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Abstract. The Ruelle invariants for non-singular flows of a 3-dimensional manifold
and diffeomorphisms of the disc are described by invariant fiber measures, which are
families of probability measures on the fibers of the projectivized bundle invariant under
the holonomies among almost all fibers. The dynamical properties of invariant fiber
measures are also given, which show the benefit of this description.

1. Introduction.

Let M be a 3-dimensional Riemannian manifold, and X a non-singular C' vector
field of M. Denote by y, the flow generated by X. Let NX be the quotient bundle of
the tangent bundle 7M by the line bundle determined by X. For any ¢, the differential
Dy, of , induces a flow on NX, denoted by Ny,, which represents the infinitesimal
behavior of ¥, and was studied in various points of view ([5], [6]). Taking account of
the variation of the angles along the orbits of Niy,, we define the projectivized bundle
PX by |J)._,,(NX. —0/v ~kv) (ve NX.—0,keR—0), where NX. is the fiber of NX
at z. Then Ny, also induces a flow, say ¢,, on PX. The bundle PX has a natural
PSO(2)-structure induced from the Riemannian metric of M and the time ¢ map ¢,
restricted to each fiber of PX is a projective transformation.

In order to estimate the twist along the orbits, we use the Ruelle invariant defined
as follows: We assume that PX is a trivial bundle, and is parametrized as M x P'!. We
define the projection from M x R to PX = M x P! by (z,x) — (z,[x]), where P! is
parametrized as R/Z and x — [x] is the natural projection from R to P'. Then there
is a flow ¢, of M x R which is a lift of ¢, ([6]). Let p; denote the projection to the
i-th factor of M x P! and M x R (i=1,2). We define Te,y : R— R by 7. (x) =
p2¢,(z,x). For an invariant measure u of ,, the Ruelle invariant R, (y,) is defined by
(1/2) [, (im0 7(- (x)/1) dpu.

In order to examine the Ruelle invariant, we use a family of probability measures
on the fibers invariant under the holonomies among almost all fibers, which is called an
‘invariant fiber measure’ (The precise definition is given in §2). This was constructed in
[8], [9] and by using Markov-Kakutani theorem for measure valued functions. In
this paper, we will construct an invariant fiber measure from an invariant measure of ¢,
by using the disintegration.

In §3 and §4, we will characterize the invariant fiber measure by using Poincaré
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recurrence theorem and Furstenberg’s theorem, which show that the supports on almost
all fibers consist of one point or two points or the whole fiber (Theorem 4). This shows
the geometric aspects of invariant fiber measures, and it motivates the description of the
Ruelle invariant by it.

Let v be a probability measure on PX = M x P! invariant under ¢, such that
(p1),v=u. Denote by v the lift of v on M x R. Then the Ruelle invariant is de-
scribed as follows:

Turorem 1. Let Q. ={(z.x) € M x R0 < x< pagy(_(2),0), pagy (¥_1(2), 0) >0}
and Q_={(z,x) e M X R;0>x = p»¢,(Y_,(2),0), p2¢,(W_,(2),0)<0}. Then the Ruelle
invariant R,(,) is equal to (1/2)v(2;) — (1/2)v(2-).

Here the Ruelle invariant is given by v instead of the invariant fiber measure as a
result, which can be understood as a benefit of the construction of the invariant fiber
measure from v.

The same argument as above is available for diffeomorphisms of the 2-dimensional
disc D>. Let G denote the set of diffeomorphisms of D?> which are the identity near
the boundary and preserve the canonical measure x. Denote by PD? the projec-
tivized bundle of the tangent bundle of D2, which is parametrized as D?> x P!, Let
p1: PD?> — D? denote the projection to the first factor. For the induced diffeomor-
phism Pf of the differential Df on PD?, the equation similar to [Theorem 1 holds
(Theorem 3), and furthermore we obtain the following results.

THEOREM 2. Let f and g be elements of G. If there is a probability measure v of
PD? invariant under both Pf and Pg satisfying (p1),v=pu, then R,(go f) = Ru(f)+

Ru(9)-

COROLLARY 1. Let I' be an amenable subgroup of G. Then R,:I — R is a
homomorphism.

The authors wish to thank Masahiko Kanai for his various helpful suggestions for
their attempts to apply Zimmer’s theory to dynamical systems and also Shigenori Mat-
sumoto for his remark on the disintegration and the application of the invariant fiber
measure for diffeomorphisms of the disc.

2. Definition of invariant fiber measures.

Let M be a compact metric space and p: N — M a P'-bundle over M. Let y,
and ¢, be topological flows of M and N respectively such that pogp, =, 0 p. In this
section and also in §3, the holonomies among the fibers along ¢, is not assumed to be
projective.

