Minimally fine limits at infinity for p-precise functions

Dedicated to Professor Hisako Watanabe on the occasion of her 60th birthday

By Yoshihiro Mizuta and Tetsu Shimomura

(Received Dec. 21, 2001) (Revised Jun. 3, 2002)

Abstract. Our aim in this paper is to discuss minimally fine limits at infinity for locally p-precise functions in the half space of \mathbb{R}^n with vanishing boundary limits. We also give a measure condition for a set to be minimally thin at infinity.

1. Introduction.

Let u be a nonnegative superharmonic function on $D = \{x = (x_1, \dots, x_{n-1}, x_n) \in \mathbb{R}^n; x_n > 0\}$, where $n \ge 2$. Then it is known (cf. Lelong-Ferrand [5]) that u is uniquely decomposed as

$$u(x) = ax_n + \int_D G(x, y) d\mu(y) + \int_{\partial D} P(x, y) d\nu(y),$$

where a is a nonnegative number, μ (resp. ν) is a nonnegative measure on D (resp. ∂D), G is the Green function for D and P is the Poisson kernel for D. The first author [9, Theorem 1] showed that if $0 \le \beta \le 1$, then

$$\lim_{|x| \to \infty, x \in D - E} x_n^{-\beta} |x|^{\beta - 1} (u(x) - ax_n) = 0$$

with a set E in D which is β -minimally thin at infinity; if in addition $\int_D y_n^{\gamma} d\mu(y) < \infty$ $(1 - n \le \gamma < 1)$, then

$$\lim_{|x| \to \infty, x \in D - E'} x_n^{-\beta} |x|^{n + \gamma - (2 - \beta)} \int_D G(x, y) \, d\mu(y) = 0$$

with a suitable exceptional set $E' \subset D$. For related results, we also refer the reader to Essén-Jackson [3, Theorem 4.6], Aikawa [1], and Miyamoto-Yoshida [7].

Our main aim in this paper is to establish the analogue of these results for locally p-precise functions u in D satisfying

$$\int_{D} |\nabla u(x)|^{p} x_{n}^{\gamma} dx < \infty, \tag{1}$$

where ∇ denotes the gradient, $1 and <math>-1 < \gamma < p - 1$ (see Ohtsuka [14] and Ziemer [15] for locally *p*-precise functions).

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B25, 31B15.

Key Words and Phrases. locally p-precise functions, minimally fine limits, $C_{k_{\beta,\gamma},p}$ -capacity, Riesz decomposition.

The first author was partially supported by Grant-in-Aid for Scientific Research (B) (No. 14340046), Japan Society for the Promotion of Science.

We denote by $\mathbf{D}^{p,\gamma}$ the space of all locally *p*-precise functions on *D* satisfying (1), by $\mathbf{D}_0^{p,\gamma}$ the space of all functions $u \in \mathbf{D}^{p,\gamma}$ having vertical limit zero at almost every boundary point of *D*, and by $\mathbf{H}\mathbf{D}^{p,\gamma}$ the space of all harmonic functions on *D* in $\mathbf{D}^{p,\gamma}$. According to Riesz decomposition (cf. Deny-Lions [2]), $u \in \mathbf{D}^{p,\gamma}$ is represented as

$$u = u_0 + h, (2)$$

where $u_0 \in \mathbf{D}_0^{p,\gamma}$ and $h \in \mathbf{HD}^{p,\gamma}$. We show that the decomposition is unique (see Theorem 2 below). We give the integral representations of u_0 and h, and then discuss minimally fine limits at infinity for functions in $\mathbf{D}_0^{p,\gamma}$.

For this purpose, consider the kernel function

$$k_{\beta,\gamma}(x,y) = x_n^{1-\beta} y_n^{-\gamma/p} |x-y|^{1-n} |\bar{x}-y|^{-1},$$

where $\bar{x} = (x_1, \dots, x_{n-1}, -x_n)$ for $x = (x_1, \dots, x_{n-1}, x_n)$. To evaluate the size of exceptional sets, we use the capacity

$$C_{k_{\beta,\gamma},p}(E;G) = \inf \int_D g(y)^p dy,$$

where E is a subset of an open set G in D and the infimum is taken over all nonnegative measurable functions g such that g=0 outside G and

$$\int_{D} k_{\beta,\gamma}(x,y)g(y) \, dy \ge 1 \quad \text{for all } x \in E.$$

We say that $E \subset D$ is (minimally) $(k_{\beta,\gamma}, p)$ -thin at infinity if

$$\sum_{i=1}^{\infty} 2^{-i(n+\gamma-(1-\beta)p)} C_{k_{\beta,\gamma},p}(E_i; D_i) < \infty, \tag{3}$$

where $E_i = \{x \in E : 2^i \le |x| < 2^{i+1}\}$ and $D_i = \{x \in D : 2^{i-1} < |x| < 2^{i+2}\}.$

Our main aim in this paper is to establish the following theorem (cf. [9, Theorem 1]).

THEOREM 1. Let p > 1, $-1 < \gamma < p - 1$, $(1 - \beta)p - n < \gamma$ and $0 \le \beta \le 1$. If $u \in \mathbf{D}_0^{p,\gamma}$, then there exists a set $E \subset D$ such that E is $(k_{\beta,\gamma},p)$ -thin at infinity and

$$\lim_{|x|\to\infty, x\in D-E} x_n^{-\beta} |x|^{(n+\gamma-(1-\beta)p)/p} u(x) = 0.$$

Next we are concerned with the measure condition on minimally thin sets. For a measurable set $E \subset \mathbb{R}^n$, denote by |E| the Lebesgue measure of E.

