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Abstract. The Massera Theorem for almost periodic solutions of linear periodic
ordinary differential equations of the form () x’ = A(¢)x + f(¢), where f is almost peri-
odic, is stated and proved. Furthermore, it is extended to abstract functional differential
equations (xx) x’ = Ax + F(t)x, + f(t), where A is the generator of a compact semigroup,
F is periodic and f is almost periodic. The main techniques used in the proofs involve a
new variation of constants formula in the phase space and a decomposition theorem for
almost periodic solutions.

1. Introduction and preliminaries.
Let us consider the following linear ordinary differential equation
(1) X(1) = A(t)x(1) + f(2), t>0,x(r) e C",

where A(t) is a continuous matrix function which is periodic in ¢, f is an almost periodic
function. As is well known, a theorem of Massera’s (which one often calls the
Massera Theorem) says that if f is periodic with the same period as A4, then Equation
(1) has a periodic solution with the same period as f and A if and only if it has a
bounded solution on the positive half line [0,+0o0). This classical theorem has been
extended to various kinds of evolution equations (see, e.g, [4], [15], [38], [29], [27]....).
However, for the case of almost periodic 4 and f the Massera Theorem fails (see e.g.
[6], [19]). Recent studies show that for many classes of equations, namely for 4 peri-
odic and f almost periodic, if we assume a stronger assumption on the existence of a
bounded solution on the whole line, then Equation (1) has an almost periodic solution
with the same structure of spectrum as f (see [29], [7]). Technically, this assumption is
necessary for carrying the so-called “decomposition technique” of the bounded solution.
Furthermore, this technique can be directly applied to the infinite dimensional case.
Meanwhile, the Massera Theorem requires only the existence of a bounded solution on
the positive half line which appears to be a substantially weaker assumption. Hence,
the Massera Theorem in full for almost periodic solutions of Equation (1) is still open.
This paper is an attempt to resolve completely this problem. Moreover, we will extend

2000 Mathemaics Subject Classification. Primary 34K14; Secondary 34K30, 34G10, 34C27.
Key Words and Phrases. Abstract functional differential equation, almost periodic solutions, Massera’s
theorem, decomposition, variation of constants formula.



248 S. Murakami, T. Naito and N. V. MiNH

it to several larger classes of equations in the infinite dimensional case including abstract
functional differential equations

2) WO _ gt + Flo+ /(1)

where A is the generator of a compact semigroup of linear operators, F(¢) is a bounded
linear operator from a phase space %, which satisfies several axioms listed below, which
depends strongly continuously and periodically on ¢, and u, is an element of 4 which is
defined as u,(0) = u(t+ 0) for 0 < 0. To this end, we will make use of a new variation
of constants formula in the phase space combined with the decomposition technique
developed in [29], [7] We emphasize that the variation of constants formula in the
phase space is established in [Theorem 4.2 without assuming the Riesz representation for
F(1) (cf. [17)).

We now give a brief outline of this paper. In the rest of this section we will
summarize several well known notions and results on almost periodic functions,
spectrum of a function as well as the naturally associated evolution semigroup of a given
strongly continuous semigroup and the relations between them. Section 2 is devoted
to the proof of the classical Massera Theorem for almost periodic solutions of linear
ordinary differential equations (Theorem 2.1). A similar result holds for difference
equations which will be the key tool to study the abstract functional differential
equations with infinite delay in Section 4. The main part of the paper is Section 4
which begins by recalling the notion of a uniform fading memory phase space and a
variation of constants formula in such phase spaces. The main results of the papers are
stated for almost periodic solutions in and for quasi periodic solutions in
Theorem 4.7

1.1. Spectrum of a function.
Recall that the Beurling spectrum of a X-bounded uniformly continuous function u
is defined to be

sp(u) ;== {EeR:VYe>0 3f e L'(R),supp f < (¢ — e, &+ &), f *xu #0}

where f(s):= [TZ e ™f(t)dt, fxu(s):=["7 f(s—t)u(t)dr. The following theorem
will list some main properties of the spectrum of a bounded uniformly continuous
function.

THEOREM 1.1. Let f,g, € BUC(R,X), ne N such that g, — f as n— oo. Then
) sp(f) is closed,
) sp(f(-+h)) =sp(f),
i) 1f we C\{0} sp(of) = sp(f), ]
) If sp(gn) = A for all ne N then sp(f) < A,
) If A is a closed operator, f(t) e D(A) Yte R and Af(-) e BUC(R,X), then,

sp(f) < sp(f), i
vi) sp(y*f) < sp(f) Nsuppy, Yy € L'(R).

For the proof we refer the reader to [33, p. 20-21]. In this paper by almost peri-
odic functions we mean the almost periodic functions in the sense of Bohr (we refer the
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reader to for the definition and basic properties of such almost periodic functions).
If f is an almost periodic function, the following limit

1 (7 g
(3) a(4, f) = lim —I f(e ™ dt, VieR

exists and is called Bohr transform of f. As is known, there is an at most countable set
of reals 4 such that the above limit differs from zero. This set will be denoted by a(f)
and called Bohr spectrum of f. We will need the following lemma in the sequel.

LemmAa 1.2. Let x(-) € AP(X), Q(t) € L(X) be strongly continuous and 1-periodic in
teR. Then, letting y(t) := Q(t)x(t), t € R we have that y(-) € AP(X) and

(4) eiah(y) - eio—;,(x).

