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Abstract. We study foliations on CR manifolds and show the following. (1) For a
strictly pseudoconvex CR manifold M, the relationship between a foliation # on M and
its pullback 7*% on the total space C(M) of the canonical circle bundle of M is given,
with emphasis on their interrelation with the Webster metric on M and the Fefferman
metric on C(M), respectively. (2) With a tangentially CR foliation % on a nondegen-
erate CR manifold M, we associate the basic Kohn-Rossi cohomology of (M, %) and
prove that it gives the basis of the E,-term of the spectral sequence naturally associated
to #. (3) For a strictly pseudoconvex domain Q in a complex Euclidean space and a
foliation & defined by the level sets of the defining function of 2 on a neighborhood U of
0Q, we give a new axiomatic description of the Graham-Lee connection, a linear con-
nection on U which induces the Tanaka-Webster connection on each leaf of #. (4) For
a foliation & on a nondegenerate CR manifold M, we build a pseudohermitian analogue
to the theory of the second fundamental form of a foliation on a Riemannian manifold,
and apply it to the flows obtained by integrating infinitesimal pseudohermitian transfor-
mations on M.

1. Introduction.

Foliations on CR manifolds appear naturally in several contexts. For instance, if a
CR manifold (M, T; ¢(M)) is Levi flat, then the maximally complex distribution H (M)
of M is completely integrable so that M carries a foliation (the Levi foliation) by
complex manifolds (cf. [16], [38]). Cf. Section 2 for notation and conventions. To see
another example of this sort, let 2 = {p < 0} = C""! be a strictly pseudoconvex domain
with real analytic boundary M = 0Q. Let ((Q) be the algebra of functions on  which
admit a holomorphic extension to some neighborhood of Q. Let X = M be a real
analytic submanifold which is not C-tangent at any of its points. By a result in [8], if
X is locally a maximum modulus set for ¢(Q) (cf., e.g., for definitions), then L =
T(X)NH(M) is completely integrable and gives rise to on X a C-tangent foliation % of
codimension one. On the other hand, by a result in [5], if 2 is tangent to the char-
acteristic direction 7 of a pseudohermitian structure # on M, then X is a contact CR
submanifold (in the sense of [43], and thus a CR manifold), # is a Riemannian folia-
tion and the metric g5 induced on X by the Webster metric of (M,0), where 0 =
(i/2)(0 — 0)p, is bundle-like (also, X is Levi flat and # is its Levi foliation).
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Opposite to the Levi flat case, if (M, T o(M)) is a nondegenerate CR manifold of
hypersurface type whose pseudohermitian structure 6 is a contact form on M, then the
characteristic direction 7" of (M, 6) defines a flow on M (the contact flow, cf., e.g., [17)).
Also, foliations by Riemann spheres appear (cf. [27]) on twistor spaces (nondegenerate
5-dimensional CR manifolds) of 3-dimensional conformal manifolds (a generalization of
the example to n dimensions is due to [39]). A converse of this situation is known as
well, namely if M is a nondegenerate CR manifold of CR dimension n = 2m carrying
a foliation by compact complex manifolds of complex dimension > m, then m = 1, the
leaves are CP"’s, and M arises from a twistor construction (cf. [28]).

Furthermore, it should be noted that in one considers foliations .# on a CR
manifold M such that, for any defining local submersion f : U — U’ (i.e., the leaves of
Z |U are the fibres of f), the local quotient manifold U’ is a CR manifold, f is a CR
map, and df : H(U) — H(U’) is surjective. Such % has a transverse CR structure (in
the sense of [6]) and also a “tangential” CR structure (so that each leaf of & becomes
a CR submanifold of M). While foliations with transverse CR structure have been
investigated (cf. and [1]), a systematic treatment of foliations with tangential CR
structure is still missing in the mathematical literature.

The purpose of the present paper is to study basic properties of foliations on CR
manifolds, in particular, tangentially CR foliations on nondegenerate CR manifolds, and
prove the following as the first step.

If M is a strictly pseudoconvex CR manifold with a fixed contact form 6 whose
corresponding Levi form Gy is positive definite, and # is a foliation on M which is
tangent to the characteristic direction 7" of 6, then the pullback foliation 7*%# of & to
the total space of the canonical circle bundle z : C(M) — M of M is nondegenerate with
respect to the Fefferman metric Fy on C(M). Furthermore, Fy is bundle-like for z*% if
and only if the Webster metric gy of (M, 0) is bundle-like for #. For a transversally
oriented codimension ¢ foliation % on M, we show that if (1) # is tangent to 7, (2)
the transverse volume element of & in (M, gy) is holonomy invariant, and (3) the mean
curvature form x of Z in (M, gy) is dg-exact, then the g-dimensional basic cohomology
H{(#) of # is nonvanishing. Thus we generalize a result in [23] (cf. also Corollary
9.22 in [41], p. 125) to the case of foliations on CR manifolds.

With any tangentially CR foliation .# on M we associate a cohomology algebra

'(/) the basic Kohn-Rossi cohomology of (M,%), which has the property that
ng %(#) = CR*(M) |[the space of CR functions on M] and that Hy''(F) injects into
the ordinary Kohn-Rossi cohomology group H%!(M) of M on (0,1)-forms. We build
a decreasing filtration {F"Q%*} _, of Q%°(M) by dy-differential ideals, and show that
if {E]*},., is the corresponding spectral sequence, then E;° ~ HY'(F).

Given a smoothly bounded strictly pseudoconvex domain Q = {¢p <0} < C "1 and
a foliation & defined by the level sets of ¢ on a neighborhood U of 0Q, we give a new
axiomatic description of the Graham-Lee connection, a linear connection V on U which
induces the Tanaka-Webster connection on each leaf of %, and then compute Faran’s in-
variants h“ and k* (cf. [15]) in terms of the pseudohermman torsion of the Graham-
Lee connectlon and transverse curvature of ¢, respectively. Also, for a foliation # on
a nondegenerate CR manifold M we use the adapted connection determined by the Bott
connection of & and the Tanaka-Webster connection (associated to a choice of contact
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form 0 on M) to produce a pseudohermitian analogue to the theory of the second
fundamental form of a foliation on a Riemannian manifold (cf. [41], p. 62).

The theory is applied to foliations which are tangent to the characteristic direction
of 0 and orthogonal to a semi-Levi foliation, and to flows obtained by integrating in-
finitesimal pseudohermitian transformations on a nondegenerate CR manifold.

ACKNOWLEDGMENTS. During the completion of this paper the first named author
was a guest of the Erwin Schrodinger International Institute for Mathematical Physics
(November 2002) and wishes to express his gratitude to the organizers of the program
Aspects of Foliation Theory in Geometry, Topology and Physics (J. Glazebrook, F.
Kamber and K. Richardson) for their kind invitation and support. Also, he had useful
discussions on the matters in this paper with K. Richardson.

2. Foliations and the Fefferman metric.

Given a foliation & on a strictly pseudoconvex CR manifold M with a contact
form 6, whose corresponding real Levi form Gy being positive definite, our main tech-
nique in this section is to consider the pullback foliation 7*%# of & on the total space
C(M) of the canonical circle bundle over M.

This pullback foliation n*%# enjoys many of the properties of the original folia-
tion . For instance, 7*% 1is tangentially oriented < % is tangentially oriented, the
(canonical) transverse volume element of 7*% is holonomy invariant < the transverse
volume element of % is holonomy invariant, 7*% is harmonic (with respect to the
Fefferman metric /p on C(M)) < & is harmonic (with respect to the Webster metric
go on M), etc. Furthermore, 7*% “lives” in the presence of a Lorentz metric (the Fef-
ferman metric Fy). The resulting philosophy then is that one might get a better under-
standing of the geometry of a foliated (strictly pseudoconvex) CR manifold by establish-
ing general theorems about foliated Lorentz manifolds.

2.1. CR and pseudohermitian geometry.

We start by recalling a few notions of CR and pseudohermitian geometry, which
are needed throughout the paper. Let (M, T ((M)) be a CR manifold of type (n,k),
where M is a real (2n + k)-dimensional C* manifold and 7 (M) is its CR structure,
that is, a complex rank » subbundle of the complexified tangent bundle 7 (M) ® C of M
such that

Ty,0(M) N To,1 (M) = {0},
ie., Ty 0(M) is totally complex, and
[ (T1,0(M)), I (Th,0(M))] < I (T1,0(M)),

ie., Ty o(M) is involutive, or (formally) Frobenius integrable, where T, (M) stands
for the complex conjugate of 7j¢(M). The integers n and k are called the CR di-
mension and CR codimension of (M, T o(M)), respectively. Clearly, if k = 0, then (M,
T10(M)) is a complex manifold of complex dimension n. We shall be mainly inter-
ested in CR manifolds of type (n, 1), which are commonly referred to as CR manifolds
of hypersurface type.
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Let (M, T)0(M)) be a CR manifold of arbitrary but fixed type. Let
H(M) =Re{T1,0(M) ® To,1(M)}

be the Levi, or maximally complex, distribution of M. It carries the complex structure
J:H(M)— H(M) given by

J(Z+2Z2)=iZ-2), ZeT (M), i=vV-1.
The Levi form L is then defined by
L(Z,W)=in([Z,W]), Z,WeT (M),

where 7: T(M)® C — {T(M)® C}/{H(M)® C} is the natural bundle map. A CR
manifold with L = 0 is called Levi flaz. Note that if £k =0, then L =0 (i.e., a complex
manifold is Levi flat). A CR manifold is called nondegenerate if L is nondegenerate.

Assume now that k =1 and M is orientable. Let 0 be a pseudohermitian structure
on M, that is, a global nowhere zero C* section of H(M)" < T*(M), the conormal
bundle of H(M) defined by H(M): ={we T (M)|Ker(w) 2 H(M).} for xe M.
Consider

Go(X,Y)=do(X,JY), X,YeH(M),
(the real Levi form). It is also customary to consider the complex bilinear form
L()(Z, W) = —id0(27 W), Z, W e TL()(M).

Then Ly and the complex linear extension of Gy to H(M) ® C coincide on 7 ¢(M) ®
To.1(M). Also, Ly and L coincide up to a bundle isomorphism H(M)" ~ T(M)/
H(M).

A CR manifold (M, T, ¢(M)), of hypersurface type, is strictly pseudoconvex if Gy is
positive definite for some pseudohermitian structure ¢ on M.

When (M, T, 0(M)) is nondegenerate (of hypersurface type), any pseudohermitian
structure 6 is a contact form on M so that 6 A (d)" is a volume form on M. If this is
the case, let T be the characteristic direction of (M, 0), that is, a unique tangent vector
field on M, transverse to H (M), determined by 0(7) =1 and T | d6 = 0. As usual, we
extend Gy to a degenerate metric Gy = n;;Gyp on M given by GQ(X ,Y) = Go(ng (X),
ng(Y)) for any X, Y € T(M), where ny : T(M) — H(M) is the canonical projection as-
sociated to the direct sum decomposition T'(M) = H(M) @ RT [in particular, Gy(T, T)
=0]. The Webster metric of (M,0) is then defined by

QQZGQ—F@@@.

If (2r,2s) is the signature of Gy (r + s = n), then gy is a semi-Riemannian metric on M
of signature (2r + 1,2s) [and if M is strictly pseudoconvex with Gy positive definite, then
go 1s a Riemannian metric on M]. For instance, let H, = C" x R be the Heisenberg
group with the multiplication law (z,7) - (w,s) = (z+ w,t + s+ 2Im{z, w)), where <{z,w)
=d,z'w/, and consider the Lewy operators

o .,0

L; = —iz"— l<a<n.
* oz ot’
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Then

T1,0<Hn>x :ZCLO(,)H XEHm
o=1

where L, = L;, is a CR structure on H, making H, into a strictly pseudoconvex CR
manifold of CR dimension n (and actually into a CR Lie group, that is, a Lie group
which is a CR manifold whose CR structure is left invariant).

