J. Math. Soc. Japan
Vol. 56, No. 1, 2004

The behavior of the principal distributions on a real-analytic surface

By Naoya ANDO

(Received Apr. 7, 2000)
(Revised Aug. 22, 2002)

Abstract. The purposes of this paper are: (a) to study the behavior of the principal
distributions around an isolated umbilical point on a real-analytic surface of a certain
type, which contains all the real-analytic, special Weingarten surfaces; (b) to present one
condition such that if a real-analytic surface satisfies the condition, then the index of an
isolated umbilical point on the surface is less than or equal to one.

1. Introduction.

Let S be a smooth surface in R*> and Umb(S) the set of the umbilical points of S
and set Reg(S) := S\Umb(S). If Reg(S) # ¢, i.e., if S is not totally umbilical, then
there exists a principal distribution Dg on S, which is a continuous one-dimensional
distribution on Reg(S) such that Dg(p) is one of the principal directions at each p e
Reg(S). Let po be an isolated umbilical point of S. Then as a quantity in relation
to the behavior of Dg around py, the index ind, (S) of py on S is defined ([6, pp.
137]).

For each positive integer /e N, let %0(’) be the set of real-analytic functions de-
fined on a connected neighborhood of (0,0) in R? such that each F e .o/ satisfies
(0™ F/0x™dy")(0,0) = 0 for non-negative integers m,n = 0 satisfying 0 < m+n < [.
Let F be an element of 42%0(2) and Gy the graph of F. If the origin o of R® is an
element of Umb(Gr) and if Reg(Gr) # J, then there exists a nonzero element fr of
%0(3) satisfying Reg(Gr_s, ) = J, and there exists a nonzero homogeneous polynomial
gr of degree kp = 3 satistying fr —gr € &4’”*”. Let &4 be the subset of &Z}” such
that on the graph of each element of ;z/ol, o is an isolated umbilical point. For each
positive integer k € N, let 2% be the set of the homogeneous polynomials of degree k in
two variables and set %k = 2%N %02 . Let ;zfolo be the subset of szol such that gr € ﬂgk*'
holds for each F e.oZ!. The purposes of this paper are

(a) to study the behavior of the principal distributions around o on the graph Gp
of Fe.d2;

(b) to present one condition such that if F e ./’ satisfies the condition, then
ind,(Gr) <1 holds.

For F € /7, there exist two principal distributions Dg), Dg) on Gy which give the
principal directions at each point of Reg(Gpr), and there exists a positive number p, > 0
satisfying {0 < x2+ y? < p2} = Reg(Gr). Let ¢\ be a continuous function defined on
(0,p9) x R satisfying
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i 0 . i 0 i X
cos ¢%) (p,0) PP + sin ¢(F) (p,0) PR € DEV) (pcos O, psinb)

for (p,0) € (0,py) x R. In Section 3, we shall prove the following:

ProposITION 1.1. For F e </? and 0 € R,
(a) there exists a number ¢§?0(00) € R satisfying

tim ¢ (p, 00) = ", (00):
p—+0
(b) there exist numbers ¢§?0(00 +0), ¢$?0(90 —0) € R satisfying

: (i) _ 40 .
Hllb,?i0¢F,o(0) = ¢F,o(90 + 0);

(c) there exists an element Iy ,(0y) of {nn/2},., satisfying

Tro(00) = 6 ,(80 +0) — 4 (8, — 0)
for i=1,2.

For k = 3, let g be an element of 2*. For 0 e R, let Hess,(0) be the Hessian of g
at (cosd,sinf)). Let 5, be a continuous function on R such that ‘(cos#,(0),sin,(0)) is
an eigenvector of Hess,(0) for any 0 € R, and S, the set of the numbers at each of which
Hess, is represented by the unit matrix up to a constant. In Section 3, we shall prove

the following:

PrOPOSITION 1.2. For F € /7,
(a) if Oy € R satisfies I ,(0y) #0, then Oy € S,, holds;
(b) ind,(Gp) is represented as

+— Z FF,0(00)7
2n T gy es, .00, 0+2m)

9F

ind, (Gr)

where 0 € R.

