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Abstract. Our aim in this paper is to discuss minimally fine limits at infinity for
locally p-precise functions in the half space of R" with vanishing boundary limits. We
also give a measure condition for a set to be minimally thin at infinity.

1. Introduction.

Let u be a nonnegative superharmonic function on D = {x = (xy,...,X,—1,X,) € R";
X, >0}, where n>2. Then it is known (cf. Lelong-Ferrand [5]) that u is uniquely
decomposed as

) = ax,+ | G dur)+ | Plxy)dv(y)
o
where a is a nonnegative number, x (resp. v) is a nonnegative measure on D (resp. D),

G is the Green function for D and P is the Poisson kernel for D. The first author [9,
Theorem 1] showed that if 0 < S <1, then

. B —1
|X|H0(1)H;cneDfExn/ |x|ﬂ (u(x) = ax,) =0

with a set £ in D which is f-minimally thin at infinity; if in addition [, y?du(y) <
(1-n=y<1), then
lim  x,” |x|”+7—<2—/’)J G(x,y)du(y) =0
D

|x|—00,xe D—E’

with a suitable exceptional set E' = D. For related results, we also refer the reader to
Essén-Jackson [3, Theorem 4.6], Aikawa [1], and Miyamoto-Yoshida [7].

Our main aim in this paper is to establish the analogue of these results for locally
p-precise functions u in D satisfying

JD|Vu(x)|px;jdx< o0, (1)

where V denotes the gradient, 1 < p < o0 and —1 <y < p—1 (see Ohtsuka and
Ziemer for locally p-precise functions).
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We denote by D”7 the space of all locally p-precise functions on D satisfying (1),
by D}’ the space of all functions u € D”7 having vertical limit zero at almost every
boundary point of D, and by HD?'’ the space of all harmonic functions on D in D?7,
According to Riesz decomposition (cf. Deny-Lions [2]), u e D"’ is represented as

u=ugy+h, (2)

where ug € D)’ and he HD”’. We show that the decomposition is unique (see The-
orem 2 below). We give the integral representations of up and 4, and then discuss
minimally fine limits at infinity for functions in Dj’.

For this purpose, consider the kernel function

B — 1—n) - —1
kg (x, p) = x} Py 7P )x — y|'"Mw - y 7

where X = (x1,...,X,-1,—X,) for x = (x1,...,x,-1,%,). To evaluate the size of excep-
tional sets, we use the capacity

Ci,.,.p(E; G) = inf J g(y)" dy,
D

where E is a subset of an open set G in D and the infimum is taken over all nonnegative
measurable functions g such that g = 0 outside G and

J kg ,(x,y)g(y)dy =1 for all xeE.
D

We say that £ < D is (minimally) (kg ., p)-thin at infinity if

Z2—i(n+y—(1—/3)17) Ckﬁ‘,,p(Ei;Di) < o, (3)
i=1
where E; = {xe E:2/ < |x| <21} and D; = {xe D: 2! < |x| < 21+2}.
Our main aim in this paper is to establish the following theorem (cf. [9, The-
orem 1]).

THEOREM 1. Let p>1, —1<y<p—1, (1-f)p—n<y and 0Zp=<1. If
ue D7, then there exists a set E < D such that E is (kg ,, p)-thin at infinity and

lim x*/f’x’(nﬂ*(l*/)’)ﬂ)/pu(x) —0.
|x| =00, xe D—E "

Next we are concerned with the measure condition on minimally thin sets. For a
measurable set £ — R", denote by |E| the Lebesgue measure of E.

PrOPOSITION 1. Let 0 < <1 and -1 <y<p—1. If (3) holds, then

0 ’Ez‘ (1-(1=-8)/n)p
Z(w) =

i=1

where E; = EN B;y; — B; with B; = B(0,2")N D.

Finally we give an example of minimally thin sets. For a nondecreasing function ¢
on R' such that 0 < ¢(2f) £ Mg(t) for ¢ >0 with a positive constant M, we set

T, ={x=(x",x);0 < x, < o(|x")}.