Proor. By the uniform boundedness principle we have

sup [|Q(7)]| < oo.
teR

Next, using the Approximation Theorem for almost periodic functions we can easily
show that y() is approximated by a sequence of trigonometric polynomials of the form

Vu(t) := On(t)x,(t), where

N(n)
Xu(t) = Z A ne™ " ar € X, i € ap(X)
=1

M(n)
0u(1) = Y Bene™', Bine LX),y , €2nZ,
k=1

where x,(-) approximates x(-). Let A€ R such that e” ¢ ¢/, We will show that
et ¢ () If this is the case, the above spectral estimate holds. For any positive &
there is (sufficiently large) N € N such that sup, g|/y.(¢) — ¥(?)|| < ¢ for all n > N. On
the other hand, for any m e Z, letting 4,, := 4+ 2mn, we have

1 (.
laCom, 9| = || lim —j eI, ) gy

T— oo 2T T
1 (T .
< Tlgrolcﬁj Te—z()v+2mn)th(t)xn(t) dt
S B
| im | G0 - 000 d

= Jim s e (3(0) — 0, (o) de

Since ¢ > 0 is arbitrary, this yields that a(4,, y) =0. Hence, (A+27Z)Nay(y) = &,
i.e., the above spectral estimate holds. ]
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Throughout the paper we will use the relation sp(f) = m. The space of all X-
valued almost periodic functions will be denoted by AP(X). The set sp(f) can char-
acterize the behavior of the function f. For example, f is 7-periodic if and only if
e™/) = {1}, f is anti t-periodic if and only if e™/) = {—1}. If sp(f) is countable
and X does not contain any subspaces isomorphic to ¢y (the space of numerical se-
quences converging to 0), then f is almost periodic. An almost periodic function f is
called quasi periodic if o,(f) has an integer and finite basis (see [21, pp. 47-48]). If
sp(f) = op(f) has an integer and finite basis, then, f is quasi periodic. Hence, if the
spectrum of f is good enough one can have relevant conclusions on its behavior. In
the rest of this paper we will prove the existence of an almost periodic solution with
spectrum similar to the one of the forcing term f. In this way, we can extend the
Massera Theorem to almost periodic solutions. For the sake of simplicity of notation
we will assume that the period of A(-) and F(-) is 1, and would like to emphasize that
this assumption does not constitute any restrictions on the obtained results.

Unless otherwise stated, we will use the usual notation. For instance, N, R, C
denote the set of natural, real, complex numbers, respectively. I will stand for the unit
circle in C, ie., I':={zeC:|z|=1}. As usual, BUC(R,X), BC(R,X), C(R,X)
denote the spaces of all X-valued bounded uniformly continuous functions, bounded
continuous functions, continuous functions on R, respectively.

1.2. Evolution semigroups and decomposition theorems.
In this subsection, we will summarize several notions and results concerned with
evolution semigroups and decomposition theorems.

DeriniTiON 1.3, The following formal semigroup associated with a given strongly
continuous semigroup (7°(1)),-,

(5) (T"u)(1) := T(h)u(t —h), VteR,

where u is an element of some function space, is called evolution semigroup associated
with the semigroup (7(7))

t=>0"

Below we are going to discuss the relation between this evolution semigroup and the
following inhomogeneous equation

t

(© X(0) = Tl = 9)x() + | (- Or@de vizs
associated with a strongly continuous (7'(¢)),.,. Let us define the operator ¥ : D(%)
< BUC(R,X) — BUC(R,X), where D(¥) consists of all solutions of Equation (6)
u(-) e BUC(R, X) with some f e BUC(R,X), and in this case Zu(-):= f. This op-
erator % is well defined as a single-valued operator and is obviously an extension of the
differential operator d/dr — A (see e.g. [25]). Below, by abuse of notation, we will use
the same notation % to designate its restriction to closed subspaces of BUC(R, X) if this
does not make any confusion.

LemMA 1.4, Let (T(t)),5 be a strongly continuous semigroup. Then its associated
evolution semigroup (T") nso IS strongly continuous at every bounded uniformly continuous
solution of Equation (6) with almost periodic f, in particular at every element of AP(X).
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Moreover, the infinitesimal generator of (T h)hzo in the space & of all elements of
BUC(R,X) at which (T"),., is strongly continuous, is the restriction of the operator &
to .

Lemma 1.5. If ue BUC(R,X) is a mild solution to Equation (2), then the evolution
semigroup (T"),, associated with the semigroup (T(t)),, is strongly continuous at u.

We refer the reader to and and the references therein for more information
on the history and applications of evolution semigroups to the study of the stability and
exponential dichotomy of dynamical systems. In the reader can find a systematic
presentation of new applications of evolution semigroups to the study of almost periodic
solutions of differential equations in Banach spaces.

Assume that {g|,- : g € AP(X)} = %, where R~ = (—0,0]. Obviously, in this case
F(-)v. will be almost periodic for every given almost periodic v. We will denote by #
the operator acting on AP(X) defined by the formula

Fo(&) :=F(&ve, VYve AP(X).
Note that from the 1-periodicity of F(-)
F8(1)=S1)7,

where one denotes by (S(¢)),.p the translation group on AP(X), i.e., S(¢)v(s) = v(t +s),
Vt,s € R. For an almost periodic function x(-) the following characterization is very
useful:

THEOREM 1.6. x(-) is an almost periodic mild solution of Equation (2) with almost
periodic f if and only if (¥ — F)x(-) = f.

Let us consider the subspace .# = AP(X) consisting of all functions v € AP(X) such
that ei() =: g(v) = S; US,, where S;,S, = S' are disjoint closed subsets of the unit
circle.

THEOREM 1.7.  Under the above notations and assumptions the function space M can
be split into a direct sum M = M @ My such that ve M; if and only if o(v) < S; for
i=1,2. Moreover, the above defined linear operator F in AP(X) leaves invariant M as
well as M;, j=1,2.

ProoOF. In view of it suffices to show only the last assertion. To this end, we
can show that

(7) M7V = W)y e AP(X).