In Section 4, we shall present one way of computing 7, (0 + 2n) —n,.(0). In

Section 5, we shall prove the following:

THEOREM 1.3. For F e ./

(@) —m/2 = 1F ,(00) =7/2 hold for any Oy € S,,;
(b) ind,(Gy,) <ind,(Gr) =1 hold.

REMARK 1.4. For k=3, let g be an element of ?/Zk. Then the following hold:

() Ty0(00) = —7/2 for Go e S, ([3));
(b) ind,(G,) € {1 —k/2+ 57 ().

There exists a conjecture which asserts that ind,(Gr) < 1 holds for any F e .oZ”.
This is part of Loewner’s conjecture ([7], [8]). In Section 5, we shall prove the fol-

lowing:

THEOREM 1.5. Let F be an element of </ satisfying Ir ,(00) < 7 for any Oy € S,,.

Then ind,(Gr) <1 holds.
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Let S be a real-analytic, Weingarten surface and wg a function of two variables
satisfying ws(Ks, Hs) =0 on S, where Kg and Hg are the Gaussian curvature and the
mean curvature of S, respectively. In this paper, we suppose that wg is real-analytic,
and according to [5], we call S special if wg satisfies

5WS 1 5WS
HSW(KS,HS)‘Fi W(KS’HS) #0 (1)

on Umb(S). In Section 6, we shall prove the following:

THEOREM 1.6. Let F be an element of %(2) such that the graph Gr of F is a special
Weingarten surface satisfying o € Umb(Gr) and Reg(Gr) # . Then the following hold:
(a) Fe.o?

00’

(b) indo(Gr) = indy(G,,) = 1 — kp/2.

REMARK 1.7. Since kr = 3, we see that if F is as in [Theorem 1.6, then ind,(GF) <
0 holds, which was already obtained in [5].

ACKNOWLEDGEMENT. (a) This work was done at Max-Planck-Institut fiir Mathe-
matik in Bonn. The author is grateful to this institute for giving him good surround-
ings. (b) This work was supported by the Japan Society for the Promotion of Science.

2. Preliminaries.

Let f be a smooth function of two variables and G, the graph of f. We set
pr = 0f/0x, qr := df /0y, and

Ef =1 —I—p}, Ff = Prqr, Gf =1+ q}. (2)

The first fundamental form of Gy is a symmetric tensor field I, on Gy of type (0,2)
represented in terms of the coordinates (x,y) as

If = Ef dx2 + 2Ff dxdy + Gf dyz,
where

dx? .= dx®dx, dxdy = %(dx ®dy +dy ®dx), dy*:=dy® dy.

We set 1y := 0°f/ox?, sy := 0°f /0xdy, ty := 0°f/dy?, and

s 5 A
Ly=—t — M= No=—L 3
= ey M ey YT e )
where det(Iy) := E;Gy — F7. The second fundamental form of Gy is a symmetric tensor
field II; on Gy of type (0,2) represented in terms of the coordinates (x,y) as

Il := Ly dx* + 2M; dxdy + Ny dy*.

For a point p € Gy, let T,(Gy) be the tangent plane to Gy at p and U,(Gy) the subset of
T,(Gy) defined by
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Up(Gy) :={u e T,(Gs); Ly, p(u,u) = 1}.

Let vy, be the function on U,(Gy) defined by v, ,(u) :=1l; ,(u,u) for ue U,(Gy).
Suppose that v , attains an extremum at g € U,(Gy). Then the extremum vy ,(up) is
called a principal curvature of Gy at p and the one-dimensional subspace of 7,(Gy)
determined by uy is called a principal direction of Gy at p. The Weingarten map of Gy
is a tensor field W, on G of type (1,1) satisfying

() )]l

-1
W, (Ef Ff) (Lf Mf)
o Gy My Ny

By Lagrange’s method of indeterminate coefficients, we obtain

where

PROPOSITION 2.1.  The principal curvatures and the principal directions of Gy are
given by the eigenvalues and the one-dimensional eigenspaces of Wy, respectively.

The Gaussian curvature Ky and the mean curvature Hy of Gy are given by Ky :=
det(Wy) and Hy := tr(Wy)/2, respectively.