Minimally fine limits 3

ProposITION 2 (cf. Aikawa [1, Proposition 5.1]). Let 0 <f <1 and p(1 —f)—1<
y< p—1. Assume further that

lim p(r) =0. 4)

r—oo r

Then T, is (kg ., p)-thin at infinity if and only if
© fo(\PEIHBEHL g,
J (m) — < . (5)
L\t t
For example, ¢(r) = rllog(1 + )] satisfies (5), when {p(—1+p)+y+1} > 1.
In the final section we discuss fine limits at infinity for locally p-precise functions, as
an extension of Kurokawa-Mizuta [4].

2. Riesz decomposition.

Let ue D7, If 1 <g<p and g < p/(1+7y), then Holder’s inequality gives

1—q/p a/p
J Vu(x)|? dx < <J x; 74/ (p=4) dx) (J \Vu(x)|”x! dx> <
G G G

for any bounded open set G = D. Hence we can find a locally g-precise extension i to
R" such that a(x', x,) = u(x’,x,) for x, >0 and a(x’,x,) = u(x’,—x,) for x, <0.

For fixed £ e D, we take r > 0 such that B= B({,r) € D. Then, in view of [11,
Lemma 1|, e D”7 is represented as

=63 [ LG

i—1 B|x_ y|”l ayl

2 Xi — Vi fi—yi>577l
IZ_]:JR"BQX — " |E=y") oy (v)dy

- Xi— Vi Xi—yi\ Ou

=Cp nT 1= n | A\ dy

;JD(IX—,W X — | >5yi()
: Xi— Vi E— i\ ou

2,3 ( < n)—mdy
; p\IX=y" &= ") i

N fz")&'_éi—yi)@ J
C"ZJD_B<!é—y\" &= y|" ﬁyi(y) g

i=1

- Ei_yi ou
+ ¢ J = ———(y)dy+ A4
2

= up(x) + h(x) (6)

for almost every x € D, where ug € D’", h e HD"’, A is a constant determined by u and
ceD.
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LemMmA 1 (cf. [8, Theorem 1]). If ue D”7, then the vertical limit

: /
g, s 0)

exists for almost every x' € R"™'; and moreover,

n —
Xi— Vi Xi— Vi ou )
- _ M WVdye Dl
“o(x) "";Uu—yr’ |x—y|")ay,-(y> veDy

LeMMA 2. If ue D" NHD"’, then u is equal to zero.

Proor. We first note that if 1 <¢g<p and ¢< p/(1+7y), then we can find
a locally g-precise extension # to R" such that u(x’,x,)=u(x',x,) for x, >0 and
u(x’',x,) = —u(x', —x,) for x, < 0 as was remarked above. We shall show that 4z =0
in the weak sense. For this purpose, let ¢ € C;°(R"). Since u is harmonic in D, we
note by Green’s formula that

|00 dx = tim (1) -+ 52),

where

I(e) = —J - u(x/,e){g—i (x',e) + gy(cpn (x', —8)} dx’

and

I0) = | Ao - ol o)) v

for ¢ > 0. Here note that

ou

dx' =0
0x,, .

lim inf SJ
&0+ {x'eR"":|x'|<R}

(x", )

for R>0. Since ue D},

¢ 0
u(x', &) dx" = L (', 1) dt| dx’
0
{X’GR”71:|X"<R} {xleRn—I:‘xl‘<R} 0 0X,
0
= J - (x)|dx,
{x=(x", xa):[x"|<R,0<x, <&} 0xy

which implies that

lim J lu(x’, )| dx’" = 0.
e=0+ J{x/ e R"1:|x'|<R}
Thus we have

Ji 16) =
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and

liminf J(e) =0,

&e—0+

from which it follows that #(x) is harmonic in R” in the weak sense. Since u € D7, we
can apply [11, Lemma 2] to see that #(x) is constant, so that u is equal to zero by the
assumption. O

In view of [Lemma 2, we have the following result.