Proposition 1. Let $0 \le \beta < 1$ and $-1 < \gamma < p - 1$. If (3) holds, then

$$\sum_{i=1}^{\infty} \left(\frac{|E_i|}{|B_i|} \right)^{(1-(1-\beta)/n)p} < \infty,$$

where $E_i = E \cap B_{i+1} - B_i$ with $B_i = B(0, 2^i) \cap D$.

Finally we give an example of minimally thin sets. For a nondecreasing function φ on \mathbb{R}^1 such that $0 < \varphi(2t) \le M\varphi(t)$ for t > 0 with a positive constant M, we set

$$T_{\varphi} = \{x = (x', x_n); 0 < x_n < \varphi(|x'|)\}.$$

PROPOSITION 2 (cf. Aikawa [1, Proposition 5.1]). Let $0 < \beta \le 1$ and $p(1 - \beta) - 1 < \gamma < p - 1$. Assume further that

$$\lim_{r \to \infty} \frac{\varphi(r)}{r} = 0. \tag{4}$$

Then T_{φ} is $(k_{\beta,\gamma}, p)$ -thin at infinity if and only if

$$\int_{1}^{\infty} \left(\frac{\varphi(t)}{t} \right)^{p(-1+\beta)+\gamma+1} \frac{dt}{t} < \infty.$$
 (5)

For example, $\varphi(r) = r[\log(1+r)]^{-\delta}$ satisfies (5), when $\delta\{p(-1+\beta) + \gamma + 1\} > 1$. In the final section we discuss fine limits at infinity for locally *p*-precise functions, as an extension of Kurokawa-Mizuta [4].

2. Riesz decomposition.

Let $u \in \mathbf{D}^{p,\gamma}$. If $1 \le q < p$ and $q < p/(1+\gamma)$, then Hölder's inequality gives

$$\int_{G} |\nabla u(x)|^{q} dx \le \left(\int_{G} x_{n}^{-\gamma q/(p-q)} dx \right)^{1-q/p} \left(\int_{G} |\nabla u(x)|^{p} x_{n}^{\gamma} dx \right)^{q/p} < \infty$$

for any bounded open set $G \subset D$. Hence we can find a locally q-precise extension \bar{u} to \mathbb{R}^n such that $\bar{u}(x',x_n)=u(x',x_n)$ for $x_n>0$ and $\bar{u}(x',x_n)=u(x',-x_n)$ for $x_n<0$.

For fixed $\xi \in D$, we take r > 0 such that $B = B(\xi, r) \subset D$. Then, in view of [11, Lemma 1], $u \in \mathbf{D}^{p,\gamma}$ is represented as

$$u(x) = c_n \sum_{i=1}^n \int_B \frac{x_i - y_i}{|x - y|^n} \frac{\partial \overline{u}}{\partial y_i}(y) \, dy$$

$$+ c_n \sum_{i=1}^n \int_{\mathbb{R}^n - B} \left(\frac{x_i - y_i}{|x - y|^n} - \frac{\xi_i - y_i}{|\xi - y|^n} \right) \frac{\partial \overline{u}}{\partial y_i}(y) \, dy + A$$

$$= c_n \sum_{i=1}^n \int_D \left(\frac{x_i - y_i}{|x - y|^n} - \frac{\overline{x}_i - y_i}{|\overline{x} - y|^n} \right) \frac{\partial u}{\partial y_i}(y) \, dy$$

$$+ 2c_n \sum_{i=1}^n \int_D \left(\frac{\overline{x}_i - y_i}{|\overline{x} - y|^n} - \frac{\overline{\xi}_i - y_i}{|\overline{\xi} - y|^n} \right) \frac{\partial u}{\partial y_i}(y) \, dy$$

$$- c_n \sum_{i=1}^n \int_{D-B} \left(\frac{\xi_i - y_i}{|\xi - y|^n} - \frac{\overline{\xi}_i - y_i}{|\overline{\xi} - y|^n} \right) \frac{\partial u}{\partial y_i}(y) \, dy$$

$$+ c_n \sum_{i=1}^n \int_B \frac{\overline{\xi}_i - y_i}{|\overline{\xi} - y|^n} \frac{\partial u}{\partial y_i}(y) \, dy + A$$

$$= u_0(x) + h(x)$$

$$(6)$$

for almost every $x \in D$, where $u_0 \in \mathbf{D}_0^{p,\gamma}$, $h \in \mathbf{HD}^{p,\gamma}$, A is a constant determined by u and $\xi \in D$.

LEMMA 1 (cf. [8, Theorem 1]). If $u \in \mathbf{D}^{p,\gamma}$, then the vertical limit

$$\lim_{x_n\to 0+}u(x',x_n)$$

exists for almost every $x' \in \mathbb{R}^{n-1}$; and moreover,

$$u_0(x) = c_n \sum_{i=1}^n \int_D \left(\frac{x_i - y_i}{|x - y|^n} - \frac{\bar{x}_i - y_i}{|\bar{x} - y|^n} \right) \frac{\partial u}{\partial y_i}(y) \, dy \in \mathbf{D}_0^{p,\gamma}.$$

Lemma 2. If $u \in \mathbf{D}_0^{p,\gamma} \cap H\mathbf{D}^{p,\gamma}$, then u is equal to zero.

