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Abstract. Recently N. Kumano-go [15] succeeded in proving that piecewise
linear time slicing approximation to Feynman path integral

Z
F (γ)eiνS(γ) D [γ]

actually converges to the limit as the mesh of division of time goes to 0 if the functional
F (γ) of paths γ belongs to a certain class of functionals, which includes, as a typical
example, Stieltjes integral of the following form;

F (γ) =

Z T

0
f(t, γ(t))ρ(dt), (1)

where ρ(t) is a function of bounded variation and f(t, x) is a sufficiently smooth
function with polynomial growth as |x| → ∞. Moreover, he rigorously showed that
the limit, which we call the Feynman path integral, has rich properties (see also [10]).

The present paper has two aims. The first aim is to show that a large part of
discussion in [15] becomes much simpler and clearer if one uses piecewise classical
paths in place of piecewise linear paths.

The second aim is to explain that the use of piecewise classical paths naturally
leads us to an analytic formula for the second term of the semi-classical asymptotic
expansion of the Feynman path integrals under a little stronger assumptions than
that in [15]. If F (γ) ≡ 1, this second term coincides with the one given by G. D.
Birkhoff [1].

1. Introduction.

Let

L(t, ẋ, x) =
1
2
|ẋ|2 − V (t, x)

be the Lagrangian with a smooth time dependent potential V (t, x) on the configuration
space Rd. A path γ is a continuous or sufficiently smooth map from the time interval
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[s, s′] to Rd. The action S(γ) of a path γ is the functional

S(γ) =
∫ s′

s

L

(
t,

d

dt
γ(t), γ(t)

)
dt. (1.1)

In [4] Feynman introduced the notion of an integral over the path space Ω, which is
called Feynman path integral and is often denoted by

∫

Ω

eiνS(γ)F (γ)D [γ], (1.2)

where ν = 2πh−1 with Planck’s constant h. It was expected that Feynman path integral
could have been defined as a measure theoretic integral if a suitable complex measure on
the path space had been defined. However, Cameron [2] proved that this is not the case.
(cf. also Johnson & Lapidus [13].)

Feynman himself gave the meaning to (1.2) as the limit of integrals over finite di-
mensional spaces. We call this method time slicing approximation method. In this paper
as well as in Kumano-go [15] we show that his discussion can be made mathematically
rigorous if V (t, x) and F (γ) satisfy suitable conditions. We assume that V (t, x) is con-
tinuous in t and smooth in x. Moreover, we assume that for any non-negative integer m

there exists a non-negative constant vm such that

max
|α|=m

sup
(t,x)∈[0,T ]×Rd

∣∣∂α
x V (t, x)

∣∣ ≤ vm(1 + |x|)max {2−m,0}. (1.3)

Our assumption is close to that of Pauli [3].
We recall time slicing approximation method. Let [s, s′] be an interval of time. A

path γ is classical if it is a solution to the Euler equation

d2

dt2
γ(t) + (∇V )(t, γ(t)) = 0 for s < t < s′. (1.4)

Here and hereafter ∇ stands for the nabla operator in the configuration space Rd.
For arbitrary pair of points x, y ∈ Rd there exists one and only one classical path γ

which satisfies the boundary condition

γ(s) = y, γ(s′) = x (1.5)

if |s′ − s| ≤ µ with sufficiently small µ, say for instance (see §3),

µ2dv2

8
< 1. (1.6)

In this case the action S(γ) of γ is a function of (s′, s, x, y) and is denoted by S(s′, s, x, y),
i.e.,
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S(s′, s, x, y) =
∫ s′

s

L

(
t,

d

dt
γ(t), γ(t)

)
dt. (1.7)

Let

∆ : 0 = T0 < T1 < · · · < TJ < TJ+1 = T (1.8)

be a division of the interval [0, T ]. Then we set tj = Tj − Tj−1 and define the mesh |∆|
of the division ∆ by |∆| = maxj{tj}. We always assume that

|∆| ≤ µ. (1.9)

Let

xj ∈ Rd, j = 0, 1, . . . , J, J + 1, (1.10)

be arbitrary J + 2 points of the configuration space Rd. The piecewise classical path γ∆

with vertices (xJ+1, xJ , . . . , x1, x0) ∈ Rd(J+2) is the broken path that satisfies Euler’s
equation

d2

dt2
γ∆(t) + (∇V )(t, γ∆(t)) = 0, (1.11)

for Tj−1 < t < Tj (j = 1, 2, . . . , J, J + 1) and boundary conditions

γ∆(Tj) = xj , j = 0, 1, . . . , J, J + 1, (1.12)

where x = xJ+1 and y = x0. When we emphasize the fact that this path
γ∆ depends on (xJ+1, xJ , . . . , x1, x0), we denote it by γ∆(xJ+1, xJ , . . . , x1, x0) or
γ∆(t;xJ+1, xJ , . . . , x1, x0), where t is the time variable.

Let F (γ) be a functional defined for paths γ. Its value F (γ∆) at γ∆ can be written
as a function F∆(xJ+1, xJ , . . . , x1, x0) of (xJ+1, xJ , . . . , x1, x0). For example the action
functional S(γ∆) of γ∆ is given by

S∆(xJ+1, xJ , . . . , x1, x0) = S(γ∆) =
∫ T

0

L

(
t,

d

dt
γ∆(t), γ∆(t)

)
dt

=
J+1∑

j=1

Sj(xj , xj−1), (1.13)

where we used the abbreviation

Sj(xj , xj−1) = S(Tj , Tj−1, xj , xj−1) =
∫ Tj

Tj−1

L

(
t,

d

dt
γ∆(t), γ∆(t)

)
dt. (1.14)
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A piecewise classical time slicing approximation to Feynman path integral (1.2) with
the integrand F (γ) is an oscillatory integral

I[F∆](∆;x, y)

=
J+1∏

j=1

(
ν

2πitj

)d/2 ∫

RdJ

eiνS(γ∆)F (γ∆)
J∏

j=1

dxj

=
J+1∏

j=1

(
ν

2πitj

)d/2 ∫

RdJ

eiνS∆(xJ+1,xJ ,...,x1,x0)F∆(xJ+1, xJ , . . . , x1, x0)
J∏

j=1

dxj , (1.15)

where xJ+1 = x and x0 = y. See Feynman [4].
Feynman’s definition of path integral (1.2) is

∫

Ω

eiνS(γ)F (γ)D [γ] = lim
|∆|→0

I[F∆](∆;x, y), (1.16)

if the limit on the right hand side exists.
We remark that Feynman [4] used also piecewise linear paths in place of piecewise

classical paths. In that case we say piecewise linear time slicing approximation method.
Existence of the limit in (1.16) was proved in the case F ≡ 1 by [5], [6], [7], [12],

[17]. Recently N. Kumano-go [15] proved the limit in (1.16) exists in the case of more
general class of functional F using piecewise linear paths in place of piecewise classical
paths.

