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Abstract. We introduce the class of generalized double tilted artin algebras and

prove that it coincides with the class of artin algebras whose AR-quiver admits a faithful

generalized standard almost directed component. A homological characterization of

faithful generalized standard almost directed components is also established.

0. Introduction.

Tilted algebras have for a long time played a central role in the representation

theory of artin algebras. Being a more general class than the class of hereditary alge-

bras, they occur more frequently, and at the same time the module theory for tilted

algebras is closely related to the module theory for hereditary algebras. The more

general class of quasitilted algebras was introduced in [9]. This class contains also the

canonical algebras, and has been the focus of much attention during the last years. A

useful feature of the class of quasitilted algebras is the nice homological characterization

as the algebras where each indecomposable module has projective or injective dimension

at most one, and where in addition the global dimension is at most two. Dropping the

last property we have the class of shod algebras, introduced and investigated in [2].

A shod algebra which is not quasitilted is said to be a strict shod algebra. Both for

quasitilted algebras and for shod algebras there are several interesting descriptions and

results (see [2], [6], [7], [9], [13], [18], [20], [23]), for example in terms of paths from

indecomposable injective to indecomposable projective modules ([9], [2]).

As shown in [18] the strict shod algebras are closely related to tilted algebras. A

tilted algebra is characterized in terms of the existence of an AR-component with a

faithful section D such that HomðM;DTrNÞ ¼ 0 for M and N on D (see [17] and [20]).

The more general concepts of double section and double tilted algebras were introduced

in [18], and the strict shod algebras were characterized in these terms. In particular,

there are (left and right) tilted algebras naturally associated with a strict shod algebra,

and the module theory for the strict shod algebras is closely related to the module theory

for the associated tilted algebras.

In this paper we generalize the concepts of section and double section to what we

call a multisection D, along with its left and right parts Dl and Dr. Modelled on

defining the double tilted algebras on the basis of double sections in [18], we define

generalized double tilted algebras on the basis of a multisection. We also characterize
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the generalized double tilted algebras as those having an AR-component with a faithful

multisection D such that HomðM;DTrNÞ ¼ 0 for M in Dr and N in Dl . On the other

hand, this connects up with the work in [20], since we show that an algebra L is gen-

eralized double tilted if and only if there is an almost directed generalized standard

faithful AR-component. We also describe the shape of all AR-components for such

algebras.

For tilted algebras we have global dimension at most two, and for shod algebras

it is at most three. For multisections we have the concept of n-section, where n may

be infinite, and where a section is a 1-section and a double section a 2-section.

Correspondingly we have n-double tilted algebras and we show that they have global

dimension at most nþ 1.

We now describe the content of this paper section by section. In section 1 we

recall some background material, including essential definitions. In section 2 we intro-

duce the concept of multisection in a component of the AR-quiver of an artin algebra,

along with its core, and the concept of generalized double tilted algebra is introduced

and investigated in section 3. The results on global dimension are given in section 4,

and in section 5 we give a homological characterization of faithful generalized standard

almost directed components.

We refer also to the recent papers [3], [4] for generalizations of (strict) shod algebras

in other, but related, directions. Recently, we have been informed by I. Assem and

F. U. Coelho that they are also working on generalizations of shod algebras.

1. Preliminaries.

In this section we recall some definitions which will be used in this paper. We also

refer to [1] and [18] for relevant background material.

By an algebra we mean a basic artin algebra L over a fixed commutative artin

ring R, and by a L-module is meant a finitely generated left L-module. We denote

the category of these modules by modL, and indL denotes the full subcategory formed

by the indecomposable modules. Then radðmodLÞ denotes the radical of modL, that

is, the ideal in modL generated by all noninvertible morphisms between modules in

indL. The infinite radical radyðmodLÞ of modL is the intersection of all powers

radnðmodLÞ, nb 1, of radðmodLÞ. We denote by GL the AR-quiver of L and by

tL and t
�
L

the AR-translations DTr and TrD, with D the ordinary duality and Tr the

transpose. We shall not distinguish between an indecomposable L-module and the

vertex of GL corresponding to it. Following [21], a component C of GL is said to be

generalized standard if radyðX ;YÞ ¼ 0 for all X and Y in C. Finally, a full subquiver

S of GL is said to be directed (respectively, almost directed ) if all modules from S

(respectively, all but finitely many modules from S) do not lie on oriented cycles in GL.

Recall that a module M in GL is called left stable (respectively, right stable) if tn
L
M

(respectively, t�n
L
M) is defined for all n A N . Moreover, M is called stable if it is both

left stable and right stable. For a component C of GL, we denote by Cl (respectively,

Cr) the left stable part (respectively, right stable part) of C obtained by deleting in C the

t-orbits of projective (respectively, injective) modules, and by Cs the stable part obtained

by deleting in C the nonstable modules and arrows attached to them. By a left stable
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component (respectively, right stable component, stable component) of GL we mean a

connected component of ðGLÞl (respectively, ðGLÞr; ðGLÞs). We refer to [14] and [26]

(respectively, [15]) for the shapes of stable (respectively, left stable and right stable)

components of GL.

For M and N in indL a path from M to N in indL is given by a sequence of

morphisms

M ¼ X1 !
f1
X2 ! � � � ! Xt !

ft
Xtþ1 ¼ N

where, for each i, Xi is in indL and each fi is a nonzero nonisomorphism, and tb 1.

Then M is said to be a predecessor of N and N a successor of M in indL. If the

morphisms fi are in addition irreducible, then the path is a path of irreducible mor-

phisms. If M is isomorphic to N, then the path is an oriented cycle in indL. Every

indecomposable L-module M is also called its own (trivial) predecessor and successor.

Let Z1 ! Z2 ! � � � ! Zn ! Znþ1 be a path of irreducible morphisms in indL. If

Zi�1 F tZiþ1 for some i with 2a ia n, we say that Zi is a hook of the path. The path

is said to be sectional if it has no hook. It is well known (see [1, (VII.2.4)]) that the

composition of irreducible morphisms forming a sectional path is nonzero.

We shall prove a technical fact playing a crucial role in the proof of the main result

of Section 4.