Let v be a ¢,-invariant measure on N, and let u = p.v, i.e. u(E) =v(p~'(E)) if
p U (E) is a v-measurable set. Then u is invariant under i, (z is not always ergodic in
this section).

Let C(N) be the set of continuous functions of N endowed with the uniform
convergence topology. Denote by .#(N) the set of Radon probability measures of N,
endowed with the weak* topology (i.e. g, — g (o,,0 € M (N)) if {a,, f) — {a, f) for
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feC(N)). Then .#(N) is a compact metrizable space. A map A: M — #(N) is
called scalarwise measurable if the function z — (A(z), /> = [ fdA(z) is p-measurable
for all fe C(N). A map A: M — #(N) is called measurable if, for any ¢ > 0, there
is a compact subset K of M such that (M — K) < ¢ and A|K is continuous. Note
that the measurability of A implies the scalarwise measurability of 4. Conversely, /4 is
measurable if it is scalarwise measurable by of Chapter 6, §3, N°1 in [1]. Let
N. denote the fiber p~!'(z) for ze M. By disintegration (Chapter 6, §3, of
[1]), there is a scalarwise measurable map 1 : M — ./ (N) satisfying that supp A(z) = N.
for all ze M and that v = [du [dA(z) and such a scalarwise measurable map is unique
u-a.e.z.

For any homeomorphism % of N and g€ .#(N), we define h.o by <{h.o, )=
{o,foh) for feC(N). In other words, h.c(E) = a(h~'(E)) for any measurable set
E of N. Then the map (h,0) — h.o is continuous with respect to the uniform con-
vergence topology and the weak® topology.

LemMa 1. For a scalarwise measurable map 1: M — M (N) satisfying that
supp A(z) = N. for all ze M and that v = [du [ dA(z), the equation (¢,),A(z) = A(Y,(2))
u-a.e.z holds for any t e R.

ProoF. Let 7,: M — #(N) (1€ R) denote the map defined by 7,(z) = (¢, 1),
A(Y,(z)). For any ¢ > 0, there is a compact set K such that uy(M — K) < ¢ and 2| {,(K)
is continuous. Then 7, is continuous on K. Therefore #, is measurable, and hence
scalarwise measurable.

For any measurable set W of N,

| an| antar=] an jW) a2, ()

- Md«wo*mj di2)

(W)

= d,uJ di(z)
M o, (W)

= v(p,(W)) = v(W).

Therefore, 7,(z) coincides with A(z) p-a.e.z for any 7€ R by the uniqueness of such a
scalarwise measurable map. That is, (p,1),A(\},(z)) = A(z) w-a.e.z for any te R. []

A set E of M is called conull if E is measurable and u(E) =1. By the above
consideration, (¢, 1), A(\,(z)) = A(z) on a conull set for any re R. However this conull
set may vary with respect to . The following lemma shows the existence of conull sets
on which (¢, 1), A(y,(z)) = A(z) holds for any ¢ € R after a slight modification of 4, which
is proved in the same way as Appendix B.5 of [10].

Lemma 2. For any scalarwise measurable map Ay : M — M (N) satisfying that
supp Ai(z) = N- for all z€ M and that v = [du [ dAi(z), there are an invariant conull set
B of M and a scalarwise measurable map Ay : M — M (N) such that 2,(z) = A1(z) p-a.e.z
and 7, (Y,(z)) = (,),42(2) for any te R and any z € B. In particular, v = [du [ di(z).
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Proor. Let o7 denote the ordinary measure [dr of R. Denote by B the set
{ze M;t— (9;1),41(¥,(2)) is essentially constant with respect to o}

Here we claim that (z,¢) — (p; '), 41(¥,(2)) is measurable with respect to u x aj.
Let n be a positive integer. For any &> 0, there is a compact set K such that
u(M — K) <¢/(2n) and A|K is continuous. Let K, denote the compact set {(z,7) €
M x R;—n <t <n,,(z) e K}. Then (z,1) — (p; 1), 21(,(z)) is continuous on K,. On
the other hand, we have (uxay)(M X [—-n,n]—K,)=2n— [" doy [y_(K)du<e.
Thus (z,¢) — (p; 1), 41(f,(2)) is measurable with respect to u x o1, and hence is sca-
larwise measurable.

Let & denote the set {(z,7) e M x R; (¢, '), 21(,(z)) # A1(2)}. For a countable

yoee

oo

{A1(2), fu) are measurable as above, we obtain that & is a measurable set with re-
spectto u x gy. Let & ={teR;(z,t) e} (ze M) and & = {ze M;(z,t) e &} (t€R).
Then u(6;) =0 by Lemma 1. Using Fubini’s theorem, we have [, 01(6:)dp=
(ux01)(&) = [pu(&)doy =0. Hence o1(6.) =0 p-a.e.z. Let E be a conull set of M
such that ¢|(&.) =0 for ze E. Then E is contained in B. This implies that B is a
conull set.

