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Abstract. We classify equivariantly Gorenstein log del Pezzo surfaces with bound-

aries at infinity and with finite group actions such that the quotient surface modulo the

finite group has Picard number one. We also determine the corresponding finite groups.

0. Introduction.

Let X be a normal projective rational surface with at worst rational double singu-

larities and let D be a reduced divisor on X . We, further, assume that there is a finite

group G acting faithfully on X so that D is G-stable. We assume that ðX ;DÞ has log

terminal singularities (cf. [7], [8], [12]) and kðXnDÞ ¼ �y. Let f : X ! X be the

minimal resolution. Let D be the proper transform of D. We can write f �ðDÞ ¼

Dþ D, where D is a positive Q-divisor such that SuppðDÞ is the exceptional locus of f

arising only from the singular points lying on D (cf. ibid.). It is also known (cf. ibid.)

that the exceptional graph of f �1ðPÞ with P A DV SingðXÞ is a linear ð�2Þ-chain and

that one of the end components of the chain meets transversally D in one point. The

G-action on X lifts up to a G-action on X such that Dþ D is G-stable.

Our objective is to describe a pair ðX ;DÞ with finite group action of G. In the

present article we shall determine the geometric structure of the minimal resolution

ðX ;Dþ Dred þ AÞ (see Remark (2) below) of ðX ;DÞ as well as the group action G on X .

We assume the following:

Hypothesis (H). X has at worst rational double singularities, ðX ;DÞ is log terminal,

D0 0, kðXnDÞ ¼ �y and rðX@GÞ ¼ 1.

Theorem A. Assume the Hypothesis (H ). Then either K 2
Xb 8 and one of the cases

ð1aÞ–ð1f Þ in Lemma 4 occurs, or 2aK 2
Xa 6 and f �1Dþ f �1ðSingXÞ ¼ Dþ Dred þ A

(see Remark (2) below) is given in Figure m for some 1ama 43 (see Section 2).

Remark. (1) In [21], the equivariant classification of the pair ðX ;GÞ where X is

smooth, is treated. In [13], the authors dealt with the pair ðX ;GÞ where rðX@GÞb 2,

but X is assumed to be only log terminal. In [22], a finiteness criterion for jAutðX Þj

is given, where X is Gorenstein del Pezzo of Picard number one.

(2) We can write f �1ðDÞ ¼ Dþ Dred and f �1ðSingXÞ ¼ Dred þ A, where A is con-

tractible to singular points on X but not on D. We let A ¼
P

i Ai be the irreducible

decomposition.
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(3) Note that either D is irreducible or D ¼ D1 þD2 is a linear chain of two

smooth rational curves (see Lemma 3). Figure m contains the graph of Dþ Dred þ

Aþ (some ð�1Þ-curves like E;Ei;Fj), where each ð�1Þ-curve (resp. each other curve) is

represented by a broken (resp. solid line) with self intersection typed next to it.

(4) Also shown in each Figure m is a P1-fibration F : X ! B ðGP1) with all its

singular fibres drawn vertically; thus one can read o¤ from each Figure m, the Picard

number rðXÞ and K 2
X by blowing down X to a Hirzebruch surface. See Lemma 14.

(5) We use the notation D ¼
P t

i¼1 Di, ðDiÞred ¼
Psi

j¼1 Dið jÞ in Lemma 2. In each

Figure m, if D or Di is irreducible we use the same letter to denote its support (which is

a reduced irreducible curve). If t ¼ 1, we set Dð jÞ :¼ D1ð jÞ.

Theorem B. Concerning the group G acting faithfully on X (or X ), the following

assertions hold:

(1) With the notations and assumptions in Theorem A, each G is determined in

Section 2.

(2) Conversely, given Figure m of Dþ Dred þ A on a surface X for some 1ama 43

in Section 2, we let f : X ! X be the contraction of Dþ A and D ¼ f�D.

Then we can find a finite group G specified in §2 acting on X faithfully such

that the Hypothesis (H ) is satisfied.

Theorem C. With the notations and assumptions in Theorem A, assume further

that K 2
Xa 4. Then either G is soluble or jG : Hja 2 for some group H in

fg ¼ ðaijÞ A PGL2ðCÞ j aij 0 0 only when i ¼ j or ði; jÞ ¼ ð3; 1Þg. We have G ¼ H except

the case of Figure 25.

Conversely, any finite group in PGL2ðCÞ of the form above can act on some X

faithfully so that the Hypothesis (H ) is satisfied.

We assume throughout the article that the ground field k is an algebraically closed

field of characteristic zero.
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1. Geometric structure of the surface X .

Let us begin with the following result. We assume Hypothesis (H) in §1.

Lemma 1. The following conditions are equivalent:

(1) The Picard number rðX@GÞ ¼ 1.

(2) ðPicXÞG GZ.

(3) ðPicXÞG nQ ¼ ððPicXÞnQÞG GQ.

Proof. Since the pull back of the quotient map X ! X@G induces an isomor-

phism between ðPicðX@GÞÞnQ and ðPicXÞG nQ, (1) and (3) are equivalent. Since X

M. Miyanishi and D.-Q. Zhang216



has at worst quotient singularities, the resolution f induces an isomorphism p1ðX Þ !

p1ðXÞ by Theorem 7.8 in [9]. So p1ðX Þ ¼ 1 and hence PicX and ðPicXÞG have no

torsion elements; thus (2) and (3) are equivalent. This proves the lemma. r

From now on, we assume one of the equivalent conditions of Lemma 1. We call

such a pair ðX ;DÞ with a finite group action of G a Gorenstein open log del Pezzo

surface provided D0 0.

Lemma 2. The following assertions hold.

(1) D;�KX and �ðKX þDÞ are all Q-ample divisors. Each of them generates

ðPicXÞnQ. The divisors Dþ D;�KX and �ðKX þDþ DÞ are all nef and

big and Q-proportional to one another.

(2) f : X ! X is nothing but the contraction of all ð�2Þ-curves on X. If C is a

curve on X with C2 < 0, then C is either a ð�1Þ-curve or a ð�2Þ-curve. If

X ! Sd is a birational morphism to a Hirzebruch surface of degree d, then

d ¼ 0; 1; 2.

(3) If F : X ! P1 is a P1-fibration and G1 a singular fibre, then either (type In)

G1 ¼ E1 þ A1 þ � � � þ An þ E2 is an ordered linear chain where nb 0, or (type

IIn) G1 ¼ 2ðE þ A1 þ � � � þ AnÞ þ Anþ1 þ Anþ2 where nb 1 and both E þ A1 þ

� � � þ An and Anþ1 þ An þ Anþ2 are ordered linear chains, or (type II0) G1 ¼

A1 þ 2E þ A2 where A1 þ E þ A2 is an ordered linear chain; here the E;Ei are

ð�1Þ-curves and the Al are ð�2Þ-curves.

(4) Let D ¼
P t

i¼1 Di be the decomposition into the connected components and let

ðDiÞred ¼
Psi

j¼1 Dið jÞ be the irreducible decomposition with the dual graph below.

We set Dð jÞ :¼ D1ð jÞ when t ¼ 1.

�2 �2 �2

� � � � � � � � � �
D DiðsiÞ Diðsi � 1Þ Dið1Þ

Then we have

Di ¼
Xsi

j¼1

j

si þ 1
Dið jÞ:

Proof. (1) Note that both KX and D are in ðPicXÞG nQ. We shall show

that �ðKX þDÞ is Q-ample. Note that kðX ;KX þDþ DredÞ ¼ �y. Suppose either

KX þD1 0 or KX þD is Q-ample. Consider the pull-back KX þDþ D ¼ f �

ðKX þDÞ. Then either nðKX þDþ DÞ@ 0 because X is rational or nðKX þDþ DÞ

> 0 for a positive integer n. Then we have

�y ¼ kðX ;KX þDþ DredÞb kðX ;KX þDþ DÞb 0;

which is absurd. So, �ðKX þDÞ is a Q-ample divisor. Clearly, D is Q-ample. Since

�KX ¼ �ðKX þDÞ þD, the divisor �KX is ample.

(2) follows from the ampleness of �KX and that �KX ¼ f �ð�KX Þ.

(3) is a consequence of (2) (see also Lemma 1.3 in [20]).

(4) follows from the fact that �ðKX þDþ DÞ:Dið jÞ ¼ 0. r
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The following result describes roughly the shape of the divisor D.

Lemma 3. We have the following assertions.

(1) Either DGP
1, or D ¼ D1 þD2, where Di GP

1 and D1:D2 ¼ 1. In both cases,

D:ðDþ KX Þ ¼ �2.

(2) D:D < 2, and Di:D < 1 if D ¼ D1 þD2.

(3) 0 < ðKX þDþ DÞ2 ¼ ðKX þDÞ:KX þ D:D� 2 < ðKX þDÞ:KX :

(4) Suppose X contains a ð�1Þ-curve E which is not a component of D. Then

E VD ¼ q and E:D < 1. Furthermore, D0 0 and E:D > 0. See also Lemma

8.

Proof. Let D1 be an irreducible component of D. Then we have

0 < �ðKX þDþ DÞ:D1

¼ 2� 2paðD1Þ � ðD�D1Þ:D1 � D:D1a 2�D1:ðD�D1Þ:

This implies that D1:ðD�D1Þa 1 and D1 GP
1. Since Dþ D ¼ f �ðDÞ is nef and big,

it is 1-connected, whence connected; see the proof of Lemma 1 in [1]. We note that if

D is not connected then Dþ D is not connected either. This is because each connected

component of D meets exactly one irreducible component of D. The assertions (1) and

(2) are thus proved. To verify the assertion (3), note that D:ðKX þDþ DÞ ¼ 0 and

KX :D ¼ 0. In view of the assertions (1) and (2), the computation is made as follows:

0 < ðKX þDþ DÞ2 ¼ ðKX þDþ DÞ:ðKX þDÞ

¼ ðKX þDÞ2 þ D:D ¼ �2þ ðKX þDÞ:KX þ D:D < ðKX þDÞ:KX :

Let E now be a ð�1Þ-curve as in the assertion (4). Then we have

0 < �ðKX þDþ DÞ:E ¼ 1�D:E � D:E;

where D:Eb 0. This implies that D:E ¼ 0 and E:D < 1. Suppose E:D ¼ 0. Then

E V ðDþ DÞ ¼ q and the image on X of E is disjoint from D. This contradicts the

ampleness of D. r

In case X has no singular points on D, we can determine the surface X .

Lemma 4. We have the following assertions.

(1) If K 2
Xb 8 then one of the following cases occurs, where S2 is the Hirzebruch

surface with a minimal section M such that M 2 ¼ �2.

(1a) X ¼ P
2 and degD ¼ 1; 2,

(1b) X ¼ P
1 � P

1 and bidegD ¼ ð1; 1Þ; there is an element g in G which inter-

changes the two di¤erent rulings on X,

(1c) X ¼ S2 (the quadric cone in P
3) and D is a hyperplane not passing through the

vertex of the cone,

(1d) X ¼ S2, Dred ¼ M and D is a fibre,

(1e) X ¼ S2, Dred ¼ M and D is a section with self-intersection 4,

(1f ) X ¼ S2, Dred ¼ M and D is the sum of a fibre and a section (disjoint from M )

with self-intersection 2.

(2) If D ¼ 0 then K 2
Xb 8 and hence case (1a), (1b), or (1c) occurs.
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Proof. For the assertion (1), note that X ¼ P
2 or X is a Hirzebruch surface Sd

of degree da 2 (see Lemma 2). So if D0 0, then X ¼ S2 and D ¼ ð1=2ÞM. Now (1)

follows from the fact that both Dþ D and �ðKX þDþ DÞ are nef and big. The last

part in (1b) follows from the fact that rðX@GÞ ¼ 1.

Let D ¼ 0. Suppose the contrary that K 2
Xa 7. Then X contains a ð�1Þ-curve E.

By Lemma 3, E is contained in D. Since D is nef and big we have D ¼ D1 þD2

with D1 ¼ E and D2
2b 0. Then both Di are G-stable. Hence D1 ¼ aD2 with a > 0.

Indeed, Di is the total transform of its image on X@G, and the images of the Di on

X@G di¤er by a constant multiple which is a rational number a > 0. Then we have

�1 ¼ D2
1 ¼ aD1:D2 ¼ a > 0;

which is a contradiction. Now (2) follows from (1). r

From now on, we assume that D0 0.

Lemma 5. If D ¼ D1 þD2, we may assume that D2
2a 0.