Let L be a finite dimensional algebra over an algebraically closed field K and C

a directed generalized standard component of GL. For each indecomposable module

X in C we fix irreducible morphisms f X
i : X ! EX

i , 1a iamX , where EX
1 ; . . . ;EX

mX
are

indecomposable modules from C (not necessarily nonisomorphic) such that

f ¼ ð f X
1 ; . . . ; f X

mX
Þ t : X ! EX

1 l � � �lEX
mX

is a minimal left almost split morphism in modL. Let M and N be indecomposable

modules in C such that there is a path of irreducible morphisms in C from M to N and

every such a path is sectional. Denote by SðM;NÞ the set of all (sectional) paths of

irreducible morphisms of the forms

M ¼ X1 �!
f
X1
i1

X2 �!
f
X2
i2

� � � �!Xr �!
f Xr
ir

Xrþ1 ¼ N

with 1a isamXs
, 1a sa r. Observe that the compositions f Xr

ir
� � � f X1

i1
are nonzero

(see [1, (VII.2.4)]). Moreover, since C is generalized standard, there is a natural number

n such that radnðM;NÞ ¼ radyðM;NÞ ¼ 0 (see [1, (V.7.2)]), and consequently SðM;NÞ

is finite. Denote by maxðM;NÞ the maximum of length of paths in SðM;NÞ.

Finally, we note that EndLðXÞFK for any indecomposable module X in C, because

C is generalized standard and directed. Then the following fact holds.

Proposition 1.1. Let C be a directed generalized standard component of GL, M and

N indecomposable modules in C, j1; . . . ; jt be the compositions of irreducible morphisms

forming pairwise di¤erent paths p1; . . . ; pt in SðM;NÞ and let x1; . . . ; xt be automor-

phisms of N. Then the sum x1j1 þ � � � þ xtjt is nonzero.

Proof. We prove the claim by induction on maxðM;NÞ. We may assume that

tb 2, because the composition of irreducible morphisms on a sectional path is nonzero.
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Assume maxðM;NÞ ¼ 1. Then SðM;NÞ consists of irreducible morphisms f M
i1

;

f M
i2

; . . . ; f M
iq

, 1a i1 < i2 < � � � < iqamM , such that the residue classes

f M
i1

þ rad2ðM;NÞ; f M
i2

þ rad2ðM;NÞ; . . . ; f M
iq

þ rad2ðM;NÞ

form a basis of radðM;NÞ=rad2ðM;NÞ over K ¼ EndLðNÞ. Since j1; . . . ; jt A SðM;NÞ

are pairwise di¤erent, we obtain x1j1 þ � � � þ xtjt 0 0.

Assume maxðM;NÞb 2. Observe that there is a minimal right almost split

morphism of the form AlB �!
ðg;hÞ

N, where A ¼ A1 l � � �lAs, the modules Ai are

indecomposable, g ¼ ðg1; . . . ; gsÞ and the irreducible morphisms g1 : A1 ! N; . . . ; gs : As

! N form a complete family of the final irreducible morphisms f Xr

ir
: Xr ! N on the

paths of irreducible morphisms in SðM;NÞ. Clearly, there are no paths of irreduc-

ible morphisms from M to indecomposable direct summands of B. We note also

that EndLðNÞGKGEndLðAiÞ, 1a ia s. In particular, we have xi ¼ li idN with

li A Knf0g, for i A f1; . . . ; tg. For each i A f1; . . . ; tg, there is jðiÞ A f1; . . . ; sg such that

ji ¼ gjðiÞj
0
i for j 0

i being the composition of irreducible morphisms on a path from

SðM;AjðiÞÞ. Then consider x 0
i ¼ li idAjðiÞ

A EndLðAjðiÞÞ. For j A f1; . . . ; sg, denote by

cj : M ! Aj the sum of all morphisms x 0
ij

0
i with jðiÞ ¼ j, and put c ¼ ½c1; . . . ;cs�

t
:

M ! A. Then we have j ¼ x1j1 þ � � � þ xtjt ¼ gc. Note that all paths of irreduc-

ible morphisms from M to the modules A1; . . . ;As are sectional and maxðM;AjÞ <

maxðM;NÞ for any j A f1; . . . ; sg. For the inductive step, we may assume that the

proposition holds for the compositions of irreducible morphisms of sectional paths

from SðM;A1Þ; . . . ;SðM;AsÞ and automorphisms of A1; . . . ;As. Then c0 0. Sup-

pose j ¼ gc ¼ 0. Then N is nonprojective and there is an almost split sequence of the

form

0 �! tLN �!
ðu; vÞ t

AlB �!
ðg;hÞ

N �! 0;

and a nonzero morphism c 0
: M ! tLN such that c ¼ uc 0. Since the component C is

generalized standard, c 0 is a sum of compositions of irreducible morphisms between

indecomposable modules in C. Therefore, there is a nonsectional path of irreducible

morphisms

M ! � � � ! tLN ! A1 ! N

from M to N, a contradiction. Hence x1j1 þ � � � þ xtjt ¼ gc0 0. r

2. Almost directed components.

In this section we introduce some concepts playing a fundamental role in our

further investigations.

Let L be an artin algebra and let C be a component of GL. Recall that following

[15], [20], a full connected valued subquiver D of C is called a section of C if D is

directed, convex in C and intersects each tL-orbit in C exactly once. We introduce the

following more general concept. A full connected valued subquiver D of C is said to be

a multisection in C if the following conditions are satisfied:

(1) D is almost directed.

(2) D is convex in C.
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(3) For each tL-orbit O in C we have 1a jDVOj < y.

(4) jDVOj ¼ 1 for all but finitely many tL-orbits O in C.

(5) No proper full convex valued subquiver of D satisfies the conditions (1)–(4).

We also note that the double sections, defined in [18], are special types of mul-

tisections.

For a multisection D in a component C of GL, we consider also the following full

valued subquivers of C:

D 0
l ¼ fX A D; there is a nonsectional path X ! � � � ! P with P projectiveg;

D 0
r ¼ fX A D; there is a nonsectional path I ! � � � ! X with I injectiveg;

D 00
l ¼ fX A D 0

l ; t
�
LX B D 0

lg;

D 00
r ¼ fX A D 0

r; tLX B D 0
rg;

Dl ¼ ðDnD 0
rÞU tLD

00
r ;

Dr ¼ ðDnD 0
l ÞU t�LD

00
l ;

Dc ¼ D 0
l VD 0

r ðthe core of DÞ:

The following example shows that in general Dl and Dr are not subquivers of D.

Example 2.1. Let L be the bound quiver algebra KQ=I , where KQ is the paths

algebra of the quiver

over a field K and I is the ideal in KQ generated by ab; bs; sd; dx; x% and %n. Then GL
is of the form

where Si;Pi; Ii, 1a ia 10, denote the simple, projective, injective module given by

the vertex i. Since the modules P2 ¼ I1 and P10 ¼ I9 are projective-injective, the full

translation subquiver D of GL formed by all modules of GL except the simple modules

S1;S4;S8 and S10 is the unique multisection of GL. Moreover, we have D 0
l ¼ DnfI8;

I7;S9; I9g, D 0
r ¼ DnfP2;S2;P3;P4g, and hence Dc ¼ fS3;P5;P4=S2; I3;S5;P6;S6;P7; I6;

P7=S6;S7g. Then D 00
l ¼ fI1; I2;P5; I3; I5; I6;P7=S6;S7g, and D 00

r ¼ fS3;P4=S2;P5;P6;P7;

I6;P9;P10g. Therefore, Dl is a disjoint union of the subquivers P2 ! S2 ! P3 ! P4 and

S8, and Dr is a disjoint union of the subquivers S4 and I8 ! I7 ! S9 ! I9. Finally,

observe that S4 and S8 do not belong to D, and hence Dl and Dr are not subquivers

of D.
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The Example 2.9 below shows that we may have D
0
l ¼ D

0
r ¼ D ¼ GL, and hence Dl

and Dr empty. In fact, it is the case for all connected nonsimple selfinjective algebras of

finite representation type.