THEOREM 2. The Riesz decomposition (2) is unique.

3. Proof of Theorem 1.
In view of Theorem 2, we see that u e D" is represented as

N Xi—yi  Xi—yi\ou
U(X) _anJD<|x_y|n |x_y|n) ayl(y)dy

i=1

for almost every x e D.
We prepare the following result.

LEMMA 3. There exists a positive constant M such that

Xi—Yi  Xi—Ji Xn
e | K e L I P L
for x = (x1,...,x,) and y = (y1,...,yy) in D.
Proor. First note that
_ 2 2
|x_y|—n_|x_y|—n § n(\x—y| —‘X—y| ) < 4n'xnyn

X=X =yl = Y[+ x =) T |x—y|")% - y)*
In case i =n, we have

xn_yn xn_yn_

x—y" [x=yl"

|Gew = yn) (= p[7" = 1% = p[7") + 2xal% = ¥

< dnlx — plxuyalx — 7% = 72+ 2x )% -y
< (4n 4+ 2)xax — y['x — y 7
In case 1 £i<n-—1, we have

Xi—Yi Xi—YVi|

—n - —n

< dnlx — y|xupalx — y| "% - ¥
< dnx,|x — y|' E -y

Hence the required result follows. ]
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Throughout this paper, let M denote various constants independent of the variables
in question.
In view of Lemma 3,

u(x)| < Mx, j X = % — T Vu()| dy

=3 | o (x5 7P ()] )

for almost every x e D.
Here we prepare the following lemma.

LemMmA 4. For a nomnnegative measurable function f € LP(D), we set

V) = | kn v 0 G) v xeD.

Ifp>1, —-1l<y<p—1,(1=P)p—n<yand 0 < B =<1, then there exists a set E such
that E is (kg ,, p)-thin at infinity and

lim |x|("+}’—(1—ﬂ)17)/[7 U(x) = 0.

|x| =0, xe D—E

Proor. For fixed x e R", x # 0, we write

kg (x, ¥)f(y)dy + J kg (x, ¥)f(y)dy + J kg y(x, »)f(y)dy

U(x) =J
G G, G
= U (x) + Ux(x) + Us(x),
where
Gr={yeD: |yl z2x[},
Gy ={yeD:|yl =|x|/2},

Gy={yeD:|x|/2 =|y] <2|x|}.

From Hélder’s inequality, we obtain

Ui(x) = J kg, (x, y) f(y)dy

Gy

. 1/p' 1/p
< Mx,lﬁ(JG ||yl dy) (JG ()" dy)

1/p
ng;-ﬂrxH"”)/”(j f(y)”dy> |

Gy
where 1/p+1/p’ =1. Hence we have
lim |x|(n+7—(1—/3)17)/p Ui (x) = 0.

|x|— 00



Minimally fine limits 7

For any r > 0, we set

S = fxso.n T SAxp-po,y =11+ 12,

where y, denotes the characteristic function of a Borel set £ € R". From Holder’s
inequality, we have

Us(x) < Mx)PIx[™" |y, 72 f(p) dy
J G,

) 1/p’ 1/p
n””@) q ﬁ@V@)
Gy

< Moy ] .WWﬁO%b+Mﬁ¢uH”W%j
Gy

< MxSPIT O v P () dy + M P x| (J

Gz GZ

1/p
ﬁ@V@)

Gy

cn oo oo |
B(0,r)ND

1/p
f(»)? dy) ,

D—B(0,r)

so that

1/p
’x’(nw—(l—ﬂ)p)/pUz(x) < M’x’(nﬂ)/p—nj y;y/pf(” dy + M(J f(y)p dy> .