Proof. Suppose the contrary that D2
i b 1 for both i ¼ 1; 2. We have

h0ðX ;DiÞ ¼ D2
i þ 2;

which follows from an exact sequence

0 ! OX ! OX ðDiÞ ! O
P

1ðD2
i Þ ! 0:

Then one can find a member ~DD1 A jD1j such that #ð ~DD1 VD2ÞbD2
1 þ 1b 2. Then D2 is

a component of ~DD1 since D1:D2 ¼ 1. Similarly, there exists a member ~DD2 A jD2j such

that D1 is a component of ~DD2. This implies that D1 @D2 and D2
1 ¼ 1. Since D0 0,

there is an irreducible component DiðsÞ of D such that D:DiðsÞ ¼ 1. This is absurd for

D ¼ D1 þD2 @ 2D1. So it is wrong to assume that D2
i b 1 for both i ¼ 1; 2. Hence

we may assume that D2
2a 0. r

Lemma 6. Suppose that both D1 and D2 are G-stable and K 2
Xa 7. Then D

has two connected components Di, where D1 is irreducible and D2 has length 2.

f �1Dþ f �1ðSingX Þ ¼ Dþ Dred þ A is given in Figure 1 in Section 2.

Proof. We use the notation D ¼
P t

i¼1 Di and Di ¼
Psi

j¼1 Dið jÞ of Lemma 2. We

may assume that Di meets D1 (resp. D2) for 1a ia t1 (resp. for t1 þ 1a ia t ¼ t1 þ t2).

By Lemma 3, 1 > D1:D ¼
P t1

i¼1 si=ðsi þ 1Þb t1=2. Hence t1 ¼ 0; 1. Similarly, t2 ¼ 0; 1.

Thus t ¼ t1 þ t2 ¼ 1; 2. So we may assume that Di meets the connected component Di

of D of length si. We put si ¼ 0 if ti ¼ 0.

Since D1 ¼ aD2 on X with a > 0, we have

D1 þ D1 ¼ aðD2 þ D2Þ: ð1Þ

Taking the intersection of (1) with D1, we have

D2
1 þ

s1

s1 þ 1
¼ a: ð2Þ
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Taking the intersection of (1) with D2, we obtain

1 ¼ a D2
2 þ

s2

s2 þ 1

� �

: ð3Þ

Since D2
2 is an integer, the equation (3) implies that D2

2b 0. Then D2
2 ¼ 0 by Lemma 5

and hence a ¼ ðs2 þ 1Þ=s2. Plugging the value of a in the equation (2), we have

D2
1 ¼ a�

s1

s1 þ 1
¼

s2 þ 1

s2
�

s1

s1 þ 1
¼

1

s2
þ

1

s1 þ 1
:

Since D2
1 is an integer, we have the following possibilities:

ðs1; s2; a;D
2
1Þ ¼ ð0; 1; 2; 2Þ; ð1; 2; 3=2; 1Þ:

We shall show the assertion that the first case (resp. the second case) implies that

X ¼ S2 and K 2
X ¼ 8 (resp. implies the result of the lemma). Indeed, in the first (resp.

second) case, if G2 is a singular fibre of the P
1-fibration j induced by jD2j containing no

components of D (resp. containing D2ð1Þ but no D1), then it is of type In in Lemma 2

and the cross-section D1 must meet a ð�1Þ-curve E1 of G2, contradicting Lemma 3 (4).

In the second case, if G2 is the fibre of j containing both D2ð1Þ and D1 then it is of type

II0. So the assertion is true and the lemma proved. r

Now consider the case where D ¼ D1 þD2 and gðD1Þ ¼ D2 for some g in G.

Then D2
1 ¼ D2

2 . By the proof of Lemma 6, D has two connected components Di and

we may assume that Di meets Di so that gðD1Þ ¼ D2 and hence D1 and D2 are ð�2Þ-

linear chains of the same length sb 1. Since D is not contractible to a point, it follows

that D2
1 ¼ D2

2b�1. By Lemma 5, we have D2
1 ¼ �1 or 0. Write ðDiÞred ¼

Psi
j¼1 Dið jÞ

as in Lemma 2.

Lemma 7. Suppose that gðD1Þ ¼ D2 for some g in G. Then D2
1 ¼ �1. Fur-

thermore, there is a P
1-fibration F : X ! B ðBGP

1Þ such that D1 þD2 is a fibre.

According to the possible types of the singular fibres of F, we have five di¤erent cases;

see Figures 2–6 in Section 2, each of which also contains the graph f �1Dþ

f �1ðSingX Þ ¼ Dþ Dred þ A.

G ¼ hgiGZ=ð2Þ is realizable; indeed either X or its blow-down of the G-stable curve

E ( for Figures 2 and 3) is obtained from the Hirzebruch surface S2 (or one point Qi blow-

up of S2 for Figures 2, 5, 6) by taking a double cover ramifying along a smooth (or singu-

lar at Qi) irreducible member of j�KS2
j with G equal to the Galois group GalðX=S2Þ.

Proof. Suppose D2
1 0�1. Then D2

1 ¼ D2
2 ¼ 0 as shown above. Consider the

P
1-fibration FjD2j for which D1 and the component D2ðsÞ are cross-sections. Since

D1 0 0, the map FjD2j has a singular fibre G1 comprising ðD1Þred and ðD2Þred � D2ðsÞ.

Note that there are no other singular fibres because no ð�1Þ-curves lying outside of D

meet the cross-section D1 by Lemma 3. The singular fibre G1 consists of ð�2Þ-curves

and ð�1Þ-curves. Since D1 and D2 have the same length s, only possibility for G1 is that

s ¼ 1 and the dual graph of G ¼ E1 þ D1ð1Þ þ E2 is of type I1 in Lemma 2 such that E1

meets the cross-section D2ð1Þ. Then E1:D ¼ 1, which is a contradiction to Lemma 3.
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Now assume that D2
1 ¼ D2

2 ¼ �1. Then jD1 þD2j defines a P
1-fibration F : X !

B, where BGP
1. The DiðsÞ are the cross-sections of F. Suppose that D1 has length

sb 2. Let G1 be the singular fibre of F containing ðD1Þred � D1ðsÞ ¼ D1ðs� 1Þþ

D1ðs� 2Þ þ � � � þ D1ð1Þ. If G1 contains no components of D2, then G1 ¼ E1 þ D1ðs� 1Þ

þ � � � þ D1ð1Þ þ E2 is of type Is�1 in Lemma 2 so that Ei meets the cross-section D2ðsÞ

for i ¼ 1 or 2. Then we have by Lemma 2,

D:Eib
1

sþ 1
þ

s

sþ 1
¼ 1;

which is impossible by Lemma 3. So, the fibre G1 contains also ðD2Þred � D2ðsÞ. This

implies that s ¼ 2 and G1 ¼ D1ð1Þ þ 2E þ D2ð1Þ is of type II0 in Lemma 2, where E is a

ð�1Þ-curve. In particular, the length of the ð�2Þ linear chain Di is less than or equal to

2. The possible cases of all singular fibres of F are exhausted by the following four (see

Fact 12 in the proof of Lemma 11); this proves the lemma (the realization part is easy to

check).

1. s ¼ 2; K 2
X ¼ 3; G0 :¼ D1 þD2, G1 :¼ D1ð1Þ þ 2E þ D2ð1Þ and G2 :¼ E1 þ Aþ E2

are of types I0; II0; I1 in Lemma 2. See Figure 2.

2. s ¼ 2; K 2
X ¼ 3; G0 :¼ D1 þD2, G1 :¼ D1ð1Þ þ 2E þ D2ð1Þ and Giþ1 :¼ Ei þ Fi

ði ¼ 1; 2Þ are of types I0; II0; I0; I0. See Figure 3.

3. s ¼ 1; K 2
X ¼ 4; G0 :¼ D1 þD2 and Gi :¼ Ei þ Fi ði ¼ 1; 2; 3Þ are all of types I0.

See Figure 4.

4. s ¼ 1; K 2
X ¼ 4; G0 :¼ D1 þD2 and G1 ¼ E1 þ A1 þ A2 þ E2 are of types I0; I2.

See Figure 5.

5. s ¼ 1; K 2
X ¼ 4; G0 :¼ D1 þD2, G1 ¼ E1 þ F1 and G2 ¼ E2 þ Aþ F2 are of types

I0; I0; I1. See Figure 6. r

Now we switch to the case D is irreducible. Note that D0 0 is assumed.

Lemma 8. Suppose D is irreducible. Then the following assertions hold.

(1) h0ð�KX �DÞbKX :ðKX þDÞ > 0. Hence j�ðKX þDÞj0q.

(2) j�ðKX þDþ DredÞj0q.

(3) Let E ð0DÞ be a ð�1Þ-curve. Then E:Dred ¼ 1; 2. If E:Dred ¼ 2, then

D:Dred ¼ 2 (i.e., t ¼ 2 in notation of Lemma 2) and E þDþ Dred is a simple

loop and linearly equivalent to �KX .

(4) We have D2
b�1. The number t of connected components of D is at most 3.

If t ¼ 3, then, in notation of Lemma 2, ðs1 þ 1; s2 þ 1; s3 þ 1Þ ¼ ð2; 2; nÞ ðnb 2Þ

or ð2; 3; nÞ ðn ¼ 3; 4; 5Þ (those triplets are called the Platonic numbers).

Proof. By the Riemann-Roch theorem, we have

h0ð�KX �DÞ � h1ð�KX �DÞ þ h0ð2KX þDÞ ¼
ð�KX �DÞ:ð�2KX �DÞ

2
þ 1

¼ K 2
X þ

D2

2
þ
3KX :D

2
þ 1

¼ K 2
X þ KX :D > 0;

here we used that KX :DþD2 ¼ �2 and K 2
X þ KX :D > 0 in Lemma 3. Note that
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h0ð2KX þDÞa h0ð2ðKX þDþ DÞÞ ¼ 0 because �ðKX þDþ DÞ is nef and big. Now

the assertion (1) follows.

Let ðD1Þred ¼ As þ As�1 þ � � � þ A1 be a connected component of Dred such that

D:As ¼ 1. Since �ðKX þDÞ:As ¼ �D:As < 0, we have j�ðKX þDþ AsÞj0q.

Suppose j�ðKX þDþ As þ � � � þ AiÞj0q. Since �ðKX þDþ As þ � � � þ AiÞ:Ai�1 ¼

�Ai:Ai�1 < 0, it follows that j�ðKX þDþ As þ � � � þ Ai�1Þj0q. So j�ðKX þDþ

ðD1ÞredÞj0q. Likewise, j�ðKX þDþ DredÞj0q.

Let E be a ð�1Þ-curve not in D. Then E:Dred > 0 by Lemma 3. Let p : X ! Y

be the blow-down of E. If E:Dredb 2 then jKY þ p�ðDþ DredÞj0q by the Riemann-

Roch theorem or Lemma 2.1.3 in [11], page 7. Since j�ðKY þ p�ðDþ DredÞÞj0q

by the assertion (2), it follows that KY þ p�ðDþ DredÞ@ 0. So t ¼ 2 and E meets

the end component of each Di which is located on the opposite side of D. Namely,

Dþ Dred þ E is a simple loop.

Since D:D < 2 by Lemma 3, in notation of Lemma 2, we have

X

t

i¼1

1�
1

si þ 1

� �

< 2:

It then follows that ta 3. Moreover, if t ¼ 3 then fs1 þ 1; s2 þ 1; s3 þ 1g is one of the

Platonic triplets upto permutations. So always D2
b�1, for otherwise Dþ D is con-

tractible, contradicting the nef and bigness of Dþ D (see Satz 2.11 in [2]). r

Consider the case D has three connected components Di (see Lemma 2). Let Ci be

the component of Di meeting D, i.e., Ci ¼ DiðsiÞ in notation of Lemma 2.

Lemma 9. Suppose that D is irreducible and D has three connected components.

Then D2 ¼ �1. Also Dred consists of three disjoint irreducible curves Ci ¼ ðDiÞred
ði ¼ 1; 2; 3Þ and �KX ¼ 2Dþ C1 þ C2 þ C3. Furthermore, K 2

X ¼ 2 and there is a bira-

tional morphism q : X ! P
2 such that q�ðDþ C1 þ C2 þ C3Þ is a union of a line and a

conic touching each other in one point. j2Dþ C1 þ C2j defines a P
1-fibration F : X ! B,

and according to the di¤erent types of the singular fibres of F, there are seven possible

cases; see Figures 7–13, each of which also contains the graph f �1Dþ f �1ðSingXÞ ¼

Dþ Dred þ A.