The following property of multisections will be essential for our further consid-

erations.

Lemma 2.2. Let D be a multisection in a component C of GL and O a tL-orbit in

C such that DVO ¼ ftm�1
L

X ; . . . ;Xg for some mb 2. Then there exist in D paths

I ! � � � ! t
m�1
L

X and X ! � � � ! P with I injective and P projective.

Proof. Observe first that if there is in C a path I ! � � � ! t
m�1
L

X with I injective

then it lies entirely in D, because D contains a module from the tL-orbit of I and is

convex in C. Similarly, if C admits a path X ! � � � ! P with P projective then it lies

entirely in D.

Suppose t
m�1
L

X is not a successor of an injective module in C. Let W be the family

of all modules in D which are predecessors of t
m�1
L

X in C (equivalently, in D). Then

it follows from our assumption that W consists of noninjective modules. Denote by S

the full valued subquiver of C given by all modules from DnW and t
�
L
W. Clearly, S is

a full connected valued subquiver of C satisfying the conditions (1)–(4) of a multi-

section. Moreover, every module of t�
L
W is a predecessor of tm�2

L
X (because the paths

from modules in W to t
m�1
L

X consist of noninjective modules) and hence belongs to D,

again by the convexity of D in C. Therefore, S is a convex valued subquiver of D such

that OVS ¼ ftm�2
L

X ; . . . ;Xg, which contradicts the minimality of D. This shows that

t
m�1
L

X is a successor of an injective module in C. Similarly, we prove that X is a

predecessor of a projective module in C. r

As a consequence we obtain the following characterization of sections.

Corollary 2.3. Let D be a multisection of a component C of GL. The following

statements are equivalent:

(i) D is a section of C.

(ii) D ¼ Dl .

(iii) D ¼ Dr.

Proof. Assume that D is a section of C. We claim that D 0
r ¼ q ¼ D

0
l , and con-

sequently Dl ¼ D ¼ Dr. Indeed, suppose Z is a module in D
0
r. Then there exists a path

I ! � � � ! tLX ! Y ! X ! � � � ! Z in C with I injective. Since D is a section, I

and Z belong to D, then ftLX ;Xg is contained in D, by the convexity of D in C.

This contradicts the fact that D intersects each tL-orbit in C exactly once. Therefore,

D
0
r ¼ q. Similarly, we prove that D

0
l ¼ q.

Conversely, assume that Dl ¼ D (respectively, Dr ¼ D) holds. In order to prove

that D is a section of C, it is enough to show that jDVOj ¼ 1 for every tL-orbit O in

C. Suppose O is a tL-orbit in C such that DVO ¼ ftm�1
L

X ; . . . ;Xg for some mb 2. It

follows from Lemma 2.2 that there exist in C paths I ! � � � ! t
m�1
L

X and X ! � � � ! P

with I injective and P projective. Hence we obtain a path in C of the form

I ! � � � ! t
m�1
L

X ! Ym�1 ! t
m�2
L

X ! � � � ! tLX ! Y1 ! X ! � � � ! P:
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This implies ftm�2
L

X ; . . . ;XgJD
0
r and ftm�1

L
X ; . . . ; tLXgJD

0
l . But then t

m�2
L

X A DnDl

and tLX A DnDr, a contradiction. r

The following proposition describes basic properties of multisections.

Proposition 2.4. Let C be a component of GL with a multisection D. Then we

have the following statements.

(i) Every cycle in C lies in Dc.

(ii) Dc is finite.

(iii) Every indecomposable module M in C is in Dc or is a predecessor of Dl or a

successor of Dr in C.

Proof. (i) Let X ¼ X1 ! X2 ! � � � ! Xm ! Xmþ1 ¼ X be an oriented cycle in C.

We note first that the cycle X ¼ X1 ! � � � ! Xm ¼ X is not sectional (see [1, (VII.2.6)]).

Then for any natural numbers r; s such that the modules tr
L
Xi and t

�s
L
Xi are nonzero for

all i A f1; 2; . . . ;mg, all modules t
t
L
Xi, i A f1; 2; . . . ;mg, �sa ta r, lie on one oriented

cycle in C. Suppose first that the modules X1; . . . ;Xm are stable, and let G be a stable

component of GL containing these modules. Then it follows from Zhang’s theorem [26]

(see also [14, (2.7)]) that G consists of tL-periodic modules, and consequently is either a

stable tube ZAy=ðt rÞ, rb 1, or of the form ZW=G for a Dynkin quiver W and an

admissible group G of automorphisms of ZW (see [8] or [1, (VII.4.1)]). Since the

multisection D intersects each tL-orbit in C and is convex in C, we conclude that G is

contained in D. Moreover, since D is almost directed, we obtain that G is a finite

quiver of the form ZW=G. Further, G 0C, because otherwise C is the Auslander-

Reiten quiver of a connected part of L and is stable. Therefore, there is an indecom-

posable module Z in G which is a direct predecessor of a projective module or a direct

successor of an injective module in C. It is well known that any left stable (respectively,

right stable) component of GL containing a tL-periodic module is in fact stable. Hence,

C contains a finite nonperiodic tL-orbit connected in C to a (periodic) tL-orbit of G .

Then for any indecomposable module Y in G there are nonsectional paths I ! � � � ! Y

and Y ! � � � ! P with I injective and P projective, and hence Y belongs to Dc. Con-

sequently, G is contained in Dc. In particular, the modules X1; . . . ;Xm lie in Dc.

