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Abstract. We introduce the class of generalized double tilted artin algebras and
prove that it coincides with the class of artin algebras whose AR-quiver admits a faithful
generalized standard almost directed component. A homological characterization of
faithful generalized standard almost directed components is also established.

0. Introduction.

Tilted algebras have for a long time played a central role in the representation
theory of artin algebras. Being a more general class than the class of hereditary alge-
bras, they occur more frequently, and at the same time the module theory for tilted
algebras is closely related to the module theory for hereditary algebras. The more
general class of quasitilted algebras was introduced in [9]. This class contains also the
canonical algebras, and has been the focus of much attention during the last years. A
useful feature of the class of quasitilted algebras is the nice homological characterization
as the algebras where each indecomposable module has projective or injective dimension
at most one, and where in addition the global dimension is at most two. Dropping the
last property we have the class of shod algebras, introduced and investigated in [2].
A shod algebra which is not quasitilted is said to be a strict shod algebra. Both for
quasitilted algebras and for shod algebras there are several interesting descriptions and
results (see [2], [6], [7], [9] [13], [18], [20], [23]), for example in terms of paths from
indecomposable injective to indecomposable projective modules ([9], [2]).

As shown in the strict shod algebras are closely related to tilted algebras. A
tilted algebra is characterized in terms of the existence of an AR-component with a
faithful section 4 such that Hom(M,DTr N) =0 for M and N on 4 (see and [20]).
The more general concepts of double section and double tilted algebras were introduced
in [18], and the strict shod algebras were characterized in these terms. In particular,
there are (left and right) tilted algebras naturally associated with a strict shod algebra,
and the module theory for the strict shod algebras is closely related to the module theory
for the associated tilted algebras.

In this paper we generalize the concepts of section and double section to what we
call a multisection 4, along with its left and right parts 4, and 4,. Modelled on
defining the double tilted algebras on the basis of double sections in [I8], we define
generalized double tilted algebras on the basis of a multisection. We also characterize
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the generalized double tilted algebras as those having an AR-component with a faithful
multisection 4 such that Hom(M,DTr N) =0 for M in 4, and N in 4;. On the other
hand, this connects up with the work in [20], since we show that an algebra A is gen-
eralized double tilted if and only if there is an almost directed generalized standard
faithful AR-component. We also describe the shape of all AR-components for such
algebras.

For tilted algebras we have global dimension at most two, and for shod algebras
it is at most three. For multisections we have the concept of n-section, where n may
be infinite, and where a section is a I-section and a double section a 2-section.
Correspondingly we have n-double tilted algebras and we show that they have global
dimension at most n + 1.

We now describe the content of this paper section by section. In section 1 we
recall some background material, including essential definitions. In section 2 we intro-
duce the concept of multisection in a component of the AR-quiver of an artin algebra,
along with its core, and the concept of generalized double tilted algebra is introduced
and investigated in section 3. The results on global dimension are given in section 4,
and in section 5 we give a homological characterization of faithful generalized standard
almost directed components.

We refer also to the recent papers [3], [4] for generalizations of (strict) shod algebras
in other, but related, directions. Recently, we have been informed by I. Assem and
F. U. Coelho that they are also working on generalizations of shod algebras.

1. Preliminaries.

In this section we recall some definitions which will be used in this paper. We also
refer to and for relevant background material.

By an algebra we mean a basic artin algebra A over a fixed commutative artin
ring R, and by a A-module is meant a finitely generated left 4-module. We denote
the category of these modules by mod A4, and ind 4 denotes the full subcategory formed
by the indecomposable modules. Then rad(mod A4) denotes the radical of mod A, that
is, the ideal in mod 4 generated by all noninvertible morphisms between modules in
ind 4. The infinite radical rad”(mod 4) of mod A is the intersection of all powers
rad"(mod A4), n > 1, of rad(mod 4). We denote by Iy the AR-quiver of 4 and by
74 and 7, the AR-translations DTr and Tr D, with D the ordinary duality and Tr the
transpose. We shall not distinguish between an indecomposable /4-module and the
vertex of Iy corresponding to it. Following [21], a component ¢ of I; is said to be
generalized standard if rad™ (X,Y) =0 for all X and Y in . Finally, a full subquiver
2 of Iy is said to be directed (respectively, almost directed) if all modules from X
(respectively, all but finitely many modules from X)) do not lie on oriented cycles in 7.

Recall that a module M in I, is called left stable (respectively, right stable) if t{ M
(respectively, 7,"M) is defined for all ne N. Moreover, M is called stable if it is both
left stable and right stable. For a component ¢ of I;, we denote by %; (respectively,
%,) the left stable part (respectively, right stable part) of € obtained by deleting in € the
7-orbits of projective (respectively, injective) modules, and by %, the stable part obtained
by deleting in ¥ the nonstable modules and arrows attached to them. By a left stable
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component (respectively, right stable component, stable component) of /; we mean a
connected component of (1), (respectively, (I4),,(I4),). We refer to and
(respectively, [15]) for the shapes of stable (respectively, left stable and right stable)
components of 1.

For M and N in ind 4 a path from M to N in ind 4 is given by a sequence of
morphisms

M=x; L~ o x, X, =N

where, for each i, X; is in ind 4 and each f; is a nonzero nonisomorphism, and ¢ > 1.
Then M is said to be a predecessor of N and N a successor of M in ind A. If the
morphisms f; are in addition irreducible, then the path is a path of irreducible mor-
phisms. It M is isomorphic to N, then the path is an oriented cycle in ind A. Every
indecomposable 4-module M is also called its own (trivial) predecessor and successor.

Let Zy, -2, — -+ — Z, — Z,,1 be a path of irreducible morphisms in ind 4. If
Z; 1 ~1Z; for some i with 2 < i <n, we say that Z; is a hook of the path. The path
is said to be sectional if it has no hook. It is well known (see [1, (VII.2.4)]) that the
composition of irreducible morphisms forming a sectional path is nonzero.

We shall prove a technical fact playing a crucial role in the proof of the main result
of Section 4.