PROOF. We first note that if $1 \le q < p$ and $q < p/(1+\gamma)$, then we can find a locally q-precise extension \tilde{u} to \mathbf{R}^n such that $\tilde{u}(x',x_n)=u(x',x_n)$ for $x_n>0$ and $\tilde{u}(x',x_n)=-u(x',-x_n)$ for $x_n<0$ as was remarked above. We shall show that $\Delta \tilde{u}=0$ in the weak sense. For this purpose, let $\varphi \in C_0^\infty(\mathbf{R}^n)$. Since u is harmonic in D, we note by Green's formula that

$$\int \tilde{u}(x)\Delta\varphi(x)\,dx = \lim_{\varepsilon \to 0+} \{I(\varepsilon) + J(\varepsilon)\},\,$$

where

$$I(\varepsilon) = -\int_{\mathbf{R}^{n-1}} u(x', \varepsilon) \left\{ \frac{\partial \varphi}{\partial x_n} (x', \varepsilon) + \frac{\partial \varphi}{\partial x_n} (x', -\varepsilon) \right\} dx'$$

and

$$J(\varepsilon) = \int_{\mathbf{R}^{n-1}} \frac{\partial u}{\partial x_n} (x', \varepsilon) \{ \varphi(x', \varepsilon) - \varphi(x', -\varepsilon) \} dx'$$

for $\varepsilon > 0$. Here note that

$$\liminf_{\varepsilon \to 0+} \varepsilon \int_{\{x' \in \mathbf{R}^{n-1}: |x'| < R\}} \left| \frac{\partial u}{\partial x_n} (x', \varepsilon) \right| dx' = 0$$

for R > 0. Since $u \in \mathbf{D}_0^{p,\gamma}$,

$$\int_{\{x' \in \mathbf{R}^{n-1}: |x'| < R\}} |u(x', \varepsilon)| \, dx' = \int_{\{x' \in \mathbf{R}^{n-1}: |x'| < R\}} \left| \int_0^{\varepsilon} \frac{\partial u}{\partial x_n} (x', t) \, dt \right| dx'$$

$$\leq \int_{\{x = (x', x_n): |x'| < R, 0 < x_n < \varepsilon\}} \left| \frac{\partial u}{\partial x_n} (x) \right| dx,$$

which implies that

$$\lim_{\varepsilon \to 0+} \int_{\{x' \in \mathbf{R}^{n-1}: |x'| < R\}} |u(x', \varepsilon)| \, dx' = 0.$$

Thus we have

$$\lim_{\varepsilon \to 0+} I(\varepsilon) = 0$$

and

$$\liminf_{\varepsilon \to 0+} J(\varepsilon) = 0,$$

from which it follows that $\tilde{u}(x)$ is harmonic in \mathbb{R}^n in the weak sense. Since $u \in \mathbb{D}^{p,\gamma}$, we can apply [11, Lemma 2] to see that $\tilde{u}(x)$ is constant, so that u is equal to zero by the assumption.

In view of Lemma 2, we have the following result.

THEOREM 2. The Riesz decomposition (2) is unique.

3. Proof of Theorem 1.

In view of Theorem 2, we see that $u \in \mathbf{D}_0^{p,\gamma}$ is represented as

$$u(x) = c_n \sum_{i=1}^{n} \int_{D} \left(\frac{x_i - y_i}{|x - y|^n} - \frac{\bar{x}_i - y_i}{|\bar{x} - y|^n} \right) \frac{\partial u}{\partial y_i}(y) dy$$

for almost every $x \in D$.

We prepare the following result.

Lemma 3. There exists a positive constant M such that

$$\left| \frac{x_i - y_i}{|x - y|^n} - \frac{\bar{x}_i - y_i}{|\bar{x} - y|^n} \right| \le M \frac{x_n}{|x - y|^{n-1}|\bar{x} - y|}$$

for $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ in D.

PROOF. First note that

$$|x-y|^{-n} - |\bar{x}-y|^{-n} \le \frac{n(|\bar{x}-y|^2 - |x-y|^2)}{|x-y|^n|\bar{x}-y|(|\bar{x}-y| + |x-y|)} \le \frac{4nx_ny_n}{|x-y|^n|\bar{x}-y|^2}.$$

In case i = n, we have

$$\left| \frac{x_n - y_n}{|x - y|^n} - \frac{\bar{x}_n - y_n}{|\bar{x} - y|^n} \right| = \left| (x_n - y_n)(|x - y|^{-n} - |\bar{x} - y|^{-n}) + 2x_n|\bar{x} - y|^{-n} \right|$$

$$\leq 4n|x - y|x_ny_n|x - y|^{-n}|\bar{x} - y|^{-2} + 2x_n|\bar{x} - y|^{-n}$$

$$\leq (4n + 2)x_n|x - y|^{1-n}|\bar{x} - y|^{-1}.$$

In case $1 \le i \le n-1$, we have

$$\left| \frac{x_i - y_i}{|x - y|^n} - \frac{\bar{x}_i - y_i}{|\bar{x} - y|^n} \right| = |(x_i - y_i)(|x - y|^{-n} - |\bar{x} - y|^{-n})|$$

$$\leq 4n|x - y|x_n y_n |x - y|^{-n}|\bar{x} - y|^{-2}$$

$$\leq 4nx_n |x - y|^{1-n}|\bar{x} - y|^{-1}.$$

Hence the required result follows.

Throughout this paper, let M denote various constants independent of the variables in question.

In view of Lemma 3,

$$|u(x)| \le Mx_n \int_D |x - y|^{1-n} |\bar{x} - y|^{-1} |\nabla u(y)| \, dy$$

$$= Mx_n^{\beta} \int_D k_{\beta,\gamma}(x, y) \{ y_n^{\gamma/p} |\nabla u(y)| \} \, dy$$
(7)

for almost every $x \in D$.