A C* map of CR manifolds f: M — M' is a CR map if df\(T1o(M),) =
T 0(M' )f(x) for any xe M. A CR isomorphism, or CR equivalence, is a CR map which
is a C* diffeomorphism.

Any C” real hypersurface M in C""!' is a CR manifold of CR dimension n, with
the CR structure 7 o(M) = {T(M) ® C}NT-0(C"™™), where T1°(C"™) is the span of
{0/0z7|1 < j <n+1}. In particular, the boundary 09, of the Siegel domain

Q1 = {(z, w) e C" x C‘Im(w) > |z“|2}
oa=1

is a CR manifold which is CR isomorphic to the Heisenberg group (the CR isomor-
phism is given by f(z,1) = (z,t+ilz|*), (z,1) € H,).

For any nondegenerate CR manifold M of hypersurface type, on which a contact
form 0 has been fixed, there is a unique linear connection V' (the Tanaka-Webster con-
nection of (M, 0), cf., e.g., [13]) such that (1) H(M) is V-parallel, (2) Vgy=0 and VJ =0,
(3) the torsion Ty of V is pure, that is, Ty(Z, W) =0 and Ty(Z, W) = iLo(Z, W)T for
any Z, WeT (M), and toJ +Jot=0, where 7(X) =Ty(T,X), X e T(M). The
vector valued 1-form 7 on M is called the pseudohermitian torsion of V and satisfies
go(7(X),Y) = go(X,7(Y)) for any X, Y € T(M), that is, 7 is self-adjoint with respect to
go-

2.2. The normal bundle.

Generally, given a codimension ¢ foliation # on a C* manifold N, we denote by
T(Z) the tangent bundle of # and by v(#) = T(N)/T (%) its normal (or transverse)
bundle, and by I7: T(N) — v(%) the natural bundle map.

Let (M, T o(M)) be a strictly pseudoconvex CR manifold of CR dimension n.
Let 6 be a contact form on M such that Gy is positive definite. Let # be a codimen-
sion ¢ foliation of M. Note that if 2n > ¢, then 0 is not basic. Indeed, if T(¥) | 0 =
0, then T(#) < H(M), and if T(#)]|d0 =0, then for any X € T(%)

0=dO(X,JX)=Gy(X,X)= X =0.

Hence & is the foliation by points, that is, ¢ =2rn+ 1. Let us extend Gy to the whole
of T(M) as a degenerate metric Gy, by requesting that 7' is orthogonal to each V e
T (M), and consider

T(F)y={Y e T(M)|GyX,Y)=0forall X e T(F)}.

We collect a few elementary facts in the following
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PROPOSITION 1. The tangent bundle T(F) is nondegenerate in (T(M),Gy) if
and only if the characteristic direction T of (M ,0) is transverse to T(F). In general, let
T(F )y = 7u(T(F)) be the projection of T(F) to H(M). Then we obtain

(2.1) T(7), = [T(y)H(M)] ORT,

where the orthogonal complement [T(,Q'*)H(M)]L of T(F )y is taken in (H(M), Gp). If
T is tangent to Z, then the following hold:
(1) T(F )y = HOM)NT(F).
(2) The natural bundle map oo : v(F) — T(F), is a bundle monomorphism and
corestricts to a bundle isomorphism

W(F) = [T(F )y

(3) Hy(r,s) = Gy(ao(r),00(s)), r,s€v(F), is a Riemannian metric on the normal
bundle v(F) — M.

]L

ProOF. Let us prove the first statement in [Proposition 1. Assume that 7 is trans-
verse to T(#). Let X € T(#) such that Gy(X,Y) =0 for any Y e T(#). Then

0= Go(X, X) = Go(mu(X), g (X)) = |l (X)),
so that ny(X)=0. Thus T(#)> X = 0(X)T, which yields 0(X) =0 so that X =0.
Vice versa, assume that 7(7) is nondegenerate in (7'(M), Gy). The proof is
done by contradiction. If T, e T(%), for some x € M, then Gy (v, Ty) = 0 for any v e
T.(M) > T(F),, which yields T, = 0 by the nondegeneracy of T(F)_ in (T(M), Gy.,),
a contradiction.
To prove the second statement in [Proposition 1|, let 7'(% )y, be the projection of

T(#) to H(M), namely,
T(F oy = {X — 0X)T | X e T(F)}.
Since
[T(F )y NRT < HM)NRT = {0},

the sum in is direct. To prove [2.1}, first note that 7 e T(#),. Next, if Ze
[T(%)H(M)]L, then Gy(Z,Y) =0 for any Y € T(F )y ), which is written as ¥ = X —
O(X)T with X € T(#). Thus

0=Gy(Z,Y) = Gy(Z,X),

and hence Z € T(#),. To check the opposite inclusion, let Ze T(F), c HM) ®RT.
Then Z =Y + fT for some Y e H(M) and f e C*(M). Since Gy(Z,X) =0 for any
X eT(#), it follows that

Go(Y, X — 0(X)T) = Gy(Z, X) =0,
which implies Y € [T(%)H(M)]L.
Consider the bundle map oy : v(#) — T(F), defined by

ao(I1(Y)) = (Y —0(Y)T)", YeT(M),
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where (Y —0(Y)T)" is the [T(f)H(M)]L-component of Y —0(Y)T in H(M). To see
that g¢(Z1(Y)) is well-defined, suppose that I7(Y)=1I(Z). Then Y —Ze T(%), and
hence ¥ —Z — (Y — Z)T € T(F )y, so that (Y —Z—0(Y — Z)T)" =0.

Assume now that 7' e T(#). The proof of (1) is immediate. To check that gy is
a bundle monomorphism, let ¢o(Z/1(Y)) =0, that is,

Y — 0(Y)T € T(F )y = HM)NT(F) < T(F).
Thus, by T € T(F),
0=1(Y-0)T)=10(Y).

The isomorphism claimed in (2) of follows by a dimension argument.
Indeed, since dimg v(#), = ¢, the fact that H(M)+ T(#)=2H(M)+ RT = T (M) im-
plies that

2n+ 1 = dimg H(M), + dimg T(F), — dimg{H(M), N T(F)_},

and hence dimg[7(7 )yl = 2n —q for any xe M.

Let us now prove (3) of [Proposition 1. As the image of gy lies in H(M),
Hy(r,r) = ||loo(r)||> >0 and =0 if and only if ¥ —0(Y)T ¢ T(F )y for each Y e
T (M) such that I1(Y) =r. Therefore, Hy(r,r) =0 if and only if r € RII(T). In par-
ticular, if T € T(Z), then Hy is a Riemannian metric in v(%). is proved.

[

REMARK 1. As the Webster metric gy is a Riemannian metric on M, one may
consider as well the normal bundle

T(F) ={YeT(M)|gs(Y,X)=0 for all X € T(F)}

with the corresponding bundle isomorphism o : v(#) — T(%)" given by o(II(Y)) =
YL, where Y is the (%) -component of Y e T(M)=T(F)@®T(Z)", and the metric
induced by gy on v(Z) via o. However, when T € T(ZF), it follows that T(F)" =
[T(?’)H(M)]L, o = 0y, and the metric on v(F) induced by gy is precisely Hy. Indeed, let
Y € T(F)", namely go(Y,X) =0 for any X € T(F). Since go(Y,T) = 0 in particular,
Y e H(M). Therefore
Go(Y, X — 0(X)T) = Go(Y, X) = go( ¥, X) — 0(Y)0(X) = 0
——
=0

for any X e T(Z), which shows that T(#)* < [T(ﬁ)H(M)]L. The opposite inclusion
may be proved in a similar manner. Also, it 1s immediate to see

o(II(Y)) = a(II(Y — O(Y)T)) [as T e T(F)]
= (Y-0(M)T)* las T(F)" = [T(F )]
=oo(I1(Y))

for any Y e T(M).
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2.3. The Fefferman metric.

The first statement in [Proposition I| shows that, under the natural assumption that
T be tangent to the leaves of %, T(%) is degenerate in (T(M),Gy). However, the
pullback of Z to the total space of the principal S'-bundle

C(M) ={K(M)\{zero section}}/R, — M

turns out to be nondegenerate in (C(M), Fy), where Fy is the Fefferman metric of
(M,0). Here K(M)= A"""%(M) is the canonical line bundle over M. To be more
precise, a complex p-form w on M is said to be a (p,0)-form, or a form of zype (p,0) if
To.1(M)|w =0, and A”°(M) — M denotes the bundle of the (p,0)-forms on M.

We proceed by recalling a few notions regarding the Fefferman metric (cf., e.g.,
29]). Consider the 1-form # on C(M) given by

1 i . R
_ wf - o ' pof o
n n+2{dy—|—7t (lw(X 2h dhaﬂ 4(n+1)0)}’
where y is the (local) fibre coordinate on C(M), 7 : C(M) — M is the projection, /4 ; are
the (local) components of the Levi form with respect to a (local) frame {7} of T} ¢(M),

Le., hz = Lo(Ty, Ts), of are the connection 1-forms of the Tanaka-Webster connection V
of (M,0), that is,

VTﬁ = w;)f Ta,
and R = h‘“BRap; is the pseudohermitian scalar curvature (again cf. [29]). Also, R ; is the
pseudohermitian Ricci tensor. The Fefferman metric Fy of (M, 0) is the Lorentz metric
on C(M) given by
Fy=n"Gy+2(n*0) On,

where © denotes the symmetric tensor product. Note that # is a connection 1-form on
the principal S'-bundle 7 : C(M) — M (cf. also [18], p. 855). Let then

B. = {d.n:Ker(n,) — T«(M)} ™', zeC(M),, xeM,

be the horizontal lift with respect to 7. For a tangent vector field X on M we adopt the
notation X' = B(X). Let S = 0/dy be the tangent vector field to the S'-action. Then
T' — S is timelike, and hence (C(M), Fy) is time-oriented by 7! — S, namely (C(M), Fy)
is a space-time (cf., e.g., [7], p. 17). Moreover, if M is compact, then (C(M), Fy) is not
chronological (cf. Proposition 2.6 in [7], p. 23).

Let # be a foliation of M and n*% the pullback of # to C(M), that is,

T(n'F). = (d.n) ' T(F),,, zeC(M).

The leaves of 7n*% are connected components of the inverse images (via ) of the leaves
of #. We may state the following

PrOPOSITION 2. Let F be a foliation on the strictly pseudoconvex CR manifold M,
carrying the contact form 0 (with Gy positive definite). Let T(F )T be the horizontal lift
(with respect to 3) of T(F), that is, T(F)! = PAT(F)y)) for z€ C(M).  Then for the
tangent bundle T(n*F) of the pullback foliation n*% on C(M) we obtain

(2.2) T(n*F) = T(7) @ Ker(dn).
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Let T be the characteristic direction of (M,0). If T is tangent to F, then the following
hold:

(1) T(n*F) is nondegenerate in (T(C(M)),Fy) and each leaf L of n*F is a
Lorentz manifold with the induced metric 1*Fy, where 1 : L — C(M) denotes the
inclusion.

(2) The metric hy induced by Fy on v(n*F)=T(C(M))/T(n*F), the normal
bundle of n*Z, is positive definite.