Proof. By Lemma 8, D2
b�1. Consider the case D2 ¼ �1. Let p : X ! Y be

the blow-down of D and let Ci ¼ pðCiÞ. Then the Ci share one point in common.

So jKY þ C1 þ C2 þ C3j0q by the Riemann-Roch theorem or Lemma 2.1.3 in [11],

page 7. Since j�ðKY þ DredÞj0q by Lemma 8, we have �ðDred � C1 � C2 � C2Þb 0,

where D ¼ p�ðDÞ. Hence it follows that Dred ¼ C1 þ C2 þ C3 and KY þ C1 þ C2 þ

C3 ¼ 0. Thence follows the assertion on the expression of �KX . In order to obtain

the morphism q, we let q1 : X ! X1 be the blow-down of Dþ C3 and continue blowing

down further to reach a relatively minimal model Sd with d ¼ 0; 1; 2 (see Lemma 2).

Then one can bypass the blow-down steps to reach P
2. By making use of the property

that �KZ for a surface Z appearing in the blow-down step is the sum of the images of

C1 and C2, any ð�1Þ-curve on Z meets transversally exactly one of the images of C1 and

C2 in one point. If we set B1 :¼ qðC1Þ and B2 :¼ qðC2Þ, then B1 þ B2 is a cubic curve

and B1 VB2 consists of a single point. Hence we may assume that B1 is a line and B2 is
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a conic. Let G0 :¼ 2Dþ ðD1Þred þ ðD2Þred and let F be the P
1-fibration with G0 as a

fibre. Since �KX ¼ 2Dþ
P

iðDiÞred supports a fibre and a 2-section ðD3Þred, every ð�2Þ-

curve, i.e., every component of f �1ðSingXÞ other than ðD3Þred is contained in a fibre.

So f �1ðDÞ þ f �1ðSingXÞ ¼ Dþ Dred þ A is given in one of Figures 7–13 in Section 2.

See Lemma 2 for possible types of singular fibres; see also Fact 12 in the proof of

Lemma 11. To be precise, the following cases are not included but reduced to other

cases, and Figures 7–7 0 appear on the same X with two di¤erent fibrations.

Case 9.1. G0;G1 ¼ E1 þ A1 þ A2 þ A3 þ E2 which is of type I3 in Lemma 2, are

the only singular fibres of F. Also the 2-section ðD3Þred meets each Ei. By going to a

Hirzebruch surface Sd ðda 2Þ, we see that there is a ð�1Þ-curve E on X such that

E:A2 ¼ E:ðDiÞred ¼ 1 for i ¼ 1 or 2 say for i ¼ 1. Then G 0
0 :¼ 2Dþ ðD2Þred þ ðD3Þred is

the singular fibre of a new P
1-fibration F 0, and G 0

1 :¼ 2ðE þ A2Þ þ A1 þ A3 is also a

singular fibre of F 0. So F 0 fits Figure 8 after relabeling Di.

Case 9.2. G0, and Gi ¼ Ei þ Ai þ Fi ði ¼ 1; 2Þ each of which is of type I1 in

Lemma 2, are the only singular fibres of F. Also the 2-section ðD3Þred meets each of

Ei;Fj. We can find a ð�1Þ-curve E on X such that E:A1 ¼ E:A2 ¼ E:Di ¼ 1 for i ¼ 1

or 2 say for i ¼ 1. Then G 0
0 :¼ 2Dþ ðD2Þred þ ðD3Þred is the singular fibre of a new P

1-

fibration F 0, and G 0
1 :¼ 2E þ A1 þ A2 is also a singular fibre of F 0. So F 0 fits Figure 10

after relabeling Di.

Consider the case D2 ¼ 0. Then jDj defines a P
1-fibration F : X ! B for which

the curves C1;C2;C3 are cross-sections. Suppose fs1 þ 1; s2 þ 1; s3 þ 1g ¼ f2; 2; ng with

nb 3. Write D3 ¼ C3 þ Am þ � � � þ A1 with m ¼ n� 2b 1. Then there exists a sin-

gular fibre G1 of F such that G1 ¼ E1 þ Am þ � � � þ A1 þ E2 is an ordered linear chain

and of type Im in Lemma 2 so that Ei meets the cross-section C2 for i ¼ 1 or 2. Then

Ei þDþ Dred contains a loop and ðD1Þred, contradicting Lemma 8. In the case fs1 þ 1;

s2 þ 1; s3 þ 1g ¼ f2; 2; 2g, we note that F is not a relatively minimal P
1-fibration.

Hence F has a singular fibre G1 of type Ik and G1 contains a ð�1Þ-curve E1 meeting

two of C1;C2;C3, say meeting C1;C2. Then E þDþ Dred contains a loop and C3,

contradicting Lemma 8. The case fs1 þ 1; s2 þ 1; s3 þ 1g ¼ f2; 3; ng with n ¼ 3; 4; 5 also

leads to a contradiction.

Consider the case D2 ¼ 1. Let p : X ! P
2 be the birational morphism defined by

jDj. Since D2 ¼ 1 and hence D is linearly equivalent to the pull-back of a line, the

morphism p is a composite of the blow-downs of ð�1Þ-curves which are disjoint from

D and its images. This implies that Bi :¼ pðCiÞ ði ¼ 1; 2; 3Þ is a curve. Since

�K
P

2 ¼ �p�ðKX Þb p�ðDþ C1 þ C2 þ C3Þ;

it follows that degð�K
P

2Þb 4, which is a contradiction.

Consider the case D2
b 2. Then we have by Lemma 3

K 2
Xb 1�D:KX ¼ 3þD2

b 5:

Hence we have

5b 10� K 2
X ¼ rðXÞb rðXÞ þ #Db 1þ #D;

where #D signifies the number of the irreducible components of D. So, s1 þ s2 þ s3 ¼
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#Da 4. Thus the possible cases of fs1 þ 1; s2 þ 1; s3 þ 1g are f2; 2; 2g and f2; 2; 3g

up to permutations. If fs1 þ 1; s2 þ 1; s3 þ 1g ¼ f2; 2; 3g, then rðXÞ ¼ 1, SingX ¼

2A1 þ A2 and K 2
X ¼ 5. But this case cannot occur by the classifications of the distri-

butions of singular points (cf. Lemma 3 in part I of [14]). If fs1 þ 1; s2 þ 1; s3 þ 1g ¼

f2; 2; 2g, then either rðXÞ ¼ 4 or rðXÞ ¼ 5. In the first case, we have rðX Þ ¼ 1 and

SingX ¼ 3A1, which is also impossible [14]. In the second case, we have either

rðX Þ ¼ 1 and SingX ¼ 4A1, or rðXÞ ¼ 2 and SingX ¼ 3A1. The case rðXÞ ¼ 1 is

ruled out by [14] and the case rðX Þ ¼ 2 by [19]. r

Next we consider the case where D is connected. Write Dred ¼ DðsÞ þ � � � þ Dð1Þ as

an ordered linear chain so that D:DðsÞ ¼ 1.

Lemma 10. Suppose that D is irreducible, D is connected of length s and K 2
Xa 7.

Then the following assertions hold, where each of Figures 14–23 contains the graph

f �1Dþ f �1ðSingX Þ ¼ Dþ Dred þ A.

(1) For any ð�1Þ-curve E on X, it holds that E:Dred ¼ 1 and E VD ¼ q.

(2) D2 ¼ 0; 1; 2.

(3) If D2 ¼ 0, then s ¼ 2 (resp. 4) and K 2
X ¼ 6 (resp. K 2

X ¼ 5). There are three

possible cases (see Figures 14–16). In Figure 16, there is an element g in G

such that gðE1Þ ¼ E2.

(4) If D2 ¼ 2, then s ¼ 2, K 2
X ¼ 6 and there are two possible cases (see Figures 17

and 18). In Figure 17 (resp. 18), E (resp. E1;E2) are the only ð�1Þ-curve(s) on

X. In Figure 18, we have gðE1Þ ¼ E2 for some g in G.

(5) If D2 ¼ 1, then either s ¼ 4 and K 2
X ¼ 5 (see Figure 19), or s ¼ 1 and K 2

X ¼ 6

(see Figures 20–21). In Figures 19–20, the E is the only ð�1Þ-curve on X.

Proof. (1) It follows from Lemmas 3 and 8 (see also (2)).

(2) By Lemma 3, we have

7bK 2
X > 2� D:D� KX :D ¼ 4þD2 � D:D ¼ 3þD2 þ

1

sþ 1
:

Since Dþ D is nef and big, we have D2
b 0, for otherwise Dþ Dred is contractible to a

point, a contradiction. Hence 7bK 2
Xb 4þD2

b 4. So, D2 ¼ 0; 1; 2; 3.

Suppose D2 ¼ 3. Then K 2
X ¼ 7 and

3 ¼ rðX Þb rðXÞ þ sb 1þ sb 2;

whence s ¼ 1; 2. If s ¼ 2, then rðXÞ ¼ 1 and SingX ¼ A2, and this case does not occur

(cf. [14]). So, s ¼ 1. If rðX Þ ¼ 1, then SingX ¼ A1 þ A1, and this case does not occur

either (cf. ibid.). Thus rðX Þ ¼ 2, K 2
X ¼ 7 and SingX ¼ A1.

Take a ð�1Þ-curve E1 on X . Then E1:Dred ¼ 1 by the assertion (1). The blow-

down of E1 brings X to the Hirzebruch surface S1, as the image of Dred becomes a

ð�1Þ-curve. Let P be the image of E1 on S1. Then the proper transform E2 of a fibre

of the ruling on S1 passing through P is a ð�1Þ-curve meeting D. This contradicts the

assertion (1). Hence D2 ¼ 0; 1; 2.

(3) Let D2 ¼ 0. Let F : X ! B be the P
1-fibration with D as a fibre. Since D is

G-stable, G permutes fibres of F.
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Suppose D2 ¼ 0 and s ¼ 1. Then there is a singular fibre G ¼ E1 þ A1 þ � � � þ

An þ E2 of type In, where we may assume that the ð�1Þ-curve E1 meets the cross-section

Dred. Then E2 VD ¼ q, contradicting Lemma 3.

Suppose D2 ¼ 0 and sb 2. Let G1 be the singular fibre containing Dðs� 1Þ þ

� � � þ Dð1Þ. Then G1 is G-stable. If F contains a second singular fibre G2, then we can

reach the same contradiction as above. Hence G1 is the only singular fibre of F. If

sb 3 and G1 ¼ E1 þ Dð1Þ þ � � � þ Dðs� 1Þ þ E2 is an ordered linear chain and a singular

fiber of type Is�1, then the image on X of E1 is G-stable and contractible, contradicting

rðX@GÞ ¼ 1. By the arguments above, all possible types of G1 are given in Figures

14–16. In Figure 16, since G1 is G-stable, each element in G either stabilizes Ei or

interchanges E1;E2. If Ei is G-stable then the image on X of Ei is G-stable and con-

tractible, contradicting rðX@GÞ ¼ 1.

(4) Suppose D2 ¼ 2. Since 7bK 2
Xb 4þD2 ¼ 6, we have K 2

X ¼ 6 or 7. Accord-

ingly, rðXÞ ¼ 4 or 3. Since 2a 1þ sa rðXÞ þ sa rðX Þ, we have s ¼ 3; 2; 1.

Suppose s ¼ 3. Then rðXÞ ¼ 4, rðX Þ ¼ 1 and SingX ¼ A3. This case does not

occur by [14].

Suppose s ¼ 2. If rðX Þ ¼ 3 then rðX Þ ¼ 1 and SingX ¼ A2, and this case does not

occur either [14]. If rðXÞ ¼ 4, either rðXÞ ¼ 1, SingX ¼ A1 þ A2 and there is only one

ð�1Þ-curve on X , or rðX Þ ¼ 2, SingX ¼ A2 and there are only two ð�1Þ-curves on X ;

see Figures 5 and 6 in [19].

Take a ð�1Þ-curve E1 on X . Note that E1:Dred ¼ 1 by the assertion (1). Let

X ! P
2 be the blow-down of E1 þ Dð1Þ þ Dð2Þ and ~DD the image of D. If E1:Dð1Þ ¼ 1,

then ~DD2 ¼ 3, which is impossible on P
2. Hence E1:Dð2Þ ¼ 1 and ~DD2 ¼ 4. Let P be

the point on ~DD which is the fundamental point of the blow-down X ! P
2. Let l be a

line which is tangent to ~DD at P. Reverse the above blow-down. Let L be the proper

transform of l. There are two possibilities according as E1 VL0q or E1 VL ¼ q.