Here we prepare the following lemma.

Lemma 4. For a nonnegative measurable function $f \in L^p(D)$, we set

$$U(x) = \int_{D} k_{\beta,\gamma}(x, y) f(y) \, dy, \quad x \in D.$$

If p > 1, $-1 < \gamma < p - 1$, $(1 - \beta)p - n < \gamma$ and $0 \le \beta \le 1$, then there exists a set E such that E is $(k_{\beta,\gamma}, p)$ -thin at infinity and

$$\lim_{|x|\to\infty, x\in D-E} |x|^{(n+\gamma-(1-\beta)p)/p} U(x) = 0.$$

PROOF. For fixed $x \in \mathbb{R}^n$, $x \neq 0$, we write

$$U(x) = \int_{G_1} k_{\beta,\gamma}(x,y) f(y) dy + \int_{G_2} k_{\beta,\gamma}(x,y) f(y) dy + \int_{G_3} k_{\beta,\gamma}(x,y) f(y) dy$$
$$= U_1(x) + U_2(x) + U_3(x),$$

where

$$G_1 = \{ y \in D : |y| \ge 2|x| \},$$

$$G_2 = \{ y \in D : |y| \le |x|/2 \},$$

$$G_3 = \{ y \in D : |x|/2 \le |y| \le 2|x| \}.$$

From Hölder's inequality, we obtain

$$U_{1}(x) = \int_{G_{1}} k_{\beta,\gamma}(x,y) f(y) dy$$

$$\leq M x_{n}^{1-\beta} \left(\int_{G_{1}} |y|^{-np'} y_{n}^{-\gamma p'/p} dy \right)^{1/p'} \left(\int_{G_{1}} f(y)^{p} dy \right)^{1/p}$$

$$\leq M x_{n}^{1-\beta} |x|^{-(n+\gamma)/p} \left(\int_{G_{1}} f(y)^{p} dy \right)^{1/p},$$

where 1/p + 1/p' = 1. Hence we have

$$\lim_{|x| \to \infty} |x|^{(n+\gamma - (1-\beta)p)/p} U_1(x) = 0.$$

For any r > 0, we set

$$f = f\chi_{B(0,r)} + f\chi_{D-B(0,r)} = f_1 + f_2,$$

where χ_E denotes the characteristic function of a Borel set $E \in \mathbb{R}^n$. From Hölder's inequality, we have

$$\begin{split} U_{2}(x) & \leq M x_{n}^{1-\beta} |x|^{-n} \int_{G_{2}} y_{n}^{-\gamma/p} f(y) \, dy \\ & \leq M x_{n}^{1-\beta} |x|^{-n} \int_{G_{2}} y_{n}^{-\gamma/p} f_{1}(y) \, dy + M x_{n}^{1-\beta} |x|^{-n} \bigg(\int_{G_{2}} y_{n}^{-\gamma p'/p} \, dy \bigg)^{1/p'} \bigg(\int_{G_{2}} f_{2}(y)^{p} \, dy \bigg)^{1/p} \\ & \leq M x_{n}^{1-\beta} |x|^{-n} \int_{G_{2}} y_{n}^{-\gamma/p} f_{1}(y) \, dy + M x_{n}^{1-\beta} |x|^{-(n+\gamma)/p} \bigg(\int_{G_{2}} f_{2}(y)^{p} \, dy \bigg)^{1/p} \\ & \leq M x_{n}^{1-\beta} |x|^{-n} \int_{B(0,r)\cap D} y_{n}^{-\gamma/p} f(y) \, dy + M x_{n}^{1-\beta} |x|^{-(n+\gamma)/p} \bigg(\int_{D-B(0,r)} f(y)^{p} \, dy \bigg)^{1/p}, \end{split}$$

so that

$$|x|^{(n+\gamma-(1-\beta)p)/p}U_2(x) \leq M|x|^{(n+\gamma)/p-n} \int_{B(0,r)\cap D} y_n^{-\gamma/p} f(y) \, dy + M \left(\int_{D-B(0,r)} f(y)^p \, dy \right)^{1/p}.$$

Hence we obtain

$$\limsup_{|x| \to \infty} |x|^{(n+\gamma-(1-\beta)p)/p} U_2(x) \le M \left(\int_{D-B(0,r)} f(y)^p \, dy \right)^{1/p}$$

for every r > 0, which implies that the left hand side is equal to zero.

Since $f \in L^p(D)$, we can find a sequence $\{a_i\}$ of positive numbers such that $\lim_{i\to\infty} a_i = \infty$ and

$$\sum_{i=1}^{\infty} a_i \int_{D_i} f(y)^p \, dy < \infty;$$

recall $D_i = \{ y \in D : 2^{i-1} < |y| < 2^{i+2} \}$. Consider the sets

$$E_i = \{x \in D : 2^i \le |x| < 2^{i+1}, U_3(x) \ge a_i^{-1/p} 2^{-i(n+\gamma-(1-\beta)p)/p} \}$$

for $i = 1, 2, \ldots$ If $x \in E_i$, then

$$a_i^{-1/p} \le 2^{i(n+\gamma-(1-\beta)p)/p} U_3(x)$$

$$\le 2^{i(n+\gamma-(1-\beta)p)/p} \int_{D_i} k_{\beta,\gamma}(x,y) f(y) dy,$$

so that it follows from the definition of $C_{k_{\beta,\gamma},p}$ that

$$C_{k_{\beta,\gamma},p}(E_i;D_i) \leq a_i 2^{i(n+\gamma-(1-\beta)p)} \int_{D_i} f(y)^p dy.$$

Define $E = \bigcup_{i=1}^{\infty} E_i$. Then $E \cap B(0, 2^{i+1}) - B(0, 2^i) = E_i$ and

$$\sum_{i=1}^{\infty} 2^{-i(n+\gamma-(1-\beta)p)} C_{k_{\beta,\gamma},p}(E_i;D_i) < \infty.$$

Clearly,

$$\lim_{|x|\to\infty, x\in D-E} |x|^{(n+\gamma-(1-\beta)p)/p} U_3(x) = 0.$$

Thus the proof of the lemma is completed.

