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Meromorphic functions sharing three values
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Abstract. In this paper, we prove a result on uniqueness of meromorphic functions
sharing three values counting multiplicity. As applications of this, many known results
can be improved. Examples are provided to show that the results in this paper are best
possible.

1. Introduction and main results.

In this paper, by meromorphic function we shall always mean a meromorphic func-
tion in the complex plane. We adopt the standard notations in the Nevanlinna theory
of meromorphic functions as explained in [I]. For any nonconstant meromorphic func-
tion f(z), we denote by S(r,f) any quantity satisfying S(r, /) = o(T'(r, f)) for r —
except possibly a set of r of finite linear measure. Let k be a positive integer, we denote
by Ny (r, f) the counting function of poles of f with multiplicity < k. We further

define (see [2])
N(Z(rvf) :N(I’,f) _Nl)(r7f)>

N(Z(r7f) :N(r,f)—Nl)(r,f),
N(3(r7f) :N(r,f)—Nz)(l’,f).

Let f and g be two nonconstant meromorphic functions and let a be a finite com-
plex number. If f and g have the same a-points with the same multiplicities, we say
that f and g share the value ¢« CM (counting multiplicity) (see [2]). If 1/f and 1/g
share the value 0 CM, we say that f and g share oo CM.

M. Ozawa [3], H. Ueda [4], G. Brosch [5], H. Yi[6], [7], [8], S. Ye [9], P. Li[10], Q.
Zhang and other authors (see [2]) dealt with the problem of uniqueness of mero-
morphic functions that share three distinct values. In 1995, H. Yi proved the following
result, which is an improvement of some theorems given by H. Ueda [4], H. Yi [6] and

S. Ye [9]

THEOREM A (see [8, Theorem 4]|). Let f and g be two distinct nonconstant mero-
morphic functions sharing 0,1 and oo CM, and let a (#0,1) be a finite complex number.

If
1
N(V,]Ta)?ﬁT(V,f)ﬂLS(V,f), (1.1)
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then a is a Picard value of f, f is a fractional linear transformation of g and one of the
following three cases will hold:

(i) oo is a Picard value of f, 1 —a and oo are Picard values of g, and (f —a)-
(g+a—1)=a(l —a);

(i) O is a Picard value of f, a/(a—1) and 0 are Picard values of g, and f +
(a—1)g=a

(i) 1 is a Picard value of f, 1/a and 1 are Picard values of g, and f = ag.

In this paper, we improve the above theorem and obtain the following result.

THEOREM 1.1. Let f and g be two distinct nonconstant meromorphic functions shar-
ing 0,1 and oo CM. If there exists a finite complex number a (#0,1) such that a is not
a Picard value of f, and

1
Nl)(’%]Ta)?&T(”yf)‘i‘S(",f), (12)
then
1 k—2
Moty ) = T 4 S0, (13)
and one of the following cases will hold:
. e(k"v‘l)y —1 e—(k+1)y -1 ) (d _ 1)k+1*S ss(k +1-— S)k+lfs
2) {:ﬁ 9= 1 M T S e
a F# —;— ;
.. . e’ — 1 B e’ — 1 ) i s Ss(k—{— 1 — S)k+lfs
(11) f — e(kJrl)y _ 17 g = ef(k+1)7 — 1, Wlth [4) (1 — Cl) = (k + 1)k+l and
s
a# ;
Pt WY o ot W G MR (e B WA
W) S = w1 = @ M T T e
s
a7 k+1—5s’ . )
. ek —1 e —1 ok (a— 1) s%(k—s)""
(iv) f_/w—_la Q—W—,w_l, with 7" #0,1 and T 7 :
B e’ —1 B e %7 —1 . B 5 s Ss(k_s>k7s.
V) S =T 9= e With #' # 01 and Par(l—a)f ™ = ———:
) B e’ —1 B e —1 . S (—ia)s B ss(k—S>k7S.
M) = ey 1 9 (et W A # O Land =

where y is a nonconstant entire function, s and k (>2) are positive integers such that s
and k + 1 are mutually prime and 1 <s <k in (i), (i) and (iii), s and k are mutually
prime and 1 <s<k—1 in (iv), (v) and (vi).

From [Theorem 1.1, we immediately obtain the following corollary:

CorOLLARY 1.1. Let f and g be two nonconstant meromorphic functions sharing
0,1 and oo CM, and let a (#0,1) be a finite complex number such that a is not a
Picard value of f, and Ny (r,1/(f —a)) # T(r,f)+S(r, f). If for any positive integer
k (22),
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Nl)(r7f1 )7'é kzzT(r7f)+S<r7f)7

—d

then f =g.