B(0,r)ND D—B(0,r)

Hence we obtain

|x|—c0

1/p
lim sup |x| "7~ UAPP Gy (x) < M(J VAGOK dy)
D-B(0,7)

for every r > 0, which implies that the left hand side is equal to zero.
Since f e L?(D), we can find a sequence {a;} of positive numbers such that
lim; .., a; = o0 and

o0

anUV@<w
D;

i=1

recall D; = {ye D:27! <|y| <272}, Consider the sets
E = {xeD:2 <|x| <27 Us(x) = q; /P2 1rtr-(1=Ap)/r}
for i=1,2,.... If xeE;, then

ai_l/"’ < 21mt=(=RP)p gy (x)
<2000 | kg () 15
D;
so that it follows from the definition of Cj, , that

Ci,,.p(Ei; D) < a2/ t7=1=P)p) J f(»)’ dy.
D;
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Define £ = ()., E.. Then ENB(0,2""") — B(0,2") = E; and

o0
> 2PN G (B D) < oo,

i=1

Clearly,
im0 —o
Thus the proof of the lemma is completed. ]

REMARK 1. The proof of shows that
J L+ )" f(3) dy < o0,
D

which is equivalent to the condition that U(x) # co. Hence, for xe D, U(x) = oo if
and only if

J kg ,(x,y)f(y)dy = oo whenever 0 <r < x,.
B(x,r)

We have the following result.

LemMmA 5 (cf. [12]). For a set E = D, Cy,, ,(E; D) =0 if and only if E is of (1, p)-
capacity zero, which means that Cy, ,(ENB(0,r); B(0,2r)) =0 for every r >0, where
ey (x, p) = ]x— '™

implies that inequality (7) holds for every x € D except that of a set of
Cx, ,.p-capacity zero. Now [Theorem 1 follows from Lemma 4

4. Proof of Proposition 1.

Let g be a nonnegative measurable function such that g =0 outside D; and

[ Hstx g0y arz
D

for every x € E;. Then we have by Fubini’s theorem

s, (j Ky 1)9(0) dy) dx

= J g(y)y, " (J x P =y E - ! dx> dy.
Bi» E;

Take r = 0 such that |B(0,r)| = |E;|, that is,
O'n}"n = ‘El‘

with g, denoting the volume of the unit ball. Here note that if y e D, then



Minimally fine limits 9

j x| 7w =y < j x| dx

i E;
S| e
B(y.1)
< Mr'F = M|E,|"P"

Therefore we obtain by Holder’s inequality

E| = M|E|-P/ jB g(»)y;7" dy
i+2

"y 1/p , 1/p'
< M|E|| ! (JB g(»)’ dy) <JB yrr dy)
i+2 i+2

é M|El,|(1—ﬂ)/” (J

1/p
g(y}pdy) 2i(=y/p+n/p’)
Biis

Hence it follows from the definition of Cry,.p that
‘El_’(lf(lfﬁ)/n)[’ < M2i(np—(n+y))Ckﬁmp<El_;Dl_),

which yields

0 |E;| (1-(1=p)/n)p
Z(|Bz‘|) =

i=1

5. Proof of Proposition 2.
By the definition of Cy, ,, we obtain the next results.

Lemma 6 (cf. [10, Lemma 4]). For r>0 and a Borel set E in D, let rE =
{rx :xeE}. Then

Ci,, »(rE;rG) = r"1=U=0rc  (E;G).

LemmA 7 (cf. [12, Lemma 2.2]). Let G, G, and G, be bounded open sets in D such
that GND < GyNG,. Then

Cry,p(E;Gr) ~ Cyy, p(E5 Gr)
whenever E < G, that is, there exist My, M, > 0 such that
M Cy, p(E;G1) £ Gy p(E;Gy) < MyCyy H(E; Gh)
whenever E < G.
For »r >0 and s > 0, set

S(r,s) ={x=(x",x,) e R" " x R" : |x'| <r,0 <x, <s}.
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Lemma 8. Let (1-f)p—1<y<p—1 and 0<P=1. Then there exist
M, M, >0 such that

MysPCERTE < 0 (S, ) B(0,2) N D) < Mys? AT

whenever 0 < s < 1.