Let PD; be a symmetric tensor field on Gy of type (0,2) represented in terms of the
coordinates (x, y) as

1

Jdet(I;)

PD; := {Ay dx* + 2By dxdy + Cy dy*},

where
Ay = EfMy — FyLy, 2By :=EfNy — Grly,  Cpi= FyNy — Gy My.
For two vector fields Vi, V> on Gy, the following holds:

% Z Vi AW/ (V) :w ((33 A ;)
= det(ly) \ox oy

Therefore by [Proposition 2.1, we obtain

PROPOSITION 2.2. A tangent vector vy to Gy is in a principal direction if and only if
PDy (vg,v9) = 0 holds.

A point py of Gy is called umbilical if v, ,, is constant.

PropoOSITION 2.3.  For a point py € Gy, the following hold:

(a) The condition py e Umb(Gy) is equivalent to each of the following:
(i) any one-dimensional subspace of T,,(Gy) is a principal direction,
(ii) Ar(po) = Br(po) = Cr(po) = 0;

(b) The condition p, € Reg(Gy)(= G, \Umb(Gy)) is equivalent to each of the fol-
lowing:
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(1)  The number of the principal directions at pg is equal to two and they are
perpendicular to each other with respect to Iy,

(ii) A47(po)Cr(po) — Br(po)* < 0.

Proor. Noticing |[Proposition 2.2, we obtain (a). In addition, noticing that W, is
symmetric with respect to Iy, we obtain (b). O

Let Dy, Ny be symmetric tensor fields on Gy of type (0,2) represented in terms of
the coordinates (x,y) as

Dy := sy dx* + (t; — ry) dxdy — s dy?,
Ny o= (syp} — prayry) dx® + (typf — rrqz) dxdy + (prasty — syq7) dy*.

By (2) together with (3), we obtain det(Is) PD; = Dy + Ny.  For a vector field V on Gy,
we set

Dy(V):=Ds(V,¥), Ny(V):=Ny(V, V),

PD; (V) := PDs(V, V).

Pr L —4qr Tr 5
grad, := < >, grad; = ( ), Hess, := ( )
N / pr T \y oy

For ¢ € R, we set

We set

cos ¢ 0 ., 0
Uy = (sin¢)’ U, = cos¢a-|—sm¢@.

Let ¢,) be the scalar product in R>. Then we obtain

Lemma 2.4. For ¢ € R, the following hold.

Dy (Uy) = <(Hessy uy, gz,

Nf-(U¢) = (grady, u¢><grade,Hessf Ug).
We set Grady := p;d/0x + q;0/0y. By [Lemma 2.4, we obtain
LEmmA 2.5. lgf)f(Gradf) = Dy(Grad,).

3. The behavior of the principal distributions around an umbilical point.

For F e &/0(2), let @r be a real-analytic function on (—py,p,) X R x R defined by

¢F(p> 07 ¢) = det(IF, (pcosH,psinH)) 15\]31’., (pcosH,psinH)(Uqﬁ)a

where p, > 0 satisfies {x?>+1? < pi} = Gr. We see that @r(p,0,4) is the value of
Dr(Uy) + Np(Uy) at (pcost,psin@). Let .o/ be the subset of /> such that for each
Fe.o?, 0eUmb(Gs) and Reg(Gs) # & hold. Then for F e .«/¥, the following
hold:



206 N. ANDO

Dr(Uy) + Np(Uy)
= {(Hessy, + Hessp_z, Jug, tginyny + <(gradfF + gradF_fF), Uy
X <(gradﬁ + grad#ﬁ,), (Hessy, + Hessp_g, )us)>
=Dy, (Uy) + Ny, (Uy) + Dr_y, (Up) + Np_y, (Uy) + <grad,, , uy»{grad, , Hessp_y, uy»
+ (grady,, u¢><grad#fp, Hessy, uy) + {grad,,, u¢><grad§7ﬁ, Hessp_s, uy)
+ {gradg_g,, u¢><gradfi, Hessy, uy» + {gradp_,, u@(gradﬁ, Hessp_s, uy)
+ (gradp_g,, u¢><gradf_fp, Hessy, ug ).