We define a map /4, : M — .#(N) such that A;(z) is the essential constant of
(p:1),21(¥,(z)) with respect to o if ze B. Since E is contained in B, we have
Jo(z) = 2i(z) waez. For any fe C(N) and ze B, we have (l(z),f> = [ (o),
MY, (2)), > da,, where o, is a probability measure on R with the same null sets with
those of g;. Hence A, is scalarwise measurable by Fubini’s theorem.

For any se R and z € B,

o1({t; (97 ), 21 (W ¥(2)) # (9,).%2(2)})
= o1({t: (9. (0. 1 (W, (2) # (9,),22(2)})
= a1({u—s5:(p, ). A1 (Y (2)) # 22(2)})
= o1({u; (9, 1). 21 (1, (2)) # 42(2)}) = 0.

Thus we have VY (z) € B and A (Y,(2)) = (9,),22(2). ]

DEFINITION. A scalarwise measurable map A: M — .#(N) such that supp A(z) = N.
for all ze M 1is called an invariant fiber measure for a probability measure p of M if
there is an invariant conull set B of M with respect to u such that A(y,(z)) = (¢,),A(2)
for any ze€ B and t € R, where the set B is called a basic set. By the above con-
sideration, we obtain the following key lemma needed later.

FUNDAMENTAL LEMMA. Let i/, and ¢, be topological flows of M and N respectively
satisfying po g, =y, o p. For a probability measure v on N invariant under ¢,, there
are a scalarwise measurable map 4: M — .#(N) and an invariant conull set B of M
satisfying

(1) suppi(z) = N,
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() v=[dufdi(z) (4= p.v) and
(3) A(Y,(2)) = (p,),A(z) for any ze B and t€ R,
which is called an invariant fiber measure derived from v.

REmMARK. Let u be a probability measure on M invariant under /,. Denote by
M,(N) the set of probability measures v on N satisfying p.v=pu. Then .#,(N) is a
closed subset of the set of probability measures, and hence is compact. By Markov-
Kakutani theorem, there is a probability measure v on N invariant under ¢, satisfying

PV = U

REMARK. The existence of a scalarwise measurable map 4: M — .#(N) satisfying
supp A(z) < N. and A(Y,(z2)) = (¢,),A(z) p-a.e.z for any ¢t € R was already given for an
ergodic measure p in the case of product bundles in Theorem 2.1 of [8], where the
existence was more generally shown for amenable actions instead of R-actions.

3. Recurrency.

In §3 and §4, we give properties of the invariant fiber measure, which show that it
is useful to study the dynamical properties of ¢, and y,. Though many parts of these
sections are more or less known in the fields of ergodic theory of amenable group
actions, the authors have not found them in the literature. In order to explain the
benefit of the description of the Ruelle invariant by the invariant fiber measure, we give
a self-contained explanation in these sections.

Let M be a compact metric space and p: N — M a P'-bundle over M. Let Y, be
a topological flow of M, and let ¢, be a topological flow of N satisfying p o g, =, o p.
Let x4 be an ergodic probability measure on M invariant under y,, i.e. a y,-invariant
measurable set has a full or null measure. Under these conditions, we will give a rela-
tion among almost all A(z) (Lemma 4). The essential part of its proof is given in
[Cemma 3, which is proved by using the method of Poincaré recurrence theorem.

DErFINITION.  Let S be a subset of M. For ze M, we define the subset wg(z) by
(Vy=olth(2);t = s} NS. Then, for any y e ws(z), there exists a sequence {t,},_;,. .
such that lim, ., t, = 0, ¥, (z) €S and y = lim,_ . ¥, (2).

LemMA 3. Let A be an invariant fiber measure with a basic set B, then there is a
closed set F with u(F) >0 such that

(1) A is continuous on FN B, and

(2) wr(z)=F p-aecz in F.

Proor. Since 4 is measurable, there is a compact set Fy such that u(Fp) > 0 and
|, 1s continuous. Let F = supp(u|Fy). In other words, z € Fy is an element of F if
and only if u(Fo N U) > 0 for any open set U of M satisfying ze U. Then F is a closed
subset of M and u(Fy— F) =0. In particular, F has a positive measure.