(3) The Fefferman metric Fy is bundle-like for (C(M),n*%) if and only if the
Webster metric gy is bundle-like for (M,F).

Here, by slightly generalizing the definition in, e.g., [32], p. 79, given a semi-
Riemannian manifold (N, g) (i.e., g is nondegenerate, of constant index) and a foliation
Z on N, we call g a bundle-like metric for (N, %) if (1) T(Z) is nondegenerate in
(N,g) and (2) the metric 4 induced by g on v(%) is holonomy invariant, that is, Lyh =0
for any X € T(#), where ¥y stands for the Lie differentiation with respect to X.

PrOOF. Let us first prove (2.2) in [Proposition 2  Since # is a connection 1-form, it
follows that

T(7)" NKer(dn) = Ker(y) N Ker(dn) = {0}.

Therefore the sum in (2.2) is direct. The inclusion “2” holds by the very definition of
n*#. Vice versa, if

VeT(n"F)< T(C(M))=Ker(y) ® Ker(dn),
then V = X'+ fS for some X € T(M) and f e C*(C(M)), where X' = B(X) is the
horizontal lift of X with respect to 5. Also, Ve T(n*%) yields that X =dn(V) e
T(Z). Hence X' e T(F)!, that is, V e T(#)' + Ker(dn). The identity (2.2) is thus
proved.

Assume now that 7 e T(#). To see (1), consider V' € T'(n*%) such that Fy(V, W)
=0 for any W e T(n*%). Then we have

(w*Go)(V, W) + (@ O)(V (W) + (=" 0) (W )y (V') =0,

which implies, by taking the decomposition V = Vg + Vy € Ker(y) @ Ker(dn) into ac-
count, that

(23) Go(dn(Vir),dn(Wg)) + 0(drn(Ver))n(Wr) + 0(dr(Wi))n(Vy) = 0
for any WeT(n*#). If W=SeKer(dn) =« T(zn*%), then Wy =0. Since
n=A{dy+n"ne}/(n+2)

for some 1-form 7, on M, which is determined in terms of 6, and dy(S) = 1, it follows
that #(Wy)=1/(n+2). Then from (2.3) we see that O(dn(Vy)) =0, which implies

(2.4) dn(Vy) e H(M),
with the corresponding simpler form of (2.3) as

(25) Go(dn(VH>, dﬂ?(WH)) + H(dTC( WH))ﬁ(VV) =0.
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If W =V, then it follows from that ||dr(Vy)||* = 0, that is, dn(Vy) = 0 and hence
Vi € Ker(dr) N Ker() = {0}. Substituting Vg = 0 into 2.5), we then see

(2.6) Odn(Wi))n(Vv) =0

for any W e T(n*%). Setting W =T' e T(#)' < T(z*F) in then yields that
n(Vy) =0, that is, ¥y =0. Hence we conclude that V' =0, that is, T(z*%) is non-
degenerate in (T(C(M)),gyp).

Note now that Fy(S,S) =0, and hence Fj is indefinite on T (n*%). Since Fy is
nondegenerate on 7' (n*%), there Fy must have signature (2n+1—¢,1). Yet Fy is a
Lorentz metric, therefore Fj is positive definite on T'(n*%)". Consequently, the metric
ho(r,s) = Fp(p(r),p(s)), r,sev(n*F), induced by Fy on the normal bundle v(z*%) of
n*F is positive-definite, where p:v(n*F) — T(n*Z)" is the natural isomorphism.
This proves (2).

To prove (3), note first that Z3hy =0 if and only if

(2.7) X(Fy(V. W) = Fy([X, V], W)+ Fp(V,[X, W)
for any X € T(n*%) and V, W e T(n*7)". We now need the following
Lemma 1. T(n*%)" < Ker(y) and consequently
(2.8) Ker(y) = T(F) @ T(n*7)*.
Moreover, dn(T(n*F)") = H(M).
Proor oF LEMMA 1. For any
VeT(n"F) < T(C(M))=Ker(y) ® Ker(dn),
one has the decomposition V' = Vy + fS with Vy € Ker(). On the other hand, since
Fo(S. Ty = (x0)(T")n(S) = 0(dn(T1))/(n +2) = 1/(n +2),
we have
BV, T = f/(n+2) + Fy(Vy, T").
As T e T(Z), it follows that
T'e T(F) <« T(n*7),
so that T is orthogonal to . Hence we obtain
[ =—=n+2)Fy(Vy, T") = —(n+2)(z" Gp)(Ver, T")
= —(n+2)Gp(dn(Vy), T) =0,
that is, ¥ € Ker(s). Then the identity follows, by [2.2), from the facts
T(C(M)) = {T(F)' ®Ker(dn)} ® T(x*7)",

T(F) @ T(x*F)" = Ker(n).
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To prove the last statement in [Cemma 1, let

VeT(n"F) < T(C(M))=H(M)' ®RT",
that is, V' = Y! + fT' for some Y € H(M). Since S e Ker(drn) = T(z*#), S and V
are orthogonal. Thus we have

0=Fy(V,S)=FY", S+ f/(n+2)

= (2 0)(Yn(S) + f/(n+2).
Hence 0(Y) =0 yields /' =0. [Lemma 1 is proved. ]

By Lemma 1, (2.7) holds if and only if it is satisfied for vector fields V', W of the
form V =Y!, W =Z! for some Y,Z e H(M). Also, (2.7) is identically satisfied when
X e Ker(dn). Indeed, if this is the case, then (by a result in [25], Vol. I, p. 78) one has
[X, Y] =[X,Z'] =0. Hence

X(Fp(Y", Z")) = X(Gy(Y,Z) om) =0,

since dn(X) = 0.

Assume from now on that X e T(#)', that is, X = X! for some X € T(#). By
Proposition 1.3 in [25], Vol. I, p. 65, [X,Y]' is the Ker(y)-component of [X', Y.
Then it follows from 0(Y) = 0(Z) = 0 that the identity (2.7) is equivalent to

(2.9) X(Go(Y,2)) = Go([X, Y], Z) + Gy(¥.[X, Z))

for any X € T(#) and Y,Z € H(M) such that Y, Z! € T(z*#)*. Finally, note that
for each V =Y'e T(n*7)" with Y € H(M) one has

0=FX",V)=G(X,Y)on
for any X € T(#), and hence
Ye HM)NT(F)" = [T(F )]

Therefore, %yhy =0 if and only if holds for any X eT(#) and Y,Z¢
[T(F ) M)]L, that is, if and only if #yFy =0. This completes the proof of
2. [

2.4. Foliated Lorentz manifolds.
Let N be a C* manifold and & a codimension ¢ foliation of N. A differential p-
form w on N is called basic if

X|lo=0, Lyw=0
for all X e T(#). Note that the exterior derivative d preserves basic forms, since
dewza%(a)—d(ij):O, L”Xdco:da%(co:O

Hence, denoting by Q2(%) the set of basic p-forms, we obtain the basic complex of F

(cf. [41], p. 119)

dg

QUF) L ol(F) L. B oyF) 8o,
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where dp = d|Qp, and the corresponding basic cohomology of F
Hj(F) = H/(Q3(F),ds), 0<j<gq.

Also, we consider the spectral sequence determined by the following multiplicative fil-
tration of the de Rham complex Q°(N) (a decreasing filtration by differential ideals, cf.

[41], p. 120)
Fr.Qm:{COE.Qm(N)‘XlJ -~-Xm_,+1ja):O fOI‘ le---aXm—r-i—l ET(eg‘T)}

Let us now consider a codimension ¢ foliation % on an n-dimensional connected
Lorentz manifold (N,g) such that 7(%) is nondegenerate in (T(N),g). The second
Sfundamental form o of # in (N,g) is defined by

o T(F)QT(F)—v(F), aX,Y)=H0WVYY), X,YeT(N),

where V¥V is the Levi-Civita connection of (N,g). As in the Riemannian case, the
involutivity of T(#) implies that o is symmetric, since V" is torsion-free. Next, by
mere linear algebra (cf., e.g., [34], p. 49), T(N) = T(#) ® T(F)" and we have a bundle
isomorphism

0:0=v(F)— T(F)", o(s)=the T(F)-component of Y,, sev(F),
where Y, e T'(N) with [1(Y;) =s. Let go be the induced metric on Q defined by

go(r,s) =g(a(r),a(s)), r,sev(F).

We set ind(# ) = —1 if each leaf L of # is Lorentzian, and ind(#) =1 if each leaf
L of # 1s Riemannian, with respect to the induced metric g, =1*g on L, where
1: L — N is the inclusion, respectively. It should be remarked here that if g is a
bundle-like metric for % then no other possibility occurs. Indeed, let V be the connec-
tion in Q given by

v _{H([X,o-<s>]) if X e I'™(P),
T UI(WVYe(s)  if X e TP (PY),

where s € I'*(Q) and P =T(Z). A verbatim repetition of the proof of Theorem 5.11
in [41], p. 53, shows that g is bundle-like for # if and only if Vgo =0. Let x,ye N
and o(z) a piecewise smooth curve joining x and y. If g is bundle-like, a standard
argument based on V-parallel translation along o then shows that ind(go), = ind(go),,
where ind(gp) is the index of go (in the sense of [34], p. 55). Hence (Q,gp) is a semi-
Riemannian bundle. Now, let gp be the leafwise metric induced by g on P. Namely,
if xe N and L e N/ is the leaf through x, then gp . = (1*g), = gr,». Clearly, we have
ind(g) = ind(gp) +ind(gp) at each point of N, and hence gp also has constant index.
For any Z e T(F)", the Weingarten map W (Z): T(F) — T(F) of F is given by

gpp(W(Z2)(X),X') = gQ(oc(X,X’),a*I(Z)), X, X' eT(7),

where gp is the semi-Riemannian bundle metric on P = 7(%) induced by g. Then
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W(Z) is self-adjoint. The mean curvature form of & in (N,g) is the 1-form x € Q'(N)
defined by

K(Z) = trace W(Z), ZeI'*(Ph),
X|k=0, XelI¥*(P).

Assume from now on that % is tangentially oriented, that is, # is equipped with
a principal GL™(p, R)-subbundle B — N of the principal GL(p, R)-bundle L(P) — N,
where p =n — ¢ and the fibre L(P), is the set of R-linear isomorphisms u : R” — Py,
xeN. Let {Ey,...,E,} be a local gp-orthonormal frame of P, adapted to B, defined
on an open set U = N, satisfying gp(E;, E;) = &0 with &2 =1 (thus ind(F) = ¢ - -¢,).
The characteristic form of F is a p-form y, € Q7(N) defined by

17 (Y1,...,Y,) =det(g(Y;, E;)), Yi,...,Y,eI(TN).

Note that P+ | x> =0. The Lorentzian analogue of Rummler’s formula (cf., e.g., [41],
p. 68) still holds, namely,

(2.10) Z\|dyz +x(Z)ys =0 along P
for any Z e I'*(P+). Indeed, as y,(E,...,E,) = ind(#),

(Lzx7)(En, - .. ’Ep> == ZX%(EM s anL([Zv E),... 7EP)

i=1
P

= — Z & 1nd(9’7)g([27 Ei]7Ei)7
P

where % is the Lie differentiation and nt : T(N) — P is the natural bundle morphism.
On the other hand, by the definition of x, we obtain

K(Z) = egp(W(Z)(E), E) = a9([Z, E, E),
i=1 i=1

and thus (2.10) is proved.