REMARK 1. The proof of Lemma 4 shows that

$$\int_{D} (1+|y|)^{-n} y_n^{-\gamma/p} f(y) \, dy < \infty,$$

which is equivalent to the condition that $U(x) \not\equiv \infty$. Hence, for $x \in D$, $U(x) = \infty$ if and only if

$$\int_{B(x,r)} k_{\beta,\gamma}(x,y) f(y) dy = \infty \quad \text{whenever } 0 < r < x_n.$$

We have the following result.

LEMMA 5 (cf. [12]). For a set $E \subset D$, $C_{k_{\beta,\gamma},p}(E;D) = 0$ if and only if E is of (1,p)-capacity zero, which means that $C_{k_1,p}(E \cap B(0,r);B(0,2r)) = 0$ for every r > 0, where $k_1(x,y) = |x-y|^{1-n}$.

Lemma 5 implies that inequality (7) holds for every $x \in D$ except that of a set of $C_{k_{\beta,\gamma},p}$ -capacity zero. Now Theorem 1 follows from Lemma 4.

4. Proof of Proposition 1.

Let g be a nonnegative measurable function such that g = 0 outside D_i and

$$\int_{D} k_{\beta,\gamma}(x,y)g(y)\,dy \ge 1$$

for every $x \in E_i$. Then we have by Fubini's theorem

$$|E_{i}| \leq \int_{E_{i}} \left(\int_{B_{i+2}} k_{\beta,\gamma}(x,y) g(y) \, dy \right) dx$$

$$= \int_{B_{i+2}} g(y) y_{n}^{-\gamma/p} \left(\int_{E_{i}} x_{n}^{1-\beta} |x-y|^{1-n} |\bar{x}-y|^{-1} \, dx \right) dy.$$

Take $r \ge 0$ such that $|B(0,r)| = |E_i|$, that is,

$$\sigma_n r^n = |E_i|$$

with σ_n denoting the volume of the unit ball. Here note that if $y \in D$, then

$$\int_{E_i} x_n^{1-\beta} |x - y|^{1-n} |\bar{x} - y|^{-1} dx \le \int_{E_i} |x - y|^{1-n-\beta} dx$$

$$\le \int_{B(y,r)} |x - y|^{1-n-\beta} dx$$

$$\le Mr^{1-\beta} = M|E_i|^{(1-\beta)/n}.$$

Therefore we obtain by Hölder's inequality

$$|E_{i}| \leq M|E_{i}|^{(1-\beta)/n} \int_{B_{i+2}} g(y) y_{n}^{-\gamma/p} dy$$

$$\leq M|E_{i}|^{(1-\beta)/n} \left(\int_{B_{i+2}} g(y)^{p} dy \right)^{1/p} \left(\int_{B_{i+2}} y_{n}^{-\gamma p'/p} dy \right)^{1/p'}$$

$$\leq M|E_{i}|^{(1-\beta)/n} \left(\int_{B_{i+2}} g(y)^{p} dy \right)^{1/p} 2^{i(-\gamma/p+n/p')}.$$

Hence it follows from the definition of $C_{k_{\beta,\gamma},p}$ that

$$|E_i|^{(1-(1-\beta)/n)p} \le M2^{i(np-(n+\gamma))}C_{k_{\beta,\gamma},p}(E_i;D_i),$$

which yields

$$\sum_{i=1}^{\infty} \left(\frac{|E_i|}{|B_i|} \right)^{(1-(1-\beta)/n)p} < \infty.$$

5. Proof of Proposition 2.

By the definition of $C_{k_{\beta,\gamma},p}$, we obtain the next results.

LEMMA 6 (cf. [10, Lemma 4]). For r > 0 and a Borel set E in D, let $rE = \{rx : x \in E\}$. Then

$$C_{k_{\beta,\gamma},p}(rE;rG) = r^{n+\gamma-(1-\beta)p} C_{k_{\beta,\gamma},p}(E;G).$$

LEMMA 7 (cf. [12, Lemma 2.2]). Let G, G_1 and G_2 be bounded open sets in D such that $\overline{G} \cap D \subset G_1 \cap G_2$. Then

$$C_{k_{\beta,\gamma},p}(E;G_1) \sim C_{k_{\beta,\gamma},p}(E;G_2)$$

whenever $E \subset G$, that is, there exist $M_1, M_2 > 0$ such that

$$M_1 C_{k_{\beta,\gamma},p}(E;G_1) \le C_{k_{\beta,\gamma},p}(E;G_2) \le M_2 C_{k_{\beta,\gamma},p}(E;G_1)$$

whenever $E \subset G$.