2. Statement of results.

Although ν is a constant in Physics, we treat it as a parameter satisfying ν ≥ 1 in
this paper, because our discussion is valid for any ν ≥ 1. We assume that the potential
satisfies the assumption (1.3) and µ satisfies (1.6). Let ∆ be as (1.8) and (1.9). Then
the set Γ (∆) of all piecewise classical paths associated with the division ∆ forms a
differentiable manifold of dimension d(J + 2). The correspondence γ∆ → (xJ+1, . . . , x0)
is a global coordinate system. We will describe a basis of the tangent space Tγ∆

Γ (∆) to
Γ (∆) at γ∆. Let {ek}d

k=1 be an ortho-normal frame of the configuration space Rd, i.e.,
xj =

∑d
k=1 xj,kek in our notation (1.10). Let ηj;k(t) = ∂xj,k

γ∆(t). Then the functions
{ηj;k}0≤j≤J+1,1≤k≤d form a basis of the tangent space Tγ∆

Γ (∆). If j = 1, . . . , J , then
for t ≤ Tj−1 or Tj+1 ≤ t,

ηj;k(t) = 0, (2.1)

and for Tj−1 < t < Tj or Tj < t < Tj+1 it satisfies Jacobi equation at γ∆

d2

dt2
ηj;k(t) +∇∇V (t, γ∆(t))ηj;k(t) = 0, (2.2)

and at t = Tj it satisfies the boundary condition:
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ηj;k(Tj) = ek. (2.3)

If j = 0, η0;k(t) = 0 for T1 ≤ t, (2.2) is satisfied for 0 < t < T1 and (2.3) is satisfied at
t = T0. If j = J + 1, ηJ+1;k(t) = 0 for t ≤ TJ , (2.2) is satisfied for TJ < t < TJ+1 and
(2.3) is satisfied at t = TJ+1.

For a pair of divisions ∆′ and ∆ we use symbol ∆ ≺ ∆′ if ∆′ is a refinement of
∆. If ∆ ≺ ∆′, then there is a natural inclusion Γ (∆) ⊂ Γ (∆′). This inclusion induces
inclusion relation of the tangent spaces at γ∆, i.e., Tγ∆

Γ (∆) ⊂ Tγ∆
Γ (∆′). The set Γ of

all piecewise classical paths is the inductive limit of {Γ (∆),≺}, i.e., Γ = lim→ Γ (∆). Γ

is a dense subset of the Sobolev space H1([0, T ];Rd) of order 1 with values in Rd and
hence it is also dense in the space C([0, T ];Rd) of all continuous paths. Let γ∆ ∈ Γ (∆).
Then the tangent space Tγ∆

Γ to Γ at γ∆ is the inductive limit lim→ Tγ∆
Γ (∆′), which

is a dense linear subspace of the Sobolev space H1([0, T ];Rd). (See Lemma 2 bellow).
Let F (γ) be a functional defined on Γ . We denote its Fréchet differential at γ ∈ Γ by

DFγ if it exists. And DFγ [ζ] stands for its value at the tangent vector ζ ∈ TγΓ . For any
integer n > 0 and for ζj ∈ TγΓ (j = 1, 2, . . . , n), we denote by DnFγ [ζ1⊗ζ2⊗· · ·⊗ζn], the
symmetric n-linear form on the tangent space arising from the n-th jet modulo n− 1-th
jet of F at γ.

We assume always in this paper that the functional F (γ) satisfies both of the fol-
lowing conditions.

Assumption 1. Let m ≥ 0. For any non-negative integer K there exist positive
constants AK and XK such that for any division ∆ of the form (1.8) and any integer
nj (0 ≤ j ≤ J + 1) with 0 ≤ nj ≤ K

∣∣∣D
PJ+1

j=0 nj Fγ∆

[⊗J+1
j=0 ⊗nj

k=1ζj,k

]∣∣∣ ≤ AKXJ+2
K (1 + ‖γ∆‖+ |||γ∆|||)m

J+1∏

j=0

nj∏

k=1

‖ζj,k‖, (2.4)

as far as ζj,k ∈ Tγ∆
Γ satisfies

supp ζj,k ⊂





[0, T1] if j = 0

[Tj−1, Tj+1] if 1 ≤ j ≤ J

[TJ , TJ+1] if j = J + 1,

(2.5)

where ‖ζ‖ = max0≤t≤T |ζ(t)| and |||γ∆||| = the total variation of γ∆.

Assumption 2 ([15] [10]). There exists a positive bounded Borel measure ρ on
[0, T ] such that with the same AK , XK as above

∣∣∣D1+
PJ+1

j=0 nj Fγ∆

[
η ⊗⊗J+1

j=0 ⊗nj

k=1 ζj,k

]∣∣∣

≤ AKXJ+2
K (1 + ‖γ∆‖+ |||γ∆|||)m

∫

[0,T ]

|η(t)|ρ(dt)
J+1∏

j=0

nj∏

k=1

‖ζj,k‖, (2.6)
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for any division ∆, integer nj ≤ K and ζj,k which are the same as in Assumption 1.
And η is an arbitrary element of Tγ∆

Γ .

We can prove the following

Theorem 1. Assume that the integrand F (γ) satisfies Assumption 1 and Assump-
tion 2 above and T is so small that |T | ≤ µ, Then the limit of the right hand side of
(1.16) converges compact-uniformly with respect to (x, y) ∈ R2d.