Assume further that # is transversally oriented (i.e., P+ is oriented), and let v be
the characteristic form of P+ defined in a completely analogous manner with y,. Let
1 = dvol(g) be the Lorentz volume form on N. Assume also that N is oriented, and let
{E4|1 < A < n} be an oriented local g-orthonormal frame, satisfying g(Ey, Ep) = €445,
of T(N) such that {E;|1 <i< p} and {E,|p+1 <o <n} are frames in P and P,
respectively, and denote its dual coframe by {w4 |1 < 4 <n}. Then for any a« € Q"(N)

(%0)(Edyy--y Ea, ) =64, -84, LADg A Ay, _,,
where *: Q"(N) — Q""(N) is the Hodge operator. In particular, for v we have
(2.11) (xv)(El,...,E,) - u=md(F)v A1 A - AWy

Also, a calculation based on the identity

v( Ypii,---, Yn) = det(g(Yoc»E/)’»
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leads to
V=6l EqgWp ] At AWy

Hence v is proportional to the transverse volume element w,,; A --- A @, of Z and
may be written as
() (EL, ..., E) - u= (=) wpn - A,

Since *v,x- € QP(N) and Pt |+v=0, Pt ]|y, =0 as well, there is a function f e
C*(N) such that *v= fy,. A calculation shows that f = (—1)”*"!'ind(#) so that

(2.12) wv = (=)™ ind(F )y .

As a corollary of (2.12), we have

(2.13) vAxz = (—1)"ind(F)p.
At this point we may prove the following

PrROPOSITION 3. Let F be a transversally oriented foliation on a compact orientable
Lorentz manifold (N,g). Assume that the transverse volume element v of F is holonomy
invariant; hence ve QA(F) and dv=0. If F is harmonic (i.e., ik =0), then [v] #0 in
HY (7).

The proof is a verbatim repetition of the proof of Theorem 9.21 in [41], p. 124

(and is the Lorentzian analogue of a result by Kamber and Tondeur [23]).
Indeed, Rummler’s formula yields (when x = 0)

dX@ € FZQIH_I,
and the assumption that v = dgo for some aceQ[,@’*l(g’7 ) leads, by (2.13), to
d(anyz) = (=1)"ind(F)u,

and then, by Green’s lemma, to a contradiction.
We may also establish the following

ProrosSITION 4. Let F be a foliation on a strictly pseudoconvex CR manifold M,
and assume that F is tangent to the characteristic direction T of (M, 0) for some contact
form 0 on M. Then the following hold:

(1) F is transversally oriented if and only if n*F is transversally oriented and, if
this is the case, the transverse volume element v of F in (M,gy) is holonomy
invariant if and only if the transverse volume element v of n*F in (C(M), Fy) is
holonomy invariant.

(2) F is harmonic in (M,gy) if and only if n*F is harmonic in (C(M), Fy).

together with then shows that for any transversally

oriented codimension q foliation # on a compact strictly pseudoconvex CR manifold M,
if (1) Z is tangent to the characteristic direction T of (M,0), (2) the transverse volume
element v of F in (M,gyp) is holonomy invariant, and (3) F is harmonic in (M, gy), then
[v] #£0 in H{(#). Indeed, if M is compact, then so is C(M) and, given a local coor-
dinate system (U,x?) on M, (n~'(U),u? = x4 o m,u®*> = y) yields a local coordinate
on C(M). Hence an orientation of M induces that of C(M).
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This is only illustrative of our ideas as to the use of the Fefferman metric. [The pre-
ceding statement also follows by directly applying the aforementioned result of Kamber
and Tondeur (Theorem 9.21 in [23], p. 124) to # on (M, gy).] We may further exploit
the relationship between pseudohermitian geometry and conformal Lorentzian geometry
to prove the following

COROLLARY 1. Let F be a transversally oriented codimension q foliation on a com-
pact strictly pseudoconvex CR manifold M, which is tangent to the characteristic direction
T of (M, 0) for a fixed contact form 0. Assume that the transverse volume element v of
F in (M, gy) is holonomy invariant and that the mean curvature form x of F in (M, gyp) is
closed (i.e., dix =0). If [x] =0 in HY(F), then HI(F) # 0.

PrOOF. We shall need the following

LEmMMA 2. Let F be a transversally oriented codimension q foliation on an n-
dimensional Lorentz manifold (N,g), and assume that T(F) is nondegenerate in (T(N), g).
Then F is harmonic in (N,e*g), with ue C*(N), if and only if

(2.14) du(Z) = p~'k(Z2), ZeT(F)",

where p =n—q and i is the mean curvature form of F in (N,g). Furthermore, the
following are equivalent:
(1) wu is a basic function, ie., ue Qp(F).
(2) The transverse volume element v of F in (N,§ = e*g) is holonomy invariant if
and only if the transverse volume element v of  in (N,g) is holonomy invariant.

The statement (1) in [Cemma 2, that is, if du= p~'x, then the leaves of # are
minimal in (N, e?g), was first discovered in for the case of a Riemannian metric g
(and our argument below follows closely the proof of Proposition 12.6 in [41], p. 151).
The relationship between the Levi-Civita connections V¢ and V¢ of Lorentz metrics § =
e?g and ¢, respectively, is given by

Vg:V9+(du)®I+I®(du)—g®gradgu,

which implies that the second fundamental forms & and o of # in (N,g) and (N,g),
respectively, are related by
& =o—g® I(grad, u).

Hence, for the corresponding Weingarten maps, we have
W(Z)=W(Z)—du(Z)I, ZeI*(Pb),

where I denotes the identity transformation. Consequently, the corresponding mean
curvature forms satisfy
K(Z) = k(Z) — pZ(u),

where p =n —¢q. Therefore kK =0 if and only if u satisfies (2.14).
The statement (2) in [Lemma 2 follows from the formula

Lyv=e{qgdu(X)v+ Lxv}, Xel*(P).
This completes the proof of [Cemma 2. O
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Let us go back to the proof of [Corollary 1. Since [x] =0 in Hj(F) by assump-
tion, there is a basic function v € Q9(%) such that k = dv. Set u= (p+ 1) 'v, where

p=2n+1—¢qand dmM =2n+ 1. Then it is immediate from (2.17) in the proof of
that

duon)(Z") = (p+1)"'&(Z"), ZeT(F)".

Hence it follows from [Cemma 2 that z*.% is harmonic in (C(M),e***Fy), from which
we see that 7*% is harmonic in (C(M), Fy), since, by a result of Lee [29], the Fefferman
metric changes conformally Fj = e[, under a transformation 6 = e?“0.

Now note that, by [Proposition 4, the transverse volume element v of n*% in
(C(M), Fp) is holonomy invariant. Since u € Q)(F), it follows that uone Q)(n*F)
so that, again by [Lemma 2], the transverse volume element v of 7n*% in (C(M), Fj) is

holonomy invariant. In consequence, by [Proposition 3, we may conclude that 0 #
H(n*F) ~ HJ(F). O

PrOOF OF PrOPOSITION 4. First we note that
WF) = T(F)- L 1) = T 7): ~ (w7,

from which it is immediate that % is transversally oriented if and only if so is 7*Z.
We only need to justify here the equality in the sequence. To this end, let X € T'(n*%)
and write X = X' + V for some X e P=T(#) and V € ¥" = Ker(dn). Then for any
Y € P+ we have

Fy(X,Y") = (" Gp)(X, Y1) + (=" 0) (Y )n(X)
= Gy(X, Y) + 0(Y)n(V) = Go(m (X) + O(X)T, Y),
since P = H(M). Therefore we see

Fo(X, Y1) = Go(nu (X), Y) = go(nu(X) + 0(X)T, Y)
= gH(X7 Y) =0,

which shows [P+]' = T(n*#)" and hence the desired equality holds, for both bundles
have rank gq.

At this point we may relate the Weingarten maps of # and n*%, respectively. Let
VM) be the Levi-Civita connection of (C(M), Fy). Given Z e P*, the Weingarten map
W(Z"): T(n*F) — T(n*F) of n*F is given by

Fy(W(Z")(X),X') = Fy(7 X", Z1)

for any X =X"+V and X'=X"T+ V', where X,X'eP and V,V'e?¥. As =n:
C(M) — M is a principal S'-bundle, the projection 7 is a submersion. Recall, however,
that for the vector field S = /0y tangent to the S'-action, Fy(S,S) =0 and hence S
is null, or isotropic, so that 7 is not a semi-Riemannian submersion (according to the
terminology adopted in [34], p. 212). Nevertheless, we may relate VEM) to VM in the
spirit of [35]. Another difficulty is that Ker(y) and 7~ are not orthogonal (with respect
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to the Fefferman metric Fp), yet H(M)' L ¥ does hold. Noting that [¥T V] =0 for
any Y e T(M), a calculation then leads to

2F)(W(ZN)(X), X') = =Z(Gy(X, X)) = Go(X, [X', Z]) — Gy(X", X, Z])
+0X)QX'", Z +ox"Q(x', Z"
+dO(X,Z)p(V') 4+ do(X', Z)n(V),

where Q = Dy is the curvature 2-form of 5. Let H(Z) be the gy-orthogonal com-
plement of RT in P. In particular, for any X, X' e H(%)

2F(W(ZN)(X),X") = ~Z(go(X, X")) = go(X, [X", Z]) — go(X", [X, Z])
+dO(X,Z)n(V") +do(X', Z)n(V),
or (by exploiting the explicit expression of V¥ cf., e.g. [25], p. 160)
2R (W(ZN)(X),X") = 290(W(Z)(X),X") +dO(X, Z)y(V") + dO(X", Z)y (V).
Similarly, we also have
(2.16) F(W(Z'\(T"), T") = (T",Z").

Next, we may calculate #(Z') = trace W(Z'). Let {Ei,...,E,1,T} be a gy-
orthonormal frame of 7'(%#). Then

> 2
{E[,...,Eg_l,TMr”; S,TT—”;r S}

is an Fy-orthonormal frame of T(n*#). Note that T' — ((n+2)/2)S is timelike and
ind(n*%) = —1, in particular. Since (W (Z)(T)) =0, a straightforward calculation
based on (2.15) and now leads to

(2.17) K(ZY=wx(Z)on, ZeP*

In particular, # is harmonic in (M, gy) if and only if 7*% is harmonic in (C(M), Fy).
Finally, if ve Q9(C(M)) is given by

\7( ?1, ceey j}q) = det(Fg(f’a, E;))

for some oriented gy-orthonormal frame {E, |1 < o < g} of P, then v = z*v and by a
simple calculation we see that
Ly =" (Lyv)

for any X = X' + V with X e P and V e¥". [Proposition 4 is now proved. ]

3. Tangentially CR foliations.

Let (M, T 9(M)) be a CR manifold and # a foliation on M. We say that 7 is a
(tangentially) CR foliation if each leaf L of & is a CR submanifold of M, thatis, L is a
CR manifold and the inclusion 7: L — M is a CR map, i.e., di (T1,0(L),) < T1,0(M),
for each x e L.

A typical example of a CR foliation is illustrated by the following
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ExampLE 1 (A CR foliation by level sets). Let C"'! be the (n+ 1)-dimensional
complex Euclidean space with complex coordinates (z',...,z",w), w=u+iv, and
o: R — R a smooth function such that «(0) =0 and o'(z) <0 for any te€ R. Define
f:C"™ = R by

fE 2wy = a2 P+ + 27— v)et
Then f is a smooth submersion so that it defines a foliation # on C"*! by the level sets
of f.
Note that
{(z,w) € Qi1 |u = log(c/a(p))} if ¢ >0,
SN e) = 0011 if ¢=0,

{(z.w) € C"" N\t |u =log(c/a(p))} if ¢ <0,

where p = 32" |z%|* —v. Thus # is a CR foliation on C"*!, one of whose leaves is
the Heisenberg group H, ~ 09,,.