In the former case, L is a ð�2Þ-curve (see Figure 17 where A :¼ L and rðXÞ ¼ 1) and, in

the latter case, L is a ð�1Þ-curve (see Figure 18 where E2 :¼ L and rðXÞ ¼ 2). Note

that E (resp. E1 and E2) is/are the only ð�1Þ-curve(s) on X (see Figures 5 and 6 in [19]).

In Figure 18, we have gðE1Þ ¼ E2 for some g in G (see the argument for Figure 16).

Suppose s ¼ 1. Take a ð�1Þ-curve E1. Then E1:Dð1Þ ¼ 1. Let p : X ! Y be the

blow-down of E1 and Dð1Þ. Since K 2
Xb 6, we have K 2

Yb 8 and ~DD2 ¼ 3. Since there

are no curves ~DD on P
2 with ~DD2 ¼ 3, K 2

Y ¼ 8. Hence Y GSd with d ¼ 0; 1; 2 (see

Lemma 2). But any curve on Sd with d ¼ 0; 2 has self-intersection number divisible

by 2. So, Y GS1. Let M and l be respectively the minimal section and a fibre on

S1. Then ~DD@M þ 2l. Let P be the fundamental point of p. If P ¼ ~DDVM, then

Dð1Þ þ p 0ðMÞ is a ð�2Þ-chain, for otherwise there appears a ð�3Þ-curve on X ; since

s ¼ 1, this is a contradiction. If P0 ~DDVM, then p 0ðMÞ is a ð�1Þ-curve meeting D,

contradicting Lemma 3.

(5) Now assume that D2 ¼ 1. Note that 7bK 2
Xb 4þD2 ¼ 5. On the other

hand, since

2a sþ 1a sþ rðXÞa rðX Þ ¼ 10� K 2
Xa 6�D2 ¼ 5;

we have 1a sa 4. We consider all possible cases according to the value of s. We

note that E:Dred ¼ 1 for any ð�1Þ-curve E on X by the assertion (1).
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Case s ¼ 4. Then K 2
X ¼ 5, rðXÞ ¼ 1 and SingX ¼ A4. Take a ð�1Þ-curve E on

X . If E:DðiÞ ¼ 1 for i ¼ 1 or 4, then one can blow down E þ Dred and the resulting

surface Y has K 2
Y ¼ 10. This is a contradiction. Suppose E:Dð2Þ ¼ 1. Then D is a

component of a fibre of the P
1-fibration defined by j2ðE þ Dð2ÞÞ þ Dð1Þ þ Dð3Þj. Since

D2 ¼ 1, this is a contradiction. Consequently, E:Dð3Þ ¼ 1. We thus obtain Figure 19,

where E is the only ð�1Þ-curve on X (see Figure 5 in [19]).

Case s ¼ 3. We claim that this case does not take place. Note that rðX Þ ¼ 4 or

5. If rðXÞ ¼ 4 then rðX Þ ¼ 1 and SingX ¼ A3, which is not the case by [14]. So

rðX Þ ¼ 5. If rðXÞ ¼ 1 then SingX ¼ A1 þ A3, which is not the case either by [14]. So

rðX Þ ¼ 2, SingX ¼ A3 and K 2
X ¼ 5. Then there are only two ð�1Þ-curves E1;E2 on

X with Ei:Dred ¼ 1 ði ¼ 1; 2Þ and E1:Dð2Þ ¼ E2:ðDð1Þ þ Dð3ÞÞ ¼ 1 (see Figure 6 in [19]).

So both Ei are G-stable, and the image on X of E2 is G-stable and contractible, con-

tradicting rðX@GÞ ¼ 1.

Case s ¼ 2. We shall show that this case does not take place. Let E be a ð�1Þ-

curve. Then E:Dred ¼ 1. Let p : X ! Y be the blow-down of E þ Dð1Þ þ Dð2Þ. Since

K 2
Xb 5, we have K 2

Yb 8. If E:Dð2Þ ¼ 1, then p�ðDÞ2 ¼ 3. As in the proof of the

assertion (4) for the case D2 ¼ 2 and s ¼ 1, Y must be the Hirzebruch surface S1. Let

M be the minimal section of S1. Since s ¼ 2, the fundamental point of p is di¤erent

from the point M V p�ðDÞ. Then E1 :¼ p 0ðMÞ is a ð�1Þ-curve such that E1:D ¼ 1, con-

tradicting Lemma 3. Hence E:Dð1Þ ¼ 1. Then p�ðDÞ2 ¼ 2 and K 2
Yb 8. Hence Y is

the Hirzebruch surface Sd . Since p�ðDÞ2 ¼ 2, one can readily show that d ¼ 0; 2 (see

Lemma 2).

Suppose first that Y GS2. Let M be the minimal section. Then M V p�ðDÞ ¼ q.

Reversing the above blow-down and noting that the length of Dred is 2, we can show

that E1 :¼ p 0ðlÞ is a ð�1Þ-curve meeting Dð2Þ, where l is the fibre passing through the

fundamental point of p. So, we are lead to a contradiction by the above case.

Suppose Y GS0. Let l be one of the fibres (of the two di¤erent P
1-fibrations)

passing through the fundamental point of p. Then it follows that E1 :¼ p 0ðlÞ is a ð�1Þ-

curve meeting Dð2Þ. Again, we are lead to a contradiction. Consequently, the case

s ¼ 2 does not occur.

Case s ¼ 1. Let E be a ð�1Þ-curve. Then E:Dð1Þ ¼ 1. Let p : X ! Y be the

blow-down of E þ Dð1Þ. Since K 2
Xb 5, we have K 2

Yb 7.

Suppose K 2
X ¼ 5. Then Y has a P

1-fibration p, which is not relatively minimal

but contains a singular fibre consisting of two ð�1Þ-curves E1 þ E2. Since p�ðDÞ2 ¼ 2,

p�ðDÞ is not contained in a fibre of p. This implies that p�ðDÞVEi 0q for i ¼ 1 or

i ¼ 2, say for i ¼ 1. Then the fundamental point P of the morphism p is not contained

in p�ðDÞVE1, for otherwise sb 2 or p 0ðE1Þ
2
a�3, a contradiction. Hence p 0ðE1Þ

remains as a ð�1Þ-curve on X which meets D. This contradicts Lemma 3. We have

therefore K 2
X ¼ 6 and Y GSd with d ¼ 0; 2 because p�ðDÞ2 ¼ 2 (see Lemma 2).

Suppose Y GS2. Let M be the minimal section and let l be the fibre passing

through the fundamental point P of p. Consider the inverse of the morphism p. After

blowing up the point P, there are two possibilities of taking the centre Q of the next

blow-up. Namely, Q lies (resp. does not lie) on the proper transform of l. The first

M. Miyanishi and D.-Q. Zhang226



case gives rise to Figure 20, where rðX Þ ¼ 1, SingX ¼ A1 þ A2 and E is the only ð�1Þ-

curve on X (see [19], Figure 5). In the second case, E þ Dð1Þ þ l
0 þM 0 has the dual

graph

ð�1Þ � ð�2Þ � ð�1Þ � ð�2Þ

where l
0
;M 0 are the proper transforms of l;M. If rðX Þ ¼ 1, then SingX ¼ A1 þ A2

by [14], but X has two ð�1Þ-curves, contradicting Figure 5 in [19]. If rðXÞ ¼ 2, then

SingX ¼ 2A1, and E; l 0 are the only ð�1Þ-curves on X by Figure 6 in [19]. So both

ð�1Þ-curves are G-stable, hence the image on X of E is G-stable and contractible, con-

tradicting rðX@GÞ ¼ 1.

Suppose Y GS0. We also consider the inverse of the morphism p. Let li be the

fibres of the two di¤erent P
1-fibrations which pass through the fundamental point P.

After blowing up the point P, there are two choices of taking the center Q of the next

blow-up. Namely, if Q is on the proper transform of li with i ¼ 1 say, then l
0
2 þ Dð1Þ

þE þ l
0
1 has the dual graph in the above paragraph and we will reach the same con-

tradiction; if Q does not lie on the proper transforms of li, then we obtain Figure 21

(E :¼ E1). We have rðXÞ ¼ 3 and SingX ¼ A1 (see Figure 5 and 6 in [19]). We have

thus verified all the assertions of Lemma 10. r

We finally consider the case where D has two connected components D1 and D2.

As in Lemma 2, write

ðD1Þred ¼ D1ðsÞ þ � � � þ D1ð1Þ

ðD2Þred ¼ D2ðtÞ þ � � � þ D2ð1Þ;

where D:D1ðsÞ ¼ D:D2ðtÞ ¼ 1.

Lemma 11. Suppose that D is irreducible, that Dred has two connected components

ðDiÞred ði ¼ 1; 2Þ of lengths s; t and that K 2
Xa 7. Then the following assertions hold,

where each of Figures 22–43 contains the graph of f �1Dþ f �1ðSingX Þ ¼ Dþ Dred þ A.

(0) If s0 t then both Di are G-stable.

(1) K 2
Xb 3þD2, and K 2

Xb 4þD2 provided s ¼ t ¼ 1.

(2) 2a sþ ta 6�D2, and sþ ta 5�D2 provided s ¼ t ¼ 1.

(3) �1aD2
a 4, and 0aD2

a 3 provided s ¼ t ¼ 1.

(4) For any ð�1Þ-curve E (0D) on X, we have either E:Dred ¼ 1, or E:Dred ¼ 2,

E:Dið1Þ ¼ 1 ði ¼ 1; 2Þ and �KX ¼ E þDþ Dred. One can say simply that Dþ

Dred þ E is a simple loop in the latter case.

(5) In case D2 ¼ �1, there are ten possibilities for Dþ D (see Figures 22–31). In

Figure 25 (resp. 27), there is an element g in G such that gðE1Þ ¼ E2 (resp.

gðD1Þ ¼ D2). In Figures 28 and 31, no Ei or Fj is G-stable.

(6) In case D2 ¼ 0, there are nine possibilities (see Figures 32–40). In Figures 34,

36 and 40, no Ei or Fj is G-stable. In Figures 33, 35 and 39, there is an

element g in G such that gðD1Þ ¼ D2.

(7) The case D2 ¼ 4 is impossible. In case D2 ¼ 3, there is one possibility; see

Figure 41 where E is the only ð�1Þ-curve on X.

(8) The case D2 ¼ 2 is impossible.

Equivariant classification of Gorenstein open log del 227



(9) In case D2 ¼ 1, there are two possibilities (see Figures 42 and 43). In Figure

42, the E1 and E2 are the only ð�1Þ-curves on X. In Figure 43, E;E1;E2 are

the only ð�1Þ-curves on X and there is an element g in G such that gðE1Þ ¼ E2.

Proof. The last part of assertion (5) or (6) follows from the arguments for Figure

16 in Lemma 10 and Figure 31 below. Indeed, in Figures 27, 33 and 39, the argument

of Figure 16 shows that gðE2Þ ¼ F2 for some g in G; in Figure 35, the argument of

Figure 31 shows that gðE1Þ ¼ F1 for some g in G.

(0) is clear for Dþ D is G-stable.

(1) Since

K 2
X > 2� D:D�D:KX ¼ 4þD2 � D:D ¼ 2þD2 þ

1

sþ 1
þ

1

tþ 1

by Lemma 3, it follows that K 2
Xb 3þD2, and that K 2

Xb 4þD2 if s ¼ t ¼ 1.

(2) Since

1þ sþ ta sþ tþ rðXÞa rðXÞ ¼ 10� K 2
X < 8�D2 �

1

sþ 1
þ

1

tþ 1

� �

;

we conclude that 2a sþ ta 6�D2, and that sþ ta 5�D2 if s ¼ t ¼ 1.

(3) By Lemma 8, D2
b�1. Since K 2

Xa 7, we have D2
a 4. If s ¼ t ¼ 1 and

D2 ¼ �1, then Dþ Dred is negative semi-definite. Hence D2
b 0 if s ¼ t ¼ 1. Fur-

thermore, D2
a 3 if s ¼ t ¼ 1 (cf. the assertion (1)).

(4) It follows from Lemmas 3 and 8.