We shall make more precise statement. In what follows we always assume that 0 <

T ≤ µ. For any fixed (x, y) ∈ R2d the action S(γ) has a unique critical point γ∗, which
is the unique classical path starting y at time 0 and reaching x at time T . The critical
point is non-degenerate. Similarly, if 0 < T ≤ µ, the function S∆(xJ+1, xJ , . . . , x1, x0)
of (xJ , . . . , x1) has only one critical point, which is non-degenerate. Regarding ν as a
parameter satisfying ν ≥ 1, we can apply stationary phase method to (1.15). Stationary
phase method says that I[F∆](∆;x, y) is of the following form:

I[F∆](∆;x, y) =
(

ν

2πiT

)d/2

D(∆;x, y)−1/2eiνS(γ∗)(F (γ∗) + ν−1R∆[F∆](ν, x, y)
)
. (2.7)

Here we used the following symbol

D(∆;x, y) =
(

tJ+1tJ . . . t1
T

)d

detHessS(γ∆), (2.8)

where HessS(γ∆) denotes the Hessian of S(γ∆) with respect to (xJ , xJ−1, . . . , x1) eval-
uated at the critical point. It is shown in [8] and [15] that for any non-negative integer
K there exist a positive constant CK and a positive integer M(K) independent of ν and
of ∆ such that

∣∣∂α
x ∂β

y R∆[F∆](ν, x, y)
∣∣ ≤ CKAM(K)T (T + ρ([0, T ]))(1 + |x|+ |y|)m, (2.9)

as far as |α|, |β| ≤ K. Here and hereafter AM(K) is the same constant as appeared in
(2.4) and (2.6) with subscript M(K). The function D(∆; x, y) is of the form (cf. [7])

D(∆; x, y) = 1 + T 2d(∆; x, y). (2.10)

For any multi-indices α, β there exists a positive constant Cα,β such that

∣∣∂α
x ∂β

y d(∆; x, y)
∣∣ ≤ Cα,β . (2.11)

We also know (cf. [7]) that D(T, x, y) = lim|∆|→0 D(∆;x, y) exists. Moreover, for
any multi-indices α, β there exits a non-negative constant Cα,β such that

∣∣∂α
x ∂β

y (D(T, x, y)−D(∆;x, y))
∣∣ ≤ Cα,β |∆|T. (2.12)
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D(T, x, y) is of the form

D(T, x, y) = 1 + T 2d(T, x, y), (2.13)

where d(T, x, y) satisfies the same estimate as (2.11).
The estimate (2.12) was proved earlier in [7]. So we do not discuss it here. The

function T−dD(T, x, y) is the Morette-VanVleck determinant (cf. [7]).

Theorem 2. Under the same assumption as in Theorem 1 we can write the limit
lim|∆|→0 I[F∆](∆;x, y) in the following way :

∫

Ω

eiνS(γ)F (γ)D [γ] = lim
|∆|→0

I[F∆](∆;x, y)

=
(

ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)(F (γ∗) + ν−1R[F ](ν, x, y)
)
.

(2.14)

Moreover, for any non-negative integer K there exist positive constant CK and a non-
negative integer M(K) independent of ν and of ∆ such that

∣∣∂α
x ∂β

y (R[F ](ν, x, y)−R∆[F∆](ν, x, y))
∣∣

≤ CKAM(K)|∆|
(
ρ([0, T ]) + T 2 + T 3 + T 2ρ([0, T ]) + Tν−1

)
(1 + |x|+ |y|)m, (2.15)

as far as |α| ≤ K and |β| ≤ K.

Corollary 1. For any non-negative integer K there exist a positive constant CK

and a non-negative integer M(K) independent of ν such that

∣∣∂α
x ∂β

y R[F ](ν, x, y)
∣∣ ≤ CKAM(K)T (T + ρ([0, T ]))(1 + |x|+ |y|)m. (2.16)

It is expected that the following semi-classical asymptotic expansion holds;

∫

Ω

eiνS(γ)F (γ)D [γ] =
(

ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)(A0 + ν−1A1 + O(ν−2)
)

as ν →∞. (2.17)

Theorem 2 implies A0 = F (γ∗). What is the next term A1 ?
In the case F (γ) ≡ 1 assuming the existence of expansion, Birkhoff gave the answer

[1]. In fact, he gave even higher order terms of asymptotic expansion. However, if
F (γ) 6= constant, then his method does not apply.

We write down the second term A1 of (2.17) for general F (γ) and prove that the
asymptotic expression (2.17) actually holds. For this purpose we introduce a new piece-
wise classical path. Let ε be an arbitrary small positive number. And ∆(t, ε) be the
division
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∆(t, ε) : 0 = T0 < t < t + ε < T. (2.18)

Let z be an arbitrary point in Rd. We abbreviate the piecewise classical path
γ∆(t,ε)(s;x, γ∗(t + ε), z, y) associated with the division ∆(t, ε) by γ{t,ε}(s, z), i.e.,
γ{t,ε}(s, z) is the piecewise classical path which satisfies conditions:

γ{t,ε}(0, z) = y, γ{t,ε}(t, z) = z, γ{t,ε}(t + ε, z) = γ∗(t + ε), γ{t,ε}(T, z) = x. (2.19)

It is clear that γ{t,ε}(s, z) coincides with γ∗(s) for t + ε ≤ s ≤ T independently of z.
Therefore, ∂zγ{t,ε}(s, z) = 0 for t + ε ≤ s ≤ T .

Lemma 1. Under Assumption 1 and Assumption 2 we have bounded convergence
of the limit

q(t) = lim
ε→+0

[
∆z

(
D(t, z, y)−1/2F (γ{t,ε}(∗, z))

)∣∣
z=γ∗(t)

]
, (2.20)

where ∆z stands for the Laplacian with respect to z.

Theorem 3. In addition to Assumptions 1 and 2 we further assume that the
function q(t) of Lemma 1 is Riemannian integrable over [0, T ]. Set

A1 =
i

2

∫ T

0

D(t, γ∗(t), y)1/2q(t)dt. (2.21)

Then, there holds the asymptotic formula, as ν →∞,

∫

Ω

eiνS(γ)F (γ)D [γ]

=
(

ν

2πiT

)d/2

D(T, x, y)−1/2eiνS(γ∗)(A0 + ν−1A1 + ν−2r(ν, x, y)
)
, (2.22)

where for any α, β the remainder term r(ν, x, y) satisfies estimate

∣∣∂α
x ∂β

y r(ν, x, y)
∣∣ ≤ Cα,βT 2(1 + |x|+ |y|)m. (2.23)

We shall calculate q(t) in more detail for some simple functionals F (γ) in §5.
Since our method is completely different from Birkhoff’s method, it may be inter-

esting to see that this formula coincides with Birkhoff’s result in the case of F (γ) ≡ 1.
This will be done in §6.

Remark 1. In this note the Lagrangian has no vector potential. Kitada-Kumano-
go [14], Yajima [17] and Tshuchida-Fujiwara [12] discussed the case of Lagrangian with
non zero vector potential. They proved that the limit (1.16) exists and the limit is the
fundamental solution of Schrödinger equation if F (γ) ≡ 1. However we do not know
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whether the limit (1.16) exists or not if F (γ) 6= constant and Lagrangian has non-zero
vector potential.