Let 4 be a finite dimensional algebra over an algebraically closed field K and %
a directed generalized standard component of I;. For each indecomposable module
X in % we fix irreducible morphisms f;* : X — EX, 1 <i < my, where E[,... E, are
indecomposable modules from % (not necessarily nonisomorphic) such that

f:(lea"'a m/‘;)ZX_)ElX@@Eer

is a minimal left almost split morphism in mod 4. Let M and N be indecomposable
modules in % such that there is a path of irreducible morphisms in 4 from M to N and
every such a path is sectional. Denote by (M, N) the set of all (sectional) paths of
irreducible morphisms of the forms
oty 5"
M=X —X—  —X,— X, =N

with 1 <i; <my, 1 <s<r. Observe that the compositions le' e fllX' are nonzero
(see [1, (VIL.2.4)]). Moreover, since % is generalized standard, there is a natural number
n such that rad"(M, N) = rad™ (M, N) =0 (see [1, (V.7.2)]), and consequently & (M, N)
is finite. Denote by max(M,N) the maximum of length of paths in % (M,N).
Finally, we note that End, (X) ~ K for any indecomposable module X in %, because
% is generalized standard and directed. Then the following fact holds.

ProprosITION 1.1.  Let € be a directed generalized standard component of Iy, M and
N indecomposable modules in €, ¢,,...,p, be the compositions of irreducible morphisms
forming pairwise different paths py,...,p, in S(M,N) and let &,,...,& be automor-
phisms of N. Then the sum 1o, + ---+ &9, is nonzero.

PrOOF. We prove the claim by induction on max(M,N). We may assume that
t > 2, because the composition of irreducible morphisms on a sectional path is nonzero.
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Assume max(M,N)=1. Then &(M,N) consists of irreducible morphisms f™,

S M T <i < <o <y <my, such that the residue classes

S +rad* (M, N), ;M 4+ rad* (M, N),..., fM + rad*(M, N)

form a basis of rad(M, N)/rad*(M,N) over K = End4(N). Since ¢,...,p,€ S(M,N)
are pairwise different, we obtain & ¢, + --- + &0, # 0.

Assume max(M,N) > 2. Observe that there is a minimal right almost split
morphism of the form A@BMN, where 4 =4, ® - - @ Ay, the modules A; are
indecomposable, g = (g1, ...,9s) and the irreducible morphisms g; : 41 — N,..., g, : Ay
— N form a complete family of the final irreducible morphisms le’ : X, — N on the
paths of irreducible morphisms in (M, N). Clearly, there are no paths of irreduc-
ible morphisms from M to indecomposable direct summands of B. We note also
that End (N) = K @ End,(4;), 1 <i<s. In particular, we have ¢; = 4;idy with
Ji € K\{0}, for ie {1,...,¢}. Foreachie{l,..., ¢}, thereis j(i) € {1,...,s} such that
¢; = gji\p; for ¢; being the composition of irreducible morphisms on a path from
S (M, Aj;)). Then consider & = A;idy,, € Ends(4;;). For je{l,...,s}, denote by
Y;: M — A; the sum of all morphisms Elp! with j(i) = j, and put ¥ = [y,..., 4] :
M — A. Then we have ¢ =¢&p, +---+ &0, =gy. Note that all paths of irreduc-
ible morphisms from M to the modules Ai,..., 4, are sectional and max(M,4;) <
max(M,N) for any je{l,...,s}. For the inductive step, we may assume that the
proposition holds for the compositions of irreducible morphisms of sectional paths
from (M, A,),...,¥(M,A;) and automorphisms of A;,...,4;. Then ¢ #0. Sup-
pose ¢ = gy = 0. Then N is nonprojective and there is an almost split sequence of the
form

(u,0) (9,h)
0O— 1ty N —->A9pB— N—0,
and a nonzero morphism ' : M — 74N such that = w)’. Since the component % is
generalized standard, ' is a sum of compositions of irreducible morphisms between
indecomposable modules in 4. Therefore, there is a nonsectional path of irreducible
morphisms

M-t N—>A4 — N

from M to N, a contradiction. Hence & ¢ + -+ &0, = g # 0. ]

2. Almost directed components.

In this section we introduce some concepts playing a fundamental role in our
further investigations.

Let A be an artin algebra and let ¥ be a component of 7. Recall that following
15], [20], a full connected valued subquiver 4 of % is called a section of € if 4 is
directed, convex in ¥ and intersects each 74-orbit in % exactly once. We introduce the
following more general concept. A full connected valued subquiver 4 of % is said to be
a multisection in € if the following conditions are satisfied:

(1) 4 is almost directed.

(2) 4 is convex in %.
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(3) For each t4-orbit ¢ in ¥ we have 1 < |[4N0| < o0.

(4) |4N0O| =1 for all but finitely many z,-orbits ¢ in %.

(5) No proper full convex valued subquiver of A satisfies the conditions (1)—(4).

We also note that the double sections, defined in [I8], are special types of mul-
tisections.

For a multisection 4 in a component % of Iy, we consider also the following full
valued subquivers of %:

A7 = {X € 4; there is a nonsectional path X — --- — P with P projective},

Al ={X € 4; there is a nonsectional path I — --- — X with [ injective},

Al ={X edit, X ¢4},

A" ={Xed;t X ¢4},

A= (A\A4))Uz 4],

4, = (A\4;) Uz, 4],

A, = A4;N 4] (the core of A4).

The following example shows that in general 4; and 4, are not subquivers of A.

ExampLE 2.1. Let 4 be the bound quiver algebra KQ/I, where KQ is the paths
algebra of the quiver

4 8
Q : l” T"
1 2 92 £ 3 2 5 L6 S 7 29 210

over a field K and [ is the ideal in KQ generated by af, fa, 00,0, e and gv. Then Iy
is of the form

Py=1 Ps Sa Sg I Pg =1
e N, o N NN SN
NN N SN NS

Ps P/ S, 55\
Py=1 PG:IS

where S;, P;,I;, 1 <i <10, denote the simple, projective, injective module given by
the vertex i. Since the modules P, = I} and Py = Iy are projective-injective, the full
translation subquiver 4 of Iy formed by all modules of I; except the simple modules
S1,S4,Ss and Sjo is the unique multisection of Iy. Moreover, we have A; = A\{I,
17, Sg,Ig}, A; = A\{Pz, Sz,P3,P4}, and hence AC = {S3, P5,P4/Sz,[3, S5,P6, S6,P7,167
P7/S6,S7}. Then Al” = {11,12,P5,13,I5,I6,P7/S6,S7}, and Ar” = {S3,P4/S2,P5,P6,P7,
I, Py, P1p}. Therefore, 4; is a disjoint union of the subquivers P, — S, — P3 — P4 and
Sg, and 4, is a disjoint union of the subquivers Sy and Iy — I; — Sy — Iy. Finally,
observe that S; and Sg do not belong to 4, and hence 4; and 4, are not subquivers
of 4.
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The Example 2.9 below shows that we may have 4; = 4] = 4 = Iy, and hence 4,
and 4, empty. In fact, it is the case for all connected nonsimple selfinjective algebras of
finite representation type.