Assume now that one of the modules X1; . . . ;Xm is not stable. We claim that there

exist i; j A f1; . . . ;mg and nonnegative integers p and q such that t
p
L
Xi is projective,

t
�q
L
Xj is injective, and all modules ts

L
Xk, �qa sa p, 1a kam, are nonzero. Without

loss of generality, we may assume that one of the modules X1; . . . ;Xm is not right

stable. Let q be the minimal natural number such that t
�q
L
Xj is injective for some

j A f1; . . . ;mg. Suppose the modules X1; . . . ;Xm are left stable and let D be the left

stable component of GL containing these modules. Since Xj is not stable, D is not

stable and so does not contain a tL-periodic module. Then it follows from [15, (2.3)]

that there exists an infinite sectional path

� � � ! t
2r
L
Y1 ! t

r
L
Ys ! � � � ! t

r
L
Y1 ! Ys ! � � � ! Y1

with r > s such that Y1; . . . ;Ys is a complete set of representatives of the tL-orbits in

D, the module Ys injective, and the modules Ys and t
m
L
Y1; . . . ; t

m
L
Ys, mb r, lie on

common oriented cycles in D. Since D contains a module from the tL-orbit of Ys,
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the convexity of D implies that all modules t
m
L
Yj, mb r, 1a ja s, belong to D. But

then D contains infinitely many modules lying on oriented cycles in C, a contradiction.

Therefore, one of the modules X1; . . . ;Xm is not left stable, and so there exists a mini-

mal natural number p such that t
p
L
Xi is projective for some i A f1; . . . ;mg. Since all

modules t
t
L
Xi, i A f1; 2; . . . ;mg, �qa ta p, lie on a common oriented cycle, and this

cycle is not sectional, we conclude that for any module Xk, k A f1; 2; . . . ;mg, there exist

nonsectional paths t
�q
L
Xj ! � � � ! Xk and Xk ! � � � ! t

p
L
Xi with t

�q
L
Xj injective and

t
p
L
Xi projective. Therefore, all modules X ¼ X1;X2; . . . ;Xm lie in Dc.

(ii) Since by (i) every cycle in C lies in DcJD and D is almost directed we

conclude that C is also almost directed. Suppose that Dc is infinite. Clearly then D

and C are also infinite. Invoking now the conditions ð3Þ and ð4Þ for a multisection, we

conclude that the stable part Cs of C contains a connected component G of the form

ZS, for a directed connected full valued subquiver S of D containing infinitely many

modules from Dc. Observe also that C can be obtained from the connected components

of Cs by gluing along the nonstable tL-orbit of C. Then the section S of D contains

at most finitely many modules which are simultaneously the targets of paths in C with

injective sources and the sources of paths in C with projective targets. Therefore, S

contains at most finitely many modules from Dc, a contradiction. This shows that Dc

is finite.

(iii) Let M be an indecomposable module in C and O the tL-orbit of M. Since

D is a multisection in C, we have m ¼ jDVOjb 1. Let DVO ¼ ftm�1
L

X ; . . . ;Xg.

Assume first that mb 2. Then it follows from Lemma 2.2 that there are paths

I ! � � � ! t
m�1
L

X and X ! � � � ! P with I injective and P projective. Hence

ftm�2
L

X ; . . . ;XgJD
0
r, ftm�1

L
X ; . . . ; tLXgJD

0
l , and ftm�2

L
X ; . . . ; tLXgJDc. Observe

that t
m
L
X B D

0
r and t

�
L
X B D

0
l , because t

m
L
X and t

�
L
X do not belong to D. Moreover,

if t
m�1
L

X B D
0
r (respectively, X B D

0
l ) then t

m�1
L

X A Dl (respectively, X A Dr). Further,

if t
m�1
L

X A D
0
r then t

m�1
L

X A Dc, and t
m
L
X A Dl provided t

m�1
L

X is nonprojective. Simi-

larly, if X A D
0
l then X A Dc, and t

�
L
X A Dr provided X is noninjective.

Assume now m ¼ 1 and X B Dc ¼ D
0
l VD

0
r. Observe that if X B D

0
l and X B D

0
r then

X A Dl VDr. Suppose X A D
0
l and X B D

0
r. Since t

�
L
X B D, we have X A Dl , and

t
�
L
X A Dr, provided X is noninjective (and X A Dr otherwise). Similarly, if X A D

0
r and

X B D
0
l , then X A Dr, and tLX A Dl provided X is nonprojective (and X A Dl otherwise).

Summing up, we conclude that the module M lies in Dc or is a predecessor of a module

from Dl or a successor of a module from Dr. r

Theorem 2.5. Let C be a component of GL. Then C is almost directed if and only

if C admits a multisection D.

Proof. The su‰ciency part follows from Proposition 2.4. We shall prove the

necessity part. Assume that C is almost directed. In order to prove that C admits a

multisection it is enough to show that there exists a full connected valued subquiver S

of C satisfying the conditions (1)–(4). Indeed, then any minimal full convex valued

subquiver D of S satisfying the conditions (1)–(4) is a multisection in C. If C is finite

we may take S ¼ C. Therefore, assume that C is infinite.

Since C is infinite, then the left stable part Cl of C or the right stable part Cr of C

is infinite. Assume Cl is infinite and let D be an infinite component of Cl . We claim
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that D is directed. Suppose to the contrary that D contains an oriented cycle. If D

is stable, then applying [26] we conclude that D is a stable tube and consequently con-

tains infinitely many modules lying on oriented cycles in D, a contradiction because C is

almost directed. Thus assume (without loss of generality) that D contains an injective

module. Then it follows from [15, (2.3)] that there exists an infinite sectional path

� � � ! t
2t
L
X1 ! t

t
L
Xs ! � � � ! t

t
L
X1 ! Xs ! � � � ! X1

with t > s such that X1;X2; . . . ;Xs is a complete set of representatives of the tL-orbits

in D, and all modules t
m
L
X1; . . . ; t

m
L
Xs, mb t, lie on oriented cycles in D. But then

again there are infinitely many modules in D, and hence in C, lying on oriented cycles.

Therefore, D is directed. Applying now [15, (3.4)] we obtain that there exists a con-

nected valued quiver W without oriented cycles such that D is isomorphic to a full

translation subquiver of ZW which is closed under predecessors. In particular, D

admits a section isomorphic to W. Similarly, we prove that if E is an infinite com-

ponent of Cr then E is directed and admits a section Y.

Let D1; . . . ;Dp be the family of all infinite components of Cl and E1; . . . ;Eq the

family of all infinite components of Cr. It follows from our discussion above that

D1; . . . ;Dp, E1; . . . ;Eq are directed translation quivers and admit respectively sections

W1; . . . ;Wp, Y1; . . . ;Yq. Further, let O1; . . . ;Om be all finite tL-orbits in C. Choose a

finite family X of modules in C intersecting each of the quivers W1; . . . ;Wp, Y1; . . . ;Yq,

O1; . . . ;Om exactly once. Since C is a connected quiver, for any modules X and X 0

from X, there is in C a finite walk X ¼ X1 X2 � � � Xt�1 Xt ¼ X 0 connecting X

and X 0. Hence there exists a finite full valued subquiver Y in C such that XJY and

any two modules Y and Y 0 in Y can be connected by a walk consisting entirely of

modules from Y. Observe that C can be obtained from the directed translation quivers

D1; . . . ;Dp and E1; . . . ;Eq by gluing along (finitely many) finite tL-orbits. Moreover, C

is locally finite, that is, any module in C is a source or target of at most finitely many

arrows. Therefore, each of the directed quivers W1; . . . ;Wp (respectively, Y1; . . . ;Yq)

contains at most finitely many modules which are sources or targets of paths in C

with targets or sources in Y. Let S be the convex hull of the full valued subquivers

W1; . . . ;Wp, Y1; . . . ;Yq, O1; . . . ;Om, and Y in C. Then S satisfies the required con-

ditions (1)–(4). This finishes the proof. r

As a consequence we obtain the following.