For r > 0 and s > 0, set

$$S(r,s) = \{x = (x',x_n) \in \mathbf{R}^{n-1} \times \mathbf{R}^1 : |x'| < r, 0 < x_n < s\}.$$

LEMMA 8. Let $(1-\beta)p-1 < \gamma < p-1$ and $0 < \beta \le 1$. Then there exist $M_1, M_2 > 0$ such that

$$M_1 s^{p(-1+\beta)+\gamma+1} \le C_{k_{\beta,\gamma},p}(S(1,s);B(0,2)\cap D) \le M_2 s^{p(-1+\beta)+\gamma+1}$$

whenever $0 < s \le 1$.

PROOF. To prove the first inequality, let g be a nonnegative measurable function such that g = 0 outside B(0,2) and

$$\int_{D} k_{\beta,\gamma}(z,y)g(y)\,dy \ge 1$$

for every $z \in S(1,s)$. Then we have by Fubini's theorem

$$\int_{S(1,s)} dz \le \int_{S(1,s)} \left(\int_{D} k_{\beta,\gamma}(z,y) g(y) \, dy \right) dz
= \int_{D} g(y) y_n^{-\gamma/p} \left(\int_{S(1,s)} z_n^{1-\beta} |z-y|^{1-n} |\bar{z}-y|^{-1} \, dz \right) dy.$$

For $z = (z', z_n)$ and $y = (y', y_n)$, set

$$a = |z_n - y_n|$$
 and $b = |z_n + y_n|$.

Here note that

$$I \equiv \int_{S(1,s)} z_n^{1-\beta} |z - y|^{1-n} |\bar{z} - y|^{-1} dz$$

$$\leq M \int_0^s z_n^{1-\beta} \left(\int_{|z'| \leq 1} (|z' - y'| + |z_n - y_n|)^{1-n} (|z' - y'| + |z_n + y_n|)^{-1} dz' \right) dz_n$$

$$= M \int_0^s z_n^{1-\beta} \left(\int_0^3 (r+a)^{1-n} (r+b)^{-1} r^{n-2} dr \right) dz_n$$

$$\leq M \int_0^s z_n^{1-\beta} \left(a^{1-n} b^{-1} \int_0^a r^{n-2} dr + b^{-1} \int_a^b r^{-1} dr + \int_b^\infty r^{-2} dr \right) dz_n$$

$$\leq M \int_0^s z_n^{1-\beta} b^{-1} \left(1 + \log \frac{b}{a} \right) dz_n$$

$$= M y_n^{1-\beta} \int_0^{s/y_n} t^{1-\beta} (1+t)^{-1} \left(1 + \log \left| \frac{1+t}{1-t} \right| \right) dt.$$

If $y_n > 2s$, then

$$I \le M y_n^{1-\beta} \int_0^{s/y_n} t^{1-\beta} dt = M y_n^{1-\beta} (s/y_n)^{2-\beta} = M y_n^{-1} s^{2-\beta}.$$

If $y_n < 2^{-1}s$, then

$$I \leq M y_n^{1-\beta} \int_0^2 t^{1-\beta} \left(1 + \log \left| \frac{1+t}{1-t} \right| \right) dt + M y_n^{1-\beta} \int_2^{s/y_n} t^{-\beta} dt$$

$$\leq M y_n^{1-\beta} + M y_n^{1-\beta} (s/y_n)^{1-\beta} \log(s/y_n)$$

$$\leq M s^{1-\beta} \log(s/y_n).$$

Since $I \leq My_n^{1-\beta}$ when $2^{-1}s \leq y_n \leq 2s$, we have by Hölder's inequality

$$\int_{S(1,s)} dz \leq Ms^{2-\beta} \int_{\{y:s < y_n < 2\}} g(y) y_n^{-\gamma/p-1} dy
+ Ms^{1-\beta} \int_{\{y:0 < y_n < s\}} g(y) y_n^{-\gamma/p} \log\{1 + (s/y_n)\} dy
\leq Ms^{2-\beta} \left(\int_D g(y)^p dy \right)^{1/p} \left(\int_s^2 y_n^{(-\gamma/p-1)p'} dy_n \right)^{1/p'}
+ Ms^{1-\beta} \left(\int_D g(y)^p dy \right)^{1/p} \left(\int_0^s y_n^{-\gamma p'/p} [\log\{1 + (s/y_n)\}]^{p'} dy_n \right)^{1/p'}
\leq Ms^{2-\beta-(\gamma+1)/p} \left(\int_D g(y)^p dy \right)^{1/p}.$$

Taking the infimum over all such g, we arrive at the first inequality.

To prove the second inequality, take δ such that

$$(\gamma/p - 1 <) -1/p < \delta < \gamma/p - (1 - \beta).$$
 (8)

Define

$$f(y) = \begin{cases} y_n^{\delta}, & \text{if } y = (y', y_n) \in S(1, s), \\ 0, & \text{otherwise.} \end{cases}$$

If $x = (x', x_n) \in S(1, s)$, then

$$\int_{S(1,s)} k_{\beta,\gamma}(x,y) f(y) dy \ge M x_n^{1-\beta} \int_0^{x_n/2} \left(\int_0^1 (r+x_n)^{-n} r^{n-2} dr \right) y_n^{-\gamma/p+\delta} dy_n$$

$$\ge M x_n^{-\beta} \int_0^{x_n/2} y_n^{\delta-\gamma/p} dy_n$$

$$= M x_n^{1-\beta+\delta-\gamma/p} \ge M s^{1-\beta+\delta-\gamma/p}$$

since $\gamma/p - 1 < \delta$ and $1 - \beta + \delta - \gamma/p < 0$ by (8). Hence it follows from the definition of $C_{k_{\beta,\gamma},p}$ that

$$C_{k_{\beta,\gamma},p}(S(1,s);B(0,2)\cap D) \leq Ms^{(-1+\beta-\delta+\gamma/p)p} \int_{D} f(y)^{p} dy = Ms^{p(-1+\beta)+\gamma+1},$$

which completes the proof.