3. Proof of Theorem 2.

3.1. Fitting assumptions to stationary phase method.
In order to apply the result of our paper [11] to prove theorems stated in the previous

section, we show in this subsection that Assumptions 1 and 2 of the present paper imply
the assumptions appeared in [11]. For that purpose we wish to estimate derivatives of
F∆(xJ+1, xJ , . . . , x1, x0).

Lemma 2. Assume that |s′− s| ≤ µ. Let γ(t), s ≤ t ≤ s′, be the classical path with
end points:

γ(s) = y, γ(s′) = x. (3.1)

There exists a positive constant C such that

∣∣∣∣γ(t)−
(

t− s

s′ − s
x +

s′ − t

s′ − s
y

)∣∣∣∣ ≤ C|s′ − s|2(1 + |x|+ |y|),
∣∣∣∣
(

d

dt
γ(t)− 1

s′ − s
(x− y)

)∣∣∣∣ ≤ C|s− s′|(1 + |x|+ |y|)

and for any multi-indices α, β with |α| + |β| > 0 there exists a positive constant Cα,β

such that

∣∣∣∣∂α
x ∂β

y

(
γ(t)−

(
t− s

s′ − s
x +

s′ − t

s′ − s
y

))∣∣∣∣ ≤ Cα,β(s′ − s)2,

∣∣∣∣∂α
x ∂β

y

(
d

dt
γ(t)− 1

s′ − s
(x− y)

)∣∣∣∣ ≤ Cα,β |s′ − s|.

Proof. These are consequences of Euler’s equation (1.4) and boundary conditions
(3.1). See §2 of [11] for the details. ¤

Proposition 1. Let γ∆ be the piecewise classical path which satisfies (1.11) and
(1.12). Then there exists a positive constant C such that

|||γ∆||| ≤ C(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|). (3.2)

For any multi-indices αj and αj−1 with |αj |+ |αj−1| ≥ 1 there exists a positive constant
Cαj ,αj−1 such that

∣∣∂αj
xj

∂αj−1
xj−1

γ∆(t)
∣∣ ≤ Cαj ,αj−1 for any t ∈ [0, T ]. (3.3)

We have supp∂x0γ∆ ⊂ [T0, T1], supp∂xJ+1γ∆ ⊂ [TJ , TJ+1] and
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supp∂xj
γ∆ ⊂ [Tj−1, Tj+1] if 0 < j < J + 1. (3.4)

If |j − k| ≥ 2, then

∂xj
∂xk

γ∆(t) = 0 for any t ∈ [0, T ]. (3.5)

Proof. As a consequence of the above lemma 2 we have

∫ Tj

Tj−1

∣∣∣∣
d

dt
γ∆(t)

∣∣∣∣dt ≤ |xj − xj−1|+ Ct2j (1 + |xj |+ |xj−1|).

Taking summation with respect to j, we have

|||γ∆||| ≤ C(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|).

This proves (3.2). Other parts of Proposition are obvious. ¤

Now we can obtain bounds of derivatives of F∆(xJ+1, xJ , . . . , x1, x0).

Proposition 2. Let F (γ) be a functional defined on Γ satisfying Assumption 1
and 2. Then for any non-negative integer K there exist positive constants AK and XK

such that for any division ∆ of (1.8) and for any multi-indices αj, j = 0, 1, . . . , J + 1
satisfying |αj | ≤ K there holds the inequality

∣∣∣∣
( J+1∏

k=0

∂αj
xj

)
F∆

∣∣∣∣ ≤ AKXJ+2
K (1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)m. (3.6)

Moreover for any k = 1, 2 . . . , J

∣∣∣∣
( J+1∏

j=0

∂αj
xj

)
∂xk

F∆

∣∣∣∣

≤ AKXJ+2
K ρ([Tk−1, Tk+1])(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)m. (3.7)

Proof. We begin with an obvious remark. By completing the tangent space Tγ∆
Γ

with respect to the maximum norm, we may assume that the inequalities (2.4) and (2.6)
hold for ζj,k ∈ C([0, T ],Rd) with support conditions (2.5).

Leibnitz’ rule and (3.5) give that for any multi-indices αJ+1, αJ , · · · , α0

∂αJ+1
xJ+1

∂αJ
xJ
· · · ∂α0

x0
F (γ∆) =

|αJ+1|+···+|α0|∑

l=1

′∑
C

({αj}J+1
j=0 , l,

{
(βj,n, β′j−1,n),m(j, n)

}
j,n

)

×DlFγ∆

[
⊗J+1

j=1 ⊗n

(
∂βj,n

xj
∂

β′j−1,n
xj−1 γ∆

)⊗m(j,n)
]
. (3.8)
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Here C({αj}J+1
j=0 , l, {(βj,n, β′j−1,n),m(j, n)}j,n) are non-negative constants. And the sum-

mation
∑′ ranges over all pairs of multi-indices {(βj,n, β′j−1,n)} and natural numbers

{m(j, n)}j,n such that

∑
n

m(j, n)βj,n +
∑

n

m(j + 1, n)β′j,n = αj , for j = 0, . . . , J + 1,

∑

j,n

m(j, n) = l. (3.9)

Let K ≥ 0. Then by virtue of relation (3.5) we can easily show by induction on J that
there exists a positive constant CK independent of J such that

|αJ+1|+···+|α0|∑

l=1

′∑
C

({αj}J+1
j=0 , l,

{(
βj,n, β′j−1,n),m(j, n)

}
j,n

) ≤ CJ+2
K (3.10)

as far as |αj | ≤ K for j = 0, . . . , J + 1.
Since (3.4) holds and

∑
n m(j, n) ≤ K for j = 1, 2, . . . , J+1, we can use the extended

form of (2.4) and obtain

∣∣∣DlFγ∆

[⊗J+1
j=1 ⊗n

(
∂βj,n

xj
∂

β′j−1,n
xj−1 γ∆

)⊗m(j,n)]∣∣∣

≤ AKXJ+2
K (1 + ‖γ∆‖+ |||γ∆|||)m

∏

j

∏
n

∥∥(
∂βj,n

xj
∂

β′j−1,n
xj−1 γ∆

)∥∥m(j,n)
.