In fact, since .# is a bounded linear operator, by the Approximation Theorem of Almost
Periodic Functions, it suffices to prove the above estimate for trigonometric polynomials.
Suppose that

N
V= g are™ . JreR,a.eX,teR.
k=1

Then
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Fu(t) = F(t)v,

F(l)akeiikei)vkt

Il
M- I 3

bk(l)ei;hkt7

~
Il

1

where by (1) := F(t)age™, e is a function defined on (—o0,0]. Since F(-) is 1 pe-
riodic, bi(-) is also 1-periodic. Thus, it can be seen that every term in the sum has its
spectrum satisfying the estimate (7). Finally, Z#v satisfies (7), too. ]

COROLLARY 1.8. Let u be an almost periodic mild solution of Equation (2) such
that e c eisr(/) UK, where K has finitely many elements. Then, Equation (2) has an
almost periodic mild solution w such that "™ c eisp(f)

Proor. It suffices to take S) :=ei(/) S, := K\e®(/), Then Theorems and
7 apply. O

2. Massera theorem for almost periodic solutions of linear ode.

In this section we will prove the Massera Theorem for almost periodic solutions of
linear periodic ordinary differential equations. Namely, we will prove below
2.1 which extends the Massera Theorem (see [24]) to almost periodic solutions, and
improves [6, Theorem 5.8, p. 86]. The proof will be carried out in an elementary
manner, but the obtained results seem to be as sharpest as possible.

THEOREM 2.1. Assume that the matrix function A(t) is continuous and 1-periodic,
and f is almost periodic. Then, (1) has an almost periodic solution u(-) with e c
e’ ) if and only if it has a bounded solution x(-) on the positive half line R". In
particular if A(t) is independent of t, then the existence of a solution bounded on R yields
the existence of an almost periodic solution u(-) such that oy(u) < op(f), and hence if f is
quasi periodic, then u is quasi periodic.

ProoF. Suppose first that A(¢) is independent of 7 and that x(-) is a given solution
which is bounded on R". As in we will construct a solution bounded on the whole
line of Equation (1). Namely, let x,(-) := x(n + ) which is defined on [—n,+o0) for
every n e N as a solution of the equation

dx (1)

— = AxO+ S+ 1), te[-n+o0).

Since x,(0), ne N is a bounded sequence in C” it contains a subsequence x, (0) which
is convergent to ze€ C". As the function f is almost periodic the sequence f,, should
contain a subsequence f,, which converges uniformly to an almost periodic function f,.
Let us consider the solution y(¢) of the equation

(8) —g = A0+ fx()
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with p(0) =z. We will show that for every fixed N € N the sequence {x, } is con-
vergent uniformly to y(-) on [-N,N|. In fact, by the variation of constants formula,
for n > N we have

sup |l (1) = »(0)] < sup || ||x, (0) — 2
te[—N,N]| te[—N,N]|

+N sup e sup [ £ (1) = S (O]
te[—N,N] te[—N,N]|

< Cilln (0) = 2ll + G sup [/ (8) = oo (D]
te

where C|, C, are positive constants independent of n. As a consequence of this we have
sup; e —n, M| V(O] < Sup;efo 400y [[X(1)]], s0, the solution y(-) is bounded on the whole line.
Since f,, is almost periodic, the solution y(-) should be almost periodic (see [6, Theorem
5.8]). On the other hand, since f, (—nx + -) is uniformly convergent to f, by the same
argument as above we can choose a subsequence n, such that y(—n, + ) is convergent
to an almost periodic solution w(z), t€ R of Equation (1), i.e., Equation (1) has an
almost periodic solution w(#) on the whole line. Taking Bohr transform of a(4,w) :=
limr_..(1/(27)) [T, e #w(r)dr, . e R we have

a(2,w) = ila(A,w) = Aa(A,w) + a(4, f).
Hence,
(9) (i — A)aliw) = a(i, f).
It follows from this fact that

(10) ap(f) = ap(w) = a(f)Uai(A4),

where g;(4) :={¢e R :i ea(A)}, and o(A4) denotes the set of eigenvalues of the matrix
A. We set u(t) = w(t) =Y, a(A,w)e™ where L :=ag;(4)\os(f). We will show that
u is an almost periodic solution of (1) with the required properties. In fact, by the
definition of L and (9), for every A€ L, a(4,f) =0, so, (iA— A)a(A,w) =0. Conse-
quently,
i=w(t) — Y ida(i,w)e™
AeL

= Aw(t) + [(1) = 4> a(i,w)e™

AeLl

=4 <w(l) - Za(i, w)e”“’) + f(2)

AeL
= Au(t) + f(1).

Obviously, in view of ap(u) = ap(f).

If A(¢) depends on z, then we can transform the equation in question into an
autonomous one by a Floquet transformation, i.e., there is a l-periodic continuous
nonsingular matrix Q(¢) such that by the change of variable y(¢) = Q(¢)x(¢) the equation
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(1) is transformed into the autonomous equation y(¢) = By(t) + g(t), where ¢(1) =

() f(0).

Thus, by the above argument, there is an almost periodic solution v to this

equation such that o,(v) = g5(g). It can be shown easily that the function u(z):=

O~ !'(t)v(¢) is an almost periodic solution of equation (1) with desired properties as
(07 () < pio(f) | 0

REMARK 2.2. 1) In [26], [25], [37], in case A(r) depends l-periodically on ¢ the

if)

i)

existence of a solution u with spectral estimate e*?*) — ¢i(f) has been proved
(of course, for the infinite dimensional equations). Since oy(f) = sp(f), if f is
V/2-periodic, then it is expected that possibly, e#»(/) fills the whole unit circle
I' :={ze C:|z| =1}. Hence, in this case one may get nothing new if sp(f)
is a bit complicated. Meanwhile, our condition in the above theorem still
gives information on the solution u as a solution with minimal spectrum.
If the equation in question is considered in the real space R" rather than in
C", then the Floquet transform will have the double period (see e.g. [1]). In
general, the above results are valid with appropriate modifications of state-
ments.

