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Abstract. Let S be a non-empty finite set of prime numbers and, for each p
in S, let Z, denote the ring of p-adic integers. Let F' be an abelian extension over
the rational field such that the Galois group of F' over some subfield of F' with finite
degree is topologically isomorphic to the additive group of the direct product of Zj,
for all p in S. We shall prove that each of certain arithmetic progressions contains
only finitely many prime numbers [ for which the Il-class group of F' is nontrivial.
This result implies our conjecture in [3] that the set of prime numbers [ for which
the [-class group of F' is trivial has natural density 1 in the set of all prime numbers.

Introduction.

Let C denote the field of complex numbers, @ the field of rational numbers, and
P the set of all prime numbers. By a number field, we mean an algebraic extension of
Q@ in C, not necessarily finite over Q. When k is any number field, we let C} denote
the ideal class group of k and, for each | € P, we let Cx(l) denote the [-class group of
k, namely, the [-primary component of Ci. A number field is called abelian if it is an
abelian extension over Q. We put, in C,

_ 2mi/m
o = 2™/

for each positive integer m.
Now, let S be a non-empty finite set of prime numbers:

ScP, 1<|5]<oo0.
For each p € P, let Z, denote the ring of p-adic integers, and let
p=p or p=4
according as p > 2 or p = 2. Let Q° denote the abelian number field such that the
Galois group Gal(Q®/Q) is isomorphic, as a profinite group, to the additive group of the

direct product [[ .5 Z,. Let F' be an abelian number field which is a finite extension of
Q°. In this paper, we shall prove:
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THEOREM 1. Let mg be any positive integer divisible by p for every prime number
p in S. Then there exist only finitely many prime numbers | such that Cr(l) is non-
trivial and that Q((m,) contains the decomposition field of I for the abelian extension

Q% (Gmo)/ Q-

Most of the paper consists of the proof of the above theorem including not a few
preliminaries. To explain briefly the heart of the proof, let '™ be the maximal real
subfield of F', and Cp the kernel of the norm map of Cr into Cp+; for each | € P,
let C (1) denote the I-primary component of C. Obviously, Cp is trivial if F' itself is
real. We have actually shown in [3] that, under the hypothesis of Theorem 1, there exist
only finitely many prime numbers [ such that C'y (I) is nontrivial and such that Q((pm,)
contains the decomposition field of I for Q((m,)/@Q (for the basic case where |S| = 1,
see Washington [6, IV]). With this fact in mind, we shall naturally concentrate on the
study of primary subgroups of C'r+, which is based on the algebraic interpretation by
Leopoldt [5], involving circular units in F'*, of the analytic class number formula for
subfields of F* with finite degrees. In the major part §§1-4 of the paper, conforming to
the description of [5], we shall generalize or pursue many of our arguments in [3]. We
shall prove Theorem 1 in §5 by means of results in [3], [5] and the preceding sections.
Finally, in §6, some problems together with some additional facts will be mentioned in
relation to Theorem 1.

Let us now give a consequence of the theorem. Take a real variable x, and let

r@)={l|leP, | <a

as usual. Let Pr(z) denote the set of prime numbers | < z for which Cr(1) is trivial. Let
mgo be the same as in Theorem 1, and let Py(x) denote the set of prime numbers | < x
such that Q((,) contains the decomposition field of I for Q% ({n,)/Q. We then easily
see that the decomposition field of a prime number [ ¢ S for Q% ({,,)/Q is contained
in Q((my,) if and only if 19®) # 1 (mod p,p) for any p € S. Here ¢ denotes the Euler
function and, for each p € S, p, denotes the p-part of my, that is, the highest power of p
dividing mg. Hence Theorem 1, together with the prime number theorem for arithmetic
progressions, shows that

lim inf |[Pr(2)] > lim [Po()] = H (1 — 1) .

T—00 w(x) ~ x—o00 ﬂ'(x) 2es p
However, for all p € S, i, can be arbitrarily large independent of F'. We thus obtain the
following result conjectured in [3, §3]:

THEOREM 2.

|Pr(z)] _

z—oo  7(x)

REMARK. Among a number of important results on subgroups of Cr provided by
Iwasawa theory (see Friedman [1], Washington [7], etc.), it is known not only that Cr (1)
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is finite for every [ in P\ S but that, if F is imaginary, then there exist infinitely many
l'in P for which C (1) is nontrivial (cf. [6, V]).

Throughout the paper, R will denote the field of real numbers, and Z the ring of
(rational) integers. For any finite extension &’/k of number fields, we let N/, denote
the norm map of &’ into k. For each complex number z # 0, we let (z) denote the cyclic
group generated by z in the multiplicative group C* = C'\ {0}: (z) = {2z | a € Z}. All
Dirichlet characters are assumed to be primitive.

ACKNOWLEDGEMENT. The author expresses his heartfelt gratitude to the referee
who carefully read the paper, kindly corrected some mistakes, and offered several invalu-
able suggestions (cf., for example, the proofs of Proposition 1).

1.

We shall first give several definitions, mainly following [5].

Let v be any (primitive) Dirichlet character, and let f, denote the conductor of
. Then ¢ defines a homomorphism 9* of Gal(Q(y,)/Q) into C* such that, for each
u € Z relatively prime to fy, ¥(u) is the image under ¢* of the automorphism in
Gal(Q((y,)/Q) mapping (g, to (f . Let gy denote the order of ¢, and let K denote
the fixed field of Ker(¢*) in Q((y,);

Gal(Q(Cy, )/ Ky) = Ker(y™).

It follows that Ky is a cyclic extension over @ of degree g, with conductor f.
We assume from now that v is even or, equivalently, K, is real:

w(—l) =1, Ky CR.

Let Ey denote the group of units € of Ky such that N () = &1 for every proper
subfield k of K. Note that

By 2 (~1) = {£1}
and that every conjugate over @ of an element of E, also belongs to Ey. If a unit € in
Ey belongs to a proper subfield k of Ky, then g2Ky:kl = NKw/k(€)2 =1 so that €2 = 1.

Thus

Ky =Q(e) for every e in Ey \ {£1}. (1)

REMARK 1. The elements of Fy are the proper @—relative units in the sense
of Leopoldt (cf. [5, §4]), where ¢ denotes the rational irreducible character of Gal
(Q(¢r,)/Q) such that

d(r) =Y ()" forall T € Gal(Q((y,)/Q),
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the sum taken over the positive integers u < g, with ged(u, gy) = 1.