2. Some lemmas.

LEMMA 2.1. Let [ be a nonconstant meromorphic function, and let a; and a, be two
distinct values in the extended complex plane, and as be a meromorphic function satisfying

T(r,a3) =S(r,f) and a3 # a; for j=1,2. If

N(r,]%al) +N(r,j%az) =S(r, f), (2.1)

then
M) = TO) 450010 22)

Proor. Using (2.1), by the second fundamental theorem for small functions we
have

T(r,f) < N(r, ) + S(r, f). (2.3)

Thus,

N(rt ) =70 + 500 1) (2.4

Obviously,

N(r, ]%613) + %N(z <rj%a3> < N<r, : 3) <T@ f)+S(r[f). (2.5)

From (2.4) and (2.5) we obtain

1
Nplr,—— | =S(r, f). 2.6
o(rta) = 5t1) 2.6
Again from (2.4) and we get [2.2). n

LemMA 2.2. Let f and g be two distinct nonconstant meromorphic functions sharing
0,1 and co CM. If f is a fractional linear transformation of g, then for any finite
complex number a (#0,1), either a is a Picard value of f, or

Wi (rs ) = 70 + 5001

PrOOF. By assumption, there is a fractional linear transformation w = L(u) such
that f = L(g). Assume that @ is not a Picard value of f. By virtue of [Lemma 2.1, it
suffices to show that f have two distinct Picard values. Assume that f has at most one
Picard values. Then, two of the values 0,1 and oo are not Picard values of f, and the
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rest b of them is a Picard value, because the values among 0, 1, oo which are not Picard
values of f are fixed points of L(u) and L(u) (# u) has at most two fixed points. Set
c:= L(b). Obviously, ¢ # b and ¢ is a Picard value of f, because b is a Picard value
of g too. This is a contradiction. This completes the proof of [Lemma 2.2 O

LemMmA 2.3 (see [2, Lemma 4.5] or [13, Lemma 5]). Let f and g be two distinct
nonconstant meromorphic functions sharing 0,1 and oo CM, and let a (#0,1) be a finite
complex constant. Then

N(3 (V,ﬁ) -|—N(3 (V,g i a) = S(r, f).

Let / and g be two distinct nonconstant meromorphic functions sharing 0,1 and oo
CM. We use Ny(r) to denote the counting function of the zeros of f — g that are not

zeros of f, f—1 and 1/f (see [8] or [II]).

The following lemma is essentially due to Q. Zhang.

LemmaA 2.4 (see [11, Proof of Theorem 1 and Theorem 2|). Let f and g be two
distinct nonconstant meromorphic functions sharing 0,1 and oo CM, and let Ny(r) #
S(r,f). If f is a fractional linear transformation of g, then

NO(F):T(V,f)—l—S(V,f).

If f is not any fractional linear transformation of ¢, then

1
NO(r) < ET(raf>+S(raf>a
and [ and g assume one of the following relations:
) e(k+l)y -1 e—(k-i—l)y -1
0 f=e—>9=—7—;
e’ — 1 e’ —1
. e —1 e —1
(i) f=m; 9= 1
e —1 e —1

(i) f= =1 9= s 1

where y is a nonconstant entire function, s and k (>2) are positive integers such that s
and k + 1 are mutually prime and 1 < s < k.

REMARK. Let f be a nonconstant meromorphic function. By the definition of
S(r, f), there is a set E of r of finite linear measure such that

S(r,f)=0(T(r,f)) (r— oo,r¢E). (2.7)

In [11], Q. Zhang first proved the conclusion of [Lemma 2.4. Using the conclusion
of Lemma 2.4, Q. Zhang proved the following theorems:
Theorem 1 in [1I]. Let f and g be two distinct nonconstant meromorphic func-
tions sharing 0,1 and oo CM. If
- N()(V) 1

lim ,
g T ) 2
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where E is a set of r of finite linear measure with [2.7), then f is a fractional linear
transformation of g.
Theorem 2 in [1I]. Let f and g be two distinct nonconstant meromorphic func-
tions sharing 0,1 and oo CM. If
= No(r)

0 < fim
ar T f)

1
< a0
2
where E is a set of r of finite linear measure with [2.7), then f is not any fractional

linear transformation of g, and f and g assume one of the three relations in [Lemma 2.4l

LeEMMA 2.5 (see [14]). Let s (> 0) and t are mutually prime integers, and let ¢ be a
finite complex number such that c¢* = 1, then there exists one and only one common zero of
®*—1 and o’ —c.