As shown in Example 5.1 in general, without additional conditions the Mas-
sera Theorem fails in the infinite dimensional case. In the above proof an
essential assumption is the compactness of bounded closed sets in the finite
dimensional Banach space. Hence, in the infinite dimensional case the above
result can be directly extended to the following equation

(11) d‘;(;) = Au(t) + f(1), u(t)eX, teR,

where A is the generator of a compact semigroup of linear operators 7'(¢) on a
given Bach space X. Using the integral

1

(12) P._%LR(A, T(1))d2,

where y < p(T(1)) is a contour encirling the origin in C we can decompose the
phase space X into the direct sum X =X; ® X;, where X;:=ImP,
X, :=KerP. Obviously, dimX; < co. On the other hand, on X, the
semigroup (I — P)T(¢)(I — P), te R is exponentially stable. Thus, the
problem is reduced to the consideration of the almost periodic solutions of the
other component on X; which is of finite dimension. We will discuss more
general equations having such properties in Section 4.

3. Almost periodic solutions of difference equations.

In this section we will prove the Massera Theorem for almost periodic solutions of
difference equations as a preparatory step for functional differential equations which will
be considered in the next section. Let us consider the difference equation

(13)

x(n+1) = Bx(n) +c(n), neZ,
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where Be L(X) is a bounded linear operator such that r.(B) <1 (r.(B) denotes the
essential spectral radius of B) and c(n) is an almost periodic sequence in X. Let us
denote o, (B) := I'Na(B). The reader is referred to the Appendix at the end of this
paper for analogs of notion of spectrum of a sequence and related results. We will

prove the Massera Theorem for Equation |13), i.e., the following

/

THEOREM 3.1. Let Equation (13) have a bounded solution x(n), ne N. Then it has
an almost periodic solution y on Z such that ap(y) < op(c).

Proor. We will use the reduction principle to prove the theorem. In fact, let
r.(B) < p < 1 such that the circle of radius p, centered at the origin does not contain any
point of ¢(B). This is possible in view of our assumption that r.(B) < 1. Hence, the
integral

1

" 2mi

J J RO\, B) d).

G

is the projection. Moreover, note that dim Ker(J) is finite. Thus, the Banach space
X can be split into a direct sum X; @ X, where X| = Ker(J), X, = Im(J). Using this
decomposition, the problem of finding almost periodic solutions to Equation 18
trivially reduced to finding almost periodic solutions to the following equation

(14) xi(n) =Bixi(n—1)+ci(n—1),

where x| (n) :== (I — J)x(n), By :== (I —J)B(I —J), ¢i(n) := (I —J)c(n). In fact, for the
other component, in view of the exponential stability of the equation in X, the existence
and uniqueness of an almost periodic solution is well-known. Indeed, let us denote by
S(k) the translation [S(k)x|(n) := x(k + n) and by %, the multiplication by B, := JBJ in
the space of all almost periodic two-sided sequences. Then, obviously, r,(%,S(—1)) < 1
because of the exponential stability. Hence, the unique almost periodic solution is x; =
(I — #,S(—1))"'S(=1)¢,. Thus, it suffices now to deal with the first component equa-
tion. We consider the sequence x;(p + -), where p € N. Every term of this sequence is
a bounded solution to the Equation with the right hand side ¢;(p + ). Since the
sequence ¢; i1s an almost periodic two-sided sequence, there exists a sequence p; such
that ¢;(px + -) is convergent uniformly to ¢ on Z. On the other hand, since x;(px) is a
bounded sequence in a finite dimensional space, it contains a convergent subsequence.
Thus, without loss of generality, we can assume that this sequence is convergent, itself.
This procedure leads to the existence of a bounded two-sided sequence ¥y, which is a
solution of the equation

y(n)=Biy(n—1)+én—1), neZ.

In the same way as in [6, Theorem 5.8], we can show that y, is an almost periodic
sequence. Therefore has an almost periodic solution y; which is the limit of
some subsequence of y,(—pr +-). Now using the elementary decomposition technique
developed in the above section we can decompose from the two sided sequence y;
(which is obviously almost periodic) an almost periodic component ¢ with spectrum
op(d) = gp(c). This proves the theorem. O
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4. Abstract functional differential equations.
We consider in this section the abstract functional differential equation

(15) di‘l(;) — Au(t) + F(d)u, + 1(1),

where A is the generator of a semigroup of linear operators on a Banach space X, F(¢)
is a bounded linear operator from % into X which is periodic in ¢ with period 1, where
4 is a uniform fading memory phase space of Equation (2) with infinite delay satisfying
the axioms listed below and f € BC(R,X). We will impose conditions on Equation (2)
so that the monodromy operator, which we will denote by B, satisfies the assumptions

listed in [Theorem 3.1.

4.1. Uniform fading memory phase spaces.
We will give a precise definition of the notion of uniform fading memory space

for Equation (2) in this subsection. Let us denote the norm of X by | - ||y. For any
function x: (—o00,a) — X and ¢ < a, we define a function x,: R™ := (—o0,0] — X by
x;(s) =x(t+s) for se R~. Let (%4,] -|,) be a Banach space, consisting of functions

Y : (—00,0] — X such that
(A1) There exist a positive constant N and locally bounded functions K(-) and
M(-) on R" with the property that if x : (—o0,a) — X is continuous on [o, a)
with x, € # for some o < a, then for all 7€ [o,a),
(i) x €3,
(ii) x; is continuous in ¢ (W.r.t. || - ,),
(i) NIx(0)y < ¥l < K(t = 0) Supp e () x + M = )%
(A2) If {¢*}, ¢* € B, converges to ¢ uniformly on any compact set in R~ and if
{¢*} is a Cauchy sequence in %, then ¢ e B and ¢* — ¢ in B.
The space % is called a uniform fading memory space, if it satisfies (Al) and (A2) with
K(-) = K (a constant) and M(f) — 0 as f — oo in (Al). A typical example of uniform
fading memory spaces is the following one:

o0 €V9

C,=C(X)= {¢ eC(R;X): ggin 9Ol = 0}

which is equipped with norm |[|4[| = supy|[¢(0)| x/ e’ where 7 is a negative constant.