Now, let # be a CR foliation. Let H(#) — M denote the subbundle of 7'(%)
whose portion over a leaf L of # coincides with the Levi distribution H(L) of L.
Similarly, let 7 0(#) — M denote the complex subbundle of 7'(#) ® C whose portion
over a leaf L of # coincides with the CR structure 77 (L) of L.

Assume from now on that M is a nondegenerate CR manifold (of hypersurface
type), and fix a contact form 6 on M and the corresponding characteristic direction 7" of
(M,0). It should be remarked that if M is strictly pseudoconvex, then € is holonomy
invariant if and only if H(#)=0. Indeed, if X e H(¥) < H(M), then 0(X) = 0.
Hence,

0=%y0=X]d0= Gp(X,X)=0= X =0.

Recall that a (0,s)-form on M is a complex s-form @ on M such that T} ¢(M) |w
=0 and T|w=0. Let A%*(M)— M be the bundle of (0,s)-forms on M and set
QY (M) = (A% (M)). We recall the tangential Cauchy-Riemann operator Oy, which
is the first order differential operator

éM . QO,S(M) N Q07S+1(M>

defined as follows. If @ is a (0,s)-form, then Jyw is the unique (0,s + 1)-form which
coincides with dw on Ty (M) ® --- ® Tp,1(M) (s+ 1 terms). A smooth function f :
M — C is called a CR function if it satisfies the tangential Cauchy-Riemann equation

omf =0.
The space of CR functions on M is denoted by CR™(M).

3.1. The basic tangentially Cauchy-Riemann complex.
We say that w e Q"*(M) is a basic (0,s)-form if it satisfies

Z|lw=0, Z|dyw=0

for any Z € T.o(7). Let Qy* () denote the space of all basic (0, s)-forms on (M, 7).
Since 03, =0, we see easily that

oy (7)) < QT (7).
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Let CR*(Z) be the space of smooth functions f : M — C whose restriction f|; to
each leaf L of # is a CR function on L, namely f|, € CR*(L). Note that CR*(M) <
CR*(#). Moreover, we have

QY F) = CR* (7).

Let 0z be the restriction of dy to Qu*(#). Then we obtain a complex

0

0
B %,

(3.1) QL7 B Q0N (7)) B B Q0 ()

which is called the basic tangentially Cauchy-Riemann complex of (M,%). Here we
suppose that dim M = 2N + 1 and # has codimension ¢ = 2k. For the remainder of
this section, we set n = N — k and assume n > 1. The cohomology of the complex (3.1)
given by

 Ker{dg| Qp°(F) — Q"' (#)}
032y (F)

HY (7)) = H Q)" (F),05)

b

where 0 < s < k, is called the basic Kohn-Rossi cohomology of (M,%). In particular,
we obtain

Hy () = Ker{0p| Q5" (7) — Q5 (F)} = {f € CR*(F) | duf = 0}
= CR*(F)NCR*(M) = CR*(M).
Let
H" (M) = H*(Q%* (M), 0y)

be the ordinary Kohn-Rossi cohomology of the CR manifold M. For any CR foliation
Z on a nondegenerate CR manifold, there exists a natural injection of ng 1(7) into the
Kohn-Rossi cohomology group H%!(M), namely the map

(3:2) Hy''(7) = HYY(M),  [0] = [0]0)

is a monomorphism. Here we Qy'(#) with dgw = 0. Indeed, if w, e Ker{ds:
Qg’l(gf’ ) — .(212’2(97 )} lie in the same Kohn-Rossi cohomology class, then o’ — @ = Oy f
for some smooth function f: M — C. Then

NI

0=Z|o'=Z|o+Z|ouf

=0

{

for any Z € T1,0(%), and hence f e Qy°(#). Thus o' —w = dgf, that is, [w] = [’].

REMARK 2. When M has CR codimension 0, that is, M is a complex manifold,
Q%S(M) is the space of all (0,s)-forms, which are locally spanned by monomials con-
taining s anti-holomorphic differentials dZ*, with respect to local complex coordinates
z* on M. Note that H%*(M) is then the Dolbeaut cohomology, and given a foliation
Z on M by CR submanifolds, (3.2) still holds.
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ExAMPLE 1 (continued). Set f(¢) = o'(t)/(a(t) — io’(¢)). Then Ty i(F) is spanned
by

0 0
:aza_zﬁ(p>zdﬁv ISOCSI’I,

(3.3) Z,

where we set z, = z*. Note that f(0) =i, and hence along the leaf 0Q,.; of # the
vector fields correspond, under the CR isomorphism 0Q,,; =~ H,, to the Lewy
operators.

We remark that Hy*(#)=0 for se{l,2}. Indeed, first it follows from (3.2)
that HY''(#) — H%'(C™') =0. On the other hand, if we define a (0,1)-form O
QO,I(CVZ+1) by

O =dw+2p(p)z,dz*,

then we obtain that

QYN (F) = {202 e C(C™), 0y M(Z,) = —if (p)z22 1 < a < n},
)=A

0520 (T

(@f /ow)B | f e CR™(F)},

and Oz =0 for any a)ng’l(g7 ) as seen below. Thus the meaning of the fact
HBO’I(QF ) =0 is that the system

9 _

of
0z, g

2B(p)za. ow =

admits a solution f e C*(C™™), provided that / satisfies the compatibility relations
oMM Z,) +iB (p)z,h = 0.

To compute Hy*(F), let o = wyp dZ* AdZP + w, dZ* AdWw be a basic (0,2)-form.
Then we see that the condition

0=27,] w="2(w,p+ B(p)zyp) dz* + w, diw

yields that Q)*(7) = {0}.
Similar to the above, let Q7°(M) denote the space of (p,0)-forms w such that
T|w=0, and consider the first order differential operator

o - QPO(M) — QPO (M)

defined as follows. If we QP°(M), then dyw is a unique element of Q7T0(M)
which coincides with dw on T ¢(M)® - - ® T1,0(M) (p+1 terms). Then 81%4 =0 in
all degrees and one may consider the cohomology groups

HPO (M) = HP(Q*°(M), dyr).

Moreover, if # is a CR foliation on M, then one may define the space of basic
(p,0)-forms .(21{,”0(97 ), consisting of all elements w e Q”°(M) satisfying

T o(F) |o=0, TioF)]|uw =0,
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and the corresponding cohomology
HY"(F) = HY (@ °(F), 05),

where Jp denotes the restriction of dy to 95’0(97 ). Then one sees that complex con-
jugation gives isomorphisms

HPM (M)~ H*?(M), HP*(F)~ Hy?(F).

ExampPLE 2 (The contact flow). Let (M, T; ) be a nondegenerate CR manifold of
hypersurface type, and 0 a contact form on M. Let T be the characteristic direction of
(M,0), and denote by Z the flow defined by T (cf., e.g., [41], p. 132). Following [17],
p. 160, let us consider the space U] of all horizontal r-forms on M, where an r-form w
on M is called horizontal if T |w =0 and %rw =0. Thus U} is nothing but Qz(7F).
Employing Kohn’s solution (cf. [26]) to the Neumann problem for the dy operator on a
compact strictly pseudoconvex CR manifold, Gigante established the following

THeOREM 1 (Gigante [17]). Let M be a compact strictly pseudoconvex CR manifold
and 0 a contact form on M. Let T be the characteristic direction of (M,0), and F the
flow defined by T. If the Tanaka-Webster connection of (M,0) has vanishing pseudo-
hermitian torsion (t =0) and strictly positive definite pseudohermitian Ricci curvature,
then H}(F) = 0.

We may give a short proof of [Theorem 1, based on a result of Lee [30], as well
as on our previous considerations. Indeed, H}(#) = H%'(M)® H"°(M). Further-
more, by a result in [30], if R ;¢*¢ >0 for any &= (&Y. E), then HO'Y(M) =0
(note that the assumption 7 =0 was removed).

3.2. The filtration {F'Q"*} _,.
We define a multiplicative filtration of the Cauchy-Riemann complex by setting

FQ"" ={weQ®™"(M)|Z| - Zn i1 |=0 for Zi,....,Zp 11 € T10(F)}.
Note that we have
Q""(M) =F°Q"" 2 F'Q%" 2... 2 F"QY" 2 F"1Q%™ = {0}
for any 0 <m < N. Also, the following diagram is commutative:

QY (M) 2.2 FQ¥" o FriQhm oo

Jaw | Jaw
QUM (MY o ... o FrQimtl o prelOmil 5
Indeed, let
we FrQOm < QOm(pr) 4 @0mt ().
Then, since Ty (%) is involutive, it follows that

ZIJ o 'meH»ZJ <5M60) =0
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for any Z; e T1,0(#). Thus we have

EMFrQO,m — FrQO,m—H
Now, setting

FrQ()" — é\:) FrQOJn’

m=0

we obtain the following

ProrosITION 5. Let # be a CR foliation on the nondegenerate CR manifold
M. Then {F'Q%*},., is a decreasing filtration of Q%*(M) by differential ideals. ~Also,
dime T1.o(F), =n, xe M, implies that F'Q""" = Q%" (M), and dimc Ty o(M),/
T0(F), =k, xe M, yields that

(3.4) FFIQ0m — 10},
PrOOF. Since we have seen that 0y F'Q%* = F'Q%*, it remains to check that
QUM (M)AF Q% < FTQ"°,
To this end, let w = wy + - + wy with w,, € F'Q%"  Then we have
oA @,y € FrQYMTs
for any o e Q"*(M). Indeed, it is easy to see that
Zi| - Zppsri1 ] (@A@p) =0

for any Z; € T\ ¢(F ), because at most s of the Z,’s enter o, so that there are enough Z,’s
left to kill w,,., Hence we obtain

QO,S(M) /\FrQO,m c FrQ07m+s

from which the desired inclusion follows.

To prove [3.4), we need some local considerations. Let {T},..., Ty} be a local
frame of Ty o(M) such that {T},...,T,} is a local frame of 7} ¢(#). Let {0',...,0"}
be a local dual frame determined by

0'(T)) =o, 0(T)=0, 0(T)=0.
Each w e F'Q%™ is then locally a sum of monomials of the form
O A ANOP ANOIV A A G,
1 <oy,...,00<m, n+1<ji,...,jy <N,

with C*(M)-coefficients, where 0 < p<m —r and g=m—p. If r=k+1, then 0 <
p<m—k—1so that ¢g>k+1. Hence 0/ A--- A0/ =0, and is proved. [

For a given CR foliation % on the nondegenerate CR manifold M with a fixed
contact form 0, we set <(Z, W)» = Ly(Z, W) and define

Tvo(F) ={Ze T o(M)|{Z,W)=0 for any W e Ty o(F)}.

An argument of mere linear algebra then shows that Tj(¢(%) is nondegenerate in
(T1,0(M),<{,>) and T1o(F) @ T1,o(F)" = Ti,0(M).
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PropOSITION 6. Let # be a CR foliation on the nondegenerate CR manifold
M. Let {E]"},. be the spectral sequence associated with the filtered differential space
(Q%*(M), 00, {F"R%*},.). Then we have the following isomorphisms of linear spaces:

Ej' ~ Hom(A*Ty 1 (F), A" [T 1(F)"]),
EN ~QY(7), E°~HY'(F),
where To.rl(ﬁ)L = Tl,o(g;)L < To,1(M).