For a nondecreasing function φ on \mathbf{R}^1 such that $0 < \varphi(2t) \le \varphi(t)$ for t > 0, we set

$$T_{\varphi} = \{ x = (x', x_n) : 0 < x_n < \varphi(|x'|) \},$$

 $T_{\varphi, i} = T_{\varphi} \cap B_{i+1} - B_i, \quad B_i = B(0, 2^i) \cap D.$

Lemma 9. Let $0 < \beta \le 1$ and $p(1-\beta)-1 < \gamma < p-1$. Assume that φ is as in Proposition 2. Then there exist $N_1, N_2 > 0$ independent of i such that

$$N_1 \left(\frac{\varphi(2^i)}{2^i} \right)^{p(-1+\beta)+\gamma+1} \leq 2^{-i(n+\gamma-(1-\beta)p)} C_{k_{\beta,\gamma},p}(T_{\varphi,i};D_i) \leq N_2 \left(\frac{\varphi(2^i)}{2^i} \right)^{p(-1+\beta)+\gamma+1}.$$

PROOF. Let $\xi_i = (2^i + 2^{i-2}, 0, \dots, 0)$. Define

$$T'_i = \{x = (x', x_n) : |(x', 0) - \xi_i| < 2^{i-2}, 0 < x_n < \varphi(2^i)\}$$

and

$$T_i'' = S(2^{i+1}, \varphi(2^{i+1})) \cap B_{i+1} - B_i.$$

If $\varphi(2^{i+1}) < 2^{i-2}$, then $T_i' \subset T_{\varphi,i} \subset T_i''$. On the other hand we have by Lemmas 6 and 7

$$C_{k_{\beta,\gamma},p}(T_i';D_i) \sim 2^{(i-2)(n+\gamma-(1-\beta)p)} C_{k_{\beta,\gamma},p}(S(1,\varphi(2^i)/2^{i-2});B_1)$$

and

$$C_{k_{\beta,\gamma},p}(T_i'';D_i) \sim 2^{(i+1)(n+\gamma-(1-\beta)p)}C_{k_{\beta,\gamma},p}(S(1,\varphi(2^{i+1})/2^{i+1});B_1).$$

Thus, in view of (4), Lemma 8 gives Lemma 9 readily.

By using Lemma 9 we can prove Proposition 2.

6. Fine limits of p-precise functions.

In this section we are concerned with fine limits at infinity for functions in $\mathbf{D}^{p,\gamma}$. For this purpose, consider the kernel function

$$k_{\gamma}(x, y) = |x - y|^{1-n} |y_n|^{-\gamma/p}$$

and the capacity

$$C_{k_{\gamma},p}(E;G) = \inf \int_{D} g(y)^{p} dy,$$

where E is a subset of an open set G in \mathbb{R}^n and the infimum is taken over all non-negative measurable functions g such that g = 0 outside G and

$$\int k_{\gamma}(x, y)g(y) \, dy \ge 1 \quad \text{for all } x \in E.$$

We say that $E \subset D$ is (k_{γ}, p) -thin at infinity if

$$\sum_{i=1}^{\infty} 2^{-i(n+\gamma-p)} C_{k_{\gamma},p}(E_i; R_i) < \infty, \tag{9}$$

where $E_i = \{x \in E : 2^i \le |x| < 2^{i+1}\}$ and $R_i = \{x \in \mathbb{R}^n : 2^{i-1} < |x| < 2^{i+2}\}.$

THEOREM 3. Let p > 1, $-1 < \gamma < p - 1$ and $n + \gamma - p > 0$. If $u \in \mathbf{D}^{p,\gamma}$, then there exist a set $E \subset D$ and a number A such that E is (k_{γ}, p) -thin at infinity and

$$\lim_{|x| \to \infty, x \in D - E} |x|^{(n + \gamma - p)/p} \{ u(x) - A \} = 0.$$
 (10)

REMARK 2. If $n + \gamma - p = 0$, then (10) is replaced by

$$\lim_{|x| \to \infty, x \in D - E} (\log|x|)^{-1/p'} \{ u(x) - A \} = 0.$$

Theorem 4. Let p > 1, $-1 < \gamma < p - 1$ and $n + \gamma - p > 0$. If $h \in \mathbf{HD}^{p,\gamma}$, then

$$\lim_{|x|\to\infty, x\in D} x_n^{(n+\gamma-p)/p} \{h(x) - A\} = 0$$

for some number A.

For proofs of these results, we first note that $u \in \mathbf{D}^{p,\gamma}$ is represented as

$$u(x) = c_n \sum_{i=1}^{n} \int \frac{x_i - y_i}{|x - y|^n} \frac{\partial \bar{u}}{\partial y_i}(y) \, dy + A$$

for every $x \in D - E'$, where A is a constant and $C_{k_{\nu},p}(E';D) = 0$. As in the proof of Theorem 1, we write for $x \in D$

$$u(x) - A = c_n \sum_{i=1}^n \int_{G_1} \frac{x_i - y_i}{|x - y|^n} \frac{\partial \bar{u}}{\partial y_i}(y) \, dy + c_n \sum_{i=1}^n \int_{G_2} \frac{x_i - y_i}{|x - y|^n} \frac{\partial \bar{u}}{\partial y_i}(y) \, dy$$
$$+ c_n \sum_{i=1}^n \int_{G_3} \frac{x_i - y_i}{|x - y|^n} \frac{\partial \bar{u}}{\partial y_i}(y) \, dy$$
$$= u_1(x) + u_2(x) + u_3(x),$$