Since Gp_y, is totally umbilical, we obtain (DF fp = 0. Therefore we obtain Dy s, +
Ny —» =0. We represent fr as fr:=) ;5. fF , wWhere f e #'. Then the following
hold:

grad, (pcos 0, psin0) = Z p'! gradf;w (0),

i>kp

Hessy,. (pcos 0, psin0) = Zp’ 2Hess ) (0),

i= > k F
where

grad ¢ (0) := grad 0 (cos@,sinf), Hess 0 (0) := Hess ) (cos 0,sin ).

Therefore we obtain

. QSF(I/:, 92, $) _ i Dt (pcos 0.psint) (Uy)
p—0  prFET p—0 P

= (Hessy, (O)uy, g r/2)- (4)
Then we obtain

PROPOSITION 3.1.  Let F be an element of </ ¥ satisfying S,, = &. Then F € /2
holds.

Suppose F € .oZ*, Oy € S,, and F = fr. We may represent f)F(U¢) and NF(U¢) as

f)F (pcos O, psin6) U¢ Z pl 2d 0 ¢

l>kF

I§|F (pcosf,psin0) U¢ Z ,0

l>kF

Then we see that d}k”(ﬁo,qﬁ) = 0 holds for any ¢ € R and that ng)(ﬁo,(/ﬁ) = 0 holds for
any ¢ € R and any integer i € [kp,3kp —2). Since F € &foz, there exists an integer k > kp
satisfying a’f,k)(Ho, $) + ngf) (6o, @) # 0 for some ¢ € R. The minimum of such integers as
k 1s denoted by krg,. We shall prove
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LemMA 3.2. There exists a symmetric matrix M () which is not represented by the
unit matrix up to any constant and satisfies

kr. o, kr. o,
dl(7 ! )(90, ¢) + ”Er ’ )(90, ¢) = <M (Oo)ug, thyry>y
for any ¢ € R.

Proor. If kp g, € (kp,3kp —2), then we see that HessF(/cF’,)O)(Ho) is suitable for
M (0y). Suppose kp, 00 = 3kr —2. Noticing 0y € S,,, we see that there exists a sym-
metric matrix M G5 =2)(0y) satisfying

(3kF (6 ¢) , (cos b, 51n00)(U¢) - <M (3kr = )(QO)MW ”¢+n/2>
for any ¢ € R. Therefore we see that if kp g, = 3kr — 2, then
Hesspeiy—2) (6o) + M Gkr=2) (6o)

is suitable for M (00). In the following, suppose kr g, > 3kr —2. By Euler’s identity,
we obtain n(3kF (00,00) = 0. Therefore we see that uy, and ug ./, are eigenvectors of
MGkr=2)(0,). In general, we see that if k is an integer in [3kr — 2, kr g,] such that uy,
and ug, /> are eigenvectors of Hesszo (0p) for any integer /€ [kp,k — 1], then there
exists a symmetrlc matrix M ®) () satisfying the following:

(a) nF (00,¢) = (MW (0g)uy,uy /2> holds for any ¢ € R,

(b) ug, and ug, > are elgenvectors of M®¥)(6y).
Therefore noticing that Hessyu) (6y) + M )(6) is represented by the unit matrix up to a
constant for any integer / € [3kr — 2, kp g, — 1], we see that Hess ;4 (60) + M (kr.00) ()
is suitable for M(6)). Hence we obtain [Lemma 3.2 O

implies

gZSF(pa 007 ¢)

lim —— = {M(Oo)ug, Upinj2)- (5)

p—0 ka»(’o
We may find such a symmetric matrix as M(6y) in [Lemma 3.2, even if F # fF.

ProoOF OF ProposITION 1.1. By (4) together with (5), we obtain (a), and we see that
for 01,0, € R satisfying 0; < 0, and S,, N (01, 0,) = &, there exists an element z( (01 0,)
of {nn/2},., satisfying

8, (0) = n,,(0) +20(0,,0,) (6)

for any 0 € (01,0,). Therefore noticing that the set S, is empty or dlscrete we obtain
(b). By (4) together with (5) (or by (b) of [Proposition 2.3), we obtain ¢F ; qﬁ}l’)o = z9
for some z € {nn/2},.,. Therefore by (6), we obtain (c). ]

PROOF OF PrOPOSITION 1.2. By (6), we obtain (a). For 0 € R, the following holds:

) (912 _ 4
ind,(Gy) = el T2 = 0nel0) g

By (6), we obtain
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¢5~£?0(0 + 21) — 5’#?0(0) = gy (0+2m) — ”gp(m + Z Tr.o(00)- (8)
0o € Sy N[0, 0+27)

From (7) and (8), we obtain (b). O

4. Homogeneous polynomials.

Let k be a positive integer. For ge 2%, set §(0) := g(cosf,sinf). A number
0o € R is called a root of g if (dg/d0)(0y) = 0. The set of the roots of g is denoted by
Ry.  The straight line L(0) := {(pcosby,psinby)}, g in R? determined by 0y € R, is
called a root line of g.

For 0,9 € R, we set

dy(0,¢) := Dg,(cose,sine)(Uqﬁ)-

Then d,;(0,1,(0)) =0 holds for any 0 e R. Let R(Hess,) be the set of numbers such
that each 0p € R(Hess,) satisfies 0y —1,(0) € {nn/2},.,. By Euler’s identity, we see
that for any 6 € R, the following holds:
dg
d,(0,0) = (k—1)—(0). 9
,(0,0) = (k= 1550 o)
Therefore we obtain R(Hess,) = R,. We also obtain S, = R,.

Suppose R, = R. Then k is even and g is represented by (x?+ y?) up to a
constant ([I]). If g is nonzero, then by direct computations, we obtain S, = &, and
from (9), we see that R(Hess,) = R holds, i.e., there exists a number z € {nn/2},_,
satisfying #, = 0 + zp. Therefore we obtain

1,00 + 21) —1,(0)
2n

k/2

=1

In the following, suppose R, # R. Then for each 0y € R,, there exists a positive integer
m e N satisfying (d”+'G/d0™ ") (60y) # 0. The minimum of such integers as m is called
the multiplicity of 0y and denoted by u,(0p). A root Oy € Ry is said to be

(a) related if 0y satisfies g(6p) =0 or if u,(6p) is odd;

(b) non-related if 0y satisfies g(p) # 0 and if u,(0o) is even.
Suppose that 0 € R, is related. Then it is said that the critical sign of 0, is positive
(resp. negative) if the following holds:

5 d,ug(ﬁo)—i-lg~

g0 (6p) =0 (resp. > 0).

The critical sign of 0y is denoted by c-sign, ().

LemMmA 4.1.  The following hold:
(a) The set R,\R(Hess,) consists of the numbers at each of which Hess, is rep-
resented by the unit matrix up to a nonzero constant,

(b) For 0y € Ry\R(Hessy), u,(00) =1 and c-sign,(0y) = — hold.

Proor. If Hess,(0p) is not represented by the unit matrix up to any constant for
0y € Ry, then by (9), we obtain 0y € R(Hess,). Suppose §(0y) =0 for 0, € R;,. Then
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there exist an integer / > 2 and an element gy € 2%/ satisfying §,(0y) # 0 and §(0) =
sin’ (6 — 0)§o(0) for any 0 e R. The following holds:

. 2 .
Hess, (0) = I(I — 1)§,(0) sin’ (0 — 00)( sin” fo —cos 0y sin 90)

—cos 6 sin 6, cos? 0,

+ Isin'~ (6 — 0y) ( —2(sin00)py, (0)  4y,0,(0) )

Cgo,0,(0) 2(cos 0y)q,, (0)
+ sin’ (0 — 0) Hess,, (0),
where
Cgo.0,(0) == —(sinbp)q,, (0) + (cos Oy) p,, (0).

Therefore we obtain

dy(0, ) ( l) _ . . .
— = 0)sin2(¢ — Oy) + 0, ¢)sin(60 — 6
sinl_z(ﬁ B 00) ) gO( ) (¢ 0) a!]OﬁO( ¢> ( 0)
+dy, (0, 4) sin*(0 — 6p), (10)
where a,, g, satisfies

go(eo)dgo,b’o(eo’ 90) > 0. (1 1)

Then we obtain sin2(n,(0y) — 6p) =0, ie., 0p € R(Hessy). Suppose that Hessy(0p) is
represented by the unit matrix up to a nonzero constant for 0y € R,. Then we may
suppose that Hess,(0p) is the unit matrix. In addition, we may suppose 0y = 0. Then
we may represent g as