The following property of multisections will be essential for our further consid-
erations.

LEmMMA 2.2. Let A be a multisection in a component € of Iy and O a t,-orbit in
% such that ANO = {z"'X,... X} for some m>2. Then there exist in A paths
I— - —1t"'X and X — --- — P with I injective and P projective.

PrROOF. Observe first that if there is in % a path I — --- — t7~!'X with I injective
then it lies entirely in A4, because 4 contains a module from the z4-orbit of I and is
convex in ¥. Similarly, if ¥ admits a path X — --- — P with P projective then it lies
entirely in 4.

Suppose 771X is not a successor of an injective module in 4. Let Q be the family
of all modules in A which are predecessors of 77/"'X in % (equivalently, in 4). Then
it follows from our assumption that 2 consists of noninjective modules. Denote by X
the full valued subquiver of ¢ given by all modules from 4\ and 7,Q2. Clearly, 2 is
a full connected valued subquiver of  satisfying the conditions (1)—(4) of a multi-
section. Moreover, every module of t,Q is a predecessor of 72X (because the paths
from modules in Q to 7' X consist of noninjective modules) and hence belongs to 4,
again by the convexity of 4 in ¥. Therefore, X is a convex valued subquiver of 4 such
that ONX = {¢72X,..., X}, which contradicts the minimality of 4. This shows that
71X is a successor of an injective module in %. Similarly, we prove that X is a
predecessor of a projective module in %. ]

As a consequence we obtain the following characterization of sections.

COROLLARY 2.3. Let A be a multisection of a component € of Iy. The following
statements are equivalent:

(i) 4 is a section of €.

(i) 4= 4,.

(i) 4 =4,.

ProOOF. Assume that 4 is a section of ¥. We claim that 4/ = &f = 4,, and con-
sequently 4, = A4 = 4,. Indeed, suppose Z is a module in A4’. Then there exists a path
I— - -1t X—-Y—X—.--—Z in ¥ with I injective. Since 4 is a section, [
and Z belong to 4, then {t,X,X} is contained in 4, by the convexity of 4 in .
This contradicts the fact that A intersects each 7, -orbit in % exactly once. Therefore,
Al = . Similarly, we prove that 4, = (.

Conversely, assume that A4; = A (respectively, 4, = A) holds. In order to prove
that 4 is a section of %, it is enough to show that (AN @| =1 for every z4-orbit ¢ in
%. Suppose () is a t4-orbit in % such that AN O = {¢771X,..., X} for some m >2. It
follows from [Lemma 2.2 that there exist in % paths / — -+ — 7 ' X and X — --- — P
with I injective and P projective. Hence we obtain a path in € of the form

I— ="YX sY, - X - - X—>Y —-X—- =P
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This implies {t72X,..., X} € 4/ and {z7'X,... 14X} S 4]. But then 172X € A\4,
and 74X € 4\4,, a contradiction. O

The following proposition describes basic properties of multisections.

PrOPOSITION 2.4. Let € be a component of I, with a multisection A. Then we
have the following statements.

(i) Every cycle in € lies in A..

(i) 4. is finite.

(iii) Every indecomposable module M in € is in A, or is a predecessor of A; or a
successor of A, in €.

Proor. (i) Let X =X} — X, — -+ — X, = Xns1 = X be an oriented cycle in %.
We note first that the cycle X = X} — --- — X, = X is not sectional (see [1, (VIL.2.6)]).
Then for any natural numbers r, s such that the modules 7/, X; and 7*X; are nonzero for
all ie{1,2,...,m}, all modules ¢/ X;, ie{l,2,...,m}, —s <t <r, lie on one oriented
cycle in . Suppose first that the modules Xi,..., X, are stable, and let I" be a stable
component of I containing these modules. Then it follows from Zhang’s theorem
(see also [14, (2.7)]) that I" consists of 7,-periodic modules, and consequently is either a
stable tube ZA.,/(7"), r =1, or of the form ZQ/G for a Dynkin quiver Q and an
admissible group G of automorphisms of ZQ (see or [1, (VIL4.1)]). Since the
multisection A intersects each 74-orbit in ¢ and is convex in %, we conclude that I is
contained in 4. Moreover, since A is almost directed, we obtain that I is a finite
quiver of the form ZQ/G. Further, I" # %, because otherwise % is the Auslander-
Reiten quiver of a connected part of 4 and is stable. Therefore, there is an indecom-
posable module Z in I" which is a direct predecessor of a projective module or a direct
successor of an injective module in %. It is well known that any left stable (respectively,
right stable) component of /s containing a 74-periodic module is in fact stable. Hence,
% contains a finite nonperiodic 74-orbit connected in % to a (periodic) 74-orbit of I
Then for any indecomposable module Y in I there are nonsectional paths / — -+ — Y
and Y — --- — P with I injective and P projective, and hence Y belongs to 4.. Con-
sequently, I" is contained in A.. In particular, the modules Xi,...,X,, lie in 4.
Assume now that one of the modules Xj,..., X, is not stable. We claim that there
exist i, j€{l,...,m} and nonnegative integers p and ¢ such that t/ X; is projective,
7,7X; is injective, and all modules 75Xy, —g < s < p, | <k < m, are nonzero. Without
loss of generality, we may assume that one of the modules Xi,...,X,, is not right
stable. Let ¢ be the minimal natural number such that 7,?X; is injective for some
je{l,...,m}. Suppose the modules Xi,..., X, are left stable and let & be the left
stable component of Iy containing these modules. Since X; is not stable, & is not
stable and so does not contain a t4-periodic module. Then it follows from [15, (2.3)]
that there exists an infinite sectional path