It is known [11, Lemma 3.2] that if % is a uniform fading memory space, then
BC:=BC(R ;X) c # and the inclusion map from BC into # is continuous. For
other properties of uniform fading memory spaces, we refer the reader to the book [16].
In connection with the almost periodic functions taking values in a uniform fading
memory space % we have the following.

LemMA 4.1. Let # be a uniform fading memory space and u is an almost periodic
function taking values in X. Denoting v(t) := u, we have
1) v is a B-valued almost periodic function,

11) ab(u) = ab(v).

PrOOF. By the Approximation Theorem of almost periodic functions, there is a
sequence of trigonometric polynomials P,(7) = Z,iv:('f) ay ke <t with 4, x € op(u), which is
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convergent uniformly to u(#). Now using the axiom (Al) (iii) of the uniform fading
memory space, we can easily construct a sequence of trigonometric polynomials in %
with Bohr exponents in g;(x) which uniformly approximates v(¢) := u,. Obviously, v is
almost periodic. Now we prove the spectral estimate by using again the axiom Al
(iii). In fact, under the standing assumption there are positive constants N, K (which
are independent of u) such that

(16) Nu@)llx < llwll, < K sup [Ju(2) ] x-
te

Hence, for /1€ R the following

T—>OC2T -T

holds if
li I dt=0
TgliozT _Te e -

i.e., gp(u) = op(v). Conversely, by the basic properties of almost periodic functions (see
e.g. [21, pp. 22-23]) if A€ R\op(u) the limit

T+a .
lim —J e Mu(t)dt =0
—T+a

exists uniformly in ae R. Thus using we can conclude that 4e R\o,(v), i.e.,
op(v) < ap(u), proving the lemma. O

4.2. A variation of constants formula for FDE.

We consider now the abstract functional differential equation (2) with the uniform
fading memory phase space 4. Throughout the paper we shall assume that F(7)¢ is
continuous in (z,¢) € R x # and linear in ¢ € %, and it is periodic in ¢ with period 1.
For any (a,¢) € R x 4, there exists a (unique) function u : R — X such that u, = ¢, u is
continuous on [, 00) and the following relation holds:

t

u(t)=T(t—o)p(0) + J T(t—s){F(s)us+ f(s)}ds, t=a,
(cf. [13, Theorem 1]). The function u is called a (mild) solution of (2) through (o, ¢#) on
[0,00), and denoted by u(-,0,¢;f). Also, a function ve C(R,X) is called a (mild)
solution of Equation (2) on R, if v, € # for all ¢t € R and it satisfies u(z,0,v,; f) = v(t) for
all + and ¢ with 1t > 0. For any 7 >s, we define an operator U(t,s) on # by

U(I7S>¢:ut(sa¢;0)7 peB.

We can easily see that under the assumption on the strong continuity and periodicity of
F(t), the two-parameter family (U(t,s)),, is a strongly continuous evolutionary process
on %, which is called the solution process of (2). By a strongly continuous evolutionary
process in a Banach space Y we mean a two-parameter family of bounded linear oper-
ators (V'(t,s)) (0o <s<t< o) from Y to Y such that the following conditions
are satisfied:

t=>s>
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i) V(t,t)=1, VteR,
i) V(t,s)V(s,r)=V(tr), Vt=s>r,
iii) For every fixed y € Y the following map is continuous:
{0, &) e R*:n =&} 3 (1,5) = V(1,5),
iv) There exist positive constants N, such that
|V (t,5)]| < Ne®'™, Vi>s, tseR.
By the principle of superposition, we get the relation
uo,¢; f) = u(o,4;0) +u,(a,0; f)
(17) =U(t,0)¢ + u(a,0; f).

In what follows, we shall give a representation of u,(c,0; f) in terms of f and the
solution process (U(t,s)),.,. To this end, we introduce a function I'" defined by

no+1)I, —1/n<6<0
() =
() {O, 0 < —1/n,

where n is any positive integer and [/ is the identity operator on X. It follows from
(A1) that if x € X, then I""x e # with ||[I""x|, < K(1)||x||y. Moreover, since the pro-
cess (U(t,5)),, is strongly continuous, the #-valued function U(t,s)I""f(s) is continu-
ous in se€ (—oo,t] whenever f € BC(R,X).

The following theorem yields a representation formula for solutions of (2) in the
phase space:

THEOREM 4.2. The segment u,(o,¢; f) of solution u(-,o,¢9,f) of (2) satisfies the

following relation in %:

t

(18) uo,¢9; f) = U(t, a}¢+’}ingcj U(t,s)I'"f(s)ds, t=>o.

ag

Moreover, the above limit exists uniformly for bounded |t — o|.