PrOOF. We set
7' ={we F'Q"" | dyw e FHQMm Y,

Dir,m — (FV.QO’m) N EM(F’”*iQ()’”FI),
and
VAR
ro0,m __
i1 i1

., €.8. ol. . . so, we set £." = E! IS en
(Cf> g, , Vol III, P 21) Al , Elr s EIrQO rts Th

r,s FrQors s T r g \L1*

With these understood, we now define

N N
Z,'r _ @ Zir,m7 El; — G_) EirQO,m'
m=0 m=0
Then 0y Z! = Z!™" and 0y Ker(n!) = Ker(z/™), where n!:Z! — E! is the natural

projection, and hence 0y, induces differentials d/ : E — E/*'. The resulting differential
dy* . Ey® — EpJ**! corresponds, under the isomorphism [3.5), to

(5%@“66)(2], s JZAYJrl) - AS+1 [(Zla s 7ZS+1> — Zl J 5M(®<227 s 7ZS+1))]
for any Z; e T1o(7), 1 <j<s+1. Here Ay is the alternation map (cf., e.g., [25],
Vol. I, p. 28) and, for any (0, r + s)-form @ which is locally (cf. the discussion preceding
[Proposition @) a sum of monomials of the form «Af with ae A°T) ()" and fe
A'[To 1 (F)']", we set

cb(Zl,...Zs)zzlj--~ZsJa), ZjGTLo(cg’f).

Note that, as the notation suggests, dgs is a CR analogue of the Chevalley-Filenberg
differential in [41], p. 122. Then we have

E}" ~ H*(Hom (A" To 1 (F), A"[To (7)), Ous),
and hence

(3.6) EP = Q)" (F).

Since d % induces, on the right hand side of (3.6), the differential 0p, it follows that
Ey'x HY'(7). O
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3.3. The Graham-Lee connection.

Let @ ={p <0} cC" be a smoothly bounded strictly pseudoconvex domain
and 4, denote the Laplacian of the Kdihler metric on € whose Kdihler 2-form is
(i/2)00log(—1/p). Then, according to a result by Graham and Lee [20], if u is a local
solution to 4,u = 0 which is smooth up to a portion of 0Q2, then the boundary value f
of u must satisfy %,/ = 0, where %, is a differential operator on 02 of order 2n + 2,
which was first studied by Graham on the Siegel domain and the unit ball. In
order to compute %,, one needs to understand the interrelation between the tangential
pseudohermitian geometry of the leaves of the foliation % defined by level sets of ¢, and
the geometry of the ambient complex space.

One key instrument in this respect turns out to be a canonical connection on a
one-sided neighborhood of 0Q (the Graham-Lee connection, cf. below) which
induces the Tanaka-Webster connection on each leaf of . We give a new axiomatic
description of this connection and a hint on how one may recover Faran’s results (cf.
[15]) in this setting, namely in the presence of a fixed defining function for the foliation.
Actually, we merely look at Faran’s third order invariants 4 and k% whereas the
problem of recovering Faran’s result on whether a given real hypersurface may be a leaf
of a Ricci flat foliation (cf. [15], p. 403) is left open.

To be more precise, let 2 = C"'! be a strictly pseudoconvex domain. Let V =
C"*! be an open set, and ¢ : ¥V — R a smooth defining function for Q such that Q =
{xeV]|p(x) <0} and 0Q = {xe V|p(x) =0}, satisfying dp(x) #0 for any x e 0Q.
For a sufficiently small one-sided neighborhood U of the boundary 0922, we set M, =
{xe U|p(x) =¢} so that My = 0Q.

Consider now the foliation . on U whose leaves are the level sets M, of ¢, where
ee@(U). Since Q is strictly pseudoconvex, the restriction of the real (1,1)-form i6dp
to T o(F) is definite, and by replacing ¢ by —¢ if necessary, we may assume that it
is positive definite. Note that there exists a uniquely defined complex vector field &
of type (1,0) on U which is orthogonal to T ¢(F) with respect to ddp and for which
dp(&) =1 (cf. Lee and Melrose [31], p. 163). Let us then define a function r: U — R
by setting r = 00p(¢, &), so that ¢ and r are characterized by

(3.7) & | 00p = rdp,  0p(&) = 1.

Let {W1,...,W,} be a local frame of Tj¢(%). Then {W,, ¢} is a local frame
of T1o(U). Let 8" be the (local) complex 1-forms of type (1,0) on U determined
by 0*(Wp) =d; and 0%(£) =0. Then {0% dp} is a local frame of T"°(U)" and, as a
consequence of the first of the formulae [3.7),

(3.8) 00p = haﬂ-H“ AOP + rop A dg,

for some positive definite Hermitian matrix of functions 7 5. It follows from (3.8) that
r is positive if and only if ¢ is strictly plurisubharmonic, and r =0 if and only if ¢
satisfies the homogeneous complex Monge-Ampére equation det(ddp) = 0 (cf. [20]). We
call r the transverse curvature of ¢.

Consider the real 1-form 0 = (i/2)(dp — dp) on U. Its exterior derivative is then
given by

3.9 d0 =ih 0" AOF +rdp a0,
o
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Thus the Levi form Ly of 0, that is, the restriction of —id0 to T} o(#) ® To,1(F) is
given by

.
Ly(Z,V) = hzZ2* V",

where Z = Z*W,, V =VIWe T) o(F).

Let j.: M, — U be the inclusion. Then 0, = j 0 is a pseudohermitian structure
on (M., T o(M,)). If we write & = (1/2)(N —iT), with N and T real, then we have
(dp)(N) =2, O(N) =0, and the restriction T, of T to M, is tangent to M,. Also,
shows that T is the characteristic direction of (M,,6,). Among the linear connections
on U which restrict to the Tanaka-Webster connection V? on each leaf M, of Z, we
single out a canonical one (cf. also Proposition 1.1 in [20], p. 701) in the following
manner.

Let v(#)=T(U)/T(¥) and Il : T(U) — v(%) be the projection. Given a linear
connection V on U, we consider the bundle map

o0 T(F)® T(F) > wWF), aX,Y)=HWyY),

where X,Y e T(#). Let Ty be the torsion of V and set 7(X) = Ty(7T,X) for any
X eT(U). We say Ty is pure if

(3.10) Ty(Z, W) =0,
(3.11) Ty(Z, W) = iLy(Z, W)T,
(3.12) Ty(N,Z)=rZ+it(Z)

for any Z, W e T, (%) and
(3.13) toJ+Jor=0.

Here J is the restriction of Jy (the complex structure of U) to H(F).
Now, we may state the following

THEOREM 2. Let Q = C™! be a strictly pseudoconvex domain and ¢ a smooth de-
fining function for Q. Let F be the foliation by level sets of ¢ on a one-sided neigh-
borhood U of 0Q. Then there exists a unique linear connection V. on U such that

(1) Tvo(#), N,T and Ly are parallel with respect to V, and

(2) the torsion Ty of V is pure.

Consequently, one has o = 0.

The canonical connection V furnished by [Theorem 2| is referred to as the Graham-
Lee connection of (U,p). Letny: T(U)® C— T o(F), respectively n_ : T(U) ® C—
To.1(F), be the canonical projections associated with the direct sum decomposition:

(3.14) T(U)®C =Ty.o(F)® To.1(F)® CT @ CN.

ProOF. Let us first prove the uniqueness statement in [Theorem 2. The identity

may be written as
2, Y] =V, ¥ —VyZ — iLy(Z, Y)T.
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Hence, by (1), we have

(3.15) ViZ =7 (Y, Z])

for any Y, Z e I'™*(T)9(%)). Next, VLy =0 may be written as
X(Lo(Y,Z))=Lo(VxY,Z) + Ly(Y,VxZ),

from which we obtain

(3.16) Lo(VxY,Z) = X(Ly(Y,Z)) — Ly(Y,n_([X, Z]))

for any X, Y,Z e I’ (T ,0(F)).
We now compute VrX. To this end, set

KrX = —(1/2J(£1J)(X)

for X e H(#). Then, since T (7 ) is V-parallel and V is a real differential operator,
it follows that Ty (%) is also V-parallel. Hence H(%) is V-parallel and VJ = 0.
Consequently, it follows from that

t(X) = K7 X

for any X € H(%) (actually, it holds for any X € T(%) if one extends J to 7T(%#) by
JT =0). Moreover, it is verified that

for any X € I'*(T1,0(%)). Finally, by and VN =0, we have
(3.18) VNZ =rZ+it(Z) + [N, Z]

for any Ze I'(T1,0(#)). From through and VT =VN =0, it follows
that V is uniquely determined.
To establish the existence statement in [Theorem 2, let

V:I'*(TU)®@C)xI'(rU)®C) - I*(r(U)® C)

be given by the following identities:
(3.19) V¥ =7n ([X,Y]), WY =V;Y,

VY = Uyy, V3Y =VyY,

VT =0, VN =0,

ViX = X + Kr X, ViX =ViX,

VNX =rX +iKrX + ZvX, VyX =VyX,
where X, Y e I'"(T1,0(%)) and Uxy € I'*(T10(F)) is given by

Lo(Uyy,Z) = X(Ly(Y, Z)) - Lo(Y,n_([X, Z]))

for Ze I’ (T, 0(#)). Then it is immediate that V extends to define a linear connection
on U.
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Hence it suffices to check that V obeys the axioms (1) and (2). To see this, let
I+ : T(U) — T(Z) be the canonical projection associated with the direct sum decom-
position T(U) = T(F)®RN. SetVy Y =I*(VyY) for any X,Y el (T(F)). Then
it is verified that V7 restricts on each leaf M, of % to a linear connection on M,, and
we have

VY =V Y +o(a(X,Y))

for any X,Y e I'*(T(#)), where o:v(#) — RN denotes the natural bundle isomor-
phism. Then it follows that o =0, since by the very definition (3.19) of V, the N-
component of Vy Y vanishes for all X,Y e I'*(T(#)). Furthermore, it follows from
(3.19) again that V restricts on each leaf M, of # to the Tanaka-Webster connection
of M,. Hence T, 0(Z) and Ly are parallel with respect to V and the identities ,
and are satisfied. Up to now, we see that V obeys axiom (1). Finally,
note that follows from VyX = rX + iKr X + ¥yX and VN = 0. Hence V obeys
(2) as well. The proof of Theorem 2| is now complete. O

REMARK 3. The purity axiom is natural in the following sense. Note that
we may write Ty(N,Z) in the form

Ty(N,Z) = A*Wy + A*W, + BT + CN

with unknown functions 4% A% B and C to be determined, where {W,} is a local frame
of T1,0(#). Then the condition that the linear connection V we look for restricts to the
Tanaka-Webster connection V¢ on each leaf M, of & together with the requirement
d?0 = 0 for the exterior derivative of (3.9) and the integrability of the complex structure
on U implies that

A*=rZ* A*=it"(Z), B=C=0,

where Z =Z*W, e Ty o(#) and 1 =1*Q® W, +1* @ W, (cf. [20], p. 703). Hence we
require that Ty(N,Z) =rZ + it(Z).

Faran determined a complete system of local invariants under biholomorphic
mappings of foliations of U by nondegenerate real hypersurfaces. His study is imitative
of the work of Chern and Moser [9], and indeed the local invariants of a foliation by
real hypersurfaces turn out to be similar to the local invariants of a single real hyper-
surface. There is, however, a remarkable difference between them, since one of these
invariants is the intrinsic normal direction N = 2Re(¢).  The flow along N gives a fo-
liate map (that is, a map sending leaves to leaves) whose restriction to each leaf of F is
a contact transformation, yet in general not a CR diffeomorphism. Indeed, by (3.9) we
have

(ZnO) (W) = N(O(W2)) — O(IN, Wo]) = dO(N, W)
= ih 30" NOP (N, W,) +rdp A O(N, W,) = 0,
(ZnO)(T) = N(O(T)) — O(IN, T]) = dO(N, T)
=rdpnO(N,T)=rdp(N)0(T) = 2r,
(ZNn0)(N) =dO(N,N) = 0.
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Summing up, we have
& N@ = 2r0.