Using Proposition 1, we obtain with some positive constant BK and C independent of J

∣∣∣DlFγ∆

[⊗J+1
j=1 ⊗n

∣∣(∂βj,n
xj

∂
β′j−1,n
xj−1 γ∆

)⊗m(j,n)]∣∣∣

≤ AKXJ+2
K (1 + C(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|))m

∏

j

∏
n

B
m(j,n)
K

≤ AKXJ+2
K BK

l(1 + C)m(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)m. (3.11)

Since we may assume BK ≥ 1, we combine estimate (3.11) with (3.10) and obtain that

∣∣∣∣
( J+1∏

k=0

∂αj
xj

)
F∆

∣∣∣∣

≤ CJ+2
K AK(BK

KXK)J+2(1 + C)m(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)m

≤ A′KX ′
K

J+2(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)m

with some constants A′K ,X ′
K independent of J . Estimate (3.6) is proved.

Now we prove (3.7). If αk 6= 0, then one of βk,n or β′k,n+1 in (3.8) is not 0. If
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βk,n0 6= 0 with some n0, then we can use (3.4) and obtain with some BK > 0

∫

[0,T ]

∣∣∂βk,n0
xk ∂

β′k−1,n0
xk−1 γ∆(t)

∣∣ρ(dt) ≤ BKρ([Tk−1, Tk+1]).

Making use of (2.6), we obtain

∣∣∣DlFγ∆

[⊗J+1
j=1 ⊗n

(
∂βj,n

xj
∂

β′j−1,n
xj−1 γ∆

)m(j,n)]∣∣∣

≤ AKXJ+2
K C(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)mBl

Kρ([Tk−1, Tk+1]).

Similar estimate holds if β′k,n0+1 6= 0. Combining this and (3.10), we obtain

∣∣∣∣∂xk

( J+1∏

k=0

∂αj
xj

)
F∆

∣∣∣∣

≤ AK(CKBK
KXK)J+2C(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)mρ([Tk−1, Tk+1])

≤ A′KX ′
K

J+2(1 + |xJ+1|+ |xJ |+ · · ·+ |x1|+ |x0|)mρ([Tk−1, Tk+1])

with another constants A′K > 0 and X ′
K > 0 independent of J . This proves (3.7).

Proposition 2 has been proved. ¤

3.2. Proof of Theorem 2.
Consider an arbitrary division ∆ of time interval [0, T ] as follows:

∆ : 0 = T0 < T1 < · · · < TJ < TJ+1 = T. (3.12)

First we shall discuss a special simple type of refinement of ∆. Let n be any one of
n = 0, 1, . . . , J . We divide the n + 1-th subinterval In = [Tn, Tn+1] into smaller sub-
subintervals and denote the division of In by δ, i.e.,

δ : Tn = Tn,0 < Tn,1 < · · · < Tn,pn+1 = Tn+1. (3.13)

Adding these new division points of δ to ∆ and keeping other [Tj , Tj+1] unchanged, we
get a refinement ∆′ of ∆. In other words, ∆′ is the same as ∆ except for the division δ

of [Tn, Tn+1]. We set σk = Tn,k − Tn,k−1.
We claim that the following estimate holds: For any non-negative integer K there

exist a positive constant CK and a non-negative integer M(K) such that if |α|, |β| ≤ K

we have

∣∣∂α
x ∂β

y (R∆′ [F∆′ ](ν, x, y)−R∆[F∆](ν, x, y))
∣∣

≤ CKAM(K)tn+1

(
ρ([Tn, Tn+1]) + tn+1(T + T 2 + Tρ([0, T ]) + ν−1)

)
(1 + |x|+ |y|)m.

(3.14)
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Assuming this claim for the moment, we shall prove Theorem 2. Let

∆∗ : 0 = τ0 < τ1 < · · · < τL+1 = T (3.15)

be an arbitrary refinement of ∆. It is clear that ∆∗ is obtained from ∆ by repeating
the above type of division J + 1 times. In fact, consider for any j = 1, . . . , J + 1 a new
refinement ∆j of ∆ whose dividing points consist of all of τk of (3.15) satisfying τk ≤ Tj

and all Tm of (3.12) satisfying Tm ≥ Tj . We set ∆0 = ∆. Then we have a chain of
refinements of ∆:

∆ = ∆0 ≺ ∆1 ≺ ∆2 ≺ · · · ≺ ∆J+1 = ∆∗.

∆n+1 is obtained from ∆n in the same way as ∆′ is obtained from ∆. We apply the
claim to R∆n+1 [F∆n+1 ](ν, x, y)−R∆n [F∆n ](ν, x, y) and obtain that

∣∣∂α
x ∂β

y (R∆∗ [F∆∗ ](ν, x, y)−R∆[F∆](ν, x, y))
∣∣

=
∣∣∣∣

J∑
n=0

(
∂α

x ∂β
y (R∆n+1 [F∆n+1 ](ν, x, y)−R∆n

[F∆n
](ν, x, y))

)∣∣∣∣

≤
J∑

n=0

CKAM(K)tn+1

(
ρ([Tn, Tn+1]) + tn+1(T + T 2 + Tρ([0, T ]) + ν−1)

)

× (1 + |x|+ |y|)m

≤ CKAM(K)|∆|
(
ρ([0, T ]) + T 2 + T 3 + T 2ρ([0, T ]) + Tν−1

)
(1 + |x|+ |y|)m. (3.16)

This means that {∂α
x ∂β

y R∆[F∆](ν, x, y)}∆ forms a Cauchy net. Therefore,

lim
|∆|→0

R∆[F∆](ν, x, y) = R[F ](ν, x, y)

exists. Tending |∆∗| → 0 of (3.16), we have the estimate (2.15). Theorem 2 is proved up
to the proof of the claim.

Now we prove the claim and complete the proof of Theorem 2. We consider an
arbitrary piecewise classical path γ∆′ associated with the division ∆′ and we write

yk = γ∆′(Tn,k), for 0 ≤ k ≤ pn + 1,

xj = γ∆′(Tj), for 0 ≤ j ≤ J + 1,

where we assume that y0 = xn, ypn+1 = xn+1. We abbreviate the block of variables
(ypn

, . . . , y1) by y[pn,1]. Similarly for any pair of integers k ≥ j ≥ 0 we denote (xk, . . . , xj)
by x[k,j]. As a special case we set x[k,k] = xk. Let

Sn,k(yk, yk−1) =
∫ Tn,k

Tn,k−1

L

(
t,

d

dt
γ∆′(t), γ∆′(t)

)
dt (k = 1, . . . , pn + 1). (3.17)
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Then the action S(γ∆′) becomes

S(γ∆′) = S∆′(x[J+1,n+1], y[pn,1], x[n,0])

=
J+1∑

j=1,j 6=n+1

Sj(xj , xj−1) +
pn+1∑

k=1

Sn,k(yk, yk−1). (3.18)

We set the latter term of (3.18) as

Sδ(xn+1, y[pn,1], xn) =
pn+1∑

k=1

Sn,k(yk, yk−1). (3.19)

The value of the functional F (γ) restricted to Γ (∆′) is

F∆′(x[J+1,n+1], y[pn,1], x[n,0]) = F
(
γ∆′(x[J+1,n+1], y[pn,1], x[n,0])

)
. (3.20)

We write I[F∆′ ](∆′;x, y) in two different ways and compare results to obtain an
expression of the difference R∆′ [F∆′ ](ν, x, y)−R∆[F∆](ν, x, y).