LemMMA 2.6 (see [15]). Let f be a nonconstant meromorphic function, and let

)4 q
F= Zakfk/ijff
k=0 j=0

be an irreducible rational function in f with constant coefficients {ai} and {b;}, where
a, #0 and by, #0. Then

T(r,F) =dT(r,f)+S(r, ),
where d = max{p, q}.
Lemma 2.7 (see [16]). Let
P(w) = 0" 4 aw™ + b, (2.8)

where m and n are positive integers such that n > m, a and b are finite nonzero complex
numbers.
(1) The algebraic equation P(w) =0 has no roots with multiplicity > 3;

(i) 1

pr—m 2 (=1)"'m™(n—m)"™"

2.9
- - 7 (29)
the algebraic equation P(w) =0 has n distinct simple roots, no multiple roots;
(i) If n and m are mutually prime and
n—m _1 n_ . m _ n—m
b :( )'m™(n — m) | (2.10)

a”’ n"

the algebraic equation P(w) = 0 has n — 1 distinct roots, where n — 2 roots are simple, one
is double.

Proor. (i) The conclusion is obvious, we now omit it.
(i) Let

Plw) =" +aw™ + b, (2.11)
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then
P'(0) = no" ' + amw™ (2.12)
If wy is a double root of P(w) =0, then if and only if
P(w) = P'(w) = 0.
Combining and (2.12) we can easily get

nb bm
m_ M . 2.13
@0 aln —m)’ e —— (2.13)

Since (wf")" = (w§)”, from we have
<_7”‘b ) :( bm ) , (2.14)
a(n —m) n—m

bnfm _ (_l)ﬂmm(n _ m)"—m (215)

a” n"

which can be rewritten as

accordingly, if P(w) = 0 has n distinct simple roots, then P(w) = 0 has no any multiple
root, if and only if holds.

(iii) Let wp be a double root of P(w) = 0, using proceeding as in (ii), we can get
(2.13) and (2.14). On the other hand, since n and m are mutually prime, there exist one
and only one pair of integers s and ¢ such that

ns—mt=1 (0<s<m0<t<n). (2.16)

From (2.13) and (2.16) we can easily have

o — oM — bm S‘ B nb !
0= %0 - \n—m aln—m)) ’

which implies that P(w) =0 has one and only one double root. O

LemMmaA 2.8 (see [8, Lemma 1]). Let f and g be two distinct nonconstant meromor-
phic functions sharing 0,1 and oo CM, then there exist two entire functions o and [ such
that

e*—1 e —1

where ef £ 1, e* £ 1 and e/~ # 1, and
T(r,g) + T(r,e*) + T(r,e) = O(T(r,f)) (r¢E), (2.18)
where E is a set of r of finite linear measure.

LemMmA 2.9 (see [8, Lemma 3]). Let o be a nonconstant entire function, then

T(r,0") = S(r,e%). (2.19)
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LemmAa 2.10 (see [11, Lemma 6)). Let fi and f, be two nonconstant meromorphic
functions satisfying

Then either
N()(V, laﬁaﬁ) = S(}’)

or there exist two integers p and ¢ (|p|+|q| > 0) such that

P £d —
fih =l

where Ny(r,1; fi, f2) denotes the reduced counting function of the common 1-points of f
and fo, and T(r) =T(r, i)+ T(r, f2), S(r) =0(T(r)) (r — o0,r ¢ E), E is a set of r of
finite linear measure.

LemmA 2.11 (see [8, Lemma 4]). Let f and g be two nonconstant meromorphic
functions sharing 0,1 and co CM. If f % g, then

N(z(V,f)ﬂLN(z(Va%)JFN(z(Va >=S(F7f)-

1
f—1
3. Proof of Theorem 1.1.

If f is a fractional linear transformation of g, by [Lemma 2.2l we have that either
a is a Picard value of f, or Ny(r,1/(f —a)) = T(r,f)+ S(r,f), which contradicts the
assumption of Theorem 1.1. Thus, f is not a fractional linear transformation of g. By
Theorem A we have

|
N(V,m)ZT(V,f)‘f’S(V,f) (31)
From and (3.1) we obtain
1
N(z(r,f_a);éS(r,f) (3.2)
By [Cemma 2.3,
1
Na(r sty ) = S6.1) (33)
Combining (3.2) and (3.3) we get
— 1
Ne (r» T a a) # S(r, ) (3.4)

We discuss the following two cases.
Case 1. Suppose that
N()(V) 7 S(V,f)
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By [Lemma 2.4 we know that f and g assume one of the three relations in [Lemma 2.4l
We discuss the following three subcases.