(5) Let D2 ¼ �1. Then sþ tb 3 by the assertion (3). We may assume that

sa t. Set G0 :¼ D1ðsÞ þ 2Dþ D2ðtÞ. Then F :¼ FjG0j : X ! B ðBGP
1Þ is a P

1-

fibration with a singular fibre G0 and cross-sections D1ðs� 1Þ (if sb 2) and D2ðt� 1Þ

(if tb 2). Since G0 is G-stable, G permutes fibres of F. We will often use the

following:

Fact 12. Suppose sb 2. There is then a composite of blow downs X ! S2 of all

ð�1Þ-curves in fibres not meeting the cross-section D1ðs� 1Þ so that D1ðs� 1Þ becomes

the minimal section M and D2ðt� 1Þ becomes a section disjoint from M and with self-

intersection 2.

Suppose s ¼ 1 and t ¼ 2. If G1 ð0G0Þ is a singular fibre, then it is of type In with

two ð�1Þ-curves E1;E2 as in Lemma 2, and we may assume that the cross-section D2ð1Þ

meets E2; then E1 VD ¼ q, contradicting Lemma 3. So F has only one singular fibre

G0. Hence K 2
X ¼ 6. See Figure 22.

Suppose s ¼ 1 and tb 3. Let G1 be the singular fibre of F containing D2ðt� 2Þ þ

� � � þ D2ð1Þ. By the argument above, G1 is the only singular fibre besides G0. If G1 is

of type In ðn ¼ t� 2Þ then no ð�1Þ-curve in G1 is G-stable and hence t ¼ 3; see the

argument for Figure 16. Now according to the di¤erent types of G1 in Lemma 2, we

have three cases: Figure 23 with t ¼ 3 and K 2
X ¼ 4, Figure 24 with t ¼ 5 and K 2

X ¼ 3

and Figure 25 with t ¼ 3 and K 2
X ¼ 4.

Suppose s ¼ t ¼ 2. According to the number of singular fibres and using Fact 12

and assertion (4), we have three cases: Figures 26, 27, 28 all with K 2
X ¼ 3.
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Suppose s ¼ 2 and tb 3. Let G1 be the fibre of F containing D2ð1Þ þ � � � þ

D2ðt� 2Þ. Then G1 ¼ E1 þ D2ð1Þ þ � � � þ D2ðt� 2Þ þ E2 is an ordered linear chain and

a singular fiber of type It�2 in Lemma 2, and we may assume that E1 intersects the

cross-section D1ð1Þ. Note that G1;Ei are all G-stable (see the assertion (0)); so if t ¼ 3

then the image on X of E2 is G-stable and contractible, contradicting rðX@GÞ ¼ 1.

Thus tb 4 and t ¼ 4; 5. If F has exactly one type I0 singular fibre G2 ¼ F1 þ F2, then

G2 is G-stable; we may assume F1 (resp. F2) intersects the cross-section D1ð1Þ (resp.

D2ðt� 1Þ) and hence both Fi are G-stable, but then the image on X of F1 is G-stable and

contractible, contradicting rðX@GÞ ¼ 1. By the above arguments and by Fact 12 and

assertion (4), we see that t ¼ 5, K 2
X ¼ 2 and G0;G1 are the only singular fibres of F.

See Figure 29.

Suppose s ¼ t ¼ 3. We also consider the possible singular fibres of F. Then by

Fact 12 and assertion (4), two cases given in Figures 30 and 31 survive. In Figure 31, if

one of Ei;Fj say E1 is G-stable, then 2ðE1 þ D1ð2ÞÞ þ D1ð3Þ þ D1ð1Þ is a G-stable fibre of

another P
1-fibration C where all exceptional divisors of f : X ! X are contained in

fibres; this C induces a P
1-fibration on X@G, whence rðX@GÞb 2, a contradiction.

The remaining case is s ¼ 3 and t ¼ 4. In this case we can show by the argument

for the case s ¼ t ¼ 3 that there is no possibility.

(6) Let D2 ¼ 0. Then K 2
Xb 3þD2 ¼ 3 and sþ ta 6�D2 ¼ 6. We again

assume sa t. Let F : X ! B ðBGP
1Þ be the P

1-fibration defined by jDj, for which

D1ðsÞ and D2ðtÞ are cross-sections. Since D is G-stable, G permutes fibres of F.

Suppose s ¼ t ¼ 1. Again, we consider all possibilities of the singular fibres of F

listed up in Lemma 2. By Fact 12 and the assertion (4), there are five possibilities:

Figures 32–36.

Suppose s ¼ 1 and tb 2. Let G1 be the singular fibre of F containing

ðD2Þred � D2ðtÞ. Then G1 ¼ E1 þ D2ð1Þ þ � � � þ D2ðt� 1Þ þ E2 is an ordered linear chain

as in Lemma 2 and we may assume that E1 meets the cross-section ðD1Þred. Note that

G1;Ei are all G-stable. If t ¼ 2, then the image on X of E2 is G-stable and contractible,

contradicting rðX@GÞ ¼ 1; so tb 3. If t ¼ 3, then we reach a contradiction as in

Figure 31 by considering another P
1-fibration F1 defined by j2ðE2 þ D2ð2ÞÞ þ D2ð3Þþ

D2ð1Þj. Thus tb 4 and hence t ¼ 4; 5. By the argument for the case D2 ¼ �1, s ¼ 2,

tb 4, it is impossible that F contains a unique type I0 singular fibre. By the arguments

above and by Fact 12 and assertion (4), we see that t ¼ 5, K 2
X ¼ 3 and G1 is the only

singular fibre of F. See Figure 37.

Suppose sb 2 and tb 2. Then ðs; tÞ ¼ ð2; 2Þ; ð2; 3Þ; ð2; 4Þ or ð3; 3Þ. If sþ t ¼ 6,

then

7a sþ tþ rðXÞa rðXÞ ¼ 10� K 2
Xa 7:

So rðX Þ ¼ 1 and SingX ¼ As þ At with ðs; tÞ ¼ ð2; 4Þ; ð3; 3Þ. But these cases are im-

possible by [14]. Suppose ðs; tÞ ¼ ð2; 3Þ. Then we have

6a sþ tþ rðX Þa rðXÞa 7:

Hence either rðX Þ ¼ 6 or rðXÞ ¼ 7. If rðXÞ ¼ 6, then rðXÞ ¼ 1 and SingX ¼ A2 þ A3

which is impossible by [14]. Suppose rðX Þ ¼ 7. If rðXÞ ¼ 1 then SingX ¼ A1 þ A2 þ
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A3, which is impossible by [14]. If rðXÞ ¼ 2 then SingX ¼ A2 þ A3, which is impos-

sible by [19]. So the remaining case is ðs; tÞ ¼ ð2; 2Þ.

Let Gi be the singular fibre of F containing Dið1Þ. If G1 is of type I1 in Lemma 2,

then so is G2, and we can write Gi ¼ Ei þ Dið1Þ þ Fi such that F1 (resp. E2) meets the

cross-section D2ð2Þ (resp. D1ð2Þ); since Dþ D is G-stable, the image on X of E1 þ F2 is

G-stable and also contractible, contradicting rðX@GÞ ¼ 1. The above argument, Fact

12 and the assertion (4) imply that there are only three possibilities. See Figures 38–40,

where K 2
X ¼ 3 in all three cases.

(7) Consider the case D2 ¼ 4. Then K 2
X ¼ 7 and sþ ta 6�D2 ¼ 2. Hence

ðs; tÞ ¼ ð1; 1Þ, while then sþ ta 5�D2 ¼ 1, which is absurd. So the case D2 ¼ 4 does

not occur.

Consider the case D2 ¼ 3. Then K 2
Xb 3þD2 ¼ 6, whence K 2

X ¼ 6 or 7. Mean-

while, sþ ta 6�D2 ¼ 3. So, ðs; tÞ ¼ ð1; 1Þ; ð1; 2Þ.

Suppose ðs; tÞ ¼ ð1; 1Þ. Then K 2
Xb 4þD2 ¼ 7. Hence K 2

X ¼ 7 by the assump-

tion. Since we have

3 ¼ rðX Þb rðXÞ þ sþ tb 1þ 2;

we have rðXÞ ¼ 1 and SingX ¼ 2A1, which is impossible by [14].

Suppose ðs; tÞ ¼ ð1; 2Þ. Then we have

4b 10� K 2
X ¼ rðX Þb rðX Þ þ sþ tb 1þ 3;

whence follows that K 2
X ¼ 6, rðXÞ ¼ 1 and SingX ¼ A1 þ A2. Note that there is only

one ð�1Þ-curve E on X and E:ðD1Þred ¼ E:D2ð1Þ ¼ 1 by the assertion (4) and by Figure

5 in [19]. See Figure 41.

(8) We shall show that D2 ¼ 2 is impossible. In fact, since 2a sþ ta 6�D2

¼ 4, we have ðs; tÞ ¼ ð1; 1Þ; ð1; 2Þ; ð1; 3Þ or ð2; 2Þ, where we assume sa t. Note that

K 2
Xb 3þD2 ¼ 5. If sþ t ¼ 4, we have rðX Þ ¼ 1 and SingX ¼ As þ At with ðs; tÞ ¼

ð1; 3Þ; ð2; 2Þ. But we cannot find these cases in the table in [14].

Suppose ðs; tÞ ¼ ð1; 1Þ. Then K 2
Xb 4þD2 ¼ 6, whence K 2

X ¼ 6; 7. We utilize the

inequality

3 ¼ 1þ sþ ta rðX Þ þ sþ ta rðXÞ ¼ 10� K 2
X :

If K 2
X ¼ 7, we have rðX Þ ¼ 1 and SingX ¼ 2A1, which is impossible by [14]. If

K 2
X ¼ 6, then either rðXÞ ¼ 1 and SingX ¼ 3A1, or rðX Þ ¼ 2 and SingX ¼ 2A1.

The former case is impossible by [14]. In the latter case, take a ð�1Þ-curve E. If

E:Dred ¼ 1, say E:ðD1Þred ¼ 1, the blowing-down of E þ ðD1Þred brings X to S2, while the

image ~DD of D satisfies ~DD2 ¼ 3, which is impossible on S2. If E:Dred ¼ 2, then E:D ¼ 1,

contradicting Lemma 3.

Suppose ðs; tÞ ¼ ð1; 2Þ. By an argument similar to the above using the inequalities

4 ¼ 1þ sþ ta rðX Þ þ sþ ta rðX Þ ¼ 10� K 2
Xa 5;

we see that SingX ¼ A1 þ A2 and either K 2
X ¼ 6 and rðX Þ ¼ 1, or K 2

X ¼ 5 and rðX Þ ¼ 2.

In the first case, there is only one ð�1Þ-curve on X and E:Dið1Þ ¼ 1 ði ¼ 1; 2Þ by the

assertion (4) and Figure 5 in [19]. Let p : X ! Y be the blow-down of E;D2ð1Þ;D2ð2Þ.
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Since K 2
Y ¼ K 2

X þ 3 ¼ 9, we have Y GP
2. However, p�ðDÞ2 ¼ 3, which is impossible

on P
2. In the second case, there are only three ð�1Þ-curves on X one of which is

disjoint from D (see Figure 6 in [19]); this contradicts Lemma 3.

(9) Now we treat the case D2 ¼ 1. Note that K 2
Xb 3þD2 ¼ 4 and sþ ta 6�

D2 ¼ 5. We shall prove the following claim.

Claim 13. There exists a ð�1Þ-curve, say E, on X such that E:Dred ¼ 2.

Proof. Consider the morphism q : X ! P
2 defined by jDj. Then D is the pull-

back of a line by q. Since D is not touched, D1ðsÞ and D2ðtÞ are mapped to lines l1 and

l2, respectively. Let P :¼ l1 V l2. Then P is one of the fundamental point of the mor-

phism. We consider to reverse the morphism. Let E1 be the ð�1Þ-curve appearing by

the blowing-up of P. If E1 stays as a ð�1Þ-curve on X , then it is a ð�1Þ-curve we

require for. Otherwise, one of the intersection points P1;P2 of E1 with the proper

transforms of l1 and l2 is blown up, but both points are not; if both points are blown

up, there will appear a ð�nÞ-curve with nb 3, a contradiction. Then the proper trans-

form of E1 on X is contained in Dred. Now blow up one of the points P1;P2 and apply

the same argument as above to the ð�1Þ-curve E2 appearing from the blow-up. We

have just only to continue this argument. r

In case sþ t ¼ 5, we have 6a sþ tþ rðX ÞarðX Þ ¼ 10�K 2
Xa 6. Hence rðXÞ ¼ 1

and SingX ¼ As þ At with ðs; tÞ ¼ ð1; 4Þ; ð2; 3Þ. But these cases are impossible by [14].

