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Abstract. This paper is devoted to the study of the extention of the existence time of
solutions in Sobolev spaces to the Cauchy problem for Kirchhoff equations.

0. Introduction.

We shall investigate the Cauchy problem for the Kirchhoff equation:

a1, ) = MUIVa(0)]122) A, ), (0.1)
u(0,x) = uo(x), u/(0,x) =u(x), (0.2)

for 0<tr< T, xeR". 1Tt is well known (see Bernstein and Pohozaev [3]) that if
the initial data wug,u; are real analytic then we have a unique time global solution of
the above Kirchhoff equation, and that for the initial data u; in Sobolev space
H! (s>2 i=0,1) there is 7 >0 such that there exists a unique solution ue
ﬂ o C'([0,T); H*™") of the Cauchy problem [0.1] On the other hand recently
Colomblnl, Del Santo and Kinoshita in [2] have obtamed the C* well-posedness for
the Cauchy problem to linear second order hyperbolic equations of which the first
derivatives of coefficients have singularities of order one with respect to time variable.
In this paper, noting that the first derivative of the coefficient M(||V,u(z)|7.) of
Kirchhoff equation [0.1]-{0.2] have also singularities of order one with respect to time
variable, we can apply the result of Colombini, Del Santo and Kinoshita in to this
solution and we shall show that we can extend beyond 7= T the solution in Sobolev
space of Kirchhoff equation [0.1}{0.2}.
We assume that the coefficient M(y) e C!([0, 0)) satisfies

0<3Ito<M@m (0<n). (0.3)

For ue ﬂ o C/([0,T); H*7) satisfying [0.I] we introduce the following two energies,

1 V(1) 2,
E() =3 {num WG+ [ w) dn}, (0.4

and for a non negative number s

(1) = 5 o)+ M(Vaa0)[3) V)| 0.3]
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where H* stands for Sobolev space in R" with the norm | -||,. Then we can show
easily (see and Propositon 2.3 in the Section 2)

E(t)=E0), t>0,

and
V220
el(l)gm, OSZ<T,
where
V220
=—— K= max 2 0.6
K+/e(0) 0<n<2E(0 )//10| 2y (0.6)

Applying the result of Colombini, Del Santo and Kinoshita to Kirchhoff equation
(0.1}-{0.2], we can prove the following theorem.

TueoreM 0.1.  Suppose the coefficient M € C'([0, 0)) satisfies (0.3) and ug e H*,
uye H3. Let T >0 be defined by (0.6). Then e3(t) (0 <t< T) is bounded and more-
over lim,_7_ou(t,x) and lim,_,7_ou,(t,x) exist and belong to H* and to H? respectively.

It follows from that we can consider the Cauchy problem for Kirchhoff
equation for the initial plane ¢ = 7 and for the initial data lim, .7_¢d/u(t,x) (i=0,1).
Therefore we can extend the existence time of solutions of beyond 7. Repeating
the same augument step by step, we can prove the following result.

TueOREM 0.2.  Suppose the coefficient M € C'([0, c0)) satisfies (0.3). Let ug e H*,
u € H? and define Ty = (vV24o/K\/e1(Ti_1)) + Tkt (k=1,2,...), To =0 and

\/zioi
K =Ve Tk 1)’

where K = maxg <, <2£(0)/1,| M’ ( )12/n.  Then e3(Ty) for every k > 1 is finite and there
exists a unique solution u e ﬂ C/([0,T); H*7) of the Cauchy problem (0.1)—(0.2).

We organize this paper as follows. In the section 1 we shall derive an energy estimate
for a linear hyperbolic equation with non Lipschitz continuous coefficients following
the idea given in [2]. In the section 2 we shall obtain a local solution for the Cauchy
problem of Kirchhoff equation of which coefficient satisfies the conditions of the the-
orem in [2] and applying the estimate derived in the section 1 we shall prove Theoreml

0.1 and [Theorem 0.2l

1. Linear equations.

Let T > 0. We consider the following Cauchy problem for the linear equation
uy(t,x) = a(t)Au(t,x), 0<t<T,xeR", (1.1)
u(0,x) = up(x), u,(0,x) =u(x), xeR" (1.2)

We assume that the coefficient a = a(¢) satisfies the following hypothesis.
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AssuMPTION 1.1. Let a=a(t) e C([0,T)) be a function satisfying the following
properties.

i) 0<3dlp<a(r)<dIM, (0<t<T)

(i) |a'(1)] <

here we denote by a'(t) = da(t)/dt.