SuBcAsE 1.1. Suppose that f and ¢ assume the form (i) in Lemma 2.4. Thus,

e(k—l—l)y -1 B e—(k-i—l)y -1
er—1 0 T w1

f= : (3.5)
which assume the form (i) in [Theorem 1.1. By [Lemma 2.3, we know that there exists
one and only one common zero of @**! — 1 and w*® — 1. By [Lemma 2.6, we have from

(3.5)
T(r,f)=kT(r,e”)+ S(r,f). (3.6)
From (3.5) we have

kD7 — qes 4 (a — 1)

f—a= : (3.7)

e’ — 1

Let
P(®) = o — aw* + (a — 1), (3.8)

C0k+1 — am® + (a _ 1)

() = . (3.9)

w’ —1

If a=(k+1)/s, from (3.8) we know that w =1 is a double root of P(w) =0. Again
by [Lemma 2.7, the equation P(w) =0 has k — 1 distinct simple roots. From (3.9) we
know that Q(w) =0 has k distinct simple roots. From [3.6) and [3.7),

N (1) = KT 4 S0 = T0.1) +50.1),

which contradicts [1.2). Thus, a # (k+1)/s and w =1 is a simple root of P(w) = 0.
If

(Cl B l)k-i-l—s Ss<k+ 1 — S)k+l—s
ak+1 (k—|— 1)k+1

by [Lemma 2.7, we know that Q(w) =0 has k distinct simple roots, which is also a
contradiction. Thus,

altl - (k+ 1)k+1

By [Cemma 2.7, we know that Q(w) = 0 has k — 2 distinct simple roots and one double
root. From [3.6), and (3.9) we obtain

No <r, ﬁ) _ % T(r, f) + S(r, f). (3.10)

Combining (3.1) and (3.10) we get [1.3).
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SUBCASE 1.2. Suppose that f and g assume the form (ii) in [Lemma 2.4. Thus,

e’ —1 eV —1
f:ZHWTT’gzgﬁﬂvjp (3.11)

which assume the form (i) in [Theorem 1.1. By [Lemma 2.6, we have from (3.11)
T(r,f)=kT(r,e’)+ S(r, f). (3.12)
From (3.11) we have

a(e®t7 — (1/a)e” — (a —1)/a)
etk+1)y 1

f—a=-— . (3.13)

In the same manner as Subcase 1.1, we have a #s/(k+1) and a*(1 —a)""'™ =
s5(k +1 =) /(k + 1)**! and can obtain [1.3).
SUBCASE 1.3.  Suppose that f and g assume the form (iii) in [Lemma 2.4, Thus,

e’ —1 e —1

f - e~ (k+1=s)y _ 1’ g= elkt+l=s)y _ 1” (314)
which assume the form (iii) in [Theorem I.I. From (3.14) we have
(k+1)y _ (k+1—-s)y _
e +(a—1)e a
f—a= | — olk+1=s)7 (3.15)
k+1

In the same manner as Subcase 1.1, we have a # —s/(k+ 1 —s) and (—a)’/(1 —a)"" =
s5(k 4+ 1 — )" /(k + 1), and can obtain [1.3).

Casg 2. Suppose that
No(r) = S(r, /). (3.16)

Noting f and g share 0,1 and oo CM, by we have [2.17) and [2.18). From
(2.17) we have

T(r,f) < T(r,e*) + T(r,e?) + O(1). (3.17)
From and we have
T(r,o')+ T(r,B") = S(r, f). (3.18)

Again from we get

e* —aef +(a—1)
ef —1 '

f-a= (3.19)

Assume that T'(r,e#) = S(r, f). Noting 0 and oo are Picard values of e* by [Lemmal
2.1 we have from (2.17) and |3.18)

N (1 2y ) = TO) 4 50,
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which is a contradiction. Thus, T(r,ef) # S(r,f). Similarly, we have T(r,e*) #
S(r,f) and T(r,e*P) # S(r, f). Particularly, none of e* ef and e*# are constants.
From (2.17) we obtain

(e* = 1)(1 — &)

f-g= o . (3.20)

We use Nj(r) to denote the counting function of the common zeros of e* —1 and
e# — 1. From [3.20), the following formula is obviously

No(r) = Ny (r)+ S(r, f).
From this and (3.16),
Ny (r) = S(r, f). (3.21)

Let zo be a multiple zero of f —a, but not a zero of o/, and B’ —o’. From
(3.19) we obtain

e —qef) L4 —1=0 (3.22)
and
o (z0)e ) — ap’(z0)e? ™) = 0. (3.23)
From (3.22) and (3.23) we have

oy =BG e (- a)(z)
T e © a2 52
Let
_ (B —a)e _a(p —o)e’
N () (P 52
Set
T(r)=Tr, i)+ T, ), SFr)=o0(T(r) (r— oco,r¢E), (3.26)
E is a set of r of finite linear measure. From [3.17), [3.18], (3.25) and we get
S(r, )= S(r). (3.27)
From (2.19), (3.18), (3.25) and we have
N(r,ﬁ)+ﬁ(r,%)=$(r) (j=1,2). (3.28)
j
From (3.24) and (3.25), we have fi(z0) =1, fa(z0) = 1. Thus,
Ne(rg) = Mol 1 i f) 4 S0, (3.29)

where Ny(r,1; f1, f2) denotes the reduced counting function of the common 1-points of

f1 and f,. From (3.4), (3.27) and [(3.29) we obtain
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No(r, 1; f1, f2) # S(r). (3.30)