Corollary 2.6. Let C be a component of GL. Then C is directed if and only if C

admits a directed multisection D.

Recall that a family X of modules in modL is called faithful if the intersection of

the (right) annihilators annLðXÞ ¼ fa A L;Xa ¼ 0g of all modules X in X is zero. It is

well known (see [19, (2.4)]) that X is faithful if and only if there exist a monomorphism

LL ! M and an epimorphism N ! DðLÞ
L

for some finite direct sums M and N of

modules from X. We have the following fact.

Lemma 2.7. Let C be a component of GL with a multisection D. Then C is faithful

if and only if D is faithful.
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Proof. It is a straightforward extension of arguments applied in the proof of [20,

Lemma 3], invoking the property (2.4)(iii) of a multisection. r

Our next aim is to introduce a numerical invariant wðDÞ of a multisection D in

a component C of GL, called the width of D. Let p be a path in D. We write the

path p as an ordered sequence of modules associated with the vertices. A subpath

ðM;Zð1Þ; t�1
L
M;Zð2Þ; t�2

L
M; . . . ;ZðnÞ; t�n

L
MÞ is called a hook path of length n (if nb 1),

and it is a maximal hook path if it is not contained in any hook path of larger length.

Associated with the path p is the following sequence of maximal hook paths (if there are

any hook paths). Start with a maximal hook path ðM;Zð1Þ; t�1
L
M;Zð2Þ; t�2

L
M; . . . ;ZðnÞ;

t
�n
L
MÞ, where M is the first module on p which is the start of a hook subpath of p.

Then take the maximal hook subpath of p with the start at the first possible successor of

t
�n
L
M on p, etc. Denote by iðpÞ the sum of the length of these hook subpaths of p.

In particular we have iðpÞ ¼ 0 if and only if p is sectional. We define the width wðDÞ

of D to be the maximum of iðpÞ þ 1 for all paths p in D. Observe that if D is a section

[15] (respectively, double section [18]) in C then wðDÞ ¼ 1 (respectively, wðDÞ ¼ 2).

Observe also that D is directed if and only if wðDÞ < y. We say that a multisection

D in C is an n-section if n ¼ wðDÞ.

The following examples show that for any n A N U fyg there exists an AR-

component C having a multisection D with wðDÞ ¼ n.

Example 2.8. Let L the bound quiver algebra KQ=I , where KQ is the path

algebra of the quiver

Q : 1 ! 2 ! � � � ! n ! nþ 1 ! nþ 2

over a field K and I the ideal in KQ generated by all paths in Q of length 2. Then the

AR-quiver GL of L is of the form

where Si and Pi, 1a ia nþ 2, denote the simple and indecomposable projective

module at the vertex i, respectively. Then the full subquiver D of GL formed by all

vertices of GL except Snþ2 and S1 is a multisection with wðDÞ ¼ n. We also note that

gl:dimL ¼ nþ 1.

Example 2.9. Let K be a field and L ¼ K ½X �=ðX 2Þ. Then GL is of the form

STL

where S ¼ K½X �=ðX Þ. Moreover, D ¼ GL is a multisection in GL, wðDÞ ¼ y and

gl:dimL ¼ y.

Our next example shows that an almost directed AR-component admits usually

many multisections.

Example 2.10. Let L be the bound quiver algebra KQ=I , where KQ is the path

algebra of the quiver
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Q : 1!
a
2!

b
3 

g
4 

s
5 

d
6 

e
7!

h
8

over a field K and I is the ideal in KQ generated by gs; sd and de. Then GL is of the

form

where Si;Pi; Ii, 1a ia 8, denote the simple, projective, injective module given by the

vertex i. Then the following families of modules form all multisections of GL:

Dð1Þ ¼ XU fP4;M; I6g; Dð2Þ ¼ XU fP4;M;S8g;

Dð3Þ ¼ XU fS2;M; I6g; Dð4Þ ¼ XU fS2;M;S8g;

Dð5Þ ¼ XU fS2; I2; I6g; Dð6Þ ¼ XU fS2; I2;S8g;

Dð7Þ ¼ XU fS1; I2; I6g; Dð8Þ ¼ XU fS1; I2;S8g;

where X ¼ fI3;S4;P5;S5;P6;S6;P7g. Observe that, for each i A f1; 2; . . . ; 8g, we have

wðDðiÞÞ ¼ 3 and DðiÞc ¼ fS5g.

The following general fact shows that the width and the core of a multisection of an

almost directed component C are in fact invariants of C.

Proposition 2.11. Let C be a component of GL and D;S multisections in C. Then

wðDÞ ¼ wðSÞ and Dc ¼ Sc.

Proof. Observe that every module X lying on a path I ! � � � ! X ! � � � ! P in

C with I injective and P projective lies in DVS. Consequently Dc ¼ Sc. Moreover, it

follows from Lemma 2.2 that, if p ¼ ðM;Zð1Þ; t�LM;Zð2Þ; t�2L M; . . . ;ZðnÞ; t�nL MÞ is a

hook path in D (respectively, in S), then M is a successor of an injective module and

t�nL M is a predecessor of a projective module in C, and hence p is also a hook path in S

(respectively, in D). Then the equality wðDÞ ¼ wðSÞ also easily follows. r

3. Generalized double tilted algebras.

We introduce here the class of generalized double tilted algebras, containing the

classes of tilted algebras [10], double tilted algebras [18], and all algebras of finite

representation type.

A connected artin algebra L is said to be a generalized double tilted algebra if the

following conditions are satisfied:
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(1) GL admits a component C with a faithful multisection D.

(2) There exists a tilted factor algebra Ll of L (not necessarily connected) such

that Dl is a disjoint union of sections of connecting components of the connected parts

of Ll , and the category of all predecessors of Dl in indL coincides with the category of

all predecessors of Dl in indLl .

(3) There exists a tilted factor algebra Lr of L (not necessarily connected) such

that Dr is a disjoint union of sections of connecting components of the connected parts

of Lr, and the category of all successors of Dr in indL coincides with the category of all

successors of Dr in indLr.