oY oY s = Yoo Y

with r > s such that Yi,..., Y, is a complete set of representatives of the 7,-orbits in
2, the module Y; injective, and the modules Y, and tJ]Y,,...,7]Y,, m>r, lie on
common oriented cycles in &. Since 4 contains a module from the 7,-orbit of Yj,
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the convexity of 4 implies that all modules 7/'Y;, m>r, 1 < j<s, belong to 4. But
then 4 contains infinitely many modules lying on oriented cycles in %, a contradiction.
Therefore, one of the modules Xi,...,X,, is not left stable, and so there exists a mini-
mal natural number p such that 7/ X; is projective for some i e {1,...,m}. Since all
modules 7} X;, ie{1,2,...,m}, —g <t < p, lie on a common oriented cycle, and this
cycle is not sectional, we conclude that for any module Xj, k € {1,2,...,m}, there exist
nonsectional paths 7,7X; — -+ — X; and X — --- — /. X; with 77X, injective and
th X; projective. Therefore, all modules X = X, X5,...,X,, lie in 4.

(i) Since by (i) every cycle in € lies in 4. < 4 and 4 is almost directed we
conclude that % is also almost directed. Suppose that 4. is infinite. Clearly then 4
and % are also infinite. Invoking now the conditions (3) and (4) for a multisection, we
conclude that the stable part ¥, of ¥ contains a connected component /" of the form
Z2, for a directed connected full valued subquiver X' of A containing infinitely many
modules from 4,.. Observe also that ¥ can be obtained from the connected components
of %, by gluing along the nonstable 7,-orbit of ¥. Then the section 2 of A4 contains
at most finitely many modules which are simultaneously the targets of paths in & with
injective sources and the sources of paths in ¥ with projective targets. Therefore, X
contains at most finitely many modules from 4., a contradiction. This shows that A,
is finite.

(i) Let M be an indecomposable module in ¥ and @ the 7,-orbit of M. Since
A is a multisection in %, we have m=|4N0| >1. Let ANO={7'X,..., X}.
Assume first that m >2. Then it follows from [Lemma 2.7 that there are paths
I— - —1"'X and X —---— P with [ injective and P projective. Hence
{zh2X,.., X}y =a, {z7'X,...,t4X} = 4], and {<772X,...,14X} = 4. Observe
that 77X ¢ 4. and 7, X ¢ 4, because X and ;X do not belong to 4. Moreover,
if 71X ¢ A (respectively, X ¢ 4]) then 7 'X e A, (respectively, X € 4,). Further,
if 771X e 4] then t77'X € 4., and 77X € 4, provided /"' X is nonprojective. Simi-
larly, if X € 4; then X € 4., and 7, X € 4, provided X is noninjective.

Assume now m =1 and X ¢ 4, = 4/ N 4,. Observe that if X ¢ 4, and X ¢ 4, then
Xed,N4d,. Suppose Xed, and X ¢ 4. Since t,X ¢ A, we have X €4,, and
7,X € 4,, provided X is noninjective (and X € 4, otherwise). Similarly, if X € 4. and
X ¢ Al’, then X € 4,, and 74X € 4; provided X is nonprojective (and X € 4; otherwise).
Summing up, we conclude that the module M lies in 4. or is a predecessor of a module
from A4; or a successor of a module from 4,. ]

THEOREM 2.5. Let € be a component of I'y. Then € is almost directed if and only
if € admits a multisection A.

Proor. The sufficiency part follows from |[Proposition 2.4. We shall prove the
necessity part. Assume that ¢ is almost directed. In order to prove that ¥ admits a
multisection it is enough to show that there exists a full connected valued subquiver X
of & satistying the conditions (1)—(4). Indeed, then any minimal full convex valued
subquiver 4 of X satisfying the conditions (1)—(4) is a multisection in . If % is finite
we may take X = %. Therefore, assume that % is infinite.

Since % is infinite, then the left stable part &; of % or the right stable part €, of ¢
is infinite. Assume %) is infinite and let & be an infinite component of %;. We claim
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that 2 is directed. Suppose to the contrary that & contains an oriented cycle. If &
is stable, then applying we conclude that & is a stable tube and consequently con-
tains infinitely many modules lying on oriented cycles in &, a contradiction because % is
almost directed. Thus assume (without loss of generality) that & contains an injective
module. Then it follows from [15, (2.3)] that there exists an infinite sectional path

-—>r/21’X1—>T/I1XS—>---—>T/I1X1—>XS—>---—>X1

with 7 > s such that X, X5,..., X is a complete set of representatives of the 7,-orbits
in &, and all modules 7X,,...,7X,, m>1t, lie on oriented cycles in . But then
again there are infinitely many modules in &, and hence in %, lying on oriented cycles.
Therefore, & is directed. Applying now [15, (3.4)] we obtain that there exists a con-
nected valued quiver Q without oriented cycles such that & is isomorphic to a full
translation subquiver of Z¢ which is closed under predecessors. In particular, &
admits a section isomorphic to €. Similarly, we prove that if & is an infinite com-
ponent of %, then & is directed and admits a section 6.

Let 21,...,2, be the family of all infinite components of %; and &i,...,68, the
family of all infinite components of %,. It follows from our discussion above that
Dy Dy, &1,...,6, are directed translation quivers and admit respectively sections
Q,...,2,, 61,...,0, Further, let Oy,...,0, be all finite 74-orbits in ¥. Choose a
finite family 2" of modules in % intersecting each of the quivers Q,...,2,, 61,...,0,,
Oy,...,0, exactly once. Since % is a connected quiver, for any modules X and X’
from %, there is in € a finite walk X = X — X, — --- — X, — X; = X'/ connecting X
and X'. Hence there exists a finite full valued subquiver % in % such that 2 = % and
any two modules Y and Y’ in % can be connected by a walk consisting entirely of
modules from %. Observe that ¥ can be obtained from the directed translation quivers
P1,...,9, and 61,...,6, by gluing along (finitely many) finite 74-orbits. Moreover, €
is locally finite, that is, any module in % is a source or target of at most finitely many
arrows. Therefore, each of the directed quivers €y,...,Q, (respectively, Oy,...,0,)
contains at most finitely many modules which are sources or targets of paths in &
with targets or sources in %. Let X be the convex hull of the full valued subquivers
Q,...,2,, 61,...,0, 0y,...,0,, and % in ¥. Then X satisfies the required con-
ditions (1)—(4). This finishes the proof. ]

As a consequence we obtain the following.