Noting and [3.30) and using [Lemma 2.10, we know that there exist two integers
p and ¢ (|p|+ |¢| > 0) such that

iA=L (3.31)

Noting T'(r,e*) # S(r, f) and T(r,e?) # S(r, f), from (3.25) and we have p # 0
and ¢ # 0. From (3.25) and (3.31), we obtain

pOH’qﬂ: (l_a)ﬂ/ ? (1_a)a/ ! 332
e - ﬁ/_(x/ a(ﬁ,—a/) ? ( * )
by logarithmic differentiation, we can get
Vo q+p /B (o
= — . 3.33
P = = ) \ B (3-33)
If «'/B" # —q/p, from we have
Y
L= (a'/B)
By integration, we obtain
/
e“(l —%) =, (3.34)
where ¢; is a nonzero constant. From we get
1,0
, de
b= e* —cp
Again by integration, we have
ef = c(e® —cr), (3.35)

where ¢, is also a nonzero constant. From (3.35) we know that ¢ is a Picard value of
e”, which is impossible. Thus,

~

% = —% (3.36)
and hence
pa’ +gp = 0.
By integration, we obtain
po+gp = co, (3.37)

where ¢y is a finite constant. Noting ¢*# is not a constant, from [[3.37] we know that
p # —q. Without loss of generality, from we may assume that p and ¢ are two
integers such that p and ¢ are mutually prime and ¢ > 0. Let y =uo/g. From this,

(2.17) and we have
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e? —1 e " —1

= —,16—177 — 1 ’ g = —<1/ﬂ,)el77 — 1 s (338)

where 1 = %/ is a nonzero constant. Obviously, if and only if 2 =1, @9 — 1 =0 and
o —1=0 have a common root. Noting N;(r) = S(r, f), from (3.38) we get

AT #£0,1. (3.39)
Noting ¢ > 0 and p # —¢, we discuss the following three subcases.

SuBcask 2.1.  Suppose that ¢ > —p > 0. Setting k = ¢ and s = —p, from (3.38) we
get

ky _ —ky _
f:xeeT—lr 9= (1/8/1)ew1— ik (340)
which assume the form (iv) in [Theorem I.1. From we have
AR #0,1. (3.41)
By Lemma 2.6, we have from
T(r,f)=kT(r,e’)+S(rf). (3.42)
From we have
f_“:eky_agjjl(a_ 1). (3.43)
Let
Riw) =2~ “j;"j 1(“ )} (3.44)
It
(a— 1D 55k — )<
AKak 7 k* ’

by Lemma 2.7, we know that R(w) =0 has k distinct simple roots, which is a con-
tradiction. Thus,
(a— 1D s5(k—s)

= . 4
2Kak Kk (3.43)

By [Lemma 2.7, we know that Q(w) = 0 has k — 2 distinct simple roots and one double
root. From {3.42), (3.43) and [3.44) we obtain

No (r, j%a) _ % T(r, f) + S(r, £). (3.46)

Combining (3.1) and (3.46) we get [1.3).

SUBCASE 2.2. Suppose that —p > ¢ > 0. Setting k = —p and s = ¢, from (3.38) we
get
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e — 1 e —1
= = 4
Jekor— 1 YT e — 1 (347)
which assume the form (v) in [Theorem 1.1. From we have
AP #0,1. (3.48)
By Lemma 2.6, we have from [3.47)
T(r,f)=kT(r,e’)+ S(r,f). (3.49)
From we have
_ —al(e" — (1/(ak))e” + (1 — a)/(al))
f—a= ok ] : (3.50)
In the same manner as Subcase 2.1, we have
S s —s Ss(k — S>k_s
2a’(1 = a)* =——F (3.51)

and can obtain [1.3).

SuBcase 2.3. Suppose that p > 0. Setting k = p+¢ and s =g, from (3.38) we
get

e — 1 e 1
— _— = 3.52
S = w1 9T e =1 (3:52)
which assume the form (vi) in [Theorem I.1. From we have
2 #0,1. (3.53)
From (3.52) we have
ek — (1 = a)e*) — a),
f—a= P . (3.54)
In the same manner as Subcase 2.1, we have
(—ia)® sk —s5)*
_ , 3.55
and can obtain [1.3).
is thus completely proved.