First we integrate it with respect to all the variables (x[J,n+1], y[pn,1], x[n,1]) and
apply the stationary phase method. Then we have just as (2.7)

I[F∆′ ](∆′;x, y) =
(

ν

2πiT

)d/2

D(∆′;x, y)−1/2eiνS(γ∗)(F (γ∗) + ν−1R∆′ [F∆′ ](ν, x, y)
)
.

(3.21)

Next we distinguish two groups of variables (xJ , . . . , x1) and (ypn
, . . . , y1). Inte-

grating with respect to (ypn
, . . . , y1) prior to integration with respect to (xJ , . . . , x1), we

define F∆/∆′(xJ+1, xJ , . . . , x1, x0) by the equality

(
ν

2πitn+1

)d/2

eiνSn+1(xn+1,xn)F∆/∆′(xJ+1, xJ , . . . , x1, x0)

=
pn+1∏

k=1

(
ν

2iπσk

)d/2 ∫

Rdpn

eiνSδ(xn+1,ypn ,...,y1,xn)

× F∆′(x[J+1,n+1], ypn
, . . . , y1, x[n,0])

pn∏

k=1

dyk. (3.22)

Using (3.18) and (3.19), we have

I[F∆′ ](∆′;x, y) =
J+1∏

j=1

(
ν

2πitj

)d/2 ∫

RdJ

eiνS∆(xJ+1,xJ ,...,x1,x0)

× F∆/∆′(xJ+1, xJ , . . . , x1, x0)
J∏

j=1

dxj . (3.23)
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In other words,

I[F∆′ ](∆′;x, y) = I[F∆/∆′ ](∆;x, y). (3.24)

Now we shall compare F∆(xJ+1, . . . , x0) with F∆/∆′(xJ+1, . . . , , x0). Since Proposi-
tion 2 holds, we can apply the result of [11] to the integral (3.22) with respect to variables
{ypn

, . . . , y1}. We obtain that

F∆/∆′(xJ+1, xJ , . . . , x1, x0) = D(δ;xn+1, xn)−1/2
(
F∆′(x[J+1,n+1], y

∗
[pn,1], x[n,0])

+ ν−1Rδ[F∆′ ](ν, xJ+1, xJ , . . . , x1, x0)
)
. (3.25)

Here as in (2.8), we use the symbol

D(δ;xn+1, xn) =
(

σpn+1σpn . . . σ1

tn+1

)d

detHessSδ

at the critical point y∗[pn,1] of the phase function

y[pn,1] −→ Sδ(xn+1, y[pn,1], xn). (3.26)

F∆′(x[J+1,n+1], y
∗
[pn,1], x[n,0]) is the main term of (3.25) and the remainder term is

ν−1Rδ[F∆′ ](ν, xJ+1, xJ , . . . , x1, x0).
The fact that y∗[pn,1] is the critical point of (3.26) means that it is the solution of the

system of equations

∂yk

(
Sn,k+1(yk+1, yk) + Sn,k(yk, yk−1)

)
= 0 for 1 ≤ k ≤ pn.

This implies that the path γ∆′(x[J+1,n+1], y
∗
[pn,1], x[n,0]) is not broken at time Tn,k for

k = 1, . . . , pn, i.e., γ∆′(x[J+1,n+1], y
∗
[pn,1], x[n,0]) is smooth for Tn < t < Tn+1. Therefore,

γ∆′(x[J+1,n+1], y
∗
[pn,1], x[n,0]) = γ∆(xJ+1, xJ , . . . , x1, x0).

And we have

F∆′(x[J+1,n+1], y
∗
[pn,1], x[n,0]) = F∆(xJ+1, xJ , . . . , x1, x0).

Substituting this in (3.25), we obtain

F∆/∆′(xJ+1, xJ , . . . , x1, x0) = D(δ;xn+1, xn)−1/2
(
F∆(xJ+1, xJ , . . . , x1, x0)

+ ν−1Rδ[F∆′ ](ν, xJ+1, xJ , . . . , x1, x0)
)
. (3.27)

It follows from this equality (3.27) and (3.24) that
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I[F∆′ ](∆′;x, y) = I[F∆/∆′ ](∆;x, y)

= I[D(δ;xn+1, xn)−1/2F∆](∆;x, y)

+ ν−1I[D(δ;xn+1, xn)−1/2Rδ[F∆′ ]](∆;x, y). (3.28)

Apply the stationary phase method to the first term of the right hand side and use (2.7).
Then we obtain the equality:

I[F∆′ ](∆′;x, y) =
(

ν

2πiT

)d/2

eiνS(γ∗)D(∆;x, y)−1/2

× (
D(δ;x∗n+1, x

∗
n)−1/2F (γ∗)

+ ν−1R∆[D(δ;xn+1, xn)−1/2F∆](ν, x, y) + ν−1a(∆; ν, x, y)
)
.

(3.29)

Here x∗n = γ∗(Tn), x∗n+1 = γ∗(Tn+1) and a(∆; ν, x, y) is defined by

I[D(δ;xn+1, xn)−1/2Rδ[F∆′ ]](∆;x, y)

=
(

ν

2πiT

)d/2

eiνS(γ∗)D(∆;x, y)−1/2a(∆; ν, x, y). (3.30)

It is shown in (cf. [7]) that

D(∆;x, y)D(δ;x∗n+1, x
∗
n) = D(∆′;x, y). (3.31)

Taking this equality in mind, we compare (3.21) to (3.29) and obtain that

D(∆′;x, y)−1/2R∆′ [F∆′ ](ν, x, y)

= D(∆;x, y)−1/2
(
R∆[D(δ;xn+1, xn)−1/2F∆](ν, x, y) + a(∆; ν, x, y)

)
. (3.32)

Consequently, we obtain

R∆′ [F∆′ ](ν, x, y)−R∆[F∆](ν, x, y)

=
(
D(δ;x∗n+1, x

∗
n)1/2 − 1

)
R∆[F∆](ν, x, y)

+ D(δ;x∗n+1, x
∗
n)1/2

(
R∆

[
(D(δ;xn+1, xn)−1/2 − 1)F∆

]
(ν, x, y) + a(∆; ν, x, y)

)
.