Suppose sþ t ¼ 4. Then we have

5a sþ tþ rðXÞa rðXÞ ¼ 10� K 2
Xa 6:

If K 2
X ¼ 5, then rðX Þ ¼ 1 and SingX ¼ As þ At with ðs; tÞ ¼ ð1; 3Þ; ð2; 2Þ. These cases

do not exist by [14]. If K 2
X ¼ 4, by [14], [19], we have ðs; tÞ ¼ ð1; 3Þ, and either

rðX Þ ¼ 1 and SingX ¼ 2A1 þ A3 or rðXÞ ¼ 2 and SingX ¼ A1 þ A3. See Figures 42

and 43, where E1 or E is as in Claim 13. The part about the uniqueness of the ð�1Þ-

curves in the assertion (9) follows from Figures 5 and 6 in [19]. Since G acts on the

set of ð�1Þ-curves on X , in Figure 43, E is G-stable and each element of G either

stabilizes or switches E1 and E2; so the existence of g in G with gðE1Þ ¼ E2 follows from

rðX@GÞ ¼ 1 (see the argument for Figure 16).

Suppose ðs; tÞ ¼ ð1; 1Þ. Then a ð�1Þ-curve E as in Claim 13 has E:D ¼ 1, con-

tradicting Lemma 3.

Suppose ðs; tÞ ¼ ð1; 2Þ. Consider the P
1-fibration F : X ! B defined by jG0j where

G0 :¼ D1ð1Þ þ 2E þ D2ð1Þ. Then we can make the Hirzebruch surface S2 out of X with

the image of D2ð2Þ as the minimal section. The blow-down of E;D1ð1Þ increases D2

by 1. Since D:D2ð2Þ ¼ 1, the blow-down of E;D1ð1Þ is not enough to bring X to S2.

Hence there exists a singular fibre G1 of type In which then contains a ð�1Þ-curve E1

meeting the cross-section D. This is a contradiction by Lemma 3. This ends the proof

of Lemma 11.

2. Determination of the group G action on X .

In this section, we shall consider all 43 triplets ðX ;D;GÞ in Theorem A in the

introduction, determine the action of the finite group G on X and give examples.
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Figure 1. Let c : X ! P
2 be the blow-down of E þ D2ð1Þ þ D2ð2Þ to a point P.

Clearly, there is an induced faithful action of G on P
2 such that c is G-equivariant.

So G is a subgroup of PGL2ðCÞ stabilizing each component of the triangle cðD1 þ

D1 þD2Þ. We may assume that the three vertices of the triangle are at ½1; 0; 0�; ½0; 1; 0�;

½0; 0; 1�. Then G is a subgroup of fdiag½1; b; c� j bc0 0gJPGL2ðCÞ. Conversely, any

finite subgroup of fdiag½1; b; c� j bc0 0g can act faithfully on this X fitting Figure 1, such

that rðX@GÞ ¼ 1 (noting that rðX Þ ¼ 1 already).

Figures 2–6. Let H be the (normal) subgroup of G stabilizing D1 (and hence also D2),

and let g be an element in G switching D1 and D2 (see Lemma 7). Then G ¼ hg;Hi.

Note that H is abelian. This is because at the point D1 VD2, all elements of H can

be diagonalized simultaneously with the same eigenvectors along the directions of D1

and D2.

In Figure 2, one can show that H is cyclic. Indeed, H fixes the three intersection

points of the cross-section D1ð2Þ with the three singular fibres of di¤erent types, and

hence HjD1ð2Þ
¼ fidg. So every h in H is diagonalized as ð1; chÞ at D1 VD1ð2Þ with the

common eigenvectors along the directions of D1ð2Þ and D1. Thus H can be embedded

in C
� via h 7! ch and is cyclic.

Since rðX@hgiÞ ¼ 1 can be easily checked, we have always rðX@GÞ ¼ 1 so long G

exists. Note that G ¼ hgiGZ=ð2Þ is realizable in all these 5 cases (Lemma 7).

Figure 7. Since rðX Þ ¼ 1 and SingX ¼ 3A1 þD4, there are exactly three ð�1Þ-curves
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E;E2;E3 on X fitting Figure 7 0, where there is a P
1-fibration C on X such that G 0

0 :¼
2E þ A1 þ ðD3Þred, G 0

1 :¼ 2E2 þ A3 þ ðD2Þred, G 0
2 :¼ 2E3 þ A4 þ ðD1Þred are all the sin-

gular fibres and A2 and D are cross-sections of C . Clearly, G permutes fibres of C .

Let c : X ! P
2 be the blow-down of E þ A1;E2 þ A3;E3 þ A4;D to 4 points P1; . . . ;P4,

respectively. Then c is G-equivariant; G fixes P4 and permutes P1;P2;P3. We may

assume that cðA2Þ ¼ fZ ¼ 0g which is G-stable, and P4 ¼ ½0; 0; 1� which is G-fixed. Let

H be the (normal) subgroup of G fixing all three points P1;P2;P3 (and hence fixes the

line fZ ¼ 0g), then H ¼ hh1i for some h1 ¼ diag½1; 1; c1� of order n1.

Let i : G ! AutfP1;P2;P3g ¼ S3 be the natural homomorphism. Then ImðiÞ ¼ S3,

Z=ð3Þ;Z=ð2Þ or ð1Þ. If an element h3 in G acts transitively on the set fP1;P2;P3g,
then h33 acts trivially on the line fZ ¼ 0g and hence h3 ¼ diag½1;o; c3�, where o ¼
expð2p

ffiffiffiffiffiffiffi

�1
p

=3Þ, after the normalization that h3 fixes two points ½1; 0; 0�; ½0; 1; 0� on the

line fZ ¼ 0g. If there is further an element h2 in G acting as an involution on the set

fP1;P2;P3g, one may assume that h2ðP1Þ ¼ P1 and P1 ¼ ½1; 1; 0�. One can show that

h2 ¼
0 1 0

1 0 0

0 0 c2

0

@

1

A, by using the following conditions: h2ðPiÞ ¼ Pi ði ¼ 1; 4Þ, h2ðP2Þ ¼ P3,

h2ðP3Þ ¼ P2, P2 ¼ h
j
3ðP1Þ ¼ ½1;o j; 0�, P3 ¼ h

2j
3 ðP1Þ ð j ¼ 1 or 2).

Suppose that ImðiÞ ¼ Z=ð2Þ and let h 0
2 be in G acting as an involution on the set

fP1;P2;P3g. Then h 0
2 ¼ diag½1;�1; c2� after the normalization that h 0

2 fixes two points

½1; 0; 0�; ½0; 1; 0� on the line fZ ¼ 0g.
Replacing h3 (resp. h2 or h 0

2) by its power we may assume that ordðh3Þ ¼ 3n3

(resp. ordðh2Þ or ordðh 0
2Þ is 2n2 ). Thus either G ¼ hh1; h2; h3 j h1hi ¼ hih1ði ¼ 2; 3Þ; h22 ; h33 ;

h�1
2 h3h2h3 A hh1ii, or G ¼ hh1; h3 j h1h3 ¼ h3h1; h

3
3 A hh1ii, or G ¼ hh1; h

0
2 j h1h 0

2 ¼ h 0
2h1;

ðh 0
2Þ

2
A hh1ii, or G ¼ hh1i. We have an exact sequence:

ð1Þ ! hh1i ! G ! G=hh1i ! ð1Þ

where G=hh1i ¼ S3, Z=ð3Þ;Z=ð2Þ or ð1Þ. We may take G ¼ ð1Þ since then rðX@GÞ ¼
rðX Þ ¼ 1.

In Figures 8–13 below, let Qi :¼ DV ðDiÞred. Let q1 : X1 ! X be the blow-up of a

point R2 ð0QiÞ on D with J0 the exceptional curve (we may choose R2 to be a G-fixed

point if it exists, but always R2 0Qi). Then �KX1
¼ J0 þ q 0

1ð2Dþ ðD1Þred þ ðD2Þred þ
ðD3ÞredÞ, which is nef and big. By the Riemann-Roch theorem and the Kawamata-

Viehweg vanishing theorem, dimj�KX1
j ¼ 1. Let q0 : X0 ! X1 be the blow-up of the

unique base point of j�KX1
j (which must lie on J0) (cf. Proposition 2 at page 40 of [3],

or Lemma 1.7 in [4]) with O the exceptional divisor. Then there is an elliptic fibration

g : X0 ! P
1 with O the zero section and T0 :¼ 2Dþ J0 þ ðD1Þred þ ðD2Þred þ ðD3Þred as a

singular fibre (we use, by the abuse of notations, the same symbol like Di to denote its

proper transform on X0) which is of type I �0 . Let Aut0ðX0Þ ¼ fg A AutðX0Þ j gðOÞ ¼
Og. Then there is an induced Aut0ðX0Þ action on X so that q ¼ q1 � q0 : X0 ! X

is Aut0ðX0Þ-equivariant. Clearly, Aut0ðX0Þ ¼ fg A AutðXÞ j gðR2Þ ¼ R2g. Let T be a

general fibre of the elliptic fibration on X0. Then Aut0ðX0Þ contains Aut0ðTÞ ¼ fg A

AutðTÞ j g fixes the point OVTgGZ=ðmÞ with m ¼ 2; 4 or 6 (see Corollary 4.7 in [5] at

page 321). Hence Aut0ðTÞ (and Aut0ðX0Þ) contains an involution s : t 7!�t.
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Let i : G ! AutfQ1;Q2;Q3g ¼ S3 be the natural homomorphism. Let H :¼ KerðiÞ,

which then acts trivially on D; in particular, HJAut0ðX0Þ. At the point Q1, every

element h in H has the directions of D and D1 as eigenvectors with respect to the eigen-

values 1; lh. So H can be embedded into k � and hence H is cyclic. Note that we have

an exact sequence

ð1Þ ! H ! G ! G=H ! ð1Þ

where G=H ¼ ð1Þ, Z=ð2Þ;Z=ð3Þ or S3. Let G0 be any finite group of Aut0ðX0Þ

containing the involution s of a general fibre; note that s is in the centre of Aut0ðX0Þ.

We shall show that in each of Figures 8–13, we can take G ¼ G0 so that rðX@GÞ ¼ 1.

Figure 8. In this case the elliptic fibration g has T0;T1 ¼ Bþ A1 þ A2 þ A3 which is of

type I4, and a few irreducible fibres as singular fibers. As in Figure 10 below, considering

the height pairing, we can show that sðEÞ ¼ E, sðE1Þ ¼ E2 and rðX@G0Þ ¼ 1.

Figure 9. In this case, g has T0;Ti ¼ Ai þ Bi ði ¼ 1; 2; 3Þ each of which is of type I2 or

III , and a few irreducible fibres as singular fibers. As in Figure 10 below, considering

the height pairing, we can show that sðEÞ ¼ E, sðE1Þ ¼ E2 and rðX@G0Þ ¼ 1.

Figure 10. In this case, g has T0;Ti ¼ Ai þ Bi ði ¼ 1; 2Þ, each of which is of type I2 or

III , and a few irreducible fibres as singular fibers. On the surface X0, by the height

pairing in [18], hE;Ei ¼ 2wðOX0
Þ þ 2E:O� ð1þ 1=2þ 1=2Þ ¼ 0, whence E is a torsion

in MWðgÞ; one can see easily that E is a 2-torsion and hence sðEÞ ¼ E; also hEi;Eii ¼

1 ¼ hFi;Fii, hEi;Fii ¼ wðOX0
Þ þ Ei:Oþ Fi:O� Ei:Fi � ð1þ 0þ 0Þ ¼ �1, hEi;Eji ¼ 0 ¼

hEi;Fji for i0 j. On the surface X , since s stabilizes the fibre 2E þ A1 þ A2 of F, it

permutes fibres of F, whence sðEiÞ ¼ Ej or Fj for some j. Note that in MW ðgÞ,

Ei þ sðEiÞ ¼ 0 and hence hEi þ sðEiÞ;Ei þ sðEiÞi ¼ 0. By the calculation above, we

must have sðEiÞ ¼ Fi. On the surface X , since PicX is generated over Q by the fibre

components and a 2-section D3, the PicX is generated over Q by the images E;E i;F j of

E;Ei;Fj with 2E ¼ Ei þ Fi. So it follows that rðX@G0Þ ¼ 1.