Proor. To prove the first inequality, let g be a nonnegative measurable function
such that g =0 outside B(0,2) and

J kg, (z, y)g(y)dy = 1
D

for every z e S(1,s). Then we have by Fubini’s theorem

J dz = I (J kg (z, »)9(») dy) dz
S(1,5) S(1,s) \JD
= J g(»)y, 7" (J Pz =y M=y dz) dy.
D S(1,s)

For z = (z',z,) and y = (), yu), set
a= |Zn - yn| and b= |Zﬂ + yn|‘

Here note that

= J 2oy s
S(1,s)
S
=M Z;ﬁ<J | (|Z/—y'|+|Zn—yn|)1_n(|z'—y’|+|zn—|—yn|)_1dzl) dzy
0 |z’ =1
s 3
=M | 7 (J (r+a)" ™" (r+b)"'r"? dr) dz,
0 0
s a b 0
<M Z,ifl’) <a1”b1 J 2 dr + b7 J Ly —|—J 2 dr) dz,
Jo 0 a b
* 1-B7—1 b
=M]| z,77b 1+10g5 dz,
Jo

8/ Yn
- Myliﬁj P40 (1 + log
0

1
1—1¢
If y, > 2s, then

$/Vn

I< My,llﬁj P dr = My,l’/’)(s/yn)z_ﬂ = My;lsz’ﬁ.
0

If y, <27's, then
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2 1+t $/¥n
I < My,iﬁj t15<1 + log ] D dt + My,iﬂj P dt
0

— 1 5

< My} P+ My} P (s/y.)" P log(s/vn)
< Ms'Plog(s/y,).

Since I < My!=# when 27!s < y, <25, we have by Hélder’s inequality

J dz < MSMJ g(»)y," " dy
S(1,s) {yis<y,<2}

+ M5 j{ o S Tog(1 4 (5}
Yoy, <s

1p /2 / 1/p'
< Ms* (JD g(»)” dy) (J yy e dyn)

N

1/p’

T Ms (L) 90" dy)l/p (j v llog{1 + (s/ym) " dyn)

< M2 PO+ ( J
D

g(»)” dy)l/p-

Taking the infimum over all such g, we arrive at the first inequality.
To prove the second inequality, take 6 such that

(/p—1<)=1/p<do<y/p—(1-p). (8)
Define

o if y= (', y,) e S(,s),
f(y):{yn y= (', ya) € S(1,5)
0, otherwise.

If x=(x',x,) eS(1,s), then

/2 /1
J kg (x, ) f () dy = Mx, ™" J (J (r+ ) """ 2 dr) lar
S(1,s) 0 0
Xn/2
= Mx, B J yzfy/p dy,
0

— Mx;fﬂﬂ%y/p > Ms!Pro-ilp

since y/p—1<dand 1 —f+J—y/p <0 by (8). Hence it follows from the definition
of Cry,.p that

Ci,, p(S(1,5); B(0,2)N D) < Ms“‘*’”“”””] F()! dy = MsPC1HHL
h D

which completes the proof. ]
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For a nondecreasing function ¢ on R! such that 0 < ¢(2¢) < ¢(¢) for >0, we
set

Ty ={x=(x",x,) : 0 < x, < 0(Ix'])},
T,;=T,NBiy1 — B, Bi=B(0,2")ND.

LEMMA 9. Let 0<f =1 and p(1-p)—1<y<p—1. Assume that ¢ is as in
Proposition 2. Then there exist Ni,N, > 0 independent of i such that

—14p)+r+1 —14p)+y+1
2 2
N ("’(21 )) < 27BN (T, D) < N ( il )) .

ProOF. Let & = (21 +2/72,0,...,0). Define
T/ = {x=(x,x,): |(x',0) = &| <2720 < x, < p(2)}
and
T/ =S2" p2"") N Bis1 — B;.

If p(27"1) <272, then T/ = T,; = T/. On the other hand we have by Lemmas 6
and 7

Cly,p(T]3 D) ~ 200 0EDD G (S(1,0(27)/277); B)
and
Ciy,p(T7': D) ~ 200200 G (S(1,9(27) /271): By).
Thus, in view of (4), Lemma 8 gives Lemma 9 readily. ]

By using Lemma 9 we can prove Proposition 2.