T—; 0<t<T),

Under the above assumption we can prove the following proposition:

PropPosITION 1.2 (Colombini-Del Santo-Kinoshita [2]). Suppose that Assumption 1.1
holds. Let s>2 and denote 6 = Ag/ly. Then for any uge H*T, uy € H* 7! there
exists a unique solution u e ﬂl.zzo Ci([0, T); H) of (1.1)~(1.2) satisfying

V()12 + ()] < B{||Virto|[21s + Nl |l7s) (0<t<T), (1.3)
where
B =max(d, C'), d = CeM/T?
C' = CeM /%020 M = My(1 4+ M),

max(1, M)

€= min(l, o)

PrOOF. Let v=u0(t,&) be a solution of the next Cauchy problem:

{vna, 9 = —a(ePulr.0). 1.5
v(0,8) =uo(&), v(0,8) = (<)

where @ = (&) stands for the Fourier transform of v = u(x). Let ¢ >0. When e < T,
we define

_ [al(?), 0<t<T—¢
as([)_{a(T—g), (T—e<t<T). L.6)
When ¢ > T define
_ [aly), 0<t<T)2)
ar(t) = {a(T/Z), (T/2<t<T). (17)

We introduce an energy for v as follows:
E(1) = o' (01 + a, (0| [o()|*.
Then taking account that v satisfies the equation (1.5) we calculate
%Ea(f) = 2Re(v" (1) (1)) + al(0)[E1*|o()|? + 2a:(1)|€]* Re (v (1)o(1))
= —2a(0)[¢]* Re(v(1)v' (1)) + al(0)|E[o()| + 2a,(1)[¢]* Re(v' (1)o(1))

= 2{a,(1) — a(1)}|EI* Re(v' (0)0(0)) + a;(1) &) |o(1)]*
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a(t

< 2{Ja,(1) = a(0)] [ ()] |o(1)] + |a; (1) \f\zlv(l)lz}ag .

(
< 1O 01100 + a0l 0} + 20 a0l

Hence we get from (i) of Assumption 1.1,

d |a:(1) — a(?)]
EES(t) < T(t)

~—

~—

S— | —

40l o

|é|{E€([> + ES(Z)MO} + Clg(l) ]

< Mlél(l + Mo)E(1) + |ai(l)|E‘9(t)'
0 0

By using Gronwall’s lemma, we obtain
E(1) < E(0)eh ™" (0 <i<T), (1.8)

where

a@ziﬂ%m—amma+Mw+mmw

Now let us estimate the integral

| a@dr= | S tla(e) - a0l + M) + @) d.
0 070

From the definition of a,(t) we have

J; |a)(t)|dT = LT_E |la,(7)| dt + J:_g la!(z)| dr
= Ao logg
and
JI |la,(t) —a(7)|dt = J:_L (T — &) — a(z)| dr
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Therefore we get from
E,(t) < E,(0)eAo/2)1ee(TIED+(M/20) — [ (0)eMi/40 T Ao/%0| g Ao/ %0 (1.9)
Noting that
E(0) = |0 (0 + a0 [o(0)]* = [o'(1)]* + Ao[&|*[o(0)?
> min(1, Z0) {|o' ()| + &) [0(2)] "}
and
E(0) = [0 (0)* + a.(0)[&[*[0(0)* < [v'(0)|” + Mo|¢|?|u(0)?
< max(1, Mo){|v'(0)| + |£[*[0(0)]*},
we get from
[0'(0)7 + [E7e(0)* < CeM AT {0 (0)]7 + €17 |0(0) 7} 1€]°, (1.10)
for |¢] > T—!, where C = max(1, Mo)/min(1, A), d = Ag/Ao. Next we consider the case
of T|¢] < 1. From the definition (1.7) of a.(z) we get

t T/2 T
j |a.;<r>|dr:[ |a’<r>|dr+j a!()] de
0 0 T/2

JT/Z AO

and

T

[0 - a1 = | o

0

o(2) e

d T
< J M()dT:M()—
/2 2

)2

Thus we obtain for T|&| < 1

! | T
J a(t)dt < — 4 Aolog2 + |&|(1 + My) My —=
0 40 2

Ao

M,
/1 log2 + —

220’
and consequently

E,(t) < E,(0)240/%0o((M1/220)TIE])
which implies

0" (0)]7 + €7 e(0)]* < CeM22022 {10/ (0)|* + |€[*[0(0)[*). (L.11)
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Multiplying |&|*[a(1, &)|* + |it,(¢,&)|* by ()% and integrating over R:, we obtain (1.3)
from (1.10) and (1.11). O