(3.33)

The estimate of the claim (3.14) is a result of this formula. First we know as a consequence
of (2.9), (2.10) and (2.11) that for any non-negative integer K there exist a positive
constant CK and a non-negative integer M(K) such that if |α|, |β| ≤ K,
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∣∣∂α
x ∂β

y

(
D(δ;x∗n+1, x

∗
n)1/2 − 1

)
R∆[F∆](ν, x, y)

∣∣

≤ CKAM(K)t
2
n+1T (T + ρ([0, T ]))(1 + |x|+ |y|)m. (3.34)

Next we show that R∆[(D(δ;xn+1, xn)−1/2 − 1)F∆](ν, x, y) is small.
Let j0 = 0 < j1 < · · · < js < js+1 = J +1 be any subsequence of {0, 1, . . . , J, J +1}.

Then ∆[ : T = T0 < Tj1 < · · · < Tjs
< Tjs+1 = T is a division of the interval [0, T ] coarser

than ∆. We use the symbol ι∆
∆[((D(δ;xn+1, xn)−1/2−1)F∆)(xjs+1 , xjs

, . . . , xj1 , x0) to ex-
press the restriction to Γ (∆[) of (D(δ;xn+1, xn)−1/2− 1)F∆(xJ+1, xJ , . . . , x1, x0), which
is a function defined on the path space Γ (∆). Since (2.11) and Proposition 2 hold, for
any non-negative integer K there exist a positive constant CK and a non-negative integer
M(K) such that if |αjk

| ≤ K

∣∣∣∣
( s+1∏

k=0

∂
αjk
xjk

)
ι∆∆[

(
(D(δ;xn+1, xn)−1/2 − 1)F∆

)
(xjs+1 , xjs , . . . , xj1 , x0)

∣∣∣∣

≤ CKt2n+1AM(K)X
s+2
M(K)(1 + |xjs+1 |+ · · ·+ |x0|)m.

The stationary phase method on the space of large dimension (cf. [8], [15]) yields the
following estimate: For any nonnegative integer K there exist a positive constant CK

and a non-negative integer M(K) such that

∣∣∂α
x ∂β

y R∆[(D(δ;xn+1, xn)−1/2 − 1)F∆](ν, x, y)
∣∣

≤ CKAM(K)Tt2n+1(1 + |x|+ |y|)m, (3.35)

if α, β satisfy |α| ≤ K, |β| ≤ K.
Finally we show a(∆; ν, x, y) on the right hand side of (3.30) is small. Regarding

the variables x[J+1,n+2] and x[n−1,0] of F∆1 as parameter λ, we know from Proposition
2 that we can apply theorem 1 of [11] to the integral (3.22).

In order to recall the result of [11], we make a notational convention. For any
k = 1, 2, . . . , pn we use the division δ(k) of the interval [Tn, Tn+1] defined by

δ(k) : Tn = Tn,0 < Tn,k < · · · < Tn,pn < Tn,pn+1 = Tn+1.

δ(k) is coarser than δ. We denote the division of the interval [Tn, Tn,k] by δ(k)c : Tn =
Tn,0 < Tn,1 < · · · < Tn,k. Theorem 1 of [11] says that

F∆/∆′(xJ+1, . . . , xn+1, xn, . . . , x0)

= D(δ;xn+1, xn)−1/2

(
F∆(xJ+1, xJ , . . . , x1, x0) +

i

2ν
pδ(xJ+1, xJ , . . . , x1, x0)

)

+ ν−1rδ(ν, xJ+1, xJ , . . . , x1, x0), (3.36)

where
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pδ(xJ+1, xJ , . . . , x1, x0)

=
pn∑

k=1

Tn,kσk+1

Tn,k+1
ι
δ(k)
[Tn,Tn+1]

(
D(δ(k)c; yk, xn)1/2

×∆yk

(
D(δ(k)c; yk, xn)−1/2ιδδ(k)F∆′

)
(xJ+1, . . . , xn+1, ypn

, . . . , yk, xn, . . . , x0)
)
.

(3.37)

Here ιδδ(k) means the restriction mapping of functions on path spaces Γ (δ) to Γ (δ(k)),
∆yk

stands for the Laplace operator with respect to the variable yk and D(δ(k)c; yk, xn)
is given by (2.8) for the division δ(k)c. For any non-negative integer K there exist a
positive constant CK and a non-negative integer M(K) such that

∣∣∣∣
( J+1∏

j=0

∂αj
xj

)
rδ(xJ+1, xJ , . . . , x1, x0)

∣∣∣∣

≤ CK

(|δ|t2n+1 + ν−1(|δ|tn+1 + t2n+1)
)
AM(K)X

J+2
M(K)(1 + |xJ+1|+ · · ·+ |x0|)m

≤ CKt2n+1(tn+1 + ν−1)AM(K)X
J+2
M(K)(1 + |xJ+1|+ · · ·+ |x0|)m (3.38)

Comparing equality (3.27) and (3.36), we have

D(δ;xn+1, xn)−1/2Rδ[F∆′ ](xJ+1, xJ , . . . , x1, x0)

=
i

2
D(δ;xn+1, xn)−1/2pδ(xJ+1, xJ , . . . , x1, x0) + rδ(ν, xJ+1, xJ , . . . , x1, x0). (3.39)

Since Proposition 2 and (2.10) hold, for any positive integer K there exist a positive
constant CK and a non-negative integer M(K) such that we have

∣∣∣∣
( J+1∏

j=0

∂αj
xj

)(
ι
δ(k)
[Tn,Tn+1]

D(δ(k)c; yk, xn)1/2

×∆yk

(
(D(δ(k)c; yk, xn)−1/2ιδδ(k)F∆′)(x[J+1,n+1], y[pn,k], x[n,0])

))∣∣∣∣

≤ CKAM(K)X
J+2
M(K)

(
(Tn,k − Tn)2 + ρ([Tn,k−1, Tn,k+1])