Faran has built the third order invariants 47 and k%, that is, invariants which
may be calculated at a point by using only the 3-jet of ¢ at that point, and gave their
geometric interpretation. Precisely, it turns out that h?‘ measures the failure of the flow
on N from being a CR map, while k* = 0 if and only if there is a defining function ¢
of Q so that det(d%p/ 0z;0z;) = 0, namely ¢ has vanishing transverse curvature. As ob-
served in 20|, Graham and Lee’s setting bears the same relationship to Faran’s setting
as does Webster’s (cf. [42]) to that of Chern and Moser [9]. We need the following
structure equation (cf. [20]):

1
(3.20) dﬁ‘“:0/}/\(/)2‘—i&(p/\f“—l—ir“a’go/\ﬁ—i-ird(p/\ﬁo‘.

Here t* = Agéﬂ and 47 is given by (W) = AW, Also, r* = h“ﬁr[; and r; = dr(W) =
Wgr.  Finally, p; are given by VI = 05 @ Wy, where V is the Graham-Lee connection.
Using (3.20), one may derive

(LN0")(Wp) = 155 — gf(N),  (Zw0")(Wp) = —id3,
(LN0*)(T) = 2ir",  (Ly0*)(N) = 0.
Summing up, one has
0" = (10f — 9 (N))0F — it* + 2ir*0.
In particular,
LyO* = —it* mod6, 0%,

Ly0* = 2ir*0 mod 0*,0°.

A comparison with [2.4] and [2.5) in [15], p. 401, shows that Faran’s third order in-
variants hﬂi)‘ and k* are essentially Ag and r*, respectively. Hence, the flow along N is a

CR map (when restricted to a leaf of %) if and only if ©* = 0 (that is, each leaf of & has
vanishing pseudohermitian torsion).

4. Foliations and the Tanaka-Webster connection.

We adopt the following terminology. If (M, T} ¢(M)) is a CR manifold and # is
a foliation on M, then # is called a semi-Levi foliation if T(#) < H(M), where H(M)
is the Levi distribution of M. A semi-Levi foliation is a Levi foliation if JT(F) = T(F)
with respect to the complex structure J: H(M) — H(M). Note that if & is a semi-
Levi foliation of codimension one, then % is a Levi foliation and (M, T} 0(M)) is Levi
flat, that is, L =0. Let (M,%) be a foliated CR manifold of hypersurface type, and
0 e Q'(M) a pseudohermitian structure on M. If 0 e Q4(F), then F is a semi-Levi
foliation and (the Levi form of) M is degenerate.

Generally, let (N, #) be a foliated manifold. Then # is called a semi-Riemannian
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foliation if there is a holonomy invariant semi-Riemannian bundle metric go on the
normal bundle Q = v(#). Note that for any semi-Riemannian foliation (#,ggp) on N
there is a bundle-like semi-Riemannian metric # on N which induces go on Q.

Our aim in this section i1s to study foliations on nodegenerate CR manifolds, on
which a contact form 6 has been fixed. Recall that with any foliation . of a Rieman-
nian manifold M one has a natural connection on the normal bundle v(%), induced
by both the Bott (partial) connection of & and the Levi-Civita connection of the given
Riemannian metric on M (cf., e.g., in [41], p. 48). In the spirit of pseudohermitian
geometry (cf. [42]), when M is a CR manifold, we replace the Riemannian connection by
the Tanaka-Webster connection of # and investigate the resulting theory of the “second
fundamental form” of # in M (cf. also and [4] where similar ideas lead to a study
of the geometry of the second fundamental form of a CR immersion).

4.1. The second fundamental form.

Let (M,T)0(M)) be a nondegenerate CR manifold (of hypersurface type) and 0
a contact form on M. Let gy and V be the Webster metric and the Tanaka-Webster
connection of (M, 0), respectively. Let & be a foliation on M such that the tangent
bundle P = T(Z) is nondegenerate in (T(M),gg). We denote by P+ the orthogonal
complement of P in 7T'(M) with respect to gy, and by go the bundle metric induced by
go on the normal bundle Q = v(%#). Let D be the connection in Q defined by

o Vis if X eI (P),
X II(Vya(s)) if X e I'™”(P1),

where se I'”(Q), V is the Bott connection of (M, ), I1 : T(M) — Q is the natural
bundle map and ¢ : Q — P+ is the natural bundle isomorphism, respectively. Then it
is immediate (cf. [41]) to see the following

ProrosITION 7. Let M be a nondegenerate CR manifold and 0 a fixed contact
form on M. Let & be a foliation on M such that T(ZF) is nondegenerate in (T(M), gy).
Then D is an adapted connection in Q and its torsion Tp satisfies

(1) P|Tp=0 for P=T(F), and

(2) Tp(Z2,Z2")=H(Ty(Z,Z")) for any Z,Z' € ' (P1).

Moreover, 7 is semi-Riemannian and gy is bundle-like if and only if go is parallel with
respect to D.

A pseudohermitian analogue o : P ® P — Q of the second fundamental form (of a
foliation on a Riemannian manifold) is given by

a(X,X') = I(VyX')

for any X, X' e I'*(P). Also, if Z e I'(P+), we consider the Weingarten map W (Z) :
P — P given by

go(W(Z)(X),X') = go((X, X"),07'(2)).

It should be noted that in general « is not symmetric and W (Z) is not self-adjoint
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with respect to gy, since the Tanaka-Webster connection V has nontrivial torsion. Next,
define ot : P* ® P+ — P by setting

(2,2 = %HL(VZZ’ +VzZ)

for any Z,Z' € I'*(P+), where I1*: T(M) — P is the natural bundle map. Also, let
k€ Q' (M) be defined by

Plk=0, x(Z)=trace W(Z)

for any Z e I'*(P+). A pseudohermitian analogue ¢ e I (P1) of the mean curvature
vector (of a foliation on a Riemannian manifold) is then given by

9o(t,Z) = k(Z)
for any Z e I'”(P).
Let gp be the bundle metric induced by gy on P. Since Vgy =0, we have

(4.1) (Z29p) (X, X') = =290(2(X, X"), 671 (Z)) + go(Tv (X, X"), Z)
+90(Tv(Z,X), X") + 9o(Tv(Z, X'), X)
for any X, X’ e I'*(P) and Z e I'*(Pt). Also, by a similar calculation, we have
(4.2) (Zxg0)(0™(2),07(2")) = ~299(2"(Z,2Z'), X)
+90(Tv(X,Z),Z") + go(Tv (X, Z'), Z)

for any X e I'°(P) and Z,Z' € ' (P1).

Let us now extend the complex structure J to the whole T (M) by setting JT = 0.
This furnishes a bundle morphism J: T(M) — T(M) satisfying J>?= -1 +0Q T, I
being the identity transformation of 7'(M), and

90(JX,JY) = go(X,Y) — 0(X)0(Y)

for any X, Y € T(M). Finally, we remark that the real expression of the purity axioms
of the torsion Ty yields the identity

(4.3) Ty=0A1+d0QT,

where 7' is the characteristic direction of (M,0) (cf. [12], p. 174).

We apply these notions and formulas to foliations % all of whose leaves are tangent
to 7. If this is the case, that is, if T e I"*(P), let H(Z) be the orthogonal complement
(with respect to gg) of RT in P. Then H(M)= H(Z#)@® P*+. Note that the flow de-
termined by 7 is a subfoliation of %, that is, each leaf of % is foliated by real curves
which are the maximal integral curves of 7. The study of the corresponding exotic
characteristic classes (cf. [11]) is an open problem. We now obtain the following

THEOREM 3. Let M be a nondegenerate CR manifold and 0 a contact form on M
with vanishing pseudohermitian torsion (t =0). Let # be a foliation of M such that
T(ZF) is nondegenerate in (T(M),gg). Assume that T is tangent to the leaves of Z.
Then the following hold:
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(1) D is torsion-free.

(2) « is symmetric and W(Z) is self-adjoint for any Z e I'”(P*).

(3) The induced metric gp along the leaves is invariant under the flows of vector
fields orthogonal to the foliation if and only if o =0 and H(F) is J-invariant.

(4) F is semi-Riemannian and gy is bundle-like if and only if ot = 0.

Proor. The fact that T = 0 follows from 7 = 0 together with and
the purity axiom [4.3), for 71(T) = 0.

To see (2) through (4), let us drop the assumption 7 =0 for the moment. First
note that, since VT = 0, one has

(4.4) a(X,T)=0
for any X € I'*(P). Moreover,
(4.5) a(T,X) =I(7(X))
as a consequence of (4.4) and of
a(X, X') = (X', X) + I(Ty(X, X))

for any X, X' € I'(P). Then it is known from (4.4) that W (Z) is H(Z )-valued and
from together with the self-adjointness of 7 with respect to gy that

(4.6) W(Z)(T) = IT*(2(2))
for any Ze I'°(P1). Finally, we note that
(X, X') =a(X', X),
go(W(Z)X,X") = go(X, W(Z)X")

for any X, X' e I'*(H(¥)), since II(Ty(X,X')) =0. Then (2) follows from the fol-
lowing more general statement that (1) o is symmetric if and only if ©(P) < P, and (2)
W(Z) is self-adjoint (with respect to gg) if and only if ©(P+) = P+, provided that T e
r'*(P).

Using the purity axiom and noting that 7 is self-adjoint with respect to gy, one
may compute the torsion terms in (4.1) to obtain

(ZL2gp)(X, T) = —go((J + 27)(X), Z)
for any X € I'°(P), and
(L29p)(X, X") = —2go(a(X, X"),07'(Z))

for any X, X' e I'*(H(#)). Then (3) is a corollary of a more general statement that
YLzgp = 0 along the leaves if and only if « =0 on H(F)® H(F) and J + t is a bundle
endomorphism of H(F).

Finally, note that furnishes, by a similar computation, that

(Zrgo)(6™(2),071(2)) = =20(¢"(Z, Z")) + 290(2(2), Z),

(Zxg0)(0™'(Z),071(Z")) = ~2g9(a"(Z,Z), X)
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for any X e H(#) and Z,Z' € I'*(P*). Then %xgp =0 for any X € P if and only if
at =AQ®T, where Ae I'*((P+)" ® (P1)") is given by A(Z,Z") = go(x(Z),Z"). Hence
(4) holds when 7 =0. ]

4.2. The characteristic form.

Let (M, T 0(M)) be a nondegenerate CR-manifold and 0 a contact form on M. If
E — M is a vector bundle over M with standard fibre R¥, then we denote by L(E) — M
the principal GL(k, R)-bundle of frames (in the fibres) of E. Let # be a foliation on M
such that the tangent bundle P = T'(%) is nondegenerate in (T (M), gy). Let gp be the
bundle metric induced on P by the Webster metric gy and (v, p — v) the signature of gp,
where p = dimg Py, xe M. Denote by O(P) — M the principal O(v, p — v)-subbundle
of L(P) — M determined by gp. From now on, we assume that % is tangentially ori-
ented, namely the structure group O(v, p —v) reduces to SO(v,p —v). Let then y, €
QP(M) be the characteristic form of (M,%) defined by

)(_g;(Ul, SRR UP) = det(gﬁ(viv ”(e])))

for any v; e T\(M) and some frame u: R’ — T,(M) adapted to the “tangential”
SO(v, p — v)-structure. Clearly, the definition of y,(vi,...,v,) is independent of the
choice of adapted frames at x. Also, P |y, =0, where P! is the orthogonal com-
plement of P in (M,gy). We shall need the following

LEmMMA 3. Let M be a nondegenerate CR manifold with a fixed contact form 0,

and F a tangentially oriented foliation of M whose tangent bundle P is nondegenerate in
(T(M),g9). Then

(4.7) Lzi7lp ={—1(Z) + O(trace(zp) Z + 1T+ ((J = 7)(Z)) } 17

for any Z e I'”(P).