Figure 11. In this case, g has T0;T1 ¼ A1 þ A2 þ B, which is of type I3 or IV , and a

few irreducible fibres as singular fibers. On the surface X0, we can calculate the height

pairing and find that hEi þ Fi;Ei þ Fii ¼ 0; so Ei þ Fi is torsion and it must be zero in

MWðgÞ for the latter is torsion free by [17] or [10]. So sðEiÞ ¼ �Ei ¼ Fi in MW ðgÞ.

As in Figure 10, rðX@G0Þ ¼ 1.

Figure 12. In this case, g has T0;T1 ¼ Aþ B which is of type I2 or III , and a few

irreducible fibres as singular fibers. As in Figure 11, sðEiÞ ¼ Fi ð1a ia 3Þ and hence

as in Figure 10, rðX@G0Þ ¼ 1.

Figure 13. In this case, g has T0 and a few irreducible fibres as singular fibers. As in

Figures 10 and 11, sðEiÞ ¼ Fi ð1a ia 4Þ and rðX@G0Þ ¼ 1.

Figure 14. Let c : X ! P2 be the blow-down of E þ Dð1Þ þ Dð2Þ to a point P. We

may assume that cðAÞ ¼ fX ¼ 0g and cðDÞ ¼ fY ¼ 0g so that P ¼ ½0; 0; 1�. Then

c is G-equivariant and GJ fg ¼ ðaijÞ A PGL2ðCÞ j a21 ¼ 0 and g is lower triangularg.

Conversely, any finite group in PGL2ðCÞ of such form can act on this X faithfully so

that rðX@GÞ ¼ 1. (Note that rðXÞ is already 1.)

Equivariant classification of Gorenstein open log del 239



Figure 15. By blowing down E, we are reduced to Figure 14. Let P 0 ¼ E VDð2Þ

which is infinitely near to the point P defined in Figure 14. Then GJ fg ¼ ðaijÞ A

PGL2ðCÞ j gðP 0Þ ¼ P 0; a21 ¼ 0 and g is lower triangularg. Conversely, any finite group

in PGL2ðCÞ of such form can act on this X faithfully so that rðX@GÞ ¼ 1. (Note that

rðX Þ is already 1.)

Figure 16. Let g be the element in G switching E1 and E2 (see Lemma 10), and let

H be the (normal) subgroup of G stabilizing E1 (and hence E2). Let c : X ! P
2 be

the blow-down of E2 þ Dð1Þ þ Dð2Þ, which is H-equivariant. As in Figure 14, HJ

fh ¼ ðaijÞ A PGL2ðCÞ j a21 ¼ 0 and h is lower triangularg. Note that H is normal in G

and G ¼ hg;Hi.

Here is an example where G ¼ hgi and ordðgÞ ¼ 2. Let S4 be the Hirzebruch

surface with the ð�4Þ-curve M and a section B disjoint from M. Let Y ! S4 be the

blow-up of a point not on M. Note that M þ B is 2-divisible in the Picard lattice. Let

X ! Y be the double cover branched along M þ B with hgi ¼ GalðX=Y Þ. Let Dð2Þ

be the inverse on X of M, Dð1Þ the proper transform on X of the fibre through the

centre of the blow-up Y ! S4, E1 þ E2 the inverse of the exceptional curve of the same

blow-up, and let D be the inverse of any general fibre. Then Figure 16 appears on this

X so that rðX@hgiÞ ¼ 1, where X ! X is the blow-down of Dð1Þ þ Dð2Þ.

Figure 17. Since E is the only ð�1Þ-curve on X (see Figure 5 in [19]), E is G-stable.

Let c : X ! P
2 be the blow-down of E þ Dð2Þ þ Dð1Þ to a point say P :¼ ½0; 0; 1�.

Then c is G-equivariant. We may also assume that cðAÞ ¼ fX ¼ 0g. Note that cðDÞ

is a conic touching A at P with order 2. Then GJ fg ¼ ðaijÞ A PGL2ðCÞ j gðcðDÞÞ ¼

cðDÞ; g is lower triangularg. Conversely, any finite group in PGL2ðCÞ of such form

can act on this X faithfully so that rðX@GÞ ¼ 1. (Note that rðXÞ is already 1.)

Figure 18. Note that E1;E2 are the only ð�1Þ-curves on X (see Figure 6 in [19]) and

hence G stabilizes E1 þ E2. Let g be the element in G switching E1 and E2 (see Lemma

10) and let H be the (normal) subgroup of G stabilizing E1 (and hence E2). Let

c : X ! P
2 be the blow-down of E2 þ Dð2Þ þ Dð1Þ to a point say P :¼ ½0; 0; 1�. Then

c is H-equivariant. H stabilizes the line cðE1Þ defined by fX ¼ 0g say, and also

the conic cðDÞ touching cðE1Þ at P with order 2. As in Figure 17, HJ fh ¼ ðaijÞ A

PGL2ðCÞ j hðcðDÞÞ ¼ cðDÞ; h is lower triangularg. Note that H is normal in G and

G ¼ hg;Hi.

Here is an example with G ¼ hgi and ordðgÞ ¼ 2. Let X ! Y and DðiÞ;Ei be as

in Figure 16, but we let D be the inverse on X of B.

Figure 19. Since E is the unique ð�1Þ-curve on X (see Figure 5 in [19]), it is G-stable.

By blowing down E, we are reduced to Figure 20. Set P 0
:¼ E VDð3Þ which is an

infinitely near point of the point P in Figure 20. Thus GJ fg ¼ ðaijÞ A PGL2ðCÞ j

gðP 0Þ ¼ P 0; aij 0 0 only when i ¼ j or ði; jÞ ¼ ð3; 1Þg. Conversely, any finite group in

PGL2ðCÞ of such form can act on this X faithfully so that rðX@GÞ ¼ 1. (Note that

rðX Þ is already 1.)

Figure 20. Since E is the only ð�1Þ-curve on X (see Figure 5 in [19]), it is G-stable.

Let c : X ! P
2 be the blow-down of E þ A1 þ A2 to a point, say P :¼ ½0; 1; 0�. Then c
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is G-equivariant. G fixes P and ½0; 0; 1� which is the intersection of two G-stable lines

cðDÞ ¼ fX ¼ 0g and cðDÞ ¼ fY ¼ 0g say, whence GJ fðaijÞ A PGL2ðCÞ j aij 0 0 only

when i ¼ j or ði; jÞ ¼ ð3; 1Þg. Conversely, any finite group in PGL2ðCÞ of such form

can act on this X faithfully so that rðX@GÞ ¼ 1. (Note that rðXÞ is already 1.)

Figure 21. Let c : X ! P
2 be the blow-down of the Ei to the points Pi. We can

show that Ei are the only ð�1Þ-curves on X and hence c is G-equivariant. So GJ

AutS ¼ fg A PGL2ðCÞ j gðSÞ ¼ S; gðD̂DÞ ¼ D̂Dg, where S ¼ fP1;P2;P3g is a subset on the

line cðDÞ and D̂D ð¼ cðDÞÞ is a second line. Since rðX@GÞ ¼ 1, the G acts on S transi-

tively. Conversely, any finite group in AutS acting transitively on S can act on this X

faithfully so that rðX@GÞ ¼ 1.

Figure 22. Let c : X ! P
2 be the blow-down of Dþ D2ð2Þ þ D2ð1Þ to a point say

P :¼ ½0; 0; 1�. Then c is G-equivariant. G fixes P and stabilizes the line cðDð1ÞÞ ¼

fX ¼ 0g say. Then GJ fg ¼ ðaijÞ A PGL2ðCÞ j g is lower triangularg. Conversely, any

finite group in PGL2ðCÞ of such form can act on this X faithfully so that rðX@GÞ ¼ 1.

(Note that rðX Þ is already 1.)

Figure 23. Let c : X ! P
2 be the blow-down of E þ A and Dþ D2ð3Þ þ D2ð2Þ to

points P :¼ ½0; 1; 0� and ½0; 0; 1� say. Then c is G-equivariant. G fixes P and stabilizes

two lines cðD2ð1Þ ¼ fX ¼ 0g and cðD1ÞÞ ¼ fY ¼ 0g say. Then GJ fðaijÞ A PGL2ðCÞ j

aij 0 0 only when i ¼ j or ði; jÞ ¼ ð3; 1Þg. Conversely, any finite group in PGL2ðCÞ

of such form can act on this X faithfully so that rðX@GÞ ¼ 1. (Note that rðXÞ is

already 1.)

Figure 24. By blowing down E, we are reduced to Figure 23. Set P 0
:¼ E VD2ð2Þ

which is an infinitely near point of the point P in Figure 23. Then GJ fg ¼ ðaijÞ A

PGL2ðCÞ j gðP 0Þ ¼ P 0; aij 0 0 only when i ¼ j or ði; jÞ ¼ ð3; 1Þg. Conversely, any finite

group in PGL2ðCÞ of such form can act on this X faithfully so that rðX@GÞ ¼ 1.

(Note that rðX Þ is already 1.)

Figure 25. Let g be an element in G switching E1 and E2 (see Lemma 11) and let

H be the (normal) subgroup of G stabilizing E1 (and hence E2). Let c : X ! P
2 be

the blow-down of Dþ D1 and E2 þ D2ð1Þ þ D2ð2Þ to two points P1 ¼ ½0; 1; 0� and

P2 ¼ ½0; 0; 1� say. Then c is H-equivariant. H fixes Pi and stabilizes the two lines

cðD2ð3ÞÞ ¼ fX ¼ 0g and cðE1Þ ¼ fY ¼ 0g say. Then HJ fðaijÞ A PGL2ðCÞ j aij 0 0

only when i ¼ j or ði; jÞ ¼ ð3; 1Þg. Note that H is normal in G and G ¼ hg;Hi.

Here is an example where G ¼ hgi and ordðgÞ ¼ 2. Let M be the ð�2Þ-curve on

the Hirzebruch surface S2, B a section disjoint from M and Li are two distinct fibres.

Let p : Y ! S2 be the blow-up of a point on L2 other than L2 VM, the point L1 VM

and its infinitely near point lying on the proper transform of M; let ÊE; D̂D; D̂D1 be irre-

ducible curves on Y which are (the proper transforms of ) the corresponding excep-

tional curves. Since M þ B is 2-divisible in the Picard lattice, there is a double cover

X ! Y branched along D̂Dþ p 0ðM þ BÞ with hgi ¼ GalðX=YÞ. Let D;D1;D2ð1Þ;D2ð2Þ;

D2ð3Þ;E1 þ E2 be the strict inverses of D̂D;L1;L2; D̂D1 and ÊE, respectively. Then Figure

25 appears on this X so that rðX@hgiÞ ¼ 1, where X ! X is the blow-down of

D1 þ
P

j D2ð jÞ.
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Figure 26. Let H be the (normal) subgroup of G stabilizing D1 (and hence also all of

Dið jÞ). Blowing down D, the Figure becomes Figure 5, whence H is abelian. Thus

either G ¼ H, or G ¼ hg;Hi where g switches D1 and D2.

Let c : X ! P
2 be the blow-down of Dþ D2ð2Þ þ D2ð1Þ and E1 þ A1 þ A2 to

P1 ¼ ½1; 0; 0� and P2 ¼ ½0; 1; 0� say. Then c is H-equivariant. H fixes P3 ¼ D1ð1ÞV

D1ð2Þ with coordinates, say ½0; 0; 1�, on P
2 and also two points Pi ði ¼ 1; 2Þ on the line

cðE2Þ ¼ fZ ¼ 0g. Thus HJ fdiag½1; b; c� j bc0 0g.

Conversely, each finite group G ¼ H in PGL2ðCÞ of the form above or G ¼ hgiG

Z=ð2Þ is realizable as a group of automorphisms on this X such that rðX@GÞ ¼ 1.

(Indeed, rðX Þ ¼ 1 already; see Lemma 7 for the second case.)

Figure 27. Let g be in G switching D1 and D2 (Lemma 11). Let H be the (normal)

subgroup of G stabilizing D1 (and hence D2). As in Figure 2, we have H ¼ hhi and

G ¼ hg; hi with hjDið1Þ
¼ id. The case G ¼ hgiGZ=ð2Þ is realizable (see Lemma 7;

indeed Figure 27 is di¤erent from Figure 2 only in labelling).

Figure 28. Let H be the (normal) subgroup of G stabilizing D1 (and hence also D2).

Let H1 be the (normal) subgroup of G stabilizing E1 and E2 (and hence all Ei;Fj;Dið jÞ).