Next, let o be any generator of Gal(Ky/Q), and let o run through Z[(,, ]. For each
@, there uniquely exist integers ay, -, a,(y,) satisfying

o(gy)

i—1
a= Z angw )

Jj=1
so we define

o (gy)

Qy = g ajajfl
Jj=1

in Z[Gal(K,/Q)], the group ring of Gal(K,/Q) over Z. It follows that % always
belongs to E, as e runs through Ey. The map (a,e2) — €2 then defines an action
of the Dedekind domain Z[(,,| on the abelian group E7 = {¢* | ¢ € Ey}, since the
definition of E, implies that 2 is annihilated by

gy /n

Z O_(u—l)n

u=1

for all positive divisors n of g, smaller than g, and since the g,-th cyclotomic polynomial
in an indeterminate y is the monic greatest common divisor in Zy] of

gy /n

_ Yy —1
Z y(u Dn _ —

n
u=1 Y

for all positive divisors n of g, smaller than g,;. At the same time, the quotient group
Ey/(—1) is made into a unitary Z[(,,]-module by the map («a,{+e}) — {£e*}, and
the map e? — {+e} defines a Z[(,, ]-isomorphism

Henceforth, we assume further that the even Dirichlet character v is nonprincipal.
It is verified in [5, §85-6] that the Z[(,,]-modules Ej, Ey,/(—1) are isomorphic to a
nonzero ideal of Z[(,,]. Now we let

Oy = H (CQ?% - g{fi)a
b

with the product taken over the integers b satisfying

fy
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Note that the number of such integers b is ¢(fy)/2g4. Take an automorphism sy, in
Gal(Q(¢y,)/Q) for which

w*(sw) = ng’

so that the restriction sy|K, is a generator of the cyclic group Gal(K,/Q). Fix an
extension o () of s, in Gal(Q((ay,)/Q), and put

A@p) =[] (1 - a(w)r/?)

p

in Z[Gal(Q((2y,)/Q)], where p ranges over the prime divisors of gy,. Considering
Q(Cay,)* to be a module over Z[Gal(Q(C2y,)/Q)] in the obvious manner, we then let

A
Ny = 91/) (1/)).
This belongs to Ey; because the real number 911[0(11)) is a unit of Ky, 93} is the product

of (—1)¥(f+)/29¢ and the norm of 1 — ¢y, for Q((y,)/Ky, and
A P
Nk, /i (95}) M =1

for each subfield k of K, with [Ky : k] € P. We also easily see that the class {£n,} in
Ey/{(~1) as well as 7, in E7 does not depend on the choice of s, or &(¢) but depends
only on .

REMARK 2. Unless gy is 2 or a power of an odd prime, 7, itself depends only on
Let Hy denote the subgroup of Ey generated by —1 and by all conjugates of 7, over

Q. It then follows from the class number formula for K that the index of Hy in Fy, is
finite (cf. [5, §8]). We write hy for the index:

hw = (Ew : Hw) < 0.
On the other hand, H becomes a cyclic Z[(y, |-submodule of E generated by 77, the
quotient group Hy/(—1) becomes a cyclic Z[(,,]-submodule of Ey/(—1) generated by
{£ny} so that the quotient group Ey/Hy becomes a Z[(y,]-module, and ¢y, induces
Z[(g, ]-isomorphisms

H} — Hy/(-1), E}/H} —> Ey/H,.

Thus the Z[(y, -modules Hy, Hy/(—1) are isomorphic to Z[¢g,].
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2.

The purpose of this section is to prove some preliminary results for the proof of The-
orem 1. Let x be a nonprincipal even Dirichlet character, which will be fixed throughout
the section:

x(=1)=1, g,>2, f,>5.
We shall put, for simplicity,
f = fX7 9= 9x

in the proofs of our assertions.

PrOPOSITION 1.  Let | be a prime number not dividing gy, o a generator of
Gal(K,/Q), and k an extension in Q((y, ) of the decomposition field of I for Q({y, )/ Q.
Then | divides hy, if and only if there exists a prime ideal [ of k dividing I such that the
absolute value }77;’(‘”| is an l-th power in E,, for any element o of the integral ideal It
of k.

PROOF. Let d be the degree of Q((,) over k:
d= [Q(Cg) k], 9= 9x-

Let o be the ring of algebraic integers in k. Then 1,(g, - -- ,Cg’l form a free basis of the
o-module Z[(,];

Zl=o@0ly @ Doll .

Assume first that [ divides h,. Since the finite Z[(,]-module E, /H, is isomorphic,
as an o-module, to the direct sum @ . (0/a) for some finite set . of nonzero ideals
of o, there are a prime ideal [ of k dividing [ and an injective o-module homomorphism
o/l — E,/H,. Hence there exists a unit € in E, \ H, such that every 3 in [ satisfies
ebo € H, , namely, e2Ps ¢ Hf( In particular,

e =i (2)

with some w in Z[(,], which is expressed uniquely in the form
d
w:Z'ijg_l with y1,--+ ,74 € 0.
j=1

Let £ be the ideal of Z[(,] generated by [. Then, as an o-module, £ coincides with
[(BIgD---D [(gil and, by the hypothesis of the proposition, £ is the only prime ideal of
Q((,) dividing I. Let us consider the case w € £. In this case, 1, -+ ,7q belong to [. As
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[ is unramified for k/Q, there exists an algebraic integer 3’ in I[7! satisfying 1 — 3’ € L.
We note that 31171, ---, 374! belong to 0. On the other hand, (2) gives

€213; _ 77)2((2?:1 ﬁ"yj(fgfl)a.

Consequently,

2 2(1=F'+8)) _ 201—p"), 251 Bl e 2
€2 = 20040 = 203 205 PTG

This is a contradiction, however. Thus the case w € £ does not occur. Let & =

Gal(Q(¢y)/k). Then
wh gL for any 7 in &, (3)

since £ is invariant under 7. We next define a square matrix Y of degree d with coefficients
in 0 by

1 1
Y C.g =w s
o) g
Clearly,
1 1
Y :gT =w’ :gT for all 7 in &,
(d;l)‘r (d;l)‘r
g g
so that

det(Y) = H w’.

TE®
Hence it follows from (3) that
det(Y) €1, ie, 1—p3"det(Y) el forsome " in o.
Now let o be any element of [[~'. We then find that

N = n;det(Y))a(aﬁ”)ang(a(lfﬁ" det(Y)))o
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-1 .
Furthermore, from (2), we obtain ni(wgg Jo = 2T,

and hence, by the definition of Y,

as j runs through {1,---,d},

ni(det(Y))g _ €2I(Z‘;:1 a]cgfl)ﬁ,

with 9; denoting the (j, 1)-cofactor of Y. Since [ divides o(1 — 3" det(Y")), it follows that
nia” is a 2[-th power in E)Q<7 namely, 17;‘”| is an [-th power in F, .
Next, without assuming [ | h,, let o’ be any algebraic integer in 171 such that [ is

relatively prime to o/l~![, and assume that |77;°| is an I-th power in E,. Then

HY® = {n*"" |y € Z[¢,]} C B2
We also know that
(BY: HY) =hy,  (BY:EY) =199, (H: HY™") = [Nog,)/q(e)].