COROLLARY 2.6. Let € be a component of I'y. Then € is directed if and only if €
admits a directed multisection A.

Recall that a family 2" of modules in mod A4 is called faithful if the intersection of
the (right) annihilators ann,(X) = {a € 4; Xa = 0} of all modules X in Z is zero. It is
well known (see [19, (2.4)]) that Z is faithful if and only if there exist a monomorphism
A4 — M and an epimorphism N — D(A), for some finite direct sums M and N of
modules from Z. We have the following fact.

LemMA 2.7. Let € be a component of Iy with a multisection A. Then € is faithful
if and only if A is faithful.
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PrOOF. It is a straightforward extension of arguments applied in the proof of [20,
Lemma 3], invoking the property (2.4)(iii) of a multisection. O

Our next aim is to introduce a numerical invariant w(4) of a multisection 4 in
a component ¥ of Iy, called the width of A. Let p be a path in 4. We write the
path p as an ordered sequence of modules associated with the vertices. A subpath
(M, ZV "M, Z?) «2M, ..., Z" t"M) is called a hook path of length n (if n > 1),
and it is a maximal hook path if it is not contained in any hook path of larger length.
Associated with the path p is the following sequence of maximal hook paths (if there are
any hook paths). Start with a maximal hook path (M,ZW" 'M,Z® 2M, ..., Z",
7,"M), where M is the first module on p which is the start of a hook subpath of p.
Then take the maximal hook subpath of p with the start at the first possible successor of
7,"M on p, etc. Denote by i(p) the sum of the length of these hook subpaths of p.
In particular we have i(p) = 0 if and only if p is sectional. We define the width w(4)
of 4 to be the maximum of i(p) 4+ 1 for all paths p in 4. Observe that if 4 is a section
(respectively, double section [18]) in % then w(4) =1 (respectively, w(4) = 2).
Observe also that A is directed if and only if w(4) < co. We say that a multisection
A in € is an n-section if n =w(A4).

The following examples show that for any ne NU{co} there exists an AR-
component % having a multisection 4 with w(4) = n.

ExampLE 2.8. Let A the bound quiver algebra KQ/I, where KQ is the path
algebra of the quiver

0:1-2—.--—>n—-n+1—-n+2

over a field K and [/ the ideal in KQ generated by all paths in Q of length 2. Then the
AR-quiver Iy of A is of the form

Pn—H P, Py
Sni2 Snt1 o S

where S; and P;, 1 <i<n+2, denote the simple and indecomposable projective
module at the vertex i, respectively. Then the full subquiver 4 of Iy formed by all
vertices of Iy except S,.» and S; is a multisection with w(4) =n. We also note that
gldimA =n+1.

ExaMPLE 2.9. Let K be a field and 4 = K[X]/(X?). Then Iy is of the form
NE=/

where S = K[X]/(X). Moreover, 4 =1, is a multisection in Iy, w(4)= oo and
gl.dim 4 = oo.

Our next example shows that an almost directed AR-component admits usually
many multisections.

ExampLE 2.10. Let 4 be the bound quiver algebra KQ/I, where KQ is the path
algebra of the quiver
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over a field K and I is the ideal in KQ generated by yog,00 and de. Then I is of the
form

NSNS
NSNS \,/
NN L S

NN\

where S;, P;,I;, 1 <i <8, denote the simple, projective, injective module given by the
vertex i. Then the following families of modules form all multisections of I:

AV = X U{Py, M, I}, 4% =2 U{Py, M, S},
AY = U8, M, I}, AW =2U{S>, M, Ss},
A® = 2 U{S, b, I}, 49 =2U{S,b,Ss},
AD = 2U{S1, b, 16},  A® =2 U{S1, b, Ss},

where 2 = {I3, S4, Ps, Ss, Ps,S¢, P7}. Observe that, for each ie {1,2,...,8}, we have
w(4D) =3 and 4V = {S;s}.

The following general fact shows that the width and the core of a multisection of an
almost directed component % are in fact invariants of €.

ProrosITION 2.11.  Let € be a component of I’y and A, X multisections in €. Then
w(d) =w(X) and 4. = X.,.

PrOOF. Observe that every module X lying onapath / —---— X —--- — P in
% with I injective and P projective lies in 4N 2X. Consequently 4., = X.. Moreover, it
follows from [Cemma 2.2 that, if p=(M,ZW 1M, Z% ¢ 2M,....Z" ¢ "M) is a
hook path in A (respectively, in X), then M is a successor of an injective module and
7,"M 1s a predecessor of a projective module in %, and hence p is also a hook path in X
(respectively, in 4). Then the equality w(4) = w(X) also easily follows. O

3. Generalized double tilted algebras.

We introduce here the class of generalized double tilted algebras, containing the
classes of tilted algebras [10], double tilted algebras [18], and all algebras of finite
representation type.

A connected artin algebra A is said to be a generalized double tilted algebra if the
following conditions are satisfied:
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(1) I; admits a component ¥ with a faithful multisection 4.

(2) There exists a tilted factor algebra A; of A (not necessarily connected) such
that 4; is a disjoint union of sections of connecting components of the connected parts
of A;, and the category of all predecessors of 4; in ind 4 coincides with the category of
all predecessors of A; in ind A;.

(3) There exists a tilted factor algebra A, of A (not necessarily connected) such
that 4, is a disjoint union of sections of connecting components of the connected parts
of A,, and the category of all successors of 4, in ind 4 coincides with the category of all
successors of 4, in ind 4,.

In the above notation, A4; and A, are said to be the left tilted algebra and the right
tilted algebra of A, respectively. Moreover, € is said to be a connecting component of
A. If A is a section of @ then 4; = A4 = A, and hence 4 is a tilted algebra. Further,
if w(4) > 2, then % is the unique connecting component of 4. We say that a con-
nected artin algebra A is an n-double tilted algebra if I'y admits a component ¥ with an
n-section A satisfying the above conditions (1)—(3). It follows from [Proposition 2.11|
and properties of tilted algebras that n = w(4) does not depend on the choice of multi-
section 4 and connecting component 4. Observe that 1-double tilted algebras and 2-
double tilted algebras are exactly tilted algebras and double tilted algebras [18],
respectively. Finally, we note that every connected artin algebra of finite representation
type is a generalized double tilted algebra.