In the above notation, Ll and Lr are said to be the left tilted algebra and the right

tilted algebra of L, respectively. Moreover, C is said to be a connecting component of

L. If D is a section of C then Ll ¼ L ¼ Lr and hence L is a tilted algebra. Further,

if wðDÞb 2, then C is the unique connecting component of L. We say that a con-

nected artin algebra L is an n-double tilted algebra if GL admits a component C with an

n-section D satisfying the above conditions (1)–(3). It follows from Proposition 2.11

and properties of tilted algebras that n ¼ wðDÞ does not depend on the choice of multi-

section D and connecting component C. Observe that 1-double tilted algebras and 2-

double tilted algebras are exactly tilted algebras [10] and double tilted algebras [18],

respectively. Finally, we note that every connected artin algebra of finite representation

type is a generalized double tilted algebra.

We have the following characterization of generalized double tilted algebras.

Theorem 3.1. Let L be a basic connected artin algebra. The following conditions

are equivalent:

(i) L is generalized double tilted.

(ii) GL admits a faithful generalized standard almost directed component.

(iii) GL admits a component C with a faithful multisection D such that

HomLðX ; tLYÞ ¼ 0 for all modules X from Dr and Y from Dl .

Proof. It is a straightforward extension (invoking Theorem 2.5) of arguments

applied in the proofs of [20, Theorem 3] and [18, Theorem 7.3]), where similar char-

acterizations of tilted and double tilted algebras have been established. r

We obtain the following consequences.

Proposition 3.2. Let L be a basic connected artin algebra. Then L is n-double

tilted, for some nb 2, if and only if GL admits a faithful generalized standard almost

directed component with a nonsectional path from an injective module to projective module.

Proposition 3.3. Let L be a basic connected artin algebra. Then L is n-double

tilted, for some nb 3, if and only if GL admits a faithful generalized standard component

with a multisection D such that Dc 0q.

We have also the following results on the structure of the module category of a

generalized double tilted algebra of infinite representation type.

Theorem 3.4. Let L be a basic connected generalized double tilted algebra of infi-

nite representation type which is not tilted, and let C be the connecting component of GL.
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Then there are a hereditary artin algebra yH and a tilting yH-module yT without non-

zero preinjective direct summands, and a hereditary artin algebra Hy and a tilting

Hy-module Ty without nonzero preprojective directed summands such that the following

statements hold:

(i) The tilted algebras yL ¼ End
yH yTð Þop and Ly ¼ EndHy

ðTyÞ
op

are factor

algebras of L.

(ii) The torsion-free part YðyTÞ of modyL is a full exact subcategory of modL

which is closed under predecessors of indecomposable modules.

(iii) The torsion part XðTyÞ of modLy is a full exact subcategory of modL which

is closed under successors of indecomposable modules.

(iv) yL is a factor algebra of lL and yC ¼ YðyTÞVC is the torsion-free part of

the family C
yT of the connecting components of yL and is also a full translation subquiver

of C which is closed under predecessors in C.

(v) Ly is a factor algebra of Lr and Cy ¼ XðTyÞVC in the torsion part of the

family CTy
of the connecting components of Ly and is also a full translation subquiver of

C which is closed under successors in C.

(vi) YðyTÞ and XðTyÞ have no common nonzero modules.

(vii) The family of indecomposable L-modules which are neither in YðyTÞ nor in

XðTyÞ is finite and coincides with the family of all indecomposable modules in C which

are neither in yC nor in Cy.

Proof. It is a direct extension of arguments applied in the proof of [20, Theorem

1], where the structure of the module categories of algebras having faithful generalized

standard directed components has been established. r

We note that if the left tilted algebra Ll (respectively, the right tilted algebra Lr) of

L has a finite torsion-free part YðTlÞ (respectively finite torsion part XðTrÞ) then yL

(respectively Ly) is zero. The known structure of AR-components of tilted algebras

(see [10], [11], [12], [16], [19], [25]) and the above theorem lead to the following

description of the AR-quivers of nontilted generalized double tilted algebras of infinite

representation type.

Corollary 3.5. Let L be a basic connected generalized double tilted algebra of

infinite representation type, and assume that L is not tilted. Then we have the following.

(i) Every component of GL di¤erent from the connecting component either lies

entirely in YðyTÞ or lies entirely in XðTyÞ.

(ii) Every component of GL contained in YðyTÞ is either preprojective, a stable tube

ZAy=ðtmÞ, for mb 1, of the form ZAy, or can be obtained from a stable tube or a

component of type ZAy by a finite number of ray insertions (in the sense of [19]).

(iii) Every component of GL contained in XðTyÞ is either preinjective, a stable tube

ZAy=ðtmÞ, for mb 1, of the form ZAy, or can be obtained from a stable tube or a

component of type ZAy by a finite number of coray insertions (in the sense of [19]).

We illustrate the above considerations with the following example.

Example 3.6. Let Q be the quiver
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KQ the path algebra of Q over a field K , I the ideal in KQ generated by all paths in Q

of length 2, and L ¼ KQ=I . Then GL admits a component C of the form

Observe that the full convex subquiver D of C given by the modules P2, S2, P3, S3, I4,

S5, P6, I3, I5, S6, P7, S7, P8, P9, P10, P11 is the unique multisection in C and wðDÞ ¼ 4 ¼

iðpÞ þ 1, for p being the path

S2 ! P3 ! S3 ! P6 ! I5 ! S6 ! P7 ! S7:

Further, D
0
l (respectively, D

0
r) is the subquiver of D given by the modules P2, S2, P3,

S3, I4, S5, P6, I3, I5, S6 (respectively, S3, P6, I3, I5, S6, P7, S7, P8, P9, P10, P11), and

hence Dc ¼ D
0
l VD

0
r is the subquiver given by P3, S3, P6, I3, I5, S6. Moreover, D

00
l

(respectively, D 00
r ) is given by the modules P2, P3, I4, I3, I5, S6 (respectively, P3, S3, P6,

I3, P7, P8, P9, P10, P11). Hence Dl ¼ ðDnD 0
rÞU tLD

00
r is given by the modules P2, S2, I4,

S5 and Dr ¼ ðDnD 0
l ÞU t

�
L
D

00
l is given by the modules P7, S7, P8, P9, P10, P11. Therefore,

the left tilted algebra Ll of L is the product H1 �H2, where H1 is the path algebra of

the full subquiver of Q given by the vertices 1 and 2 and H2 is the path algebra of the

full subquiver of Q given by the vertices 4 and 5, and the right tilted algebra Lr of L is

the bound quiver algebra KS=J with S being the full subquiver of Q given by the

vertices 6, 7, 8, 9, 10, 11 and J the ideal in KS generated by all paths in S of length 2.