1 R k—i_ i
g(x,y) = X SxTTY Y aixt Tyl
ey
Therefore the following holds:
1 0 0 k-2
Hess, (0) = (cos*20) (O i ) + (cos*=3 Osin 0) (k 2 6 ) + (sin? 0) M, (0),

where M, is a continuous, matrix valued function. Therefore we obtain cot2n,(0) =
—3az/(k —2). This implies 0 ¢ R(Hess,). Hence we obtain (a). Then for 0 € R,\
R(Hess,), the following hold:

d*g _

E9(00) = k(k — 2)§(00) # 0.

do
These imply u,(0p) =1 and c-sign,(0y) = —. Hence we obtain (b). O

We set Uy(e) :== (0 —¢,0+¢) for 0 e R and ¢ > 0. It is said that the sign of 0Oy €
R(Hess,) is positive (resp. negative) if there exists a positive number g > 0 satisfying

{0 —n,(0) = (00 —1,(00))}(0 = 60) >0 (resp. <0)
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for any 0 € Uy, (e)\{0}. Let n, . (resp. n, _) be the number of the root lines deter-
mined by the elements of R(Hess,) with positive (resp. negative) sign. Then referring to
[1], we obtain

ProrosITION 4.2.  For any 0 € R, the following holds:

1n,(0+27) —1n,(0) _ Mg g,
2n N 2 .

We shall prove
PropoSITION 4.3.  For 0y € R(Hess,), Oy is related if and only if the sign of 0Oy is

positive or negative. In addition, for a related root 0y € R(Hess,),
(@) if g(6p) #0, then the number

dyg(00)+1g~ adg
(0o) 5

is nonzero and the sign of Oy is given by the sign of 64(0p);
(b) if g(6y) =0, then the sign of 0y is positive.

34(60) : (0o, 00)

- dO*e00)+1

Proor. Suppose that for 0y € R(Hess,), Hess,(6y) is not represented by the unit
matrix up to any constant. Then (dd,/d¢)(0y,0p) # 0 holds. Therefore by the implicit
function theorem, we see that 7, is infinitely differentiable at 6y and satisfies

d" dmlg ddy
_ = (k-1 —2 — 12
0| = -0t /S0 (12
form=1,...,1,(0y). Therefore 0 is related if and only if the sign of 0y is positive or

negative. By (12), we obtain (a).
Suppose g(0y) = 0 for Oy € R(Hess,). Then noticing and [1T), we obtain (b).
Hence we obtain |Proposition 4.3. ]

If 0o € R(Hess,) is related, then the sign of @ is denoted by sign,(6).

PrROPOSITION 4.4.  Let Oy be a related root of g satisfying c-sign,(0o) = +. Then
0o € R(Hess,) and sign,(0o) = + hold.

PrROOF. Suppose that a related root 0 satisfies c-sign,(6p) = +. Then from (b)
of Cemma 4.1, we obtain 0y € R(Hess,). If g(6p) # 0, then the number 6,(6), which
appears in (a) of [Proposition 4.3, is positive ([1], [2]). Therefore we obtain sign,(6y) =
+. If g(6y) = 0, then [Proposition 4.3 says sign,(0h) = +. Hence we obtain Proposi-
tion 4.4. ]

REMARK 4.5. Referring to [2], we see that if 0y is a related element of R(Hess,)
satisfying c-sign,(0y) = —, then the condition sign,(6p) = + (resp. —) is equivalent to
each of the following:

(a) there does not exist (resp. exists) an umbilical point other than o on L(6));

(b) (d2G/d6%)(00)/(00) € (k(k —2), ) (resp. [0,k(k — 2)).

An element g € 2% is called harmonic if tr(Hess,) = 0 holds. If g is harmonic, then
g(0) = ccosk(0 — a) holds, where ¢, € R. Then we immediately obtain
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PROPOSITION 4.6. For a nonzero harmonic element g € 2%,

(@) the number of the root lines of g is equal to k;

(b) any root Oy € Ry is related and satisfies c-sign,(0y) = +;

() S, = holds.