We have the following characterization of generalized double tilted algebras.

THEOREM 3.1. Let A be a basic connected artin algebra. The following conditions
are equivalent:

(1) A is generalized double tilted.

(i) Iy admits a faithful generalized standard almost directed component.

(i) Iy admits a component € with a faithful multisection A such that
Hom,(X,7,Y) =0 for all modules X from A, and Y from A,.

ProOOF. It is a straightforward extension (invoking Mheorem 2.3) of arguments
applied in the proofs of [20, Theorem 3] and [18, Theorem 7.3]), where similar char-
acterizations of tilted and double tilted algebras have been established. O

We obtain the following consequences.

PrOPOSITION 3.2. Let A be a basic connected artin algebra. Then A is n-double
tilted, for some n > 2, if and only if I'y admits a faithful generalized standard almost
directed component with a nonsectional path from an injective module to projective module.

ProrosiTiON 3.3, Let A be a basic connected artin algebra. Then A is n-double
tilted, for some n > 3, if and only if I'y admits a faithful generalized standard component
with a multisection A such that A. # .

We have also the following results on the structure of the module category of a
generalized double tilted algebra of infinite representation type.

THEOREM 3.4. Let A be a basic connected generalized double tilted algebra of infi-
nite representation type which is not tilted, and let € be the connecting component of I}.
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Then there are a hereditary artin algebra . H and a tilting ., H-module ., T without non-
zero preinjective direct summands, and a hereditary artin algebra H, and a tilting
H . -module T, without nonzero preprojective directed summands such that the following
statements hold:

(i) The tilted algebras A =End _g(,T)" and A, =Endy, (T,)" are factor
algebras of A.

(i) The torsion-free part ¥ (,T) of mod A is a full exact subcategory of mod A
which is closed under predecessors of indecomposable modules.

(i) The torsion part Z (T.) of mod A, is a full exact subcategory of mod A which
is closed under successors of indecomposable modules.

(iv) 4 is a factor algebra of 1A and 6 = ¥ (,T)NE is the torsion-free part of
the family € r of the connecting components of ., A and is also a full translation subquiver
of € which is closed under predecessors in €.

(V) Ay is a factor algebra of A, and €, = X (T,,) N€ in the torsion part of the
Sfamily €1, of the connecting components of A, and is also a full translation subquiver of
€ which is closed under successors in €.

(Vi) Y (.T) and Z(T,) have no common nonzero modules.

(vil) The family of indecomposable A-modules which are neither in % (., T) nor in
A (T.) is finite and coincides with the family of all indecomposable modules in € which
are neither in € nor in €.

ProoOF. It is a direct extension of arguments applied in the proof of [20, Theorem
1], where the structure of the module categories of algebras having faithful generalized
standard directed components has been established. ]

We note that if the left tilted algebra A; (respectively, the right tilted algebra 4,) of
A has a finite torsion-free part %/(7;) (respectively finite torsion part Z(7,)) then A
(respectively A.) is zero. The known structure of AR-components of tilted algebras
(see [10], [11], [12], [16], [19], [25]) and the above theorem lead to the following
description of the AR-quivers of nontilted generalized double tilted algebras of infinite
representation type.

COROLLARY 3.5. Let A be a basic connected generalized double tilted algebra of
infinite representation type, and assume that A is not tilted. Then we have the following.

(i) Every component of I, different from the connecting component either lies
entirely in %(,T) or lies entirely in X (Ts).

(i) Every component of Iy contained in % (., T) is either preprojective, a stable tube
ZA,/(t"), for m > 1, of the form ZA.,, or can be obtained from a stable tube or a
component of type ZA., by a finite number of ray insertions (in the sense of [19]).

(iii) Every component of Iy contained in X (Ty,) is either preinjective, a stable tube

ZA,/(t™), for m > 1, of the form ZA.,, or can be obtained from a stable tube or a
component of type ZA., by a finite number of coray insertions (in the sense of [19]).

We illustrate the above considerations with the following example.

ExampLE 3.6. Let Q be the quiver
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1«23
AN /9

\

/ \10

KQ the path algebra of Q over a field K, I the ideal in KQ generated by all paths in Q
of length 2, and 4 = KQ/I. Then Iy admits a component % of the form

. \\\\\\“ //,’ 14\\“55 | n

Sy Sy Ss
NSNS P
P P;

Observe that the full convex subquiver 4 of % given by the modules P;, S», P3, S3, L4,
Ss, Ps, I, Is, Se, P7, S7, Ps, Py, P1o, Py is the unique multisection in ¢ and w(4) =4 =
i(p) + 1, for p being the path

S, — Py — 83— Pg— Is — S¢ — P7 — 7.

Further, 4, (respectively, 4,) is the subquiver of 4 given by the modules P,, S,, Ps,
Ss, Iy, Ss, Ps, I3, Is, Se (respectively, S, Ps, L, Is, S¢, P7, S7, Ps, Py, Pig, Pip), and
hence 4. = A;NA. is the subquiver given by Ps, Ss, Ps, I, Is, S¢. Moreover, A/
(respectively, 4”) is given by the modules P,, P3, Is, I3, Is, S¢ (respectively, Ps, S3, P,
L, P;, Pg, Py, Py, P11). Hence 4, = (4\4))Uz, 4" is given by the modules P,, S,, Iy,
Ss and 4, = (4\4;) Uz, 4, is given by the modules P;, S7, Ps, Py, Pio, P11. Therefore,
the left tilted algebra A; of A is the product H; x H,, where H; is the path algebra of
the full subquiver of Q given by the vertices 1 and 2 and H> is the path algebra of the
full subquiver of Q given by the vertices 4 and 5, and the right tilted algebra A, of A is
the bound quiver algebra K2/J with X being the full subquiver of Q given by the
vertices 6, 7, 8, 9, 10, 11 and J the ideal in KX generated by all paths in X of length 2.
Finally, .4 = H, and 4., is the path algebra KQ of the full subquiver 2 of Q given
by the vertices 7, 8, 9, 10, 11. Thus the AR-quiver I; of A consists of a preprojective
component, an infinite family of components of type ZA.,, the connecting component
%, a preinjective component and an infinite family of stable tubes (3 of them of the form
ZA,/(t?) and the remaining ones of the form ZA./()).