Denote by {V},_; .. the subfamily of the countable base {U,} of M satisfy-
ing FNV, #&. Then pu(FNV,)>0. Let E, (m=1,2,...) denote (),_,|J,., %
(FN V). Then we have u({J,c, W(FN Vi) =pu(b o Y(FN Vi) = (U, <o ¥
(FOVy) 2 W(FNV,). Hence u(E,) = u(FNV,) >0 because () _ Y(FNV,) de-
creases as t — —oo. On the other hand, E, is invariant under ,. Since we assume
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that y, is ergodic, we obtain u(E,) = 1, and hence u(F — E,,) = 0. Therefore, we have
H(F = (Vg En) = (U (F = E)) =0, and w(FO (), Ey) = u(F).

Finally we will show that wp(z) =F on FN() _ E, Let z be an element of
FN ﬂ E,,. Suppose that F — wp(z) is not empty. Let w be a point of F — wp(z).
Since a)F( ) is a closed set, we can choose an open set Vj from {V),} such that we Vj
and V;Nwrp(z) = . Then FNV, =« FNV; c F —wp(z). By the choice of Ej, there
is a sequence {7}, ,  such that lim, . ¢ =—co and zey, (FNV)). By taking a
subsequence of {z,}, we can assume that {¥_, (z)} converges to some point of F NV,
which is also contained in wg(z) by the definition of a)F( ). However, this contradicts
the choice of V. Thus wp(z) = F for ze FN ﬂm . ]

LEMMA 4. Let A be an invariant fiber measure with a basic set B. Then there
exists an invariant conull set E of M contained in B such that, for any z and w of E,
there is a sequence {t,},_, , of R satisfying lim, ., t, = +oo, lim, ., (z) =w and

fim, .. A, (2)) = A(w).

Proor. Let F be the closed set obtained in [Lemma 3, and Ej a closed subset of F
such that u(Ey) >0 and wp(z) = F for any ze€ Ey. Let E = (| J),_p ¥s(E0)) NB. Since
\U,cp Ws(Eo) is invariant under y,, the set E is also a conull set.

Let z and w be points of E. Then there are so and s; of R such that y (z) € Ey
and W (w) e F. Hence there is a sequence {uy},_;, such that lim, .. u, = +oo,

lim,, . ¥, (¥, (2)) = ¥, (w) and ¥, (Y, (2)) e F. In particular, lim, .o Yo psys; (2) = W
Let t, = u, + 59 —s;. Then lim, ., t, = +oo and lim,_ . ¥, (z) =w. Since 1 is
continuous on F, we have lim, ., A(Y, . (z)) =AY, (w)). Hence lim, (g ),

A, (2)) = (9;,),A(w), and thus, lim, . A(¥, (z)) = A(w). O
By the above lemmas, we obtain the following theorem.

THEOREM 3. Let M be a compact metric space and p: N — M a P'-bundle over
M. Let Yy, and ¢, be flows of M and N respectively such that po g, =\,op. Letvbea
probability measure on N invariant under ¢,. Denote by u the probability measure p.v on
M. If u is ergodic, then there are a scalarwise measurable map J.: M — M(N) and an
invariant measurable set E of M with u(E) =1 such that

(1) For any ze M, supp A(z) is contained in N.,

2) v=[du[di(z)
(3) (¢,),A(z) = A(Y,(2)) for any z€e E and te R, and
(4) For any points z and w of E, there is a sequence {t,},_, , of R satisfying that

guee

lim, .o t, = 00, lim, ., ¥, (z) =w, and lim,_,, A(Y, (z )) = A(w).

4. Extension of supports.

In this section, we will assume that our P'-bundle p: N — M has a PSO(2)-
structure and that each ¢, induces projective transformations among the fibers as
follows.

Let {(U;,&i)}io1 2., be @ PSO(2)-structure of a P'-bundle p: N — M. Namely,
{U;} is an open cover of M, and ¢ : p~'(U;) — U; x P! is a homeomorphism such
that p = pro&;, where pr: U; x P! — U; is the projection to the first factor, and that
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o EL(UNU) x P — (UiNU;) x P s of the form o &Nz x) = (2 7;(z)x) where
yi » UiNUj — PSO(2).

Let ze U; and we U;. We say that a transformation g : N. — N,, is projective if
(&INyw) ogo (&|IN-)"': P' — P! is an element of PSL(2,R). We readily see that this
definition is well-defined.

For A e PSL(2,R), let ||4]| = supy,_; ,cg2l|4v]. Then, for a projective transfor-
mation g : N. — N,, we can define the norm of g by ||g| =||(&|Nw)ogo (&N,
which is also independent of the choice of (U;,¢;) and (U;,¢&;).

We assume throughout that ¢,|N. is projective for all ze M and te R. For an
invariant fiber measure A, we abbreviate A(z)|N. as A(z).

By using Furstenberg’s theorem, we obtain the following.

LeEmMMmA 5. Let A be an invariant fiber measure and let E be an invariant conull set
contained in a basic set satisfying the condition (4) of Theorem 3. Then one of the
following properties holds.