Proor. It suffices to show that the following limit

=0
.

lim

n— oo

J U(t,s)I'"'f(s)ds — u;(a,0; f)

ag

exists uniformly in (z,6) such that t>¢ and t—o is bounded. The integral
f; U(t,s)I""f(s)ds is understood as the limit of a Riemann sum of the form ¢4 :=
S Ut si) T (sy)4s, in . Observe that ¢4(0) = 32, u(t+ 0,5, I'"f (s1);0) sy is a
Riemann sum of the integral

t
| e+ 0.5.77061:0)ds = (0.0 0),
and that it converges to the above integral uniformly on any compact set in R~ because
of the uniform continuity of u(t+ 6,s,I""f(s);0) as a function of (0,s) on R~ X [a,1].
Since £"(t,0)(0) is continuous in 0 <0 with &"(#,0)(0) =0 for 6 <o—1t—1/n, it
follows from (Al)-(i) that &"(¢,0) € 4. Moreover, we get
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I€"(t,0) = ¢l s < Ki- sup  [I€"(2,0)(0) — ¢ (O)x

o—t—1/n<0<0

by (Al)-(iii), where K; = K(t — o+ 1). Thus ¢“ converges to ¢"(¢,0) in 4, and hence

=0.
%

r UL, $)T"f (s) ds — (1, o)

ag

Given ne N, and o <s <t let u) :=u(-,s,1"f(s);0). Invoking the definitions of
I'" u and £"(¢,0), and denoting J(¢) := min(z,¢+ 6+ 1/n) by a simple computation
one can show that for —(1—0) <6 <0

t+0

{(t—l—@—s)n—i—l}f(s)ds—l—J T(t4+0—s)f(s)ds

g

J(1)

&(1,0)(0) = |

0+t

t+0
a
ag
40

J(1)
:J {(t+0—s)n+ 1}f(s)a’s+J T(t+0—s)f(s)ds

O+t o

fwTu+0—mF@x@»mﬂm

N

[ o nro, a4

ag ag

J(1) t+0
:J ((t+0—s)n+ 1}f(s)ds+J T(t+0 - 5)f(s)ds

O+t o

p

+fMT0+0—mF@ﬂj

a a

U(p,s)I"f(s) ds] dp

t+0

J(1)
:J {(t40 —s)n+ l}f(s)ds—i-J T(t+0—s)f(s)ds

0+t g

t+0
+ J T(t+0—s)F(s)E"(s,0)ds.

[

Hence, one has the following formula:

(0 if0<—(z—o-)—%;
J(1) 1
J {(t+0—s)n+1}f(s)ds if—(l—a)—; <0< —(t—o);

J(1)

E'(t,0)(0) = J {(t4+0—s)n+1}f(s)ds

0+t

t+0
—i—J T(t+0—s5)f(s)ds

ag

+0
—{—J+ T(t+0—s5)F(s5)E"(s,0)ds if —(t—0)<0<0.

ag
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We now consider ||E"(¢,0)(0) — £™(¢,0)(0)||. Recall that # is a uniform fading memory
space. Thus, the above calculations lead to the inequality

o) =€ty < & (5 +0) (s 17l

Z o<s<t
t
* MKJ | F(s)[| 1" (5, 0) — &7 (5,0)|., ds.

(Here, M > 0 and w € R are such that ||T(r)|| < Me®".) An application of Gronwall’s
Lemma leads to

1 1
"(t,ag) — EM(t 42 < Cloa, ) K| —+—|,
I€7(0.0) = €0, < Clo0K (4
with a constant C(o,7) > 0 depending only on the length (z —¢). This shows that
{&"(¢,0)}, is a Cauchy sequence in 4, uniformly over ¢ > ¢ with length (# — o) bounded.
Given ¢ > g, let &(¢,0) be the limit of £"(z,0) in % as n — oo. Then, by the above
calculations for &"(¢,0)(0), we see that &"(¢,0)(6) converges to the following function

[0, for 0 € (—o0, —(t — 0)]
ho) = {J‘;“’ T(t+0— ) {f(s) + F(s)&(s,0)}ds for O [—(1— a),0],

uniformly for 6 in each compact subset of R™. Hence it follows from (A2) that
E(t,0)(0) = h(0). Thus, for o € R, if we define u”: R — X by u?(¢) =0 for ¢t < o, and
u’(t) = ¢&(t,0)(0) for t > o, then we have (u?), =0 and (u?), = {(s,0) for s > 0. Not-
ing that for ¢t > o,

u’(t) = &(1,0)(0)

j T(t - $){(s) + F(s)E(s,0)} ds

g

[ 7= 9176+ FO@ 3 as

a

we finally conclude that u” = u(-,0,0; f). Thus

lim j UL/ (s)ds = lim &"(t,0) = &(t,0) = (u%), = (0,0 )

— 00
n— o0 o

uniformly over 7> ¢ with length ¢t — ¢ bounded. This completes the proof of the
theorem. [

Throughout this paper we will make as a standing assumption that % is a uniform
fading memory space, 4 is the generator of a compact semigroup (7(¢)),., and F(t)¢
is continuous in (#,¢) € R x 4, linear in ¢ € # and periodic in ¢ with period 1.

Under the standing assumption the following assertion holds:

THEOREM 4.3. Let B be the monodromy operator of the corresponding homogeneous
equation of (2), i.e. B=U(1,0). Then r.(B) < 1.
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ProOOF. For the proof we refer the reader to [38, Theorem 4.8]. ]

We now consider the following discrete equation in the phase space # associated
with Equation (2)

(19) Uy 1 = Bu, +¢g,, neZ

where g, := u,+1(0,n, f). Under the standing assumption we have r.(B) < 1. Hence,
if we assume that there is a function u defined on R which is a mild solution of (2)
bounded on the half line R*, then is applicable. As a result we have
shown that in the phase space # there exists an almost periodic two sided sequence z,,
n e Z which is a solution of [19]. However, our aim is to prove the existence of an
almost periodic solution on the whole line w of Equation (2) such that e®?(") < eisn(/),
This can be done by using the variation of constants formula presented in [Theorem 4.2
The main result of this section will be the following.

THEOREM 4.4. Let the standing assumption be met. Moreover, let Equation (2)
have a mild solution bounded on R™. Then there exists an almost periodic mild solution w
to Equation (2) on the whole line R such that e’ c eisr(f),

Proor. The proof is divided into several steps.

a) Existence of an almost periodic solution on the whole line. First of all, by the
above argument there exists an almost periodic solution x(n), n € Z to the discrete equa-
tion [19). We now construct an almost periodic solution to Equation (2) by solving the
Cauchy problem on every interval [n— 1,n), ne Z, i.e., the following equation

{u(l) = Au(t) + Fu, + f(t), te(n—1,n)

(20) U1 = x(n—1).