4. Global dimension.

Let A4 be a generalized double tilted algebra over an algebraically closed field K, € a
connecting component of Iy and 4 a faithful multisection in 4. In particular, we have
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Hom /(D(A),74X) = 0 for any predecessor X of 4, in ind 4 and Hom,(z; Y, 4) = 0 for
any successor Y of 4, in ind 4. Then every predecessor of 4; in ind A4 has projective
dimension at most one, and every successor of 4, in ind A4 has injective dimension at
most one (see [19, (2.4)]). In particular, for all but finitely many indecomposable /-
modules X we have pd, X <1 or idsX < 1. On the other hand, as we have seen in
Section 2, there are generalized double tilted algebras of arbitrary global dimension.
The aim of this section is to establish a bound for the global dimension of a generalized
double tilted algebra in terms of the width of a multisection. We need some notation.

For an indecomposable module N in the multisection 4, we denote by i(N) the
maximum of the numbers i(p), for all paths in 4 ending at N, as defined in Section 2.
We note that if 4 is a section then i{(N) =0 for all modules N in 4. We have the
following easy observation.

LemmA 4.1. Let N be a module in A with i(N) > 0. Then there exists a path p in
A starting with an injective module and ending at N such that i(N) = i(p).

PrOOF. Assume i(N) >0 and choose a path p’ in 4 ending at N such that
i(p") =i(N). Let M,ZW t;'M,...,Z" "M be the first maximal hook subpath of
p’. Then by there is some path in 4 from an injective module to M, and
composing it with the path p’ we obtain the required path p, because i(p) > i(p’) and
i(p') =i(N) is maximal. [

THEOREM 4.2. Let A be an n-double tilted algebra. Then gl.dimA <n+ 1.

ProOF. Let 4 be an m-section in a connecting component ¢ of I,;. We may
assume that n = w(4) < oo, or equivalently that & is directed. We first
prove that for any indecomposable module N in 4 we have pdyN <i(N)+ 1. Let N
be a module from 4. Assume first i(N) = 0. Then any path in 4 ending at N is sec-
tional. Since 4; is a disjoint union of sections of connecting components of the con-
nected parts of the left tilted algebra A; of A and the injective A;-modules are successors
of A; in ind A4;, we infer that every injective predecessor of a module from % in ind A
lies in ¥. This implies that Hom,(D(A),74N) =0, and consequently pd, N <1 (see
[19, (2.4)]), because otherwise there would be a path in 4 of the form I — 7N —
X — N, contradicting i(N) =0. Assume i(N) > 0. For each indecomposable module
X in %, we fix irreducible morphisms f;* : X — EX, 1 <i < my, where E[¥,... E; are
indecomposable modules from % (not necessarily nonisomorphic) such that

f:(lea"'a ryl};)[XHElX@C_BEer

is a minimal left almost split morphism in mod 4. Denote by % the family of all
chosen irreducible morphisms ¥, X € 4, 1 <i <my. Consider an exact sequence

0—>0ON S Py N—=0

where v: Py — N is a projective cover of N, and let Py =P, ®--- @ P, for some
indecomposable modules P;. Let v;: P, — N, 1< j <t be the restrictions of v to
the summands P;. Since % is a generalized standard component, we may choose
v: Py — N such that, if P; belongs to %, then the morphism v; is a scalar multiplication
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(by a nonzero element of K = End,(N)) of a composition of irreducible morphisms
from the family %#. Let L be an indecomposable direct summand of QN. Assume L
belongs to 4. We claim that then there is a nonsectional path of irreducible morphisms
from L to N. Without loss of generality we may assume that {1,...,r} is the set of
all je{l1,...,t} such that the composition u; : L — P; of the restriction of u to L with
the canonical projection Py — P; is nonzero. Since the connecting component % of
the generalized double tilted algebra A is convex in ind A4 (see also [Theorem 3.4) the
modules Pq,..., P, belong to ¥ and, by our choice of v, the morphisms vy,...,v, are
nonzero scalar multiplications of irreducible morphisms on pairwise different paths of
irreducible morphisms from %. Since % is a generalized standard component, invoking
the universal property of left almost split morphisms, we conclude that the morphisms
uj: L — P;, 1 < j <r, are linear combinations of compositions of irreducible morphisms
from #. Then vju; + -+ v,u, is a linear combination of compositions of irreducible
morphisms on pairwise different paths from L to N consisting of irreducible morphisms
from #. Since vju; + --- + v.u, = 0, applying [Proposition 1.1, we conclude that there
is a nonsectional path of irreducible morphisms from L to N, and consequently
i(L) <i(N). Then by the inductive assumption we have pd, L <i(L)+ 1. If L is not
in 4, then L is a predecessor of 4; in ind 4, as a predecessor of the module N € 4 in
ind 4, and hence pd, L < 1. Therefore, we obtain pd, N < i(N)+ 1.

Let X be an arbitrary indecomposable 4-module, and let Y be an indecomposable
direct summand of QX. Then Y is a predecessor of an indecomposable projective
module in ind 4. Since the multisection 4 is faithful, every indecomposable projective
A-module i1s a predecessor of 4 in ind 4 and hence lies in 4 or is a predecessor of 4;
in indA. Hence Y lies in 4 or is a predecessor of A; in indA. In the first case
we have pd, X <pd, Y +1<i(Y)+2<w(4)+1, and in the second case pd, X <
pd,Y+1<2. In any case we obtain that gldimA <w(4)+1=n+1. (]

Note that 1-double tilted algebras are tilted algebras, where we know that the
global dimension is at most 2 [10]. The 2-double tilted algebras are the strict shod
algebras which have global dimension 3. Examples 2.8 and 2.9 show that there are
n-double tilted algebras A (for any n e NU {o0}) with gl.dimA4 =n+ 1. But in general
it is not the case.