As in Figure 2, H is abelian and H1 ¼ hh1i with h1jDið1Þ
¼ id. Note that G=HaZ=ð2Þ

and jH=H1ja 3; indeed, H=H1 is abelian and acts on the set fE1;E2;E3g. By Lemma

11, either G=H ¼ Z=ð2Þ or G ¼ H and H=H1 ¼ Z=ð3Þ. Each of the case G ¼ G=H ¼

Z=ð2Þ and the case G ¼ H with H=H1 ¼ Z=ð3Þ is realizable as a group of automor-

phisms on this X such that rðX@GÞ ¼ 1 (see Figure 7 and Lemma 7, noting that the

Figure becomes Figure 4 after the blow down of D).

Figure 29. Let c : X ! P
2 be the blow-down of Dþ D2ð5Þ þ D2ð4Þ;E1 þ D2ð1Þþ

D2ð2Þ and E2 to points say ½1; 0; 0�; ½0; 1; 0� and ½1; 1; 0� on the same line cðD2ð3ÞÞ ¼

fZ ¼ 0g. Then c is G-equivariant. G fixes these three points and also the intersec-

tion point D1ð1ÞVD1ð2Þ with coordinates say ½0; 0; 1� on P
2. Then G ¼ hgi where

g ¼ diag½1; 1; c�. Conversely, any finite cyclic group can act on this X faithfully so that

rðX@GÞ ¼ 1. (Note that rðXÞ is already 1.)

Figure 30. Blowing down D which is G-stable, the Figure becomes Figure 2. So

either G ¼ hg; hi or G ¼ hhi, where hjDið2Þ
¼ id and g switches D1 and D2. Each of

G ¼ hgiGZ=ð2Þ and G ¼ hhi is realizable as a group of automorphisms on this X

such that rðX@GÞ ¼ 1. (Note that rðX Þ ¼ 1 already.)

Figure 31. Let H be the (normal) subgroup of G stabilizing D1 (and hence also D2).

Let H1 be the (normal) subgroup of G stabilizing E1 (and hence all Ei;Fj ;Dið jÞ). As in

Figure 2, H is abelian and H1 ¼ hh1i with h1jDið2Þ
¼ id. As in Figure 28, by Lemma

11, either G=H ¼ Z=ð2Þ, or G ¼ H and H=H1 ¼ Z=ð2Þ. Each of the case G ¼ G=HG

Z=ð2Þ and the case G ¼ H with H=H1 ¼ Z=ð2Þ is realizable as a group of automor-

phisms on this X such that rðX@GÞ ¼ 1 (see Lemma 7 and Figure 7).

Figure 32. Let c : X ! P
1 � P

1 be the blow-down of E1 þ A1 and E2 þ A3 to two

points P1 and P2, respectively. Then c is G-equivariant. Thus G is a subgroup of

AutSðP
1 � P

1Þ :¼ fg A AutðP1 � P
1Þ j gðSÞ ¼ S; gðD̂DÞ ¼ D̂Dg, where S ¼ fP1;P2g is a set

of two points on the same fibre of the first ruling and D̂D ð¼ cðDÞÞ is a second fibre
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of the same ruling. Let i : G ! AutðSÞ ¼ Z=ð2Þ be the natural homomorphism and

let H ¼ KerðiÞ. Then all elements of H can be diagonalized simultaneously at P1

with the same eigenvectors along the directions of cðD1Þ and cðA2Þ. Thus HJ

fdiag½b; c� j bc0 0g. Note that G=H ¼ ð0Þ or Z=ð2Þ. Conversely, any finite subgroup

G of AutSðP
1 � P

1Þ can act on X faithfully with rðX@GÞ ¼ 1. (Note that rðXÞ ¼ 1

already.)

Figure 33. Let g be in G switching D1 and D2 (cf. Lemma 11). As in Figure 2,

G ¼ hg; hi, where hjDi
¼ id, and the case G ¼ hgiGZ=ð2Þ is realizable (see Lemma 7;

indeed Figure 33 is di¤erent from Figure 5 only in labelling).

Figure 34. Let c : X ! P
1 � P

1 be the blow-down of E1;E2;F1;F2 to four points

e1; e2; f1; f2, respectively. Then c is G-equivariant. Let i : G ! Autfe1; e2; f1; f2g ¼ S4

be the natural homomorphism. Then ImðiÞ is contained in the Klein fourgroup V ¼

hðe1e2Þð f1 f2Þ; ðe1 f1Þðe2 f2Þi of S4. We assert that ImðiÞJ hðe1 f2Þðe2 f1Þi is impossible.

Indeed, if this assertion is false, then G permutes fibres of the P
1-fibration C with

singular fibres 2E1 þ A1 þ D1, 2F2 þ A2 þ D2, where all components of f �1ðSingXÞ are

contained in fibres of C ; this leads to rðX@GÞb 2 as in Lemma 11, which is a con-

tradiction. So the assertion is true. Note that G is a subgroup of AutSðP
1 � P

1Þ :¼

fg A AutðP1 � P
1Þ j gðSÞ ¼ S; gðD̂DÞ ¼ D̂Dg, where S ¼ fe1; e2; f1; f2g is the intersection of

four fibres, two from each ruling and D̂D ð¼ cðDÞÞ is a fifth fibre. By the assertion, we

have:

(*) GjS equals either the Klein group V or hðe1e2Þð f1 f2Þi or hðe1 f1Þðe2 f2Þi.

Let i : G ! AutfDVD1;DVD2g ¼ Z=ð2Þ be the natural homomorphism. As in

Figure 32, we have H :¼ KerðiÞJ fdiag½b; c� j bc0 0g, and G=H ¼ ð0Þ or Z=ð2Þ. Con-

versely, any finite subgroup G of AutSðP
1 � P

1Þ satisfying (*) can act on X faithfully

with rðX@GÞ ¼ 1.

Figure 35. Let g be in G switching D1 and D2 (Lemma 11). Let H be the (normal)

subgroup of G stabilizing D1 (and hence also D2). As in Figure 6, H is abelian,

G ¼ hg;Hi, and the case G ¼ hgiGZ=ð2Þ is realizable (see Lemma 7; indeed Figure 35

is di¤erent from Figure 6 only in labelling).

Figure 36. Let H1 (resp. H2) be the (normal) subgroup of G stabilizing all Ei (resp.

stabilizing D1). Then both Hi are normal in G such that G=H2 ¼ ð0Þ or Z=ð2Þ and

H2=H1 JS4. As in Figure 2, H1 ¼ hhi. If G ¼ H2, then rðX@GÞ ¼ 1 implies that H2

acts on the set fE1; . . . ;E4g transitively, i.e., H2=H1 is a transitive subgroup of S4.

Conversely, hgiGZ=ð2Þ can actually act on X such that rðX@hgiÞ ¼ 1 and gðEiÞ ¼ Fi

for all i (see Lemma 7, noting that Figure 36 is di¤erent from Figure 4 only in labelling).

Figure 37. Let c : X ! P
2 be the blow-down of E2 þ D2ð4Þ þ D2ð5Þ and E1 þ D2ð1Þ

þD2ð2Þ to points, say P1 ¼ ½0; 0; 1� and P2 ¼ ½0; 1; 0�. Then c is G-equivariant. G

fixes the Pi and the intersection of D and D1 with coordinates say ½1; 0; 0� on P
2. Set

P 0
1 :¼ E2 VD2ð4Þ. Then GJ fg ¼ diag½1; b; c� A PGL2ðCÞ j gðP 0

1Þ ¼ P 0
1g. Conversely,

any finite group in PGL2ðCÞ of such form can act on this X faithfully so that

rðX@GÞ ¼ 1. (Note that rðXÞ is already 1.)
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Figure 38. Let H be the (normal) subgroup of G stabilizing D1 (and hence also D2).

As in Figure 2, H ¼ hhi, where hjDið2Þ
¼ id. Note that G=HaZ=ð2Þ. The case G ¼

G=HGZ=ð2Þ is realizable (see Lemma 7; indeed, blowing down E, the Figure becomes

Figure 5).

Figure 39. Let g be in G switching D1 and D2 (Lemma 11). As in Figure 2,

G ¼ hg; hi, where hjDið2Þ
¼ id, and the case G ¼ hgiGZ=ð2Þ is realizable (see Lemma 7;

indeed Figure 39 is di¤erent from Figure 2 only in labelling).

Figure 40. Figure 40 is identical with Figure 28 with only di¤erence in labelling.

Figure 41. Let c : X ! P
2 be the blow-down of E þ D2ð1Þ þ D2ð2Þ to a point P1.

Then c is G-equivariant. G fixes P1 and the intersection point P2 of D with D1.

Thus GJ fg A PGL2ðCÞ j gðPiÞ ¼ Piði ¼ 1; 2Þ; gðD̂DÞ ¼ D̂Dg, where D̂D ð¼ cðDÞÞ is a conic

intersecting the line LP1P2
ð¼ cðD1ÞÞ at the points Pi. Conversely, any finite group in

PGL2ðCÞ of such form can act on this X faithfully so that rðX@GÞ ¼ 1. (Note that

rðX Þ is already 1.)

Figure 42. Let c : X ! P
2 be the blow-down of E1 þ D2ð1Þ þ D2ð2Þ and E2 þ A to

points P2 ¼ ½1; 0; 0� and P3 ¼ ½1; 1; 0� say. Then c is G-equivariant. G fixes three

points Pi ði ¼ 1; 2; 3Þ where P1 ¼ DVD2ð3Þ with P1 ¼ ½0; 1; 0� say, all lying on the line

cðD2ð3ÞÞ ¼ fZ ¼ 0g, and also the intersection point P4 ¼ DVD1 with P4 ¼ ½0; 0; 1� say.

Then G ¼ hgi with g ¼ ½1; 1; c�. Conversely, any finite cyclic group can act on this X

faithfully so that rðX@GÞ ¼ 1. (Note that rðXÞ is already 1.)

Figure 43. Let c : X ! P
2 be the blow-down of E1;E2 and E þ D2ð1Þ þ D2ð2Þ to

points Pi ði ¼ 1; 2; 3Þ, respectively. Then c is G-equivariant. G fixes three points P3 ¼

½1; 0; 0� say, P4 :¼ DVD2ð3Þ ¼ ½0; 1; 0� and P5 :¼ DVD1 ¼ ½0; 0; 1�. Note that P1; . . . ;P4

lie on the same G-stable line cðD2ð3ÞÞ ¼ fZ ¼ 0g say. So GJ fdiag½1; b; c� j bc0 0g.

Let g be an element in G switching E1 and E2 (see Lemma 11). Then g switches P1 and

P2. We may assume that P1 ¼ ½1; 1; 0�. Now gðP1Þ ¼ P2 and gðP2Þ ¼ P1 imply that

P2 ¼ ½1;�1; 0� and g ¼ ½1;�1; c1�. Let H be the (normal) subgroup of G fixing P1 (and

hence P2). Then H ¼ hhi for some h ¼ diag½1; 1; c2�. Thus G ¼ hg ¼ diag½1;�1; c1�;

h ¼ diag½1; 1; c2�i. Conversely, any finite group in PGL2ðCÞ of such form can act on

this X faithfully so that rðX@GÞ ¼ 1.

Theorem A is a consequence of the lemmas in §1. Theorem B is proved in the

arguments above. For instance, the assertion that kðXnDÞ ¼ �y in the Hypothesis

(H), follows from the observation that �ðKX þDþ DÞ ¼ � f �ðKX þDÞ is nef and

big. Indeed, from the construction of the action of G on X , we see that rðX@GÞ ¼ 1.

So the G-stable divisor �ðKX þDÞ is either numerically trivial, or ample or anti-ample

(see Lemmas 1 and 2). Now the observation that �ðKX þDÞ:D ¼ �ðKX þDþ DÞ:D ¼

2�D:D > 0 shows that �ðKX þDÞ is ample and hence �ðKX þDþ DÞ is nef and big.

Theorem C follows from the classification of the group G in §2. Indeed, for

K 2
Xa 4, we see that either G is a subgroup of PGL2 as in Theorem C, or there is a

sequence of subgroups of G such that the factor groups are abelian or G is as in the case

of Figure 25. The easy calculation of K 2
X is given below.
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Lemma 14. For the X in Figure m, we calculate K 2
X .

(1) K 2
X ¼ 2, if m is one of 7–13, 29–31.

(2) K 2
X ¼ 3, if m is one of 2–3, 24, 26–28, 37–40.

(3) K 2
X ¼ 4, if m is one of 4–6, 23, 25, 32–36, 42–43.

(4) K 2
X ¼ 5, if m is one of 15, 19.

(5) K 2
X ¼ 6, if m is one of 1, 14, 16–18, 20–22, 41.
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