Let d’ be the degree of Q((,) over the decomposition field of I for Q((,)/Q. As I does
not divide g, our choice of o’ implies that 19@~d" ig the l-part of Ng(c,)/q (o). Hence
19" must divide hy. The proposition is thus completely proved. O

The above proof may be a natural generalization of the proof of [3, Lemma 2]
combined with [3, Remark 2]. The following simple proof of Proposition 1 is due to the
referee.

ANOTHER PROOF OF PROPOSITION 1. We first assume that k = Q((,). Let 0 =
Z[(,4]. Then we have the following commutative diagram of &-modules for some integral

ideal .# of Q(¢,) and some § € .¥:

Ef(%ﬂ

I I

HY —— B0,

where the vertical maps are the natural inclusions. Since E, /H, =~ Ef( / Hf( ~ 7 /B0 ~
O/BF 71, 1| hy is equivalent to that there exists a prime ideal £ of ¢ dividing [ such
that 3. 1 C %, which is also equivalent to [.#~! C [.#3~!. Furthermore we note that
Hf( = (Ef()ﬁy_l. Here, for each &-submodule {2 of Ei and each integral ideal # of
Q(¢y), 27 denotes the O-submodule of Ef( generated by all €7, (v,e) € _# x {2.

Assume that [ | hy, i.e., 3971 C £ with some prime ideal £ of & dividing I. It
follows from the above diagram that there exist a positive s € Z, €1,...,e, € E,, and
Yis-.-y7Ys € BF 1 such that ni = E?(’Yl)“ ~-~5§(75)". Hence

nia" = Ef(a%)” g2er)e ¢ Ef(l fora e 17!
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because a1, ...,y € L 7'I L C 10 by 1.£7! C 1737, Therefore || € EL
holds for o € 1.£ 1.

Conversely we assume that there exists a prime ideal £ of & above [ such that
|n;’<‘°| € E; for any o € 1.1, Since 77>2< generates Hi over O, this implies (Hi)lf—1 C
E?'. Then it follows from the above diagram that .Z"~* 3¢ C 1., which implies 3.7~ C
Z. Hence we have [ | h,.

The proposition for general k is derived from that for the case k = Q((y): Let o be
the integer ring of k, and let A be the set of prime ideals of o above . The implication

l|hy = A€ AVaecll

e | € By

follows from the case k = Q((,), because Z No € A for any prime ideal £ of & above {
and [(Z No)~! = 1.2~ No by the assumption on k. Another implication also follows;
because [ is a prime ideal of & for any [ € A by the assumption on k, and the statement
that [n¢<| € EL for all v € [I™* implies that |n{~| € B! for all a in [(16)~" = (I71) 0.
O

Given any algebraic number z, we denote by ||z|| the maximum of the absolute values
of all conjugates of z over Q. It follows that, for any algebraic numbers z1, z2, and for
any non-negative integer a,

Iz1zell < llzall - llzell, =221 = [l

LEMMA 1. Let u be a positive integer and € an element of E, \ {£1}. Ife is a
u-th power in F,, then

2% < el

except in the case f, € {9} U P.

PROOF. Assume not only that ¢ = ¢ with some ¢ in E, but also that 2" > ||¢||.
It suffices to prove that f = f, is either 9 or a prime number. Since the above assumption
implies that

e # 1 leoll <2,

(1) yields K, = Q(eo) and, by the theorem of Kronecker [4, I1], g = § + 6! holds for
some root ¢ of unity. Therefore we obtain Q(¢y) = Q(J), so that {y + Cf_l belongs to

E, \ {£1}. Furthermore, (2. + (54" is not a unit for any non-negative integer a. Hence
there exists an odd prime p dividing f. In the case p? | f,

Qssp+Chp) CRE +GY) =Ko Nk e, ieity (G = Crmm+ S

the relation (y /), + C;/lp = 41 implies that f/p = 3 or 6, and consequently we have f = 9.
Thus, in the rest of the proof, we may suppose that f is not divisible by the square of
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any odd prime. As Q({ + Cf_l)/Q is a cyclic extension, f belongs to {p,4p,pq}, with

some odd prime g other than p. However, in view of (4 + Qg}l = Cap(1 ,()p_l)/z)
have f # 4p. Let us finally consider the case f = pq. We may suppose p < q. It follows

that

, wWe

GG+ GG € By Ny G+ GG = S
P>q p q X0 X/Q Cq+4 P9 - Cq"’Ct;l
Therefore,
<2p_|_1 (p+1+cp 1)
but this is impossible, because ¢ > 5 and, if 2p > ¢—1,then 1 <2p—q¢ < ¢q— 4. (]

REMARK. Let ¢y be the Dirichlet character of order 3 with conductor 9 such that
P0(2) = ¢3. In the case f, =9,

X =g or w%, KX:Q(COSE),

E, is the unit group of Q(cos(w/9)), and a unit ¢ in E, satisfies ||| < 2 if and only
if € or —e is conjugate to ny, = —2cos(4m/9) over Q. Moreover, in the present case,
the class number formula shows that h, coincides with the class number of Q(cos(7/9)),
which is known to equal 1: h, =

For each Dirichlet character ¥, we let A\(v)) denote the number of distinct prime
divisors of gy.

LEMMA 2.

>2)\(X)_24P(fx)/gx

maX(an” anlu) (

—a/
PROOF. Let p be a prime number dividing g, and r an integer such that Cgf(X) g

Gas- Then

—o(x)9/ o(x)—9/P—
T N B (GRS

and, for each integer j relatively prime to f,

(-7 =

sin(ﬂ'jr/f)’
sin(mj/f) |

Therefore, when m ranges over the positive integers less than f/2 relatively prime to f,
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1y Gor” sin(mmr/ f) ’
m

(@ - *|sin(em/ 1)

[P =) o P (L),

m

We thus obtain

—1\1-e()?” f
e A R
Similarly, we have

T e P Y

The lemma now follows from the definition of 7,. O

For each positive integer m, we let D,,, denote the absolute value of the discriminant
of Q((m). We also let

E(m) = (p(m) =)W= or Z(m) =1

according as m > 3 or m < 2.