Here 7p : P — P is given by 1p(X) = IT*(7(X)) for any X € P. The identity is the
pseudohermitian analogue of a formula in (cf. also (6.17) in [41], p. 66) and will be
referred to as the pseudohermitian Rummler formula.

Proor. Let {Ej,...E,} be an oriented local orthonormal frame of P so that
gr(Ei, Ej) = €05, where ¢y =---=¢,=—1 and &, =---=¢, =1. Then it is imme-
diate from

(Zz27)(Er,.. . Ey) = = xz(Er,.....T([Z,E)),...,E))
i=1

and
N )4
(2, E]) =Y _&90([Z, E), E)E;
j=1
that
V4
(4.8) Loxrle == a90([Z, E), E)xz|p
i=1
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On the other hand, we have

K(Z) = ego(W(Z)E, E) = eigo(I1(VE,Ei), 0 (2))
i=1 i=1

P P
= - Zei99<Ei7VE,~Z) = Zé‘ige([Z, E]+Tv(Z,E), E),
i=1 i=1

since 2¢gy(E;,V,E;) = Z(¢;) = 0. Finally, again by making use of the purity axiom (4.3),
we obtain

K(Z) = ago(|Z, E), E;) + 0(trace(cp) Z + IT((J — 7)(2))),
i1

and hence (4.8) yields [4.7). m

By the pseudohermitian Rummler formula, the p-form
n=Z]dyz+{x(Z) - Otrace(tp)Z + IT*((J — 1)(2)))} 27

vanishes along the leaves of . As an immediate application, we may look at the case
of a foliation tangent to the characteristic direction of (M, ) and orthogonal to a semi-
Levi foliation. Then we obtain

PROPOSITION 8. Let F be tangent to T. If Pt is involutive, then the following
statements are equivalent:

(1) x=0.
(2) Lzxs7 =0 for any Ze I'*(Pt).
(3) dxz=0.

The proof of this proposition mimics closely that of Theorem 6.23 in [41], p. 69,
and is therefore omitted.

In contrast with the case of foliations on Riemannian manifolds, it should be re-
marked that a foliation % with x = 0 is not necessarily harmonic. To see a geometric
interpretation of this condition, let § denote the second fundamental form of (each leaf
of) # in (M, gy) (cf., e.g., (6.1) in [41], p. 62). Note that the Levi-Civita connection V?
of (M,gp) is related to the Tanaka-Webster connection V as follows (cf. [12], p. 174):

(4.9) \79:V+GQO—A)®T+T®0+0@J,

where Q) and A4 are given respectively by
Qu(X,Y)=gy(X,JY), AX,Y)=gy(x(X),Y)

for X, Y e T(M) and © denotes the symmetric tensor product. It then follows from
(4.9) that p is related to o as

(4.10) BX, X)) =a(X,X")+{(1/2)Qp(X,X") — A(X, X" }HI(T)
+ (XN (z(X)) + (1/2){0(X)IT(JX") + 0( X" T(JX)}
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for any X, X’ e P. For a given Ze P+, let a(Z): P — P be the Weingarten map
associated to f (cf., e.g., (6.3) in [41], p. 62). Then, by (4.10), we have

(4.11) a(Z)(X) = W(Z)(X) —0(Z)IT(((1/2)J +1)(X)) + A(X, Z)IT*(T)
— (1/2)0(X)IT+(JZ) + (1/2)g9(JX, Z)IT-(T).

Let /€ Q'(M) be the mean curvature of % in (M,gy) (cf. e.g. (6.13) in [41], p. 65).
Taking traces in (4.11), we then obtain

(4.12) ((Z) = x(Z) — O(trace(tp) Z + IT+((J — 7)(Z))),

for any Z e P+.

As a immediate application, we may observe the following. If T is tangent to 7,
then F is harmonic if and only if Kk =0. Or, assume that (M, 0) has vanishing pseudo-
hermitian torsion (e.g., M is an odd dimensional sphere, the Heisenberg group, or the
pseudoconvex locus of a pseudo-Siegel domain, cf. [4], p. 84-85). Then F is harmonic
if and only if x = O+ o J).

4.3. Flows.

Let (M, T;o(M)) be a nondegenerate CR manifold and 0 a contact form on M.
Let ¢ {+1} and let X be a tangent vector field on M so that gy(X,X) = ¢ every-
where on M. Let & be the flow determined by X, that is, the foliation whose leaves
are the integral curves of X. Let y, be defined by y,(Y)=go(Y,X) for any Y €
T(M). Then y, e Q'(M) is the characteristic form of % on (M, gy).

Now, note that the pseudohermitian analogue of the mean curvature form x e
Q'(M) is given by x(Z) = egyp(Vx X, Z). Since 2¢gy(VyX,X) = X(e) = 0, it follows that
VyX € I'”(P+) and the mean curvature vector te I'°(P1) is given by

(4.13) t=¢ VyX.
We first prove the following

THEOREM 4. Let (M, T o(M)) be a nondegenerate CR manifold with a fixed contact
form O, and T the characteristic direction of (M,0). Let F be the flow on M defined by
T. Then the following hold.

(1) F is totally geodesic in (M,gp).

(2) The orbits of T are autoparallel curves of V.

3) Zrxz=0.

(4) gp is invariant under flows of vector fields lying in the Levi distribution of M.
(5) dys e F?Q*(M).

MTheorem 4 follows from the following

PROPOSITION 9. Let ¢ € {+1} and X € T(M) so that go(X,X) =¢. Let F be the
flow on M defined by X. Then the following statements are equivalent:

(1) x=0.

(2) The orbits of X are autoparallel curves of V.
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(3) The characteristic form y, satisfies
Lyyz = 0X)(IX +1(X)) = A(X, X)0,

where b denotes lowering of indices by gy, that is, X’(Y) = go(X,Y) for X, Y e
T(M).
(4) For any Z € P+ the Lie derivative ¥,gp satisfies
(Lzgp)(X, X) = 24(X, X)0(Z) — 20(X)go((J + 7)(X), Z).

Proor. The equivalence of (1) and (2) follows from (4.13). Moreover, again by
(4.13), we have
K(Z) = —ego(X,Vx2Z),
and hence
(4.14) (Lxy7)Z =ex(Z)+ go(Ty(X,Z), X)
for any Z e T(M). Also, by the purity axiom [4.3), we have
(4.15) 90(Tv(X,Z),X) = —A(X, X)0(Z) + 0(X)go((J + 7)(X), Z)

for any Ze T(M). Then (4.14) together with (4.15) yields the equivalence of (1) and
(3). On the other hand, it follows from and (4.15) that

(Lz9p)(X, X) = =2er(Z) + 24(X, X)0(Z) = 20(X)go((J + 7)(X), 2),
which implies the equivalence of (1) and (4). O
All that remains to be checked is (5) in [Theorem 4. This follows from
F?Q*(M) ={weQ*(M)|X |w =0}
and the fact that x =0 if and only if
X |dyy = —A(X,X)0+ 0(X)(JX +1(X))".
This completes the proof of Theorem 4. |

Next, we restrict our attention to flows defined by infinitesimal pseudohermitian
transformations. A C% diffeomorphism f : M — M is called a pseudohermitian trans-
Sformation of (M,0) if (1) f is a CR map and (2) f*0 =0. Let Psh(M,0) denote the
group of all pseudohermitian transformations of (M,#), which has been studied by
Webster (cf. Theorem 1.2 in [42]) and Musso (cf. Theorem 4.10 in [33]). Let U(M,0)
— M be the principal U(r,s)-subbundle of L(7'(M)) — M consisting of all linear frames
of the form u = (x,{X,,Jx Xy, T(x)}) with

gb’,x(Xvi X}) = 8,‘5,], 1< i, ] < 21’1,
where X,, =J. X,, X, e HM),, 1 <a<n Then we have

ProrosiTioNn 10. A C* diffeomorphism [ of M is a pseudohermitian transforma-
tion of (M,0) if and only if the induced transformation of L(T(M)) maps U(M,0) into
itself. Any fibre preserving transformation of U(M,0) which leaves the canonical form of
U(M,0) invariant is induced by a pseudohermitian transformation f € Psh(M,0).
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The proof of [Proposition 10| follows from the fact that f € Psh(M,6) if and only
if fis a C* diffeomorphism, f*0 =0, and f*0* = Ulf‘@ﬁ for any local frame {6”} of
T1,0(M)" and some (locally defined) C* functions U on M (it mimics the proof of
Proposition 3.1 in [25], p. 236).

A tangent vector field X on M is said to be an infinitesimal pseudohermitian trans-
Sformation of (M,0) if its local one-parameter group of local transformations consists
of local pseudohermitian transformations of (M,0). Let i(M,0) be the set of all in-
finitesimal pseudohermitian transformations of (M, #). By analogy with Proposition 3.2
in [25], p. 237, we also have

ProposITION 11.  For a vector field X tangent to a nondegenerate CR manifold M,
the following statements are equivalent:
(1) Xei(M,0).
(2) The natural lift of X to L(T(M)) is tangent to U(M,0) at each point of
U(M,0).
(3) Lx0=0 and ¥x0" = Vﬁ“Hﬁ Sor any local frame {0} of T\ o(M)" and some
local smooth functions Vg* on M.

It is verified from (3) in [Proposition 11| that i(M,0) is a Lie algebra, as Ly y| =
[Py, Ly]. Since each pseudohermitian transformation of (M, 0) preserves the Webster
metric gy,

(4.16) Psh(M, 0) = Iso(M, gp).

Let ee {£1} and X €i(M,0) such that go(X,X) =¢. Let # be the flow determined
by X. Then it follows from that [X,Z] e P+ for any Z e P+. Consequently,
we have

(4.17) PLyys = 0.

Assume, in particular, that M is compact. Then, by virtue of Theorem 1.2 in [42],
p. 31, Psh(M,0) is compact. Let G be the closure in Psh(M, @) of the one-parameter
group of transformations obtained by integrating X. Then G is compact and abelian,
and hence is a torus. Let QX(M )G denote the space of G-invariant k-forms on M. As
a corollary of (4.17), there is a short exact sequence

(4.18) 0 — QX(7) — Q* ()¢ B ak-1(7) -0,
from which one may conclude (as in [41], p. 139) that Hj(F) are finite dimensional for
0 <k <2n, and zero for k > 2n.

Note that, if 7 =0, then it is known by Proposition 2.2 in [42], p. 33, that T €
i(M,0). If X =T, then the connecting homomorphism

A:Hy \(F) — Hy (F),

in the long exact cohomology sequence associated with (4.18), is given by A[w] =
[(d0) A w)] for any [w] € HY'(F). As a corollary of Theorem 1 (and of Theorem 10.13
in [41], p. 139), the map (ir), : H'(M,R) — Hy(F) is injective.
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