA,))). Then L is a 5-
component link as illustrated in either Figure 3.1(a) or (b). In the case that L is as
Figure 3.1(a), we can deform L into a trivial link by applying I"-moves to the sublink
LN f(A4y); see Figure 3.2. In the case that L is as Figure 3.1(b), we can deform L
into the link as in Figure 3.2(a) by two I-moves, one is applied to LN f(A4;) and the
other to LN f(A4,); see Figure 3.3. It follows from this and Figure 3.2 that L can be
deformed into a trivial link by I'-moves, one is applied to LN f(A;) and the others to
LN f(42).

Suppose that p; and p, are type (i). Let o be an arc in f(4;)N(S3 x (0,1))
that connects two singular points p; and p, of type (i), and let (S°,L) = (ON(«),
O(N(x) N f(A4;))). By the argument similar to that in the above, L can be deformed
into a trivial link by applying I"-moves to LN f(4;).

Therefore, by [Lemma 2.3, we can constract pass-annuli in S3 x [0, 1] between / and

I’. [Lemma 2.1 completes the proof. O
Lﬁf(Al) Lﬁf(Al)
DD D)
3 N
L f(4,) Lnf(4,)
@ (b)

Figure 3.1.
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Figure 3.3.

PrROOF OF THEOREM 1.1. Since a self pass-move (resp. a self #-move) is realized by
link-homotopy and it preserves Arf (resp. Arf) [15, Proposition], we have the ‘only if’
part of (i) (resp. (ii)). We shall prove the ‘if’ parts.

(i) For a link / =k U---k,, let G/ (resp. Gf) be a graph with the vertex set
{ki,...,k,} and the edge set {kik;|lk(k;, k;) is odd} (resp. {kik;|lk(k; k;) is even}).
Note that G/ UGy is the complete graph with n vertices. For a band sum L =
KiU- - UK, (= (ki#p, (—k]))U---U (ky#p,(—k))) of I and —I’, let A7 be a graph with
the vertex set {Kj,...,K,} and the edge set {K;K; | Arf(K; UK;) =0}. (Note that L is a
Z;-algebraically split link since / and /’ are link-homotopic.)

CLAM. There is a band sum L of [ and —I" such that L is link-homotopic to a trivial
link and Ay is the complete graph with n vertices.

Proor. Let T be a maximal subgraph of G/ that does not contain a cycle. Since
T does not contain a cycle, by Lemmas 2.4 and 2.6, there is a band sum L of / and /'
such that L is link-homotopic to a trivial link and 7" < h(A4.), where h: A; — G/ U Gf
the natural map defined by A(K;) = k; and h(K;K;) = k;k;. By [Lemma 2.3, we have
Gf < h(Ar). Since h is injective and G; U Gf is the complete graph, it is sufficient to
prove that / is surjective. Let E be the set of edges which are not contained in A(Ay),
and H’ = h(A;)NGP. Suppose E # ¢J. Then there is an edge e € E such that there
is a cycle C in H°Ue containning e whose any chord are not contained in Gy, where
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a chord denotes an edge connecting two nonadjacent edges of C. (In fact, for each
e; € E, consider the minimum length /; of cycles in H?Ue; containning e¢; and choose
an edge e and a cycle C in H’Ue containning e so that the length of C is equal
to min{/;|e; € E}.) Without loss of generality we may assume that C = kjk; - - k.k
and e=kiky. Set I.=kU---Uk, and L.,=K;U---UK,. Since C has no chords
in G/, all chords are in Gf. Thus we have kik; c H°UGf(= h(Ar)) for any i,j
(I1<i<j<c) except for (i,j)=(1,2). This implies Arf(K;UK;) =0 for any i,/
(1<i<j<ec(i,j)#(1,2)). The fact that C has no chords in G/ implies /. is a
propre link. By the hypothesis about the Arf invariants and [Lemma 2.3, we have
Arf(L,) =2Arf(l,) =0 (e Z,) and Arf(K;) =2Arf(k;)) =0 (e Z,) (i=1,...,¢). Since
L. is link-homotopic to a trivial link, by Theorem 1.2) Arf(K; U K>) = 0. This contradicts
e = k1k2 e E. ]

By Claim, there is a band sum L = K;U---UK, of / and —/’ such that L is link-
homotopic to a trivial link, Arf(K;) =0 (i=1,...,n) and Arf(K;UK;) =0 (1<i<
j<n). By [Lemma 3.1, L is self pass-equivalent to a trivial link. Since L is a band
sum of / and —/’, we can constract a pass-annuli between / and /. [Cemma 2.1 com-
pletes the proof.

(ii) Since a #-move changes the value of the Arf invariant [7], by applying self #-
moves, we may assume that Arf(k;) = Arf(k]) for any i. [Theorem 1.1(i) and Lemma
2.2 complete the proof. O]

References

[1] L. Cervantes and R. A. Fenn, Boundary links are homotopy trivial, Quart. J. Math. Oxford Ser. (2),
39 (1988), 151-158.
[2] N. Habegger and X. S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc., 3
(1990), 389-419.
[3] J. Hoste, The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc., 95 (1985), 299-302.
[4] J. Levine, An approach to homotopy classification of links, Trans. Amer. Math. Soc., 306 (1988),
361-387.
] L. H. Kauffman, Formal knot theory, Mathematical Notes, 30, Priceton Univ. Press, 1983.
| J. Milnor, Link groups, Ann. of Math. (2), 59 (1954), 177-195.
| H. Murakami, Some metrics on classical knots, Math. Ann., 270 (1985), 35-45.
| H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann., 284
(1989), 75-89.
[9] K. Murasugi, On the Arf invariant of links, Math. Proc. Cambridge Philos. Soc., 95 (1984), 61-69.
[10] Y. Nakanishi and T. Shibuya, Link homotopy and quasi self delta-equivalence for links, J. Knot
Theory Ramifications, 9 (2000), 683-691.

[11] R. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math., 18 (1965), 543-555.
[12] T. Shibuya, On the homotopy of links, Kobe J. Math., 5 (1989), 87-95.
[13] T. Shibuya, Self #-unknotting operation of links, Mem. Osaka Inst. Tech. Ser. A, 34 (1989), 9-17.
[14] T. Shibuya, Self #-equivalences of homology boundary links, Kobe J. Math., 9 (1992), 159-162.
[15] T. Shibuya, Mutation and self #-equivalences of links, Kobe J. Math., 10 (1993), 23-37.
[16] T. Shibuya, A local move of links, Kobe J. Math., 16 (1999), 131-146.

Tetsuo SHIBUYA Akira YASUHARA

Department of Mathematics Department of Mathematics

Osaka Institute of Technology Tokyo Gakugei University

Omiya 5-16-1, Asahi Nukuikita 4-1-1, Koganei

Osaka 535-8585 Tokyo 184-8501

Japan Japan

E-mail: shibuya@ge.oit.ac.jp E-mail: yasuhara@u-gakugei.ac.jp



	1. Introduction.
	THEOREM 1.1. ...
	THEOREM 1.2. ...

	2. Preliminaries.
	3. Proofs of Theorems ...
	References