6. Fine limits of p-precise functions.

In this section we are concerned with fine limits at infinity for functions in D?7.
For this purpose, consider the kernel function

1—n —
ey (x, 9) = |x — y|" w7

and the capacity
Co(E:G) = inf | g(x)” b
D

where E is a subset of an open set G in R” and the infimum is taken over all non-
negative measurable functions g such that g =0 outside G and

Jky(x, »g(y)dy =1 for all xeE.

We say that £ < D is (k,, p)-thin at infinity if
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Z 27i(n+yfp) Ck},7p(E,'; Rl) < 0, (9)
i=1

where E; = {xe E:2" < |x| <2} and Rj={xeR": 2" < |x| <2/}

THEOREM 3. Let p>1, -1 <y<p—landn+y—p>0. Ifue D"’ then there
exist a set E < D and a number A such that E is (k,, p)-thin at infinity and

lim  |x|"7 PP {y(x) — A} = 0. (10)

|x| =0, xe D—E

REMARK 2. If n+7y— p =0, then is replaced by
lim  (log|x|) "7 {u(x) — A} = 0.

|x|—00,xeD—
THEOREM 4. Let p>1, -1 <y<p—1and n+y—p>0. If he HD"’, then
lim  x"T7PPLp(x) — 4} =0

|x|—00,xeD

for some number A.

For proofs of these results, we first note that u e D”7 is represented as

"~ [ xi— y; Ou
u(x) =cn;‘j,x_y‘n Se(3)dy+ 4

for every xe D — E', where A is a constant and Ci ,(E’; D) =0. As in the proof of
Mheorem 1, we write for x e D

A Xi — Vi alz_l 1 Xi — Vi 812
—A=c, _ ; -
ulx) = A =c ZLI ] oy BT ZIJG =y o Y

& Xi — Vi on
vad | R )

i=1 G3|x_y’na—yi

= u(x) + ua(x) + uz(x),

where G; ={yeR":|y|=22|x|]}, Go={yeR":|y| =<|x|/2} and G3={yeR":|x|/2
< |y| £2|x|}. We can prove as in the proof of [Theorem 1 that

im x| {u (x) + un(x)} = 0

|x|—00,xeD
and

lim x| Py (x) =0
|x|—o0,xe D—E"
with a set E” < D satisfying (9). Thus is derived.
Next suppose u e HD?”. To prove [Theorem 4, we note that
. X;—yi Ou
[ e L
i—1 JB(x,x,/2) |X - y‘ Vi
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for x € D, because u is harmonic in D. Hence we obtain by Hoélder’s inequality

()] < Mj (o + [x — 3! Va(y)] dy

Gs

lIA

1/p
wsp ([ watla)
G

which yields

lim  x™7=P)/Pys(x) = 0.
|x|—00,x€D "

Now [Theorem 4 is proved.

REMARK 3. Let p>1, —-1<y<p—1and n+y—p>0. Then we can find a
function h € HD?”"” such that

limsup |x|"7 PP p(x) = o (11)
|x|—00,xeD

and

lim  xU"77P)/Pp(x) = 0. (12)

|x|—o00,xeD "

Let ¢; = (2/,0,...,0) and consider

F)y = 27"y — ¢y 202 p(9),
=1

where 1 < &< (n+y)/p and y; denotes the characteristic function of E. Then
Jf(y)P‘yn’"/dy _ MZzﬂ'(ﬂﬂ)zfi(ﬁP*"ﬂ) < 0.
J

Now define

Xn — Vn
hx:J = dy.
W= a0

Note that & € D”7 (cf. [8, Lemma 6]) and / is harmonic in D. We see that holds
by the proofs of Theorems 3 and 4. Moreover,

liminf 7(x) = J (&0 = Vn o)y — o
r=e r'-p lej— )|

for each j, which proves (11). Thus 4 has all the required conditions.
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