(1) suppA(z) consists of one point for any z € E.

(2) suppA(z) consists of two points for any z € E.

(3) For any points z and w of E, there is a projective transformation g : N. — N,,

satisfying g.A(z) = A(w).

PrOOF. By assumption, for any points z and w of E, there is a sequence {#,},_; ,
of R satisfying lim,_... t, = 0o, lim,_... ¥, (z) =w and lim,_., A(Y, (2)) = A(w).

If there are two points z and w of E such that |¢, [N.| is not bounded, then
supp A(w) consists of one or two points by Furstenberg’s theorem ([2], see also Lemma
3.2.1 of [10], Theorem 4.1 of [9]). (A precise argument goes as follows: Let z € U; and
we U;. We assume without loss of generality that , (z) € U; for all n. Then apply
Furstenberg’s theorem to the sequence (;|Ny, (-) © ¢, |N.o (&|N-)"" in PSL(2,R).)

. such that lim,_., ¥, (w) = p and
lim,, ., A(, (w)) = A(p) by assumption. Then suppA(p) also consists of one or two
points. Furthermore, if supp A(w) consists of one point, then supp A(p) also consists of
one point. Therefore, supp A(z) consists of one point for any z € E or supp A(z) consists
of two points for any z € E.

On the other hand, if ||p, |V:|| is bounded for any z and w in E, then we can take
a subsequence {s,},_;, of {z,} such that ¢ |N. converges to some projective trans-
formation g : N. — N,.. Then, we have g.A(z) = lim, .., (g, ),A(z) = lim,_. A, (2)) =
A(w). Thus 4 is of type (3). O

goes

LEMMA 6. Let o be a probability measure of P'. If suppo contains at least three
points and suppo # P!, then the stabilizer St(¢) = {f € PSL(2,R); f.c = ¢} is generated
by a unmique periodic elliptic element of PSL(2,R).

Proor. If {||f];f € St(s)} is not bounded, then suppo consists of one or two
points by Furstenberg’s theorem ([2], see also Lemma 3.2.1 of [10]). Since this con-
tradicts the assumption, the set {||f||;f € St(¢)} is bounded. In particular, all the
elements of S#(g) are elliptic. Thus they are individually conjugate to rotations.

We claim that St(¢) is abelian. Let xo be a point of P!. We define @ : P' —
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R/Z by &(x) = f:o do = o([xg,x)), where [xp,x) denotes the half-open subarc of P!
from xy to x in the counterclockwise order. Let f and g be arbitrary elements of
St(g). Then &(f(x)) = ®(x) + D(f(x0)) and P(g(x)) = D(x) + D(g(x0)) ([4]). Hence
there are two rotations Ry and R, satisfying &f = Ry® and Pg = R,d. Since
O(f1(x)) = D(x) — &(f(x0)), we obtain &fgf'g~' = RR,R;'R;'® = ®. Here we
assume that there is x; of suppo such that fgf~'g~'(x;) is different from x;.
Then fgf~'g~'(x;) and x; are the endpoints of a component of P! — suppo and
u({faf g7 (x1)}) = u({x1}) = 0 because D(fgf 'g~"(x1)) = @(x1). Now fgf'g~"is
an orientation preserving homeomorphism preserving suppo. Hence fgf 'g~' maps
this component to the adjacent component of P! — suppo with the common boundary
fgf'g7'(x;). But then fgf~'g~'(x;) is an isolated point in suppcs and hence
u({fgf~'g'(x1)}) must be positive. This is a contradiction. Therefore fgf'g~! =id
on suppo. Since an element of PSL(2,R) is determined by the image of given three
points, we conclude that Sz(g) is abelian.

Let f be an element of S#(¢) which is not the identity. Let 4 be an element of
PSL(2,R) such that 4~fh is a rotation Ry. Since suppo is not the whole P!, Rris a
rational rotation. Suppose that the period of Ry as an action on P! is greater than two.
For any element g of St(s), we have R:(h~'gh)= (h~'gh)R} for any ne Z because
fg=gf. Let x; be a point of P!, and let R denote the rotation satisfying R(x;) =
h~'gh(x;). Then h™'gh(Rfx;) = R}'(Rx2) = R(R}x;). Since the orbit of R, passing
through x, contains at least three points, 4 'gh also coincides with the rotation R.
Since the abelian group {h~'gh;g e St(s)} is generated by a unique rational rotation,
St(o) is generated by a unique periodic element.