4. On two results of P. Li.
In 1998, P. Li proved the following result:

THEOREM B (see [10, Theorem 1]). Let f and g be two distinct nonconstant mero-
morphic functions sharing 0,1 and oo CM. Suppose additionally that f is not a frac-
tional linear transformation of g and that there exists a finite complex number a (#0,1)
such that



160 X.-M. L1 and H.-X. Y1

T, f) SCN(z(V, >+S(r,f), (4.1)

1
f—a
here ¢ (> 0) is a constant, then there exist a nonconstant entire function )y, a nonzero
constant J. and two integers t (> 0), s which are mutually prime, such that

e” — 1 e —1

- (4.2)

S = e =1 YT e =1

(1 . a)s-i-t B j}(1 o g)s—‘rt

(4.3)

at 0"
with 0 = —t/s # 1, a.

From [Theorem 1.1, we can obtain the following result, which is an improvement
and supplement of Theorem B.

THEOREM 4.1. Let f and g be two distinct nonconstant meromorphic functions shar-
ing 0,1 and oo CM. If there exists a finite complex number a (#0,1) such that

— 1
N(2(77JTa) #S(V,f% (44)
then the conclusions of Theorem 1.1 hold, and
N r; —lT(rf)—i-S(rf) (4.5)
e\n7—g) kT f). ,

Proor. From (4.4) we know that a is not a Picard value of f, and Ny)(r,
1/(f —a)) # T(r,f)+ S(r, ). By [Theorem 1.1, we immediately obtain the conclusion
of Mheorem 4.1. O

In 1998, P. Li proved the following result:

THEOREM C (see [10, Theorem 2|). Let f and g be two distinct nonconstant mero-
morphic functions sharing 0,1 and oo CM. Suppose additionally that f is not a frac-
tional linear transformation of g and that there exists a finite complex number a (#0,1)
such that

1
N1)<r7m>:S(raf>7 (46)

then f and g assume one of the following forms:

) e —1 e —1 h

(1) f_ey_lpg—e_y_l,Wlt a—Z’

.. e —1 e —1 ) 3

(11) f:m, QZW—_M_I, with a = =3 and A :1,

e’ —1 e’ —1 . 4

(iii) f_e3V4—1’ 9= =1 with a=3;

e — 1 e —1

. . B 1 .
(lV) f—m: Q—W, with a——3 and .- =1;
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e — 1 e —1 . 1
(V) f_e_y_lag_ eV—l’Wllha_Z’
) e’ —1 e’ —1 ) o
(vi) fzie_zy_l,gziezy_l,wzlh a=4
. e —1 e —1 ) ) 242
(Vll) :m, QZW’ with ﬂ #1 andai :4(61—1),
(viii) f e P S with 2 # 1 and 4a(l —a)l = 1;
e — U T e -1 0
. e’ —1 e’ —1 . l1—a 3 S
(IX) f—m, Q—W, Wllh i;é 3 Clnd (1_a> +4ai—0,
where y is a nonconstant entire function.
From [Theorem 1.1, we can obtain the following result.
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THEOREM 4.2. Let f and g be two distinct nonconstant meromorphic functions shar-
ing 0,1 and oo CM. If there exists a finite complex number a (#0,1) such that a is not

a Picard value of f, and

N () ST )4 50,

1
N]) <r7m) :O,

and f and g assume one of the following forms:

where u < 1/3, then

W =St = i a=:
3 -3

(i) f:;ij, g:z_ziii, with a = —3:

(ii) f:%, g:%, with azg;

(iv) f:ZZ%, gzi_z%, with a:—%;

(v) ::j_ 11, g:e;y__ll, with a:%;

(vi) f:;zy%ll, 9:2_2:7:11, with a = 4;

(vii) :/iyy—:ll, g:(lj)/_;z__yl_l, with 2* # 1 and a*)* = 4(a — 1);
(viii) f:;;—__ll, g:(l/i_):—;yl_l, with 4 # 1 and 4a(1 — a)h = 1;
(ix) f:};iyi__ll, g:(l%%, with 2 # 1 and (1 — a)* + 4a) = 0;

where y is a nonconstant entire function.

(4.7)

(4.8)
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Proor. By [Theorem 1.1 and [4.7], we know that the conclusions of
1.1 hold, where k =2. From this, we immediately obtain the conclusion of

4.2. ]
REMARK. Obviously, [Theorem 4.2 is an improvement of [Theorem O. It is easy to
show that (ix) in Theorem C and (ix) in are equivalent to each other. We

next prove that (iv) in Theorem C and (iv) in are equivalent to each
other. In fact, in (iv) of Theorem C, 2> = 1. From this we obtain A =1 or A= —I.
When /=1, from (iv) in Theorem C we obtain (iv) in [Theorem 4.2. When 4= —1,
using y+7i in place of y in (iv) of Theorem C, we obtain (iv) in [Theorem 4.2
Similarly, we can prove that (ii) in Theorem C and (ii) in are equivalent to
each other.