Finally, yL ¼ H2 and Ly is the path algebra KW of the full subquiver W of Q given

by the vertices 7, 8, 9, 10, 11. Thus the AR-quiver GL of L consists of a preprojective

component, an infinite family of components of type ZAy, the connecting component

C, a preinjective component and an infinite family of stable tubes (3 of them of the form

ZAy=ðt2Þ and the remaining ones of the form ZAy=ðtÞ).

4. Global dimension.

Let L be a generalized double tilted algebra over an algebraically closed field K , C a

connecting component of GL and D a faithful multisection in C. In particular, we have
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HomLðDðLÞ; tLX Þ ¼ 0 for any predecessor X of Dl in indL and HomLðt
�
L
Y ;LÞ ¼ 0 for

any successor Y of Dr in indL. Then every predecessor of Dl in indL has projective

dimension at most one, and every successor of Dr in indL has injective dimension at

most one (see [19, (2.4)]). In particular, for all but finitely many indecomposable L-

modules X we have pdL Xa 1 or idL Xa 1. On the other hand, as we have seen in

Section 2, there are generalized double tilted algebras of arbitrary global dimension.

The aim of this section is to establish a bound for the global dimension of a generalized

double tilted algebra in terms of the width of a multisection. We need some notation.

For an indecomposable module N in the multisection D, we denote by iðNÞ the

maximum of the numbers iðpÞ, for all paths in D ending at N, as defined in Section 2.

We note that if D is a section then iðNÞ ¼ 0 for all modules N in D. We have the

following easy observation.

Lemma 4.1. Let N be a module in D with iðNÞ > 0. Then there exists a path p in

D starting with an injective module and ending at N such that iðNÞ ¼ iðpÞ.

Proof. Assume iðNÞ > 0 and choose a path p 0 in D ending at N such that

iðp 0Þ ¼ iðNÞ. Let M;Zð1Þ; t�1
L
M; . . . ;ZðtÞ; t�t

L
M be the first maximal hook subpath of

p 0. Then by Lemma 2.2 there is some path in D from an injective module to M, and

composing it with the path p 0 we obtain the required path p, because iðpÞb iðp 0Þ and

iðp 0Þ ¼ iðNÞ is maximal. r

Theorem 4.2. Let L be an n-double tilted algebra. Then gl:dimLa nþ 1.

Proof. Let D be an n-section in a connecting component C of GL. We may

assume that n ¼ oðDÞ < y, or equivalently (Corollary 2.6) that C is directed. We first

prove that for any indecomposable module N in D we have pdL Na iðNÞ þ 1. Let N

be a module from D. Assume first iðNÞ ¼ 0. Then any path in D ending at N is sec-

tional. Since Dl is a disjoint union of sections of connecting components of the con-

nected parts of the left tilted algebra Ll of L and the injective Ll-modules are successors

of Ll in indLl , we infer that every injective predecessor of a module from C in indL

lies in C. This implies that HomLðDðLÞ; tLNÞ ¼ 0, and consequently pdL Na 1 (see

[19, (2.4)]), because otherwise there would be a path in D of the form I ! tLN !

X ! N, contradicting iðNÞ ¼ 0. Assume iðNÞ > 0. For each indecomposable module

X in C, we fix irreducible morphisms f X
i : X ! EX

i , 1a iamX , where EX
1 ; . . . ;EX

mX
are

indecomposable modules from C (not necessarily nonisomorphic) such that

f ¼ ð f X
1 ; . . . ; f X

mX
Þ t : X ! EX

1 l � � �lEX
mX

is a minimal left almost split morphism in modL. Denote by F the family of all

chosen irreducible morphisms f X
i , X A C, 1a iamX . Consider an exact sequence

0 ! WN !
u
PN !

v
N ! 0

where v : PN ! N is a projective cover of N, and let PN ¼ P1 l � � �lPt for some

indecomposable modules Pi. Let vj : Pj ! N, 1a ja t, be the restrictions of v to

the summands Pj. Since C is a generalized standard component, we may choose

v : PN ! N such that, if Pj belongs to C, then the morphism vj is a scalar multiplication
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(by a nonzero element of K ¼ EndLðNÞ) of a composition of irreducible morphisms

from the family F. Let L be an indecomposable direct summand of WN. Assume L

belongs to D. We claim that then there is a nonsectional path of irreducible morphisms

from L to N. Without loss of generality we may assume that f1; . . . ; rg is the set of

all j A f1; . . . ; tg such that the composition uj : L ! Pj of the restriction of u to L with

the canonical projection PN ! Pj is nonzero. Since the connecting component C of

the generalized double tilted algebra L is convex in indL (see also Theorem 3.4) the

modules P1; . . . ;Pr belong to C and, by our choice of v, the morphisms v1; . . . ; vr are

nonzero scalar multiplications of irreducible morphisms on pairwise di¤erent paths of

irreducible morphisms from F. Since C is a generalized standard component, invoking

the universal property of left almost split morphisms, we conclude that the morphisms

uj : L ! Pj , 1a ja r, are linear combinations of compositions of irreducible morphisms

from F. Then v1u1 þ � � � þ vrur is a linear combination of compositions of irreducible

morphisms on pairwise di¤erent paths from L to N consisting of irreducible morphisms

from F. Since v1u1 þ � � � þ vrur ¼ 0, applying Proposition 1.1, we conclude that there

is a nonsectional path of irreducible morphisms from L to N, and consequently

iðLÞ < iðNÞ. Then by the inductive assumption we have pd
L
La iðLÞ þ 1. If L is not

in D, then L is a predecessor of Dl in indL, as a predecessor of the module N A D in

indL, and hence pd
L
La 1. Therefore, we obtain pd

L
Na iðNÞ þ 1.

Let X be an arbitrary indecomposable L-module, and let Y be an indecomposable

direct summand of WX . Then Y is a predecessor of an indecomposable projective

module in indL. Since the multisection D is faithful, every indecomposable projective

L-module is a predecessor of D in indL and hence lies in D or is a predecessor of Dl

in indL. Hence Y lies in D or is a predecessor of Dl in indL. In the first case

we have pdL Xa pdL Y þ 1a iðY Þ þ 2awðDÞ þ 1, and in the second case pdL Xa

pd
L
Y þ 1a 2. In any case we obtain that gl:dimLawðDÞ þ 1 ¼ nþ 1. r

Note that 1-double tilted algebras are tilted algebras, where we know that the

global dimension is at most 2 [10]. The 2-double tilted algebras are the strict shod

algebras [18] which have global dimension 3. Examples 2.8 and 2.9 show that there are

n-double tilted algebras L (for any n A N U fyg) with gl:dimL ¼ nþ 1. But in general

it is not the case.

Example 4.3. Let L ¼ KQ=I , where Q is the quiver

and I is the ideal in the path algebra KQ of Q (over a field K) generated by all paths of

length 2. Then L is an y-double tilted algebra with gl:dimL ¼ 4 and GL admits a

connecting component of the form
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Moreover, both tilted algebras Ll and Lr are of infinite representation type.