In case where all elements of St(o) except id have period two, we claim that St(o)
consists of id and the other unique element. Let f and g be any elements of St(g) with
period two. Suppose that there is a point x3 of P! such that f(x3) # g(x3). Let I be a
component of P! — {x3,¢g(x3)} containing f(x3), and J a component of P! — {x3, f(x3)}
containing ¢g(x3). Since f(x3) is contained in / and is also a boundary of f(J), f(J)
intersects /. On the other hand, f(J) is a component of P! — {x3, f(x3)} disjoint from
J because f?=1id. Hence g(x3) ¢ f(J) and x3 ¢ f(J). Therefore, f(J) is contained
in I because I is a component bounded by g(x3) and x3. Thus f(x3) = g?f(x3) =
gfg(x3) €egf(J) = g(I). However this contradicts the assumption that f(x3) is con-
tained in I. Thus St(o) = {id, f}. O

COROLLARY 2. Let o be a probability measure on P' whose support contains at
least three points. Then there is a probability measure o, with full support such that

fio2 =0y for any f of St(ay).

ProOF. Suppose that suppo; # P!. By [Lemma 6, there is a periodic elliptic ele-
ment f of PSL(2,R) generating St(g;). We choose an element & from PSL(2,R) so
that 4~'fh is a rotation Rs. Let 0, denote h,03, where o3 is the ordinary measure on P!
invariant under rotations. Then o, is a measure with full support satisfying g.o, = o>
for any g of St(gy). O

THEOREM 4. Let M be a compact metric space and p : N — M a P'-bundle over M
with structural group PSO(2). Let \,,¢,,v,u, A and E be as in Theorem 3. Suppose that
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@,IN:: N. — Ny, -y is a projective transformation for all (z,t) e M x R. Then we have
the following trichotomy:

(a) suppA(z) consists of one point for any z € E.

(b) suppA(z) conmsists of two points for any z € E.

(c) There exist a ¢,invariant probability measure v' on N and a scalarwise mea-
surable map 1" : M — M (N) such that the properties (1), (2), (3) and (4) in
Theorem 3 hold for v’ and ) instead of for v and A, and supp A’ (z) = N. for any
zeE.

Proor. The following proof is essentially the same as that of Lemma 5.3 of [9].
Let A be an invariant fiber measure satisfying the conclusion of [Theorem 3. If supp A(z)
does not satisfy the conditions (a) and (b) of [Theorem 4, then, for any z and w in E,
there is a projective transformation ¢ : N. — N,, satisfying ¢.4(z) = A(w) and further-
more supp A(z) contains at least three points for any z € E (Lemma 3J).

We construct an invariant measure A’ such that suppA’(z) = N, for any zeE.
Let zp be a point of E. If suppA(zg) = N.,, then, by [Lemma 3, supp A(z) = N. at any
ze E, and we are done. Thus we assume that supp A(zy) is not N.,. For each z € E,
choose an element Uy of the open cover {U;} such that z € Uy, and denote by ¢. the
map &;)|N: : N; — P'. Let gy = (&), A(z0). Since H = St(ay) is a finite subgroup of
PSL(2,R), the quotient map 0: PSL(2,R) — PSL(2,R)/H is a covering projection.
Let O denote the subset {g,00;g € PSL(2,R)} of the set of probability measures of P'.
Denote by n the map from PSL(2,R) to O defined by #(g) = g.00. Then 7 is con-
tinuous with respect to the weak* topology. Denote by # the map from PSL(2,R)/H
to O induced from #. Then # is bijective. Furthermore # is a homeomorphism, be-
cause, by using Furstenberg’s theorem again, we see that if a sequence {g,} in PSL(2, R)
is not bounded, (g,),00 does not converge in O. By [Corollary 2, there is a probability
measure ¢ with full support such that g.c = ¢ for any g in H. By assumption, (&.),A(z)
is contained in O for any ze E. We define a map A : M — .#(N) by A(z) =
(£.).'g.0 (z€ E) for an element g of PSL(2,R) satisfying 0(g) = 7' (£.),A(z). Note
that A'(z) neither depends on the choice of g nor on the choice of ..

Now we claim that A’ is scalarwise measurable. Since u is regular, for any & > 0
there is a compact set contained in E such that y(M — K) < ¢ and 4 is continuous on
K. Let {z,} be a sequence in K such that z, converges to some point z,, on K as
n— oo. We assume without loss of generality that z, € Uy ) for all n. Since A (z)
does not depend on the choice of &, by changing the choice of i(z,) if necessary, we
also assume that i(z,) =i(z) for all n. For brevity we write & for &, . Then
771, A(z,) converges to #7'¢E,A(z,,). Since 0 is a covering map, there is a sequence
{g,} in PSL(2,R) converging to some g such that 0(g,) = 77'¢,A(z,) and that 0(g) =
71, M(zy). Thus A/(z,) =& '(g,),0 converges to A'(z,.) = ¢, 'g.0. Therefore, A’ is
measurable, and is also scalarwise measurable.