where $G_1 = \{ y \in \mathbb{R}^n : |y| \ge 2|x| \}, G_2 = \{ y \in \mathbb{R}^n : |y| \le |x|/2 \}$ and $G_3 = \{ y \in \mathbb{R}^n : |x|/2 \}$ $\leq |y| \leq 2|x|$. We can prove as in the proof of Theorem 1 that

$$\lim_{|x| \to \infty, x \in D} |x|^{(n+\gamma-p)/p} \{ u_1(x) + u_2(x) \} = 0$$

and

$$\lim_{|x|\to\infty, x\in D-E''} |x|^{(n+\gamma-p)/p} u_3(x) = 0$$

with a set $E'' \subset D$ satisfying (9). Thus Theorem 3 is derived.

Next suppose $u \in HD^{p,\gamma}$. To prove Theorem 4, we note that

$$\sum_{i=1}^{n} \int_{B(x,x_n/2)} \frac{x_i - y_i}{|x - y|^n} \frac{\partial \bar{u}}{\partial y_i}(y) \, dy = 0$$

for $x \in D$, because u is harmonic in D. Hence we obtain by Hölder's inequality

$$|u_3(x)| \le M \int_{G_3} (x_n + |x - y|)^{1-n} |\nabla \bar{u}(y)| dy$$

$$\leq M x_n^{(p-n-\gamma)/p} \left(\int_{G_3} |\nabla \bar{u}(y)|^p y_n^{\gamma} dy \right)^{1/p},$$

which yields

$$\lim_{|x|\to\infty, x\in D} x_n^{(n+\gamma-p)/p} u_3(x) = 0.$$

Now Theorem 4 is proved.

REMARK 3. Let p > 1, $-1 < \gamma < p - 1$ and $n + \gamma - p > 0$. Then we can find a function $h \in HD^{p,\gamma}$ such that

$$\lim_{|x| \to \infty, x \in D} |x|^{(n+\gamma-p)/p} h(x) = \infty$$
(11)

and

$$\lim_{|x| \to \infty, x \in D} x_n^{(n+\gamma-p)/p} h(x) = 0.$$
 (12)

Let $e_j = (2^j, 0, \dots, 0)$ and consider

$$f(y) = \sum_{j=1}^{\infty} 2^{-j(n+\gamma)/p} |y - e_j|^{-\varepsilon} \chi_{B(e_j, 2^{j-2}) - D}(y),$$

where $1 < \varepsilon < (n + \gamma)/p$ and χ_E denotes the characteristic function of E. Then

$$\int f(y)^p |y_n|^{\gamma} dy = M \sum_j 2^{-j(n+\gamma)} 2^{-j(\varepsilon p - n - \gamma)} < \infty.$$

Now define

$$h(x) = \int_{\mathbf{R}^n - D} \frac{x_n - y_n}{|x - y|^n} f(y) \, dy.$$

Note that $h \in \mathbf{D}^{p,\gamma}$ (cf. [8, Lemma 6]) and h is harmonic in D. We see that (12) holds by the proofs of Theorems 3 and 4. Moreover,

$$\liminf_{x \to e_j} h(x) \ge \int_{\mathbf{R}^n - D} \frac{(e_j)_n - y_n}{|e_j - y|^n} f(y) \, dy = \infty$$

for each j, which proves (11). Thus h has all the required conditions.

References

- [1] H. Aikawa, On the behavior at infinity of non-negative superharmonic functions in a half space, Hiroshima Math. J., 11 (1981), 425–441.
- [2] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble), 5 (1955), 305–370.

- [3] M. Essén and H. L. Jackson, On the covering properties of certain exceptional sets in a half space, Hiroshima Math. J., 10 (1980), 233–262.
- [4] T. Kurokawa and Y. Mizuta, On the order at infinity of Riesz potentials, Hiroshima Math. J., 9 (1979), 533-545.
- [5] J. Lelong-Ferrand, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup., 66 (1949), 125–159.
- [6] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 8 (1970), 255–292.
- [7] I. Miyamoto and H. Yoshida, Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone, J. Math. Soc. Japan., 54 (2002), 487–512.
- [8] Y. Mizuta, On the existence of boundary limits of Beppo Levi functions defined in the upper half space of \mathbb{R}^n , Hiroshima Math. J., 6 (1976), 61–72.
- [9] Y. Mizuta, On the behavior at infinity of Green potentials in a half space, Hiroshima Math. J., 10 (1980), 607-613.
- [10] Y. Mizuta, On semi-fine limits of potentials, Analysis, 2 (1982), 115–139.
- [11] Y. Mizuta, Boundary behavior of p-precise functions on a half space of \mathbb{R}^n , Hiroshima Math. J., 18 (1988), 73–94.
- [12] Y. Mizuta, Continuity properties of potentials and Beppo-Levi-Deny functions, Hiroshima Math. J., 23 (1993), 79–153.
- [13] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
- [14] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes at Hiroshima University, 1972.
- [15] W. P. Ziemer, Extremal length as a capacity, Michigan Math. J., 17 (1970), 117-128.

Yoshihiro Mizuta

The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 739-8521 Japan

E-mail: mizuta@mis.hiroshima-u.ac.jp

Tetsu Shimomura

Department of Mathematics Graduate School of Education Hiroshima University Higashi-Hiroshima 739-8524 Japan

E-mail: tshimo@hiroshima-u.ac.jp