5. Proof of Theorems 1.3 and 1.5.

Let F be an element of ./*>. We set wy := Dr(Grady) and

wr(p,0) := wr(pcos, psinb)
for (p,0) € (—py,py) x R, where py >0 satisfies {x?+ y? < p3} = Gr. We represent
wr as
_ Z pi@()
ik

where

 (3kp—4, if F—fr=0,
kr, if F— fr #0.

For any 6 € R, the following holds:

det(Hess,, (0)) dgr

(0)7 ifF—szov
(kF—1>dgF<> if F— fr #0,

where ar := Hp(0). Let 0y be an element of R, \R(Hess,,). Then noticing [Lemmal
4.1 and the implicit function theorem, we obtain

LEMMA 5.1.  There exist a neighborhood Vy, of (0,0p) in R* and a real-analytic
curve Cy, in Vy, through (0,00) satisfying

(a) Ce() :{(p70)6 Vﬁo;@F(p7e)/pk0 :0}’
(b) Cpy, is not tangent to the 0-axis at (0, 0).

ProOF OF THEOREM 1.3. Let F be an element of .«Z>. Then S,, = R,,\R(Hess,,)
holds. Suppose S,, = . Then by (b) of [Proposition 1.2, we obtain ind,(Gr) =
ind,(Gy,). In addition, by (b) of Remark 1.4, we obtain ind,(Gr) < 1. In the fol-
lowing, suppose S, # & and 0y € S,,. Let y be a continuous function on (0,p,) x R
such that for each (p,0) € (0, po) X R grad(pcos0, psm 0) is represented by uy (, 0
up to a constant. Noticing , we suppose ¢ =y on {(0,p,) x R} N Cy,.
Noticing 0y € R,,\R(Hess,,) and (a ) of [Cemma 4.1, we see that y; may be continuously
extended to {(0,py) x R} N V. Let ¢ be a positive number satisfying {0} x Uy, (e) <
Vo, We set

Ve o(0) = Y (0,0), 7p,(6) = ¢}, (0) — i ,(0)
for 0 € Up,(¢). Then by Euler’s identity, we obtain 0y — Y ,(00) € {nn},., and we see
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that there exists a number & € (0,¢) satisfying yr ,(0) # 0 for any 0 € Uy (e0)\{0o}. In
addition, noticing 6y € R,,\R(Hess,, ), we obtain

n/2, if yp ,(0)(0 — 0y) > 0 for any 0 € Up,(e0)\{0o},
Ir,0(00) = —n/2, if xf ,(0)(0 — 0o) < 0 for any 0 € Uy, (e0)\{0o},
0, if xr (0o +€0)xF (00 — &) > 0.

Therefore we obtain (a).
We may suppose ¢!Sp(p, 0o) = ¥,, ,(0o) = 6o. By (b) of Lemma 4.1, we obtain

{Yyr,0(0) = 03(0 — 00) > 0 (13)

for any 0 € Uy, (¢0)\{6o}. We set ¢§51F)7p(0) = élF)(p, 0). By together with
Euler’s identity, we obtain

0D,
¢

Therefore we see that ¢51F) , 1s differentiable at 0y and by (9), we obtain

(p. 00, 00) = kj-(krr — 1)p™r =G, (00)* # 0.

d d*g
=0 — oW _ Fp /k3 2%kr=25 (0n)3.
d@( ¢g1:7p) 6—to d02 ( 0) FP gF( 0)
Then from (b) of Lemma 4.1, we obtain
{04} ,(0)}(0 — 60) > 0 (14)

for any 0 € Uy, (e)\{0o}. By (13) together with (14), we obtain y,, ,(0)(0 —6p) < 0
for any 0 e Uy, (e0)\{0o}, and I}, ,(0o) = —n/2. Therefore by (b) of [Proposition 1.2
together with (a) of [Theorem 1.3, we obtain ind,(G,,) < ind,(Gp).