2. Kirchhoft equations.

Next we consider the following Cauchy problem for the Kirchhoff equation:

ua(t,x) = M(|Vau(t)|)72) Au(t,x), 0<t<T,xeR" 2.1)
u(0,x) = up(x), wu,(0,x) =u;(x), xeR". '
We begin to state a fundamental property of Kirchhoff equation.
LEmMMA 2.1. For ue ﬂjz:o Ci([0, T); H*7) satisfying (2.1) set
1 7
E(1) = §(||uz(t)||iz + F(|Vau(n)|[72), Fn) = JO M(2)do.
Then
E(t)=E(0), Vtel0,T]. (2.2)
ProOF. We can see that holds because of (d/dt)E(t) = 0. |

We suppose that the coefficient M satisfies the following hypothesis.
ASSUMPTION 2.2. M = M(n) is a function satisfying the following properties.
(1) 0< 3l < M(n)
(i) M(n) e C'([0,0)).
We denote
a(t) == M(|V.u(2)|[72). (2.3)
We can show the local existence theorem of Kirchhoff equation (2.1).

PropOSITION 2.3.  Suppose Assumption 2.2 holds and s > 2 a positive integer. Then
for u; e H' (i = 0,1) there is a unique solution u € ﬂjz:o C/([0, T); H*7) of the equation
(2.1) and moreover a(t) defined by (2.3) satisfies

)] = 20 (2.4)
where T = \/220/K+\/e1(0) and K = maxg, <201,/ M’ (1)2/7.
Proor. Differentiating a(r) = M (||Veu()||3.), we have
' (O] = [M(IVau(0) [72) - 2 Re(Viaar, Vaae) 2]
< |M(IVsu(0)172)] - 2 - |Vt 2| Vie] 2 (2.5)

Using Assumption 2.2 and and noting
JolVau(0)7: < F(IVa(n)][72) < 2E(1) = 2E(0),
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we obtain

/ 2
<
IMA(VauOl)l < | max MU )27 =: K.

Hence we can see from
@' (1) < K|[Viu|| 2 (2.6)

Differentiating e;(z) given by (0.5) with respect to ¢, and using the equation (2.1) we
have

d 1
1) = Re(ug, ), +5a' (0 |Var()[} + a(t) Re(Va, Vo),

~d' (0)||Vau(8)|?

= Re(a(t) Au,u;), + a(t) Re(Viu,, Viu), + 3

1
= —a(t) Re(Viu,Viuy), + a(t) Re(Viuy, Viu), +§a'(t)||qu(t)||%

@' ()] V()17 (2.7)

IA
N —

Since from
"(1)] < Kv/2e:(1) (2.8)
holds, we deduce from

d 2a(l>

“ D) Al

dtel K\/2e,(1)||Vyu(t) Uato)

2

< 5 V2 a0
- \ﬁKel([)s/z‘

A0

(2.9)

Set f(¢) = \/ei1(t). Then we have from
V2K

26" (0)p(1) < —ﬁ(t>
Solving this inequality, we have
-1
1 2
ﬂ(t) \/— : —1 )
K/v239 \KB(0)
which yields together with [2.8],

220
(V240/KP(0)) —

and hence we obtain [2.4). Thus we have proved this proposition. ]

ja(1)] <
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Combining |Proposition 1.2 and |Proposition 2.3, we obtain the following Propo-
sition.