PROPOSITION 2. Letl be a prime number not dividing g,, and n a positive divisor
of gy such that Q((n) contains the decomposition field of I for Q((,, )/ Q. Assume that
I divides h., hence fy, #9, and that f, is not a prime number. Then

()

PROOF. Let o be a generator of Gal(K,/Q). By Proposition 1, there exists a
prime ideal [ of Q((,) dividing I such that, for each v in I[[™", |]7| is an I-th power
in E,. Let & be the decomposition field of I for Q((,)/Q. Slnce the norm of {71 for
Q(¢,)/Q is 11RQIZVIRG):R] Minkowski’s lattice theorem shows that

ol < (\/Fnl([ﬁ:Q]—l)[Q(Cn):ﬁ]) 1/¢(n)

with some element « of 171\ {0}. It follows that

0< ||04H < ( /Dnltp(n)fl)l/tp(n); (4)

in particular, a = +1 if n < 2. Let us write « in the form
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@(n)
o= Zaj(,{_l with a1, ,a,m) € Z.
j=1

Then, in Z[Gal(K, /Q)],

@(n)
Qy = Z aj(J‘J/”)J L
j=1
so that
g 1 < ma (s [ ) =1
Hence we obtain, from Lemma 2,
A (x)—2 @(n)
log ||ng<]| < g(p(f) log (7{ + 1) > lajl. (5)
j=1

We next define a square matrix X of degree ¢(n) by

X = (G ) oty

Here r, denotes, for each positive integer u < y(n), the u-th positive integer relatively
prime to n. Note that, by definition,

D, = |det(X)|%. (6)

Now, take any positive integer j < ¢(n). For each positive integer u < @(n), let d,
denote the (j, u)-cofactor of X. Then

w(n)

4= det Zd o

with a(® for each u the image of a under the automorphism of Q((,) mapping ¢, to
(. Hence (4), (6), and Hadamard’s inequality yield

—
._,

\/D— (rl“" n)— 1) /sﬂ(n).

|aj <

We therefore see from (5) that

Ax)—2 :’ n
tog [jnze || < 2 2Pl = (fﬁ 1) Y g (7{+1>. (7)
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On the other hand, the I-th power [n¢7| in E, is not equal to 1; because 13 generates
over Z|[(,] the cyclic free Z[(,]-module HZ. Hence, by Lemma 1, we have

llog2 < log Hn;‘“ H

This and (7) then give us the inequality to be proved. O

3.

We devote this section to giving some elementary lemmas, which will be needed in
the next section.

LEMMA 3. Let p be a prime number, m a positive integer not divisible by p, U
a finite set of integers, and vo a map U — Z[(y]. Taking an integer a > 1, a positive
integer o’ < a, and any integer b, put

w=Y wu)ih, o= wu)h,

uelU uelU’

where U’ denotes the set of all u € U with w = b (mod p® ).

(i) If w =0, then w’ = 0.
(ii) If ¢ is an integer and if w = 0 (mod c), namely w € cZ[(mpe], then ' = 0
(mod ¢).

PROOF. The assertion (i) follows from the fact that the p®-th cyclotomic polynomial
in an indeterminate y belongs to Z [ypa_l] and is irreducible over Q((,,). The assertion
(ii) is an immediate consequence of (i). O

As in the introduction, we let

qd = gcd(2,9)q for each ¢ € P.

LEMMA 4. Let p be a prime number, m a positive integer not divisible by p, a a
positive integer which exceeds 2 in the case p =2, V a complete set of representatzves of
the factor ring Z /pZ, and r an integer such that p is the p-part of r — 1. Then Cja , for
all j € V\ pZ and all non-negative integers u < ¢(p®/D), are linearly independent over

Q(Gm)-

PrOOF. When the integer p®/p is 1 or 2, the lemma certainly holds. Let us consider
the case where p®/p > 2, i.e, p* | p*. Let s = p®/p?, let w be any non-negative integer
less than s, and let t = (r® — 1)p/p® so that ¢ is an integer relatively prime to p. We
assume that

e(p*/p)—1

Y, D gk =

u=0  jeV\pZ
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with each b;(u) in Q((p,). Clearly, for each u, r* = r* (mod p®/p) if and only if u = w
(mod s). Therefore, by Lemma 3, we have

for each j. Because every c satisfies 7°* = 1 + ctp®/p (mod p®) in the above equation, it
follows that

e(p)—1

23 by tes) (@) =0
c=0

which yields b;(w + ¢s) = 0 for each c. O

LEMMA 5. Let « be a nonzero algebraic integer, k a number field with finite degree,
o the ring of algebraic integers in k, B an algebraic integer in o], and d the degree of a
over k; d = [k(a) : k]. Let b be an ideal of o relatively prime to the principal ideal of o
generated by the product of Ny k() and the discriminant of o over k. Viewing o[a]
as an o-module in the usual manner, assume that

Bl ebBoad - @oa®!
for every non-negative integer j < d. Then

Be(ola))b=bDba®- - -@®ba®l.

PROOF. Let Z be the square matrix of degree d with coefficients in o such that

1 1
«Q o
zZ =051 .
ad-1 Qd-1
Taking the conjugates oy, ..., ag of o over k, with @y = «, let T be the adjugate

matrix of the matrix (a%‘l)j’mzlwyd. Then T is invertible and TZT~! is a diagonal
matrix whose (1, 1)-component is 5. Hence the (1, 1)-component of T'Z is equal to 37,
where ~ denotes the (1,1)-component of 7. On the other hand, by the assumption of
the lemma, the components of the first column of Z belong to b and, by the definition
of (1, 1)-cofactor, v is a divisor of

Niay/wl@)det ((adh), )

in the ring ofay, ..., aq]. Thus the lemma is proved. O
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For each integer m > 1, we let Q(m) denote the set of prime-powers u > 1 dividing
m and satisfying ged(u, m/u) = 1. Furthermore, we denote by %, the set of roots of
unity in the form

IT ¢

u€Q(m)

where j, for each v in Q(m) ranges over the non-negative integers smaller than ¢(u). It
is obvious that %, contains 1 and forms a free basis of the Z-module Z[(,,].

LEMMA 6. Let n be an integer greater than 1. For any algebraic integer o in
Z [y, let ¢(a) denote the coefficient of 1 in the expression of « as a linear combination
of elements of B, with coefficients in Z. Let b be an integer relatively prime to n, and
B an algebraic integer in Z[(,]. If ¢(B¢2) = 0 (mod b) for all non-negative integers
j < @(n), then =0 (mod b).