ExampLE 4.1. Let f(z) =e¥ +e¥ +e"+1, gz) =e ¥ +eF+e“+1 and a=
(20 + 4v/2i)/27. Then it is easily verified that f and g share 0,1 and oo CM, and

—da

W (g ) =370 4 51

Moreover, f and g do not assume one of the forms in [Theorem 4.2l This illustrates
that the assumption u < 1/3 in is best possible.

5. Some result of entire functions.

In 1995, H. Yi proved the following result.

THEOREM D (see [8, Theorem 1]). Let f and g be two distinct nonconstant mero-
morphic functions sharing 0,1 and oo CM, and let a (#0,1) be a finite complex number.

If

N(r,J%a);éT(r,f)—l—S(r,f) (5.1)
and
N(r, f) # T(r, f)+ S, f), (5.2)
then a and 1 — a are Picard values of [ and g respectively, and also oo is so, and
(f —a)(g+a—1)=a(l—a). (5.3)
From [Theorem 1.1, we immediately obtain the following result.

THEOREM 5.1. If; in addition to the assumptions of Theorem 1.1,

N(V,f):S(V,f), (54)

then

) R (O P ) (5:3)

and one of the following two cases will hold.
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Q) f=e4elDr 4.1 g=e® pe 4o 1) with (a— 1) /a" =
K5/ (k+ D) and a # k + 1;

(i) f=—e"—ekDr—..._er g=—eh—ekDr_..._o with (—a)*/
(1—a)"" =kk/(k+ D" and a # —k;
where y is a nonconstant entire function, k (>2) is a positive integer.

From we immediately obtain the following result.

THEOREM 5.2. If, in addition to the assumptions of Theorem 4.1,

N(r, f) = S(r. f), (5.6)
then the conclusions of Theorem 5.1 hold.
From we immediately obtain the following result.

THeOREM 5.3. [If, in addition to the assumptions of Theorem 4.2,

N(r,f) <oT(r,f)+ S(r, f), (5.7)

where v < 1/2, then

1 _
Nl)(rum):()a N(raf):()a (58)
and one of the following two cases will hold.

() f=e+e'+1, g=e2+e7+1, with a=3/4;

(i) f=—e¥—e’, g=—e ¥ —e77, with a=1/4;

where y is a nonconstant entire function.

ExamMPLE 5.1. Let f(z) = (e¥* —1)/(e* —1), g(z) = (e —1)/(e* —1) and
a=—3. Then it is easily verified that f and ¢ share 0,1 and oo CM,
Ny(r,1/(f —a)) =0 and

N 1) =5 T f) + 50, /).

Moreover, f and g do not assume one of the forms in [Theorem 5.3. This illustrates
that the assumption v < 1/2 in [Theorem 5.3 is best possible.

THEOREM 5.4. Let f and g be two distinct nonconstant meromorphic functions shar-
ing 0,1 and oo CM. If there exists a finite complex number a (#0,1) such that

Ny (r,ﬁ) <uT(r,f)+ S f), (5.9)
N(r, f) <oT(r, )+ S(r, f), (5.10)

and
M (ot 2) # T0) + 500), (5.11)

where u < 1/3 and v < 1/2, then
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1
Ny (r, m) =0, (5.12)

and one of the following three cases will hold:
. 1 n _ 1 1
(1) (f_§>(g_§>21’ with a=z; .
i) f=e¥+e'+1, g=e ¥ +e 7 +1, with a=7;

1
(iii) f=—e¥—e’, g=—e2 —e77, with a= 7
where vy is a nonconstant entire function.

Proor. We discuss the following two cases.

Case 1. Suppose that a is a Picard value of f. By Theorem A, we know that f
and g assume one of the three relations in [Theorem Al We discuss the following three
subcases.

SuBcAsE 1.1.  Suppose that f and g assume the relation (i) in [Theorem Al From
this we obtain,

(f —a)(g+a—1)=a(l —a), (5.13)

and 1 —a and oo are Picard values of g. If a # 1 —a, by we have

1
V() = 100+ 500),
which contradicts (5.11). Thus ¢ =1 — a, and hence @ = 1/2. From this we obtain the
form (i) in Theorem 5.4l

SuBcASE 1.2.  Suppose that f and g assume the relations (ii) in [Theorem Al From
this we obtain, 0 and a are Picard values of f. By we have

Nl)(raf) = T(I",f) —|—S(l”,f),
which contradicts (5.10).