Next we show that A’ is invariant. Let z be any point of E and let 7€ R. Then
there are elements g; and g, of PSL(2,R) satisfying 0(g1) = 7' (£.),A(z) and 0(g>) =
71 (Ey,)).A(,(2)). These mean, by definition, that A(z) = (&) '(g1).00 and that

MW (2)) = (&y,)5 (92).00. Since (p,),4(2) = A, (2)), it follows that (g2)." (&y,).
((/)t)*(éz)_l(gl)*ao — gp. Hence we see that (gy)~ of%(z)ogo,o(@)_l og; belongs to

*



26 T. InaBA and H. NAKAYAMA

H. Thus we have (gz)*_l(élp’(z))*((p,)*(éz),:l(gl)*a: o, which implies that (¢,),A'(z) =
A'(Y,(z)). Thus A’ is an invariant fiber measure.

By [Cemma 4, 4’ can be assumed to satisfy the property (4) of [Theorem 3. Now
define a probability measure v/ on N by [du [dA’(z). Then v’ is invariant under ¢,,
which can be shown in the same way as [Lemma 1. ]

REMARK. The authors were communicated that this theorem can also be shown by
using the barycenter of the measure instead of Furstenberg’s theorem.

5. Ruelle invariant.

In this section, we will calculate the Ruelle invariant by means of invariant fiber
measures.

Let M be a closed orientable 3-manifold, and X a non-singular vector field of M.
Denote by i, the flow generated by X. Let ¢, denote the flow of the projectivized
bundle PX defined in the introduction. We assume that PX is a trivial bundle, and is
parametrized as M x P'. We define the projection from M x R to PX = M x P! by
(z,x) — (z,[x]), where P! is parametrized as R/Z and x — [x] is the natural projection
from R to P!. Then there is a flow ¢, of M x R which is a lift of ¢, ([6]). Let p;
denote the projection to the i-th factor of M x P! and M x R (i =1,2). We define
Tz R — R by 7 (x) = p29,(z,x).

Let v be a probability measure of M x P! invariant under ¢, and let u = (p;),v
By Ruelle’s theorem, there is a limit of (1/(2¢))(z(;,,)(x) — x) as t — 400 p-a.e.z for any
x € R, denoted by p(z) ([7], and also [3]), where p(z) is independent of the choice of x
and p(z) is measurable with respect to 4. Then the Ruelle invariant R,(y,) is defined
by [ p(z)dp.

Let 7 denote the measure on M x R which is the lift of v (i.e. V(E)=
Yowez V{(z,[x]); (z,x) €e E,n = x < n+ 1}) for any measurable set £ of M x R). Let 4
be an invariant fiber measure derived from v with a basic set B (Fundamental lemma).
Let .#(R) denote the set of measures on R, where these are not always probability
measures. Denote by A: M — .#(R) the lift of J defined by A(z)(E ) =2 nez M2)
({(z,[x]);xe E;n < x <n+1}) for any measurable set £ of R. For g€ .#(R), we
define ff do by o([a,b)) if a<b and by —o([b,a)) if b <a and furthermore by 0 if
a=>b. Then we obtain the following properties:

PROPOSITION 1.
(1) f d/l(lp, f dA(z) for a,b,t€ R and z € B.

@ - Iduj"dl(z
Let 4: M — R denote the measurable function defined by 4(z) = jow'“(;)’”(o) di(z).

Lemma 7. For any positive integer n,

SWTCIE

holds for any z € B.
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PrOOF. Since A(z)([m,m+ 1)) is equal to 1 for any me Z and z e B, we obtain

7m(0)
2o (0)] < j A3 (2)) € [7em(0)] + 1

for any ne Z, where |x| denotes the largest integer smaller than or equal to x.
On the other hand, we have

T(:‘n)(o) ~ n T(wifl(:)‘n—lﬁrl)(o) ~
J A (2) =S i, (2))
0 i=1 JT(z),n-0)(0)
-

n (P T @i (0)

= da(;(z))
i=1 70
n Ty 0.n0)

= (¥:(2))
i=1 70

=D _A(Wi(2))
i=1

for z e B. []

REMARK. [4(z)| is bounded because |4(z)| < |ty (2),1)(0)] + 1.

Let Q+—{(Z X)GMXR O<x<r( (2),1 )(O) Ty_,(2),1 ( )>0} and Q_:{(z,x)e
MXR,T( v (o)1 )(0) §X<0,T( (2),1 ( ) O}

iz
THEOREM 1.

1 1

Rull) = 57(24) = 57(2.)