PROPOSITION 2.4. For uge H* wu € H? there exists a unique solution ue
ﬂjz:o C/([0,T); H*7) of the Cauchy problem (2.1) which satisfies

V()17 + u(0)IF < BIT){IVuoll3 + |3} (0<2<T), (2.10)
where
V24 max (1, Mo) /s, 2 52
T—W, ( )—me max(7~,27),

2.11
K = maXOSnszE(O)/zo\M'(ﬂ)|2\/77, ( )

My = My(1+ Moy), My = maxo<,<2£00)/i| M)l

Proor. It follows from [Proposition 2.3 that we can take T = /210/Kf(0),
K = maXOSnng(o)/Ao|M/(77)|2\/77, M() = maxOSnng(o)/io M(ﬂ), AO = 210 and 5() =2 in
IProposition 1.2 and, consequently, we get (2.10) from (1.3). ]

PROPOSITION 2.5. Let 1 <s<3 and uye H* and u; € H>. Then it holds
es(t) < eg(0)e (0<t<T), (2.12)
where T =+/29/K+/e1(0), C; = K\/B(T)Qe3(0)/49, O =2/min(1,2y) and B(T) is

given in Proposition 2.4.
ProoF. We get from (2.10)
IVu(O)} + lu (O} < BT)((IVaoll3 + [ [3)
< B(T')Qe3(0).
Therefore we obtain from
la'(1)] < K+/B(T)Qe3(0).

Now differentiating e,(z) with respect to ¢, we have

d .
2 et) = 2 O IF(o)

< JKVBTIGaO |Vt 0

2

< %K B(T)Q@(O)%ZL‘(I)HS

- KVB(T)Qe,(0) ei(1) = Creu(1),

A0

where C; = K+/B(T)Qe3(0)/49. Gronwall’s inequality gives (2.12). ]
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Now we can prove [Theorem 0.1. e3(¢) is bounded in [0,7). Therefore using
the equation (2.1) we can see that |lu,(?)||, and |lu(?)|]; are bounded in [0, T) and so
lim, ,7_ou,(¢) and lim, .7_o u,(¢) exist in H? and in H? respectively. On the other hand
a subsequence of {u,(f)} and of {u(¢)} converge weakly in H3 and H* respectively.
Therefore lim, .7 ¢ u,(¢) and lim,_.7_ou,(f) belong to H* and H* respectively. Thus we
have proved [Theorem 0.1.

Next we shall extend the solution of Kirchhoff equation (2.1) beyond T =T) =
V220/KB(0). Since it follows from [Proposition 2.3 that u{(x) = lim,_7,_o(0'/dt )u(t, x)
(i=0,1) exist in H? and in H* respectively. Hence we can consider the following
Cauchy problem,

{um, x) = M(|[Va(D)ll7) Au(t,x),  (Ty <1< T>) (2.13)

u(Ty,x) = u?(x), u(Ty, x) = ul(x).

Repeating the same argument as one in the proof of [Proposition 2.5 we can show
the next Proposition.

PROPOSITION 2.6. Let 1 <s<3 and uye H* and u; € H>. Then we get
es(t) < e(T))eCU=T) (Ty <1< T), (2.14)

where T1 = \/5/10/(1( 61(0)), Tz = \/Eﬂo/(K el(Tl)) + Tl, C2 = (K B(Tz — T])Q~
ves(Th))/ Ao, Q=2/min(1, L) and B(T) is given in Proposition 2.4.

Proor. Denote v(t,x) = u(T; +¢t,x). Then v satisfies

vu(t, x) = M(|[Veo(£)[|72) Av(z, x), 0<t<T) (2.15)
U(O7X) :M(T17X>, UZ(Oax) :ut<T17x)'
Put a(t) = M(||V,v(7)||3,) and define an energy of v as follows,
1
es(v(1)) = 3 (lo: (D)5 + a(O)IVxv(@D)]],)-
Then it follows from Propostion 2.3 that we have
es(v(f)) < e“ey(v(0)) (0<t<T), (2.16)

where T =v270/(K+/e1(0(0))), C2=K+\/B(T)Qe3(v(0))/20. e5(0(0)) = e;(T1) gives
T =24/ (K+/e1(T})). Denote To =T, +T = Ty +v21/(K\/e1(0)). Then B(T) =
B(T, — T}). Hence we can see that (2.16) implies (2.14). ]

Inductively repeating the same argument we can obtain the next result.