SuBcase 1.3. Suppose that f and g assume the relations (iii) in Theorem A.
From this we obtain, 1 and a are Picard values of f. By we have

Nl)(raf) = T(V,f) +S(V,f),
which contradicts (5.10).

CASE 2. Suppose that a is not a Picard value of /. Using [Theorem 3.3, we obtain
the forms (ii) and (iii) in [Theorem S5.4. (]

REMARK 5.1. It is clear that the conclusions of [Theorem 5.1, [Theorem 5.2,
(Theorem 5.3 and [Theorem 5.4 hold when f and g be two distinct nonconstant entire

functions.

ExampLE 5.2. Let f(z) =2(e“+1), g(z) =—(e“+1) and a=2. Then it is
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easily verified that f and g share 0,1 and co CM, Ny(r,1/(f —a)) =0, N(r,f) =0,
and

M (o) = Tr0) + S00)

Moreover, f and g do not assume one of the forms in [Theorem 5.4 This illustrates
that the assumption (5.11) in [Theorem 5.4 is best possible.

6. An application of the results in this paper.

Let & be a nonconstant meromorphic function, and let S is a subset of distinct
elements in extended complex plane. Define

E(S) = U {z|hz) —a =0},

aesS

where each zero of /(z) —a = 0 with multiplicity m is repeated m times in Ej,(S) (see
17)).

In 1982, F. Gross and C. Yang asked whether there exist two sets S| = {a;,a»}
and S, = {b1,b,} such that for any two nonconstant entire functions f and ¢ the con-
ditions E;(S;) = E,(S;) (j=1,2) imply f =g or not. F. Gross and C. Yang (see [18])
studied the question for the case a; +ay = b; + b,. In 1990, H. Yi (see ) proved the
following Theorem which is an extension and correction of the result of Gross and
Yang.

THeOREM E (see [19]). Let S| = {a1,ay} and Sy = {b1,b2} be two pairs of distinct
elements with a; + ay = by + by = ¢ but ayay # bib,. Suppose that there are two non-
constant entire functions f and g of finite order such that E;(S;) = E,(S;) for j=1,2.
Then f and g must satisfy exactly one of the following relations:

0 f=g9

(ll) f+gza1+a2,

(i) (f —¢/2)(g —¢/2) = +((a1 — a2)/2)*, where ¢=a, +ar. This occurs only
for (ay — a2)2 + (b — b2)2 =0.

(iv) (f—a)(g—ax) = (=)™ (a1 — a2)* for j,k=1,2. This occurs only for
3(611 — Clz)z + (bl — b2)2 =0.

v) (f=b)lg—bi) = (=)™ (by — by)* for j.k=1,2. This occurs only for
(a1 — a2)2 + 3([)1 — b2)2 =0.

In 1998, Y. H. Li and C. T. Zhou and independently P. Li proved the
following theorem, which is an improvement and extension of Theorem E.

THEOREM F. Let S| = {ai,a;} and S, = {b1,b,} be two pairs of distinct elements
with ay + ay = by + by but ajay # b1b,, and let S3 = {o0}. Suppose that f and g are two
nonconstant meromorphic functions satisfying Er(S;) = E,(S;) for j=1,2,3. Then the
conclusions of Theorem E hold.

The proofs of Theorem F are long in and [20]. Now we give a simple proof of
Theorem F.
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Let

o U~- c/2)? . (a1 — a2)/2)? G- (g —c/2) - (a1 — a2)/2)? . 6)
(b1 = 02)/2)" = (a1 — @2)/2) (b1 = 02)/2)" = (a1 — @2)/2)

where ¢ =a; +ay=b;+b,. If F =G, from (6.1) we have

ng or f—i—gzal—i—az, (62)

which assume the forms (i) and (ii) in Theorem H.  Next, suppose that F # G. From
E/(S;) = Ey(S;) (j=1,2,3) we know that F and G share 0,1 and oo CM. From (6.1),
we have Ny(r,F)=0. Again by Lemma 2.13 we obtain

N(r,F)=S(r,F). (6.3)
Set

((ar — az)/2)2
(b1 = £2)/2)° = (@1 = a2) /) (6.4)

From (6.1) we have

o (f —¢/2)? o (9= c/2) |
(b1 = b2)/2)* = (a1 — @2)/2)* (b1 = b2)/2)* = (a1 — @2)/2)°
(6.5)
From (6.5) we obtain
Nl)(nFl—a) :0, N1)<F,G1—a> = 0. (66)

Noting (6.3) and [6.6), by [Theorem 5.4 we know that one of the three cases in
5.4 holds. From this we obtain the form (iii), (iv) and (v) in Theorem F.
This completes the proof of Theorem F.
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