)
(1 + |xJ+1|+ · · ·+ |x0|)m

as far as |αj | ≤ K for 0 ≤ j ≤ J + 1. This implies that

∣∣∣∣
( J+1∏

j=0

∂αj
xj

)
pδ(xJ+1, xJ , . . . , x1, x0)

∣∣∣∣

≤ CKAM(K)X
J+2
M(K)tn+1(t2n+1 + ρ([Tn, Tn+1]))(1 + |xJ+1|+ · · ·+ |x0|)m. (3.40)

As a consequence of (3.39), (3.40) and (3.38) we have
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∣∣∣∣
( J+1∏

j=0

∂αj
xj

)
D(δ;xn+1, xn)−1/2Rδ[F∆′ ](ν, xJ+1, xJ , . . . , x1, x0)

∣∣∣∣

≤ CKAM(K)X
J+2
M(K)tn+1(ρ([Tn, Tn+1]) + t2n+1 + tn+1ν

−1)(1 + |xJ+1|+ · · ·+ |x0|)m.

(3.41)

For any subsequence j0 = 0 < j1 < · · · < js < js+1 = J + 1 of {0, 1, . . . , J, J + 1} let ∆[

be the division defined by the subsequence. Then the division ∆[ is coarser than ∆ and
we similarly have

∣∣∣∣
( s+1∏

k=0

∂
αjk
xjk

)
ι∆∆[

(
D(δ;xn+1, xn)−1/2Rδ[F∆′ ]

)
(ν, xjs+1 , xjs , . . . , xj1 , x0)

∣∣∣∣

≤ CKAM(K)X
s+2
M(K)tn+1(ρ([Tn, Tn+1]) + t2n+1 + tn+1ν

−1)(1 + |xjs+1 |+ · · ·+ |x0|)m.

(3.42)

Since (3.41) and(3.42) hold, we may apply the stationary phase method (cf. [15] and
appendix of [11]) to I[D(δ;xn+1, xn)−1/2Rδ[F∆′ ]](x, y) and obtain, with another CK and
M(K), that

∣∣∂α
x ∂β

y a(∆; ν, x, y)
∣∣

≤ CKAM(K)tn+1

(
ρ([Tn, Tn+1]) + t2n+1 + tn+1ν

−1
)
(1 + |x|+ |y|)m. (3.43)

Estimates (3.43), (3.35) and (3.34) give that

∣∣∣∂α
x ∂β

y

(
(D(δ;x∗n+1, x

∗
n)1/2 − 1)R∆[F∆](ν, x, y)

+ D(δ;x∗n+1, x
∗
n)1/2

(
R∆[(D(δ;xn+1, xn)−1/2 − 1)F∆](ν, x, y) + a(∆; ν, x, y)

))∣∣∣

≤ CKAM(K)tn+1(ρ([Tn, Tn+1]) + tn+1(T + T 2 + Tρ([0, T ]) + ν−1))(1 + |x|+ |y|)m.

This together with (3.33) prove the claim. Proof of Theorem 2 is now complete.

4. Semi-classical asymptotic expansion.

4.1. Proof of Lemma 1.
Let γ∗ denote the classical path starting y at time 0 and reaching x at time T . We

recall the piecewise classical path γ{t,ε}(s, z) of §2 associated with the division of time
interval

∆(t, ε) : 0 = T0 < t < t + ε < T

and satisfying conditions:
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γ{t,ε}(0, z) = y, γ{t,ε}(t, z) = z, γ{t,ε}(t + ε, z) = γ∗(t + ε), γ{t,ε}(T, z) = x.

The path γ{t,ε}(s, z) always coincides with γ∗(s) in the interval [t + ε, T ]. Moreover, if
z = γ∗(t) it coincides with γ∗(s) in the whole interval [0, T ], i.e.,

γ{t,ε}(s, z)
∣∣
z=γ∗(t) = γ∗(s), for s ∈ [0, T ]. (4.1)

The first part of γ{t,ε}(s, z), i.e., the part from s = 0 to s = t plays an important part
in the following. So we denote it by γ[0,t](s, z). This is nothing but the classical path
starting y ∈ Rd at time 0 and reaching z ∈ Rd at time t.

Now we begin the proof of Lemma 1. Let z =
∑d

k=1 zkek be coordinate expression
of z with respect to the standard orthonormal basis {ek} of Rd. Then clearly we have

∆z(D(t, z, y)−1/2F (γ{t,ε}(∗, z)))
∣∣
z=γ∗(t)

= ∆z(D(t, z, y)−1/2)F (γ{t,ε}(∗, z))
∣∣
z=γ∗(t)

+ 2
d∑

k=1

∂zk
(D(t, z, y)−1/2)∂zk

F (γ{t,ε}(∗, z))
∣∣
z=γ∗(t)

+ D(t, z, y)−1/2∆zF (γ{t,ε}(∗, z))
∣∣
z=γ∗(t). (4.2)

It is clear from (4.1) that for any small ε > 0

F (γ{t,ε}(∗, z))
∣∣
z=γ∗(t) = F (γ∗).

Therefore it suffices to prove that the following two limits exist:

lim
ε→+0

∂zk
F (γ{t,ε}(∗, z))

∣∣
z=γ∗(t), (4.3)

lim
ε→+0

∂2
zk

F (γ{t,ε}(∗, z))
∣∣
z=γ∗(t). (4.4)

We prove the limit (4.3) exists. Assumption 1 implies that for any η ∈ C([0, T ];Rd)

|DFγ∗ [η]| ≤ C(1 + ‖γ∗‖+ |||γ∗|||)m max
t∈[0,T ]

|η(s)|.

This means that there exists a bounded Rd-valued Borel measure σγ∗ such that

DFγ∗ [η] =
∫

[0, T ]

η(s) · σγ∗(ds),

where · means inner product in Rd. We have
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∂zk
F (γ{t,ε}(∗, z))

∣∣
z=γ∗(t) =

∫

[0, T ]

∂zk
γ{t,ε}(s, z) · σγ∗(ds). (4.5)

We abbreviate ∂zk
γ{t,ε}(s, z) as η

(ε)
k (s). This is the piecewise solution of Jacobi’s equation:

For s ∈ (0, t) ∪ (t, t + ε) ∪ (t + ε, T )

d2

ds2
η
(ε)
k (s) +∇∇V (s, γ{t,ε}(s, z))η(ε)

k (s) = 0

satisfying boundary conditions

η
(ε)
k (0) = 0, η

(ε)
k (t) = ek, η

(ε)
k (t