For 0 e R, set ny, ,:=#(S,, N[0,0+n)), and let {0,} ;" be a subset of S,, sat-
isfying 0,1 < 0, and (0,-1,0,)NS,, = & for n=1,...,n, . Then by (b) of [Lemmal
4.1, we see that for any ne{l,...,n, }, the number of the related roots in R,, N
(0,-1,0,) with positive critical sign is more than the number of the related roots in
Ry, N (0,-1,0,) with negative critical sign. Therefore by |Proposition 4.4, we obtain
ng .+ — Ny — = ng, 5. Then by |[Proposition 4.2, we obtain

(04 2) ~ 0, (0) _
2n =

Therefore by (b) of [Proposition 1.2 (a) of and (15), we obtain
ind, (Gr) < 1.
Hence we obtain (b). O

1 —ny, /2. (15)

REMARK 5.2. In [4], we studied the behavior of the principal distributions around
o on the graph Gy of F e &/0(2) satisfying wr = 0. In particular, we showed that for
an element F € &ff satisfying wp = 0, G is part of a surface of revolution such that o
lies on the axis of rotation. This implies ind,(Gr) =1 for F e &Z,z satisfying wp = 0.

ReMARK 5.3. In [3], we proved I, ,(0) = —n/2 for 0y € S, and g € Z2* (k = 3) in
another way different from that in the above proof.
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PrOOF OF THEOREM 1.5. Let Ség) be the set of the elements of S,, at each of which
Hess,, is the zero matrix, and set Sé,}) = SgF\Sg(S). For 0 e R and i € {0, 1}, set nﬁs =
#(Sé? N[0,0+=n)). Then ny, ;= ng(,?,)vs +”g(/lF),s holds. By [Lemma 4.1, [Proposition 4.2
and |[Proposition 4.4, we obtain

ny (0 + 27[) — 1y (0> 0 1
e o Sl ) )2 (16)

If Ir,(0h) <n holds for any HoeSg(g), then by (b) of [Proposition 1.2 —7n/2 <
Ir ,(00) =m/2 for any 0, € Sg(p and (16), we obtain ind,(Gr) < 1. Hence we obtain
SO 3. ]

6. Special Weingarten surfaces.
We shall prove

ProPOSITION 6.1.  Let F be an element of %<2> whose graph is a special Weingarten
surface. Then g is harmonic.

To prove |Proposition 6.1, we need lemmas.
For F e /%, we have set ar := Hr(0) (in Section 5). This implies Kr(0) = az.
We represent Kp —a% and Hr —ar as

Kr —ay := ZK}II), Hp —ap = ZHi(wi)a

i>1 i>1

where Kg) and Hl(,i) are elements of 2. Since Gr_;, is totally umbilical, we obtain
Kr_f, = a3 and Hp_j, = ap. Therefore we obtain

LemMMmA 6.2. For F e o/ %,
(@) (1) if arp =0, then the following holds:

K(l)— O, lf iE{l,...,2kF—5},
F | det(Hess,,), if i=2kr—4,

(i) if ap # 0, then the following holds:

co_ [0 Fiel k=),
F ar tr(Hess,, ), if i=kr—2,

(b) the following holds:

o [0 if ie{l,... kp—3),
F tr(Hessy, )/2, if i=kp—2.

Let w be an element of %(1) satisfying

ow 1 ow
CF,W = aFa—X(O’O) +§ a—Y(OvO) 7é 07

and set
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AF,W(-X7 y) = W(KF(xa y) - alzi'aHF(x7 y) - aF)‘

We represent Ar,, as Ap, =Y ;> A}i’)w, where Ag’)w is an element of #'. By [Lemmal
6.2, we obtain

LEMMA 6.3. The following holds:

A(l) _ 07 ifie{17"'7kF_3}7
Fow Cr,wtr(Hessy,), if i=kp—2.

PrOOF OF PROPOSITION 6.1. If the graph of Fe./‘* is a special Weingarten
surface, then by (1) together with [Lemma 6.3, we see that gr is harmonic. O

PROOF OF THEOREM 1.6. Since g is harmonic, from [Proposition 3.1 and (c) of
[Proposition 4.6, we obtain (a) of [Theorem 1.6. In addition, by (b) of [Proposition 1.2
together with (c) of [Proposition 4.6, we obtain

ind,(Gr) = ind,(G,,) = - . (17)

By [Proposition 4.4 together with (a) and (b) of [Proposition 4.6, we obtain (ng, ., ng, )
= (kr,0). Therefore by [Proposition 4.2 together with (17), we obtain (b) of
1.6. O
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