ProOF. Let E be a conull set of M on which (1/(2¢))(z(-,,(x) — x) converges as
t — 4o for any xe R. For any ze BNE, we have p(z) = lim,_,(1/(2n))t: »(0) =
lim, ... (1/(2n)) S0y A((2)) by Lemma T

Let M, = {Z;O < T(l//,l(z),l)(o)} and M_ = {Z; T(l//,l(z),l)(o) < 0}. Since (1/(21’1))
S r,4(;(2)) is bounded and y is invariant under ,, we obtain

n

R = | pleydu=lim 35~ | 4w (2))du

i=1

1 1 Ty, @.00)
=5 4(2) duz—J duJ dA(2)
2 )y 2 o
1 w00 1 Ty 2.00)
=5 duJ dA(z) + —J uJ (z)
2, o 20 T )o
] ~ 1 }
_! dﬂJ di(z ——J d,uJ 2i(2)
2)v 7 Nyieyeeny 2 " Nyieyen
~ Ly -Lya -
= 2V + 2V _
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REMARK. In the proof of _ we used the fact that (1/(2n)) >, [},
A(Y;(z))dp is constant to (1/2) [,, 4(z)du. Thus we have

1

: 1
‘EJM ‘L'(z,n)(o) dp — R,u(‘pz) = %JM ‘L'(z,n)(O) du — EJM A(Z) dﬂ'

n

i), e @5, | A an

M

1A

1
2n

lIA

by Lemma 7. This implies that the Ruelle invariant depends continuously on u with
respect to the weak* topology and on v, with respect to C! topology, which was already
shown in [7] without using the invariant fiber measure. On the other hand, Gambaudo-
Ghys showed that the Ruelle invariant does not depend continuously on y, with respect

to C° topology ([3]).

ReMARK. If ), is ergodic, p(z) =lim,— o (1/n) > 7L, A(Y,(z)) is constant p-a.e.z.
Therefore lim, ., 7(- »(x) = +o0 p-a.e.z if R,(y,) is positive. On the other hand,
lim, . (1/(22))(z )(x) —x) exists g-a.e.z and [, (lim,._(1/(2¢))(7-,5(x) — X)) dp is
equal to R,(¥,) ( See This can also be shown by using the invariant fiber measure).
Thus we have llm,_, w T(zn(X) = —o0 p-ae.z if R,(Y,) is positive. Therefore, there
is an invariant conull set E of M such that lim, . . 7 (x) =+ (z€E) and
lim; . 7(- y(x) = —0 (z€ E) if R,(¥,) > 0. Such an orblt of ¢, is called proper and
is considered in [6].

Let D? denote the closed disc {(z1,22) € R*;z7 + 23 < 1}. Denote by u the canon-
ical measure dz; Adz;. Let G denote the set of diffeomorphisms of D? preserving u
which are the identity near the boundary. Denote by PD? the projectivized bundle of
the tangent bundle of D2, which is parametrized as D? x P'. For an element f of G,
the differential Df induces a diffecomorphism of PD?, denoted by Pf, and it has a lift P?
on the infinite cyclic cover D? x R corresponding to the isotopy from the identity to
f. Then the Ruelle invariant R,(f) is defined by (1/2) [, (lim,_ p2Pf(z,x)/n) du
(ne Z,ze D*,xe R), where p, is the projection to the i-th factor (i =1,2).

Let v be a probability measure of D> x P! invariant under Pf satisfying (p1),v = u.
By the same way as [Theorem 1, we can prove the following.

TuwoRi 5. Let @, ={(z.x) € D x RO < x < poBf(/(2).0).poBF (/2.0
>0} and Q_ ={(z,x) € D> x R; p,Pf(f~'(2),0) < x < 0, p2Pf(f~(2),0) < 0}. Then
R,(f) = (1/2)%(Q4) — (1/2)v(L2-) for the lift v of v.

THEOREM 2. Let f and g be elements of G. If there is a probability measure v of
PD? invariant under both Pf and Pg satisfying (p1),v = u, then R,(go f) = R.(f)+

Ru(Q)-

Proor. This theorem is proved by the following equations:
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1 p2Pgf((9)7(2).0)
da(z)

JM Jo

du di(z) + = dA(z)

p2PgPf((g:) 7' (2),0) 1 p2Pg(g71(2),0)
h J, ]
2 Pylg1(2),0) 2)m

0

1 p2Pf(f7'¢7(2),0)
2)u " Jo

= R.(f) + Ru(9) O

di(g7!(2)) + Ru(9)

Let I' be an amenable subgroup of G. By using the definition of the amenable

subgroup, we can construct a probability measure v of D2 x P! invariant under I’
satisfying (p;),v =pu. Thus we conclude in the introduction.

1
2
3
4

]
]
]
]
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