PROOF. Assume that ¢(3¢]) = 0 (mod b) for all non-negative integers j < p(n).
Then we find that ¢(8¢J) = 0 (mod b) for all integers j. Let P’ be any subset of Q(n),
let u be any element of Q(n) \ P’, and let

/ li " li
n = Hu, n' =nu.

w eP

Note that #,, N ((,/n) is a free basis of the Z|[(,/]-module Z[(,| and that %, N ((n/n»)
is a free basis of the Z[(,~]-module Z[(,]. For any « in Z[(,], we let ¢/(«) denote
the coefficient of 1 in the expression of a as a linear combination of elements of %, N
(Grymr) with coefficients in Z[(,/]; similarly, we let ¢”(c) denote the coefficient of 1 in the
expression of a as a linear combination of elements of %, N ((y,/,,) With coefficients in
Z[(nr]. Obviously, for every v in Z[(,],

") =<(), () = " (V) Cu-

Now we take any n/n”-th root & of unity: § € ((,/,~). Since b is relatively prime to
u, it follows from Lemma 5 that, if ¢/(3£¢7) = 0 (mod b) for all non-negative integers
j < p(u), then ¢”’(BE) = 0 (mod b). Hence we can complete the proof by induction on

Q(n)]. O

4.

This section is a sequel to §2. With x, f, and g the same as in §2, we shall prove
other preliminary results for the proof of Theorem 1.

Let p be any prime number. We let f(p) and g(p) denote respectively the p-part of
fx and that of g,. In the case p > 5, let W, denote the set of roots of unity in the form

Su,
2u

ueQ((p—1)/2)
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where, for each u in Q((p—1)/2), s, ranges over the non-negative integers smaller than w.
Let W, = {1} in the case p < 3. Then W), a subset of Q({,(3)) = Q({p—1), is a complete
set of representatives of the quotient group ((,z)/(—1). Next, let a be any positive
integer. Let @,(a) denote the set of all maps from W, into the set of the non-negative
integers not more than a. We then put

NQ(Cpl)/Q( > m()s - 1) ’

SEW,

My(a) = mrer;sa)((a)

PrOPOSITION 3.  Let p be a prime number as above, | a prime number distinct
from p, and n a positive divisor of g, such that Q((,) contains the decomposition field

of I for Q((y,)/Q. Assume that
pln, f(p)=p9(p), U1fgx, lhy

Then

)

M, (2(29 - 1)90(fx)nl> > f(p)
PGx Vp

where v, denotes the p-part of n.

PROOF. As the proof is not short, we divide it into seven steps.
i) For each positive integer j, we denote by P(j) the set of prime divisors of j and,
when j is a divisor of f, we let

G = Gal(Q((r)/R(E))-

It follows that G1 = Gal(Q({f)/Q) is the direct product of G¢/¢(4) for all primes ¢ in
P(f):

Gi= [[ Grra)=GCr/st) % Grmy-
qeP(f)

Given any prime v in P(g), we can fix a prime v, in P(f) satisfying
X (Gr/5wa) 3 o)

since g is the least common multiple of the orders of x*|G ¢, for all ¢ in P(f). We
may therefore suppose that
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where each s(v) is an element of G'¢/(,,) such that x*(s(v)) is a primitive g(v)-th root
of unity. Hence, for each v in P(g),

G = Cppens 8Y9s(0) 79900 € Ker(x") = Gal(@(¢r) /Ky,
and we may also suppose that
s(v)9®) =1 if v, = .
In particular, the assumption f(p) = pg(p) enables us to let

p-=p, s(p)? =1.
ii) Now, put
0 = sy|Ky = o(X)[Ky-

By the assumptions on 7, [ and by Proposition 1, there exists a prime ideal [ of Q((,)
dividing [ such that |n;"| is an [-th power in E, for every element v of [I™!. We denote
by 3 the set of elements of G in the form

H S(U)jvg/uv

vEP(g/9(p))

where, for each v in P(g/g(p)) = P(g) \ {p}, v, denotes the v-part of n and j, ranges
over the non-negative integers less than ¢(v,). It should be added that

x* (S(U)j'vg/y'u) — lj};
Let a be an algebraic integer in {71\ [Z][(,,]. Writing « as
a = Z Z az ;X" ( CJ ! with each a, ; in Z,
j=1 z€3
we then have, in Z[Gal(K, /Q)],

o(vp)

Z Zazﬂ z|Ky) oG=Dag/vp_ (8)

j=1 z€3

Next let p be a prime ideal of Q({,—1) dividing p. Let f(p) denote the highest power of p
dividing f(p), and I the set of positive integers less than f(p) and congruent to suitable
elements of W}, modulo f(p). For each w in I, let [u] denote the automorphism in G, ¢(,)
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mapping (y(p) to (). As the degree of p for Q(Cp—1)/Q equals 1, {[u] | u € I} is a
complete set of representatives of the quotient group

G/ Gal(Q(C)/RQ(Crrpwmy S5+ 65 0))-

We put, in Z[G4],

T = Z x, A= H (1 —s(v)9/").

xzeKer(x*) veEP(g/9(p))

Note that 1's(v)9/9(") = Tsf(/g(v) for each v in P(g). Let ¢ be the complex conjugation in
G'1, namely, the automorphism of Q({y) mapping (s to C;l. Let P, be the set of primes
v in P(g) with v, # p, i.e, 8(v) € G(;), and let G’ be the subgroup of G, generated
by s(v)9(®)/¥> for all v in P, and by the image of Ker(x*) under the canonical surjection
G1 — Gy(p)- Let J denote the direct product, as a set, of G', I, and the set of positive
integers not exceeding ¢(vy):

T ={(z,u,j)|leeG,uel, jeZ 1<j<¢o()}

In view of
i € Ker(x*) \ {z[u]s(p)™ |z € G'iueI,me Z,1<m<g(p)},

we can define integers by, 5, for all (x,u,j) in .7, by

‘P(Vp)
YA —s@))A Y > a2t =1+ )1 —s(p)?) > baujzfule’, (9)
j=1 z€3 (z,u,j)ET

where we put e = s(p)9/¥». Further let ¢’ be an integer such that
s(p)9/P a’ . a’ _ g/p
P = L e, (F (G- 1)@ e R
Since

1\ 1—o(x)9/? a(x)9/P—1 _49/p a(x)9/P_1
(Gr =G 7Y =TG-y G T e ),
we then obtain, by the definition of n,,
89 /P ’ —s(p)9/P TA
w = (= )OI = (¢ (¢ - 1)

Therefore, it follows from (8) and (9) that
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o o s /p by, jx[uled 71
wee= I (@ -n0)