Since x(n), ne€ Z is a solution of Equation the solution u defined above is well
defined on the whole line R and is a bounded continuous mild solution of Equation
(2). Now, as in [6, Chapter 9] we will show that the solution u is an almost periodic
mild function. To this end, let us extend the sequence x(n), n € Z to the whole real line
as follows x(z) := ([t] + 1 — t)x([zr]) + (t — [#])x([¢] + 1), t € R, where [f] denotes the in-
teger p such that p <7< p+ 1. As is well-known (see e.g. [6, pp. 163-164]), the func-
tion x(-), defined in this way, is almost periodic. As x(-) and f are almost periodic, so
is the function g : Rt — (x(1), f(¢)) € # x X (see [21, p. 6]). Obviously, the sequence
{g(n)} = {(x(n), f(n))} is almost periodic. Hence, for every positive ¢ the following set
is relatively dense (see [6, p. 163—164])

(21) T:=ZNT(g,e),

where

T(g.6) = {re Risupllgte-+ ) - glo)] <

1.e., the set of & periods of g. Hence, for every me T we have
(22) [/ (t+m) = f(D)lx <& VieR,
(23) x(n + m) = x(n)], <&, VneZ.
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By the uniform boundedness principle obviously sup,(o 1/ F(¢)|| < 0. Since u is a mild
solution to Equation (2), for 0 <s <1 and all ne N, we have

lun+m+s) —u(n+s)|

< [T (- m) — x(m)] 5 + jo 1T(s - &)

x ( sup (| E)| [1unim+e = thnsell + 1/ (n+m+ &) = f(n+ f)Hx) d¢

0<n<l1

SCe“’||X(n+M)—X(n>||%+Ce“’J ( sup [[F(n)]
0 \0<y<l1

D =l + 1704+ €)= £+ Oy ) de
where C and @ are constants satisfying ||7(7)|| < Ce®’. Hence

S
ltnmss = thnislly < Ce®llx(n+m) = x(n)]l, + Ce® sup [F() JO(H”n+m+i — tniely
<<

+fntm+ &) = fn+)lx)de.

Using the Gronwall inequality we can show that

(24) Nllu(n +m+s) —u(n+ ) x < [[tnrmrs = thss

gggM,

where M is a constant which depends only on sup,_,[|F (%), C,. This shows that
m is a (eM /N)-period of the function u(-). Finally, since 7 is relatively dense for every
e, we see that u(-) is an almost periodic mild solution of Equation (2).

b) Spectral estimate of the solution u. We now prove the following estimate

LEMMA 4.5.
(25) e = gr(B)Ue),

Proor. First, it may be noted that for every fixed ne N the function h:t+—
I'"f(t) is almost periodic and a,(h) < g5(f). Next, let us consider the function

t

pu(t) == J U(t,s)I"f (s) ds.
-1

We will show that p, is almost periodic and e’ (") < ¢(/) In fact, since 4 is almost

periodic with a;(h) < o5(f), there is a sequence of trigonometric polynomials /4,,(7) =

Z,i\f:('ln) ax. me™mt with g, € o,(f) approximating h. Thus, for every /e R such that

e ¢ eio(f) since

t
e_lik.mlJr U(l, S)akﬂnel/lk.ms ds
t—1

is a function of ¢ with period one, we have
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T
a(l, pu)ll, = || im —J ey (1) dt
ool o= | fim 5 [ e ot al]
1 T . t
= || lim —J e"’J U(t,5)h(s) dsdt
jim 5[ e[ vtesms
1 T '/“l
< || lim —J e"J Ul(t,s)hy,(s) dsdt
‘MzT et | v dsar)
1 T ort
+ || lim —J e_l”J U(t,s)(h(s) — hy(s)) dsdt
Jim g || )09~ o) ]|
1 T t
< hm—J J U(t,s)(h(s) — hy,(s))ds|| dt
Jim 5| ] w0 e as|

T
< Jimgp |, N pll) ~halt

< Ne® sup [[(s) = hn(s) | 2,
seR
where N, are determined from the growth bound of the process (U(t,s)),.,. Hence
when £, approaches 7 we can see that a(A, p,) = 0, and hence, () < ¢(/) Simi-
larly, since the limit

t
p(t) := lim J U(t,s)I""f(s)ds
is uniform in ¢ we can show that p is almost periodic and e®(?) — (/) Since the
function u, constructed as above, is almost periodic, by [Lemma 4.1 the map ¢~ u; is
also almost periodic, g,(u) = g5(u.), and satisfies the equation

(26) u,=U(t,t — Du,—y + p(t), teR

Using the 1-periodicity of U(t,t— 1), almost periodicity of u, and p(¢), and this
equation, we are going to prove the spectral estimate of the lemma. For simplicity, put
o(t) :=u;, P(t):=U(t,t—1) and

Ipy={pel:u¢(or(B)Ue™/))}.

To prove it suffices to show that I's y Ne® = &. Now suppose that 1 € R such
that e e I'sr. Then A, :=7i+2mné¢oy(f) and hence A, ¢ oy(p) for any me Z.
Taking the Bohr transforms of both sides of Equation we arrive at

/l

T
(i 0) = lim —J e P(o(t = 1) di + aliom, p)
-7

. 1 (T .
—iAm 15 —idmt
— m 1 _ m P
¢ 2TJTe (£)elt) dt

‘ 1 (T .
27 — —il li - ﬂlth )
(27) e” lim 2TJTe (t)v(r) dt
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Thus,

T
(28) 0= Tliilgc%‘[_Te""ft(l — e " P(1))o(1) dt.