Example 4.4. Let L ¼ KQ=I , where Q is the quiver

1

xa

b
2 

g
3 

s
4 

x
5 

h
6

xo

n
7

and I the ideal in the path algebra KQ of Q (over a field K) generated by the paths

ag; bg; sx; ho and hn. Then L is a 4-double tilted algebra, gl:dimL ¼ 2, and GL admits

a connecting component of the form

5. Standard almost directed components.

The aim of this section is to prove a homological characterization of faithful

generalized standard almost directed components.

Let L be an artin algebra. Following [9], we define two subcategories LL and RL

of indL as follows. The category LL is formed by all modules X in indL such that for

every predecessor Y of X in indL we have pdL Ya 1. Dually, RL is formed by all

modules X in indL such that for every successor Y of X in indL we have idL Ya 1.

It is known [2, (2.1)] that indL ¼LL URL if and only if for every indecomposable L-

module X we have pdL Xa 1 or idL Xa 1 (L is a shod algebra). Moreover, if L is

basic connected, then L is shod if and only if L is tilted, double tilted or quasitilted of

canonical type (see [10], [18], [6], [7]). In general, for a generalized double tilted algebra

L we have indLnðLL URLÞ finite but not necessarily empty, as the examples presented

in the previous sections show. In fact it has been proved in [24] that LL URL is cofinite

in indL if and only if L is quasitilted or generalized double tilted.
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Let L be an artin algebra and C a component of GL. We define two full trans-

lation subquivers LC and RC in C as follows. The quiver LC is formed by all

modules X in C such that for any path Y ¼ Y1 ! Y2 ! � � � ! Yt ¼ X in indL with

Y1;Y2; . . . ;Yt from C we have pdL Ya 1. Dually, RC is formed by all modules X in

C such that for every path X ¼ Z1 ! Z2 ! � � � ! Zm ¼ Z in indL with Z1;Z2; . . . ;Zm

from C we have idL Za 1. Observe that LC is closed under predecessors in C and

RC is closed under successors in C. Moreover, if D is a multisection of C, then

DcJCnðLC URCÞ.

Theorem 5.1. Let L be a basic connected artin algebra, C a faithful component of

GL with a multisection D, and assume that C contains both a projective module and an

injective module. Then C is generalized standard if and only if there is a decomposition

C ¼ LC UDc URC.

Proof. Assume C is generalized standard. Then, by Theorem 3.1, L is a gen-

eralized double tilted algebra. Moreover, by Proposition 2.4, every indecomposable

module in C belongs to Dc, or is a predecessor of Dl or a successor of Dr in C. Since

L is generalized double tilted, all predecessors of Dl in indL belong to LL and all

successors of Dr in indL belong to RL. Further, we have LL VCJLC and RL V

CJRC. Therefore, the required decomposition C ¼ LC UDc URC holds.

Assume now that C ¼ LC UDc URC. Since C is a faithful component of GL,

applying Lemma 2.7 we infer the multisection D is faithful. Hence, in order to prove

that C is generalized standard, it is enough to show that HomLðX ; tLY Þ ¼ 0 for all

modules X from Dr and Y from Dl (see Theorem 3.1). Suppose there exist X A Dr and

Y A Dl such that HomLðX ; tLY Þ0 0. Let D be the full translation subquiver of C

formed by all predecessors of Dl in C and E the full translation subquiver of C formed

by all successors of Dr in C. Since, by Proposition 2.4, all oriented cycles of C are

entirely contained in Dc, the translation quivers D and E are directed. In particular,

there is no path in C from X to tLY . Since HomLðX ; tLY Þ0 0 then there exists an

infinite path

X ¼ X0 ! X1 ! � � � ! Xi ! Xiþ1 ! � � �

in C such that HomLðXi; tLYÞ0 0 for all ib 0. We claim that there are ib 0 and a

path in C of the form

I ! tLZ ! V ! Z ! � � � ! Xi

with I injective. It follows from our assumption on C that C contains at least one

injective module. Further, since D intersects any tL-orbit of C, every indecomposable

injective module from C lies in D or in E. Moreover, every indecomposable projective

module from C lies in D or in D. Invoking now the fact that E is directed we conclude

that all but finitely many modules Xi, ib 0, belong to one connected component G of

the right stable part Er of E. Moreover, the connected components of Er are glued in

C along the tL-orbits of injective modules, and by assumption C contains at least one

injective module. Hence there is a path in C of the form

I ! tLZ ! V ! Z ! � � � ! U
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with I injective and U in G . If G has only finitely many orbits then clearly there is in

G a path U ! � � � ! Xi, for some ib 0, and consequently a required path

I ! tLZ ! V ! Z ! � � � ! Xi:

Assume G has infinitely many orbits. Since G is directed then there are jb 0, mb 0

and an infinite path in G of the form

U ! � � � ! t
�m
L

Xj ! t
�m
L

Xjþ1 ! t
�m
L

Xjþ2 ! � � � :

Applying now [5, Lemma 1.5] (see also [22, Lemma 4]) we infer that there are ib j and

a path in indL of the form t
�m
L

Xi ! � � � ! Xi, consisting of modules from G , and we

obtain a required path

I ! tLZ ! V ! Z ! � � � ! U ! � � � ! t
�m
L

Xi ! � � � ! Xi:

Since HomLðXi; tLYÞ0 0 and there is no path in C from Xi to tLY , there exists an

infinite path

� � � ! Ytþ1 ! Yt ! � � � ! Y1 ! Y0 ¼ tLY

in C such that HomLðXi;YtÞ0 0 for all tb 0. Invoking our assumption that C con-

tains at least one projective module and applying dual arguments to those above, we

conclude that there are tb 0 and a path in indL of the form

Yt ! � � � ! N ! W ! t
�
L
N ! P

with P projective and consisting of modules from C. Observe that pdL Zb 2 and

idL Nb 2, because HomLðI ; tLZÞ0 0 and HomLðt
�
L
N;PÞ0 0 (see [19, (2.4)]). There-

fore, Xi and Yt belong to CnðLC UDc URCÞ, which contradicts the assumption. This

finishes the proof. r
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[13] M. Kleiner, A. Skowroński and D. Zacharia, On endomorphism algebras with small homological

dimensions, J. Math. Soc. Japan, 54 (2002), 621–648.

[14] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math.

Soc., 45 (1992), 32–54.

[15] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc., 47 (1993),

405–416.

[16] S. Liu, The connected components of an Auslander-Reiten quiver of a tilted algebra, J. Algebra, 161

(1993), 505–523.

[17] S. Liu, Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math. (Basel),

61 (1993), 12–19.
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