(zu.j)e€T

On the other hand, since |n§<‘”| is an I-th power in E,, and [ does not divide f, Lemma 5
of [3] shows that the image of }77;‘“ | under the Frobenius automorphism of I for Q({y)/Q

. l .
is congruent to |77;<"”‘ modulo /2. Hence, in the case | > 2,

bm7,1,7_7'm[u]ej71

T (-

(®u,j)ET

o —s(p)9/? lbft,u,,_7m[u]ej*1
" (Cf G ) (mod 1?) (10)

(@,u,5)€T

while, in the case [ = 2,

’ _s /o b, jx[u]ed 7
I (' @¢-n""")

(x,u,j)eT
, » 2bm,u,jw[u]ej_1
=x (¢ (¢ =1yt (mod 4) (11)
(z,u,j)ET
with k = £1.
iii) We now assume that
2(p—1
M, < (p )w(f)nl) iC) (1)
pg Vp

contrary to the conclusion of the propostion. Define a polynomial J(y) in an indetermi-
nate y over Z by

Take an integer r satisfying



846 K. HORIE
so that the p-part of r — 1 is p. In the rest of this proof, we let

C=Cp/pys d=rIPw p=pd®p— gole,

and let, for each positive integer j,
- ej—l . dj—l
& =G =) -

iv) For the present, let us consider the case where | > 2 or (I, k) = (2,1). We easily
see from (10) or (11) that

Clwfl’u 1 ba,u,j (e 1 Iz u,j
J — J 2
11 <<zm§zm_1> = ]I (C%}“—J (mod 12).
(z,u,j)ET J (z,u,j)ET

Furthermore, in the above,

(ngﬂ . 1)lbm,u,j = (Clwgéu/ _ 1)bm,u.j—1(clw£§u/ 1+ lbw,u,jJ(wag‘l/)) (mod ZZ)

with u' = u or tu. Therefore,

[T (e = (e =1t tbany (7€)

(®,u,j)€T

= JI ((€"g" —1+1euT(¢7€)) (¢ — 1)) (mod 1%),

(z,u.j)€T

that is,

(I @) 5 et €6 Dy

(z,u,j)ET (yw,m)es

( 11 (dms;wn) S by (V)T e (mod D) (13)

(®u,j)eT (y,w,m)eT

where, for each (y,w,m) in 7,

Hy,w,m _ (Clygirtlw o 1)*1 H (Clmfétu _ 1)7

(xu,j)€T
H’_ll,/,w,m = (Clyﬁﬁu — 1)71 H (Clccg;u B 1)
(z,u,j)€T

Let ¥ be the set of maps from .7 to {0,1}. For each n in ¥, we put
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A(n) - Z ln(ma uaj)Udjilv B(n) - Z Il(iE, uaj)a
(xu,j)€T (zu,j)ET

Smy= > In(xujz

(z,u,j)ET
and, for each (y,w,m) in J, we put
Wy,w,m = {n e W | U(y7 w7m) = O}

It follows that

I @€ -1) ¥ I €€ Ty

(x,u,j)€T (y,w,m)ET

=— Z Z Z B(n)+B(U)byw’m‘](é‘ygfr?lu)CE(H)+E(U)<}4((Z)“))+tA(U), (14)

(y,w,m)ET NEY 0EW,, oy m

( (cl%;t”—l)) S by (CYERN T

(z,u,j)ET (y,w,m)eT

== > > 3 « n)+B(U)byw’mJ(é‘ygg}l)CZ‘(n)-ﬁ-E(U)C;I(“p()“)-FA(U). (15)

(y,w,m)ET NEY VEYy w m

v) We shall next see when a triplet (y,w, m) in .7, a pair (n,v) in ¥ X @ 4 ., and
an integer ¢, with min(1,7 — 2) < ¢ < I, satisfy the two congruences

ctwd™ '+ A(m) +tA(p) = > I(1+tud T =1 (mod f(p)/vp),  (16)
(z,u,j)ET

cwd™ P +tAn) + Ap) = Y M1+ Hud =1 (mod f(p)/v,).  (17)
(z,u,j)ET

Since t =d =1 (mod f(p)/vp), either congruence above means that

> (z S - ate - oo, ) Ju-1

uel\{w} “=zeG’ j=1

‘P(Vp)
+(Z Zl<2—n<w7w,j>—n(w,w,m—c)wzo (mod f(p)/vy).  (18)

zeG j=1

However, by the definition of G,

e < P21y a0y T vy < L= DAL,

qeEP
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Hence there exists a map b in ,(2(p — 1)¢(f)nl/(pg)) such that

(vp)
h((s): Z Z l(2—n(:n7u,j)—n(:c,u7j))
xeG j=1

if 6 € Wy, ue I\ {w}, and § =u (mod f(p)), and such that

»(vp)
ho) = Y > U2 —n(x,w,j) —v(@w,j) —c

zeG j=1

if § € W, and 6 = w (mod f(p)). We can therefore transform (18) into

ST hE)5-1=0 (mod f(p)(p) ),

sEW,

where v(p) denotes the highest power of p dividing 1,. Thus (18) induces
NQ(Cpl)/Q( Z [](5)5 - 1) =0 (mod f(p)/Vp)
sEW,

As this and (12) yield

> b3 —-1=0,

SEW,

Lemma 7 of [3] then implies that h(1) = 1 and that h(§) = 0 for all § in W), \ {1}.
Consequently, both of (16), (17) are equivalent to the condition that

w=1, (y,lm)eT, veWim, c=1-1
)
)

1 for every (x,u,j) in J;

n(x,u,j
o(xz,u,j) =1 for every (x,u,j) in 7\ {(y,1,m)}.
It follows, under the above condition, that
(= Dtd™ "+ Am) +tA®p) = > 11+ tjud " —td™
(z,u,j)ET
(1= 1d™ " +tAm) + Ap) = > 11+ tud "t —dm
(z,u,j)€T
B(n) + B(v) = (p — 1)p(1,)|G'] — 1,

=Dy + Zm) + 2(0) = lp - Dp(vp) Y & —y.
zeG’
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Hence, by (13), (14) and (15), Lemma 3 shows that

©(vp) o(vp)
SN bymC e = Y0 Y by (Y (mod 1),

m=1 yeG’ m=1 yeG’

Furthermore, (¢t — 1)p/f(p) is an integer relatively prime to p, and

Cf(;) — Cétfl)p/f(p)cf(p), C; = (.