Applying [Cemma 1.2 to the functions v(z) and w(z):= Q(t)v(t), where Q(f) :=
(e — P(t)), and since (e”* — P(r))”" exists and is strongly continuous in ¢ (see e.g. [26,
Lemma 1] or the references therein), we get () =) On the other hand,
yields a(/y,, w) = 0 for any m € Z, and so, e ¢ ¢ ") = ¢i(®) Thus, I'p ;Ne™V) =g,
and so by I'psNe™ = @&, This finishes the proof of the lemma. []

¢) Decomposition of an almost periodic solution. From it follows in
particular that e®®) < gr(B)Ue®(/), Obviously, or(B) is finite. Thus, setting A, :=

esr(f), Ay := or(B)\e™(/) we are in a position to apply to finish the proof
of the theorem. ]

4.3. Autonomous case and quasi periodic solutions.

In the case where F(¢) does not depend on ¢ we can refine the above technique
to prove the existence of quasi periodic solutions. Let us consider the autonomous
equation

(29) u'(t) = Au(t) + Fu, + f (1), teR.

LeEMMA 4.6. Let the standing assumption be fulfilled. Then for any almost periodic
mild solution u of Equation (29) the following spectral estimate holds

(30) ap(u) = ai(4) Ua(f),
where
oi(4) :={eR:i& — A— Fe' is not invertible in L(X)}.

PROOF. As is known (see e.g. [17]), under the standing assumption, ¢;(4) coincides
with ¢;(9) :={eR: il e€a(¥)}, where ¥ denotes the generator of the solution semi-
group associated with (29) on the phase space 4. By [17, Proposition 4.2 and Theorem
4.3] the above estimate is reduced to that of an ordinary differential equation. Hence,
as in the Section 3 this estimate holds. O

Thus can be used to study the existence of quasi periodic mild solutions to Equation
(29). Finally, we have

THEOREM 4.7. Under the standing assumption, if Equation (29) has a bounded mild
solution on the positive half line and f is quasi periodic function, then there exists a quasi
periodic mild solution on the whole line w to Equation (29) such that op(w) < ap(f).

Proor. The assumption yields in particular the existence of an almost periodic
mild solution u of Equation (29) on the whole line. Since a;(4) consists of finitely
elements, the following function is well defined

(31) w(t) == u(t) — Z a(l, u)e™.
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We now show that w is the desired mild solution. We again use the decomposition
of the variation of constants formula in the phase space (see [17, Proposition 4.2 and
Theorem 4.3]) to reduce the problem to the finite dimensional case. The next step of
the proof can be taken from the one of [Theorem 2.1. Using one can decompose
the above-mentioned almost periodic mild solution to get a component which is again
an almost periodic mild solution w of (29) satisfying a,(w) < a,(f). Since f is quasi
periodic if and only if the spectrum o,(f) has an integer and finite basis. This charac-
terization of quasi periodicity of f is inherited by w. ]

5. Discussion and examples.

In this paper the assumption on the compactness of the semigroup generated by the
operator 4 in Equation (2) is essential which guarantees the existence of a bounded mild
solution on the whole line to Equation (2) as well as the one of an almost periodic
solution if we know beforehand the existence of a bounded mild solution on the positive
half line. Without the above mentioned assumption the Massera Theorem fails even for
the simplest equation as in the example below.

ExampLE 5.1. In the infinite dimensional case even the following simplest equation

(32) u(t) = f(1)

may have a bounded solution, but does not accept any almost periodic solution. In fact
in the space ¢y of numerical sequences converging to 0, let us consider the function
f(t) :={(1/n)cos(t/n)}. The function f is almost periodic, but its integral F(t):=
fé f(&)dé = {sin(t/n)}, which is bounded, is not almost periodic. Of course, every
solution of the equation is of the form ¢+ F(¢). Hence, all solutions of this equa-
tion are not almost periodic. This is because of the geometric structure of the Banach
space X on which the equation is defined (see a counter-example in [21, Chapter 6] on
the condition that X does not contain c¢y).

In this paper we have used the compactness assumption to get and the
fact that o;(4) coincides with ¢;(¥%). Without the compactness assumption, further
assumptions should be made, for instance, the assumption that a bounded uniformly
continuous solution on the whole line exists, a;(4)\sp(f) is closed, sp(f) is countable,
and X does not contain ¢y. For more details in this direction we refer the reader to [7]
with notice that for the uniform fading memory space # similar computations can be
made for the infinite delay case.

6. Appendix: Almost periodic two sided sequences.

In this appendix we will state several results which are discrete analogs of well-
known results on almost periodic functions. We will denote by B(Z, X) the space of all
bounded two-sided sequences x : Z — X, where X is a Banach space. In this space we
consider the translation operators S(k), k € Z, defined as

[S(k)x](n) :=x(k+n), VneZ, xe B(Z,X).
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DErFINITION 6.1. A bounded two-sided sequence {x,,ne Z} is said to be almost
periodic if the orbit {S(k)x,k € Z} is relatively compact in B(Z,X).

Next, we define the Bohr transform of an almost periodic two-sided sequence x by
the formula

T b —k
(33) %, = lim > aFx(k), Aer,

where I' :={ze C :|z| = 1}. As for almost periodic functions, the Bohr transform of
a two-sided sequence exists and the set g,(x) := {Ae " : x; # 0} is countable. In this
appendix we will state the following result, the proof of which is a straightforward
verification of [6, Theorem 5.8]. Let us consider the equation

(34) x(k+1) = Ax(k) +g(k), x,eC" keZ,
where {g(k),k € Z} is an almost periodic two-sided sequence.

THEOREM 6.2. If x is a bounded solution of (34), then x is almost periodic.
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