ExampLE 4.3. Let A4 = KQ/I, where Q is the quiver

8

1

6
NN
375<————— P S—
4

and I is the ideal in the path algebra KQ of Q (over a field K) generated by all paths of
length 2. Then A is an oo-double tilted algebra with gl.dimA4 =4 and I, admits a
connecting component of the form
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AN
hf\/\/
NN

NV
AN

Moreover, both tilted algebras A4; and A, are of infinite representation type.
ExampLE 4.4. Let A = KQ/I, where Q is the quiver
223245506

1 7

~te

and [ the ideal in the path algebra KQ of Q (over a field K) generated by the paths
ay, fy,a&,nw and »v. Then A is a 4-double tilted algebra, gl.dim 4 =2, and I admits
a connecting component of the form

h N\
7N\, NN,

NN\ N
N\

5. Standard almost directed components.

The aim of this section is to prove a homological characterization of faithful
generalized standard almost directed components.

Let 4 be an artin algebra. Following [9], we define two subcategories £ and %,
of ind 4 as follows. The category %, is formed by all modules X in ind A such that for
every predecessor Y of X in ind 4 we have pd, Y < 1. Dually, #, is formed by all
modules X in ind 4 such that for every successor Y of X in ind 4 we have id, Y < 1.
It is known [2, (2.1)] that ind 4 = £, U, if and only if for every indecomposable /-
module X we have pd, X <1 or idjX <1 (4 is a shod algebra). Moreover, if 4 is
basic connected, then 4 is shod if and only if A is tilted, double tilted or quasitilted of
canonical type (see [10], [18], [6], [7]). In general, for a generalized double tilted algebra
A we have ind A\ (&%, UZ,) finite but not necessarily empty, as the examples presented
in the previous sections show. In fact it has been proved in that £, U Z 4 is cofinite
in ind 4 if and only if A is quasitilted or generalized double tilted.
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Let A4 be an artin algebra and ¥ a component of ;. We define two full trans-
lation subquivers ¥y and %4 in € as follows. The quiver %4 is formed by all
modules X in % such that for any path Y=Y, — Y, - ---— Y, =X in ind 4 with
Y, Ys,..., Y, from ¥ we have pd, Y < 1. Dually, Z¢ is formed by all modules X in
% such that for every path X =2, - Z, — - - Z,,=Z inind 4 with Z,Z,,...,Z,
from ¥ we have idyZ < 1. Observe that %4 is closed under predecessors in 4 and
R 1s closed under successors in 4. Moreover, if 4 is a multisection of ¥, then
4. S (g\(gfg U %(g)

THEOREM 5.1. Let A be a basic connected artin algebra, € a faithful component of
Iy with a multisection A, and assume that € contains both a projective module and an

injective module. Then € is generalized standard if and only if there is a decomposition
C =YLy UA.URqg.

PrROOF. Assume % is generalized standard. Then, by Theorem 3.1, A is a gen-
eralized double tilted algebra. Moreover, by [Proposition 2.4, every indecomposable
module in ¥ belongs to 4., or is a predecessor of A; or a successor of A4, in €. Since
A 1s generalized double tilted, all predecessors of 4; in ind A belong to ¥, and all
successors of A, in ind A4 belong to #,. Further, we have ¥ N¥ < ¥4 and Z,N
€ < #4. Therefore, the required decomposition ¢ = L, U 4. U Z4 holds.

Assume now that ¢ = L,UA.URy. Since ¥ is a faithful component of I,
applying we infer the multisection 4 is faithful. Hence, in order to prove
that % is generalized standard, it is enough to show that Hom,(X,7,Y) =0 for all
modules X from 4, and Y from 4, (see [Theorem 3.1). Suppose there exist X € 4, and
Y € 4; such that Hom,(X,7,Y) #0. Let & be the full translation subquiver of %
formed by all predecessors of 4; in ¥ and & the full translation subquiver of % formed
by all successors of 4, in %. Since, by [Proposition 2.4, all oriented cycles of % are
entirely contained in 4., the translation quivers & and & are directed. In particular,
there is no path in 4 from X to 7,Y. Since Hom,(X,74Y) # 0 then there exists an
infinite path

in % such that Hom,(X;,74Y) # 0 for all i > 0. We claim that there are i > 0 and a
path in ¥ of the form

I -t/ —-V—->Z— - =X

with I injective. It follows from our assumption on % that % contains at least one
injective module. Further, since 4 intersects any 74-orbit of %, every indecomposable
injective module from % lies in 4 or in &. Moreover, every indecomposable projective
module from & lies in 4 or in . Invoking now the fact that & is directed we conclude
that all but finitely many modules X;, i > 0, belong to one connected component I” of
the right stable part &, of &. Moreover, the connected components of &, are glued in
% along the 74-orbits of injective modules, and by assumption % contains at least one
injective module. Hence there is a path in 4 of the form

It Z—-V—->7Z—---—U
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with [ injective and U in I'. If I" has only finitely many orbits then clearly there is in
I' a path U — --- — X;, for some i >0, and consequently a required path

>t/ Z—-V—>27—- —X.

Assume [ has infinitely many orbits. Since I is directed then there are j >0, m >0
and an infinite path in I” of the form

—m —m —m
U= =X = 0 X = 0 Xjpa —

Applying now [5, Lemma 1.5] (see also [22, Lemma 4]) we infer that there are i > j and
a path in ind 4 of the form 7,”X; — --- — X;, consisting of modules from I°, and we
obtain a required path

VA V—>Z—>—>U—>—>‘[ZmX'l—>—>AXl

Since Hom(X;,74Y) # 0 and there is no path in ¥ from X; to 7,Y, there exists an
infinite path

=Yy —-Y - =Y = Yo=1Y

in % such that Hom,(X;, Y;) # 0 for all £ > 0. Invoking our assumption that ¢ con-
tains at least one projective module and applying dual arguments to those above, we
conclude that there are # >0 and a path in ind 4 of the form

Y- > N—->W—-17N—P

with P projective and consisting of modules from %. Observe that pd,Z > 2 and
idy N > 2, because Hom,(/,74Z) # 0 and Hom,(z,; N, P) # 0 (see [19, (2.4)]). There-
fore, X; and Y, belong to ¥\ (%4 UA4.UZR¢), which contradicts the assumption. This
finishes the proof. L]
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