We therefore obtain

e(vp)
(G —1) 37 byamC Y€ =0 (mod 1),
m=1 yeqG’
which gives
e(vp)
3> byamC¥n =0 (mod1).
m=1 yeG’
However, by Lemma 4, {1, ..., §,(,,) are linearly independent over Q(¢). Hence
Z by1,mCY =0 (modl) (19)
yeq’

if m is any positive integer < ¢(v,).
vi) Since {z[u] | € G',u € I} U {iz[u] | ¢ € G',u € I} is a subgroup of G
containing Ker(x*) U {s(v) | v € P(g/g9(p))}, we can deduce from (9) that

YA azjz=(144)> > baujzul (20)

z€3 uel z€G’
for every positive integer j < ¢(1,). Let us put
Py={ve P |v.=v, f(v)#4}.
For any prime v in Py, we have f(v) = 9g(v) and Cs("’)y/v_l is a primitive v-th root of

unity. Let G” be the subgroup of G’ generated by s(v)9/*» for all v in Py \ P, and by
the image of Ker(x*) under the canonical surjection G — Gy(,y. Let

B = {leg

z1€G", z2€3N H Gf/f(v)}'

vEP;
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Then there exist integers by 4, for all (w,u) in B x I, such that

7(T10-s00)) Casiz = 040 X 3 bl (21)
v zZ€3 uel weB
with v running through P(g/g(p)) \ P». Hence, by (20),
1+ 3 sl = ( [L0-57)) 1+ X X busul

uel xeG’ vE P, uel weB

and consequently

> bpaaz= ) wa( I[Ja- s(v)g/v)>w.

zeG’ weB vEP;

It follows that

3 b = 3 ma( I (g0 o,

xzcG’ we'B veEP;

since we have

I, s(v)g/“—l — s(v)g/"’—l
¢ ¢

whenever v runs through any subset of P,. Therefore, in virtue of (19),

> bw,l( II (- <<s<”>““‘1’“’>)<w =0 (mod I).

weB vEP

Next, let B¢ be the set of elements w of B such that (¥’ = (, for all v in P,. Evidently,

for any v in P, and any w in 9B, ¥ = (, if and only if §}‘E;)1 € <Cf(2)>' Hence Lemma 3,
together with the above congruence, yields

(I =) ¥ busce=0 @moan

vEP; weDBo

It then follows that

Z bw1¢¥ =0 (mod ).

weBo

Furthermore, Lemma 4 implies that ¢(* for all w in B are linearly independent over Q.
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Thus
bw1 =0 (modl) for all w € By.
Since ay,1 = b1,1 by (21), we particularly obtain
a1 =0 (mod ).

On the other hand, we know that, in what we have discussed so far, a can be replaced
by a¢J for any non-negative integer j < ¢(n). Lemma 6 therefore shows that

a=0 (modl).
This conclusion, however, contradicts the choice of a.

vii) We finally consider the case (I,x) = (2, —1), in which we still use the notations
introduced in the step iv) for the case (I, k) = (2,1). It follows from (11) that

C2m£2u ~1 b, u.j
Heg (Cngj;tu _ 1)

e i
SR
— || mod 4
eﬂ(cm£§u_1> mod 4)

(@,u,5) (@,u,5)
so that
[T (g = 1)(Cg" = 14 20y T(€7€1)))
(z,u,j)eT

=— ] (" = 142607 (¢7€))) (¢P7E™ — 1)) (mod 4).

(®u,j)ET

Therefore, instead of (13), we have

II (=g (=g -1)

(@,u,5)€T
+( H (<2w€]2u_1)> Z by,w,mJ(Cygf:})Hy,w,m
(z,u,j)€ET (y,w,m)eT
= II (C%?“—l)) > byawmd (CYER) T, (mod 2).
(z,u,j)ET (y,w,m)eT
Nevertheless,

H ((C2w§?’u . 1) (<2w§?tu . 1)) _ Z (_1)B(n)+B(n/)CE(n)+2(n')C;x((pn))+tA(n’)

(z,u,j)€T (n,n/)ET X¥
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and, for each (n,n') in ¥ x ¥, the congruence

An) +tAn') = Z 21+ tyud’~* =1 (mod f(p)/v,)

(z.ju)€T

can be rewritten in the form

> (23 s ntod) - oo

wel\{1} \@eG@’ j=1

»(vp)

+ ) Z 2—n(z,1,j) —'(x,1,j)) —1=0 (mod f(p)/v,).

zeG j=1

Hence, checking the arguments in the steps iii), iv), v), vi), we see that the above
congruence modulo 2, together with (12), leads us to the contradiction o = 0 (mod 2)
in the same way as the congruence (13) for the case (I,x) = (2, 1).

Consequently, the assumption (12) turns out to be false and the proposition is com-
pletely proved. O

By means of Proposition 3, we now prove the following

PROPOSITION 4.  Let | be a prime number, n a positive divisor of gy such that
Q(Cn) contains the decomposition field of | for Q((y,)/Q, and R a finite subset of P
such that every p in R satisfies p | n and f(p) = pg(p). Suppose that

l|hxv ljffxgxa R# Q.

Then

>

9x ( I p?®=Y f(p) )I/E“R“”(p_l)

p(fn \ g (0= De()?@ =Dy,

where, for each p in R, v, denotes the p-part of n.

Proor. Put

(p — De(f)nl

6, =
b pg

for any p in R, and take any m in $,(260,). Then

’NQ(Cp—l)/Q( > m(8)s - 1)‘ -1I

seW, T

> m(8)e” —1f,

seW,
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with 7 ranging over the automorphisms of the field Q(¢,—1), and

> @ <1 <) -1+ Y w) < o6,

SEW, SEW,\{1}
Therefore

M,(20,) < (‘P(ﬁ)@p)wpil)-

Hence we see from Proposition 3 that

namely that

<<p(f)nl>z"€”(p_l) [ =02y 1),

g pep—1) Vp

PER PER

5.

We shall prove Theorem 1 in the present section. The notation in the preceeding
sections will be retained except that, for each Dirichlet character 1) and each p € P, we
let fy(p) and gy (p) denote the p-parts of f, and gy, respectively.

As to I, there exists a unique abelian number field kg with finite degree such that
F = koQ® and that, for each p € S, the p-part of the conductor of ko divides p. Let ¥
be a set of nonprincipal Dirichlet characters with the following two properties:

(i) Ky for each ¢ in X is a subfield of F',
(ii) for any nonprincipal Dirichlet character ¢’ with K,» C F', there is just one Dirichlet
character 1 in X satisfying K, = Ky.