PROPOSITION 2.7. Let 1 <s<3 and uge H*, uy € H® and a positive integer k.
Then we get

eg(1) < e(Ti—y)e = Te) (Th_y <t < Tp), (2.17)

where T = \/5/10/(K\/€1(Tk_1)) —+ Tk—l; Ty = 0 and Ck = K\/B(Tk — Tk—l)Qe3(Tk—1)/
0.
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It follows from (2.17) that we get
es(t) < eg(0) exp{Cr(t — Tic—1) + Cr—1(Tj—1 — Ti—2)
—|—-~-—|—C2<T2—T1)+C1(T1 —T())}, (218)

for 1 <s<3. Put Gy = max <<, C; which defines an increasing sequence. Then we
obtain with 75 = 0 the estimate from (2.18) with s =1

\ € Tk el T() eCka (219)

for k=1,2,.... Moreover,
22
Tk—L_’_ Ti
K\/el(Tk_1)
implies
V2 &
T, =
Z T/ 1)
for k=1,2,.... Now we put

XY

Assume that T is finite. Then we obtain from [2.19)

- V2K
N K Z\/el(Tk)

k=0

V224 | & 1 1 V220 1
= 1
= K kz_;\/eékael(O)—i_\/el(O) K+/e(0) <;\/6CA,{TA,+ )

V20 1
== 0 <;m+l> (2.20)

Noting that B(T; — Tx_1) < B(T), we have from with s =3

K\/B Tk—Tk 1)Q€3(Tk 1 K\/B Qe3(Tk 1)

Cr = o o

K\/B T)Qe3(0)eCe T
T :

Therefore we get

)Qe3(0)eCi1 T
o=tk T A0

=
=
N~

(2.21)
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for k=2,3,.... Define

_ K\/B(T) Qe3(0)en™ .

f(T,n) 7

\
/l

Thus we can see from (2.21
Ck<f( é )Sf(Taf(T7ék—2))
<< f(T (T, (T, /(--- J(T,C1))---))) »= Gi(T).

'

k—1 times

Here C1:K\/B(Tl)Qe3(0)//10:K\/B(\ﬁ/lo/K\/el(O))Q@(O)//10. Hence we get
from

Kﬁf?m My K@?m > 22
Define for 7' >0
22 = 1
H(T) = K\/;l(()O) (;emm + 1>
It follows from and that
T > H(T). (2.23)
Let T* be a fixed point of H(T). Then we can find from
T>T" (2.24)

Thus we have proved the following result.

THEOREM 2.8. Assume ug € H*, u; € H® and define

S S
K k=1 Tk 1
where Ty =0, Ty = /2)0/(K+/e1(Tk_1)) + Ti_1 and K is given by Proposition 2.3.

ProoF. Define u}(x) = lim,7, (0" /0t )ux_1(t,x) (i =0,1) inductively. Let u*(z,x)
be the solution of the Cauchy problem,

un(t, %) = M(|Veu(0) || 72) Au(, x), (Tk <t < Tis)
ue(Tie, x) = ul(x),  w(Tx, x) = up(x).

Then it follows from [Proposition 2.7 that we can see inductively that u (¢, x) belongs to

ﬂ o C/([Tk, Tiea]; H*7) and ukﬂ(x) are in H3+’ We define u(t,x) = ui(t,x) for te

[Tk,TkH) k=0,1,.... Then u(z,x) is in ﬂ — C/([0, T); H>7) and satisfies the equa-

tion (2.1) in (0, 7). O

We can see easily that Theorem 0.2 in the introduction follows from the above
theorem.



416

K. KantaNt and A. SATOH

References

S. Bernstein, Sur une classe d’équations fonctionelles aux dérivées partielles, Izv. Akad. Nauk SSSR
Ser. Mat., No. 4 (1940), 17-26.

F. Colombini, D. Del Santo and T. Kinoshita, Well-posedness of the Cauchy problem for a hyperbolic
equation with non-Lipschitz coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), No. I (2002), 327—
358.

S. I. Pohozaev, On a class of quasilinear hyperbolic equations, Math. USSR-Sb., 25 (1975), 145-158.

Kunihiko KAJnTANI Atsushi SATOH

Institute of Mathematics Institute of Mathematics
University of Tsukuba University of Tsukuba
Tsukuba-shi, Ibaraki, 305-8571 Tsukuba-shi, Ibaraki, 305-8571

Japan Japan



	0. Introduction.
	THEOREM 0.1. ...
	THEOREM 0.2. ...

	1. Linear equations.
	2. Kirchhoff equations.
	THEOREM 2.8. ...