Let fy denote the conductor of kg. Then, for each ¢ € X and each [ € P\ S, we easily
obtain

Fo@) 1 fo, gu(D) [ [Ro : Q. (22)

When p is any prime in S with fy(p) # pgy(p), we also have

fo(®) <DPgy(®),  gu(p) | [ko : Q. (23)

Now, as in the introduction, let 1, denote for each p € S the p-part of the positive
integer mg in the hypothesis of Theorem 1. Assume first that F' is real: F' C R. Taking
any subset R of S, let X% denote the set of Dirichlet characters ¢ in X for which
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{pe S| fu(p) =09y (), 96(p) > pp} =R

It then follows from (23) that, for each ¢ € X and each p € S\ R,

pfu(0) | Drplko : QL 9u(p) | pplko = Q). (24)

LEMMA 7. The set X® is finite or infinite according as R is empty or non-empty.

PROOF. In the case R # &, let I' denote the subfield of Q° whose Galois group
over @ is topologically isomorphic to Hpe r Z,. Then an element ¢ of X with Ky C I’
belongs to X% if g, is divisible by Hpe » Mp- This fact implies that X is an infinite set.

In the case R = &, we see from (22) and (24) that

fu | 2fomolko : Q] for every ¢ € X%,
so that X is a finite set. 0
REMARK. X is the disjoint union of X% for all subsets R’ of S.
Let R be the same as above. For each 1 in X, define a positive integer Ny by

7%}1—[ Mp

pER

We let X{¥ denote the set of ¢ in X7 satisfying
9 <H PP [y (p)
p(fo)ne \ L (0= D)2V,

(ny)
W20, )p(ny)2E(ny) . ([ fu '
<P ( 1og2g¢m 1°g<7r“) |

LeEMMA 8. X[ is a finite set.

)1/ >pereP—1)

Proor. By Lemma 7, we may assume R to be non-empty. Let ¢) be any Dirichlet
character in X%. In view of (22), (24) and the definition of n, we know that

ny <mgolko : Q, fy < 2fomolko H fu(p

pPER

Furthermore,

22 < 2181k, - Q) els) o ¢(2Hv),
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where v ranges over the prime numbers dividing fy or belonging to S. Therefore the
definition of X{* implies that, if ¢ belongs to X{*, then

o < pllog f,)molko:Q)

with a positive number p depending only on myg, fo and [ko : Q]. We thus see that fy is
bounded as ¢ runs through X. (]

Now, let
Xo=2%7U (Ux{f),
R/

R’ ranging over the non-empty subsets of S. By Lemmas 7 and 8, Xj is a finite set.

PROPOSITION 5.  Still assuming F to be real, let | be a prime number such that
Q((my) contains the decomposition field of | for Q% ((m,)/Q and that

1¢S5, folko: Q] [ hy #£0 (mod1).

PYEXy

Then Cr(l) is trivial.

PRrOOF. It suffices to prove that the class number of any subfield of F' with finite
degree is not divisible by the prime number [. Let k¥’ be any subfield of F' with finite
degree, and X’ the set of all ¢ in X with Ky C k’. For each ¢ in X', we denote by hy (1)
the [-part of hy. As [ [k' : Q] by the hypothesis of the proposition, it follows from [5,
Satz 21] that

ICo =TT he® (25)

Ppex’

(see also the formula (10) in [5, §9.4]).

Suppose now that some Dirichlet character y in X’ satisfies h,(l) > 1, namely, [ | h,.
Then there exists a unique subset R of S such that X’ contains xy. We note that, for
each v € P, the v-part of n, is p, or g, (v) according as v belongs to R or P\ R. The
hypothesis on [ implies that x is not an element of Xo, [ does not divide f, gy, and Q(¢n, )
contains the decomposition field of I for Q((,, )/Q. In particular, R is not empty, so that
fx is not a prime number since each p in R divides g,. Hence, by Proposition 2,

(”x)
2200=20( £ )p(n)2E(ny) [ fy '
PP ( (og 2o/ Dy <7T i 1)

and further, by Proposition 4,
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_ 1 1
1> 9x ( pe® 1)fx(p) ) /Lpenelp ).
sen ((

o(fr)ny p—1)p(p)#P=—Dpu,

However y must not belong to X{f, a subset of X. This contradiction means that
hy (1) =1 for all ¢ in X’. Hence (25) shows that |Cy/ (I)| = 1, namely, the class number
of k" is not divisible by [. O

Now, let us prove Theorem 1. Proposition 5 clearly implies Theorem 1 for the case
F C R. Accordingly, we assume that F' is imaginary. Replacing mg by its multiple
if necessary, we may also assume that, for each p € S, the p-part of the exponent of
Gal(ko/Q) is a divisor of mg. As in the introduction, let Cy () denote, for each | € P,
the [-primary component of the kernel C of the norm map Cr — Cpg+, where

Ft=FNR=Q%k NR).

Then, by Theorem 1 of [3], there exist only finitely many ! € P such that Cy(l) is
nontrivial and such that Q((,,) contains the decomposition field of I for Q° (¢, )/Q-
On the other hand, since the norm map Cr — Cg+ is surjective by class field theory,
it follows for each I € P that Cr(l) is trivial if and only if both C'(I) and Cp+(l) are
trivial. Proposition 5 therefore completes the proof of Theorem 1.

6.

In this last section, we briefly make some additional remarks on Cr and Cgs with
relation to Theorem 1.

If F' is imaginary, then by the remark in the introduction, C'y is infinite whence
so is Cr (cf. [6]). Iwasawa theory further guarantees in this case that, for any p € S,
Cr(p) can be infinite quite often, for instance, when any prime ideal of kg N R dividing
p splits in kg or when ged(4, p)p divides the exponent of the kernel of the norm map
Cro = CronR-

Assume now that F' is real. Certainly, for any finite abelian group 2 with order
relatively prime to all p € S, there exists an example of F' such that 2 is isomorphic
to some subgroup of Cp. For any p € S, however, Cr(p) must always be trivial if
Greenberg’s conjecture for Z,-extensions holds in general. Hence, in view of Theorem 1,
we might expect the finiteness of Cr. It would also be an important problem to know
whether Cgs is trivial or not. In fact, we have not found any prime number / for which
Cgqs (1) is nontrivial. Moreover, if Cgs turns out to be trivial or, at least, to be finite,
then it seems very likely that Cp is finite for every totally real finite extension L of
Q°. We note that, in the case |S| = 1, Cgs is trivial if and only if @ coincides with
the Hilbert class field of QF, i.c., the maximal unramified abelian extension over Q.
Anyhow, whenever an integer u > 2 is given, there exist examples of S with |S| = u such
that the Hilbert class field of Q° contains an extension of degree p over Q° for some
p €S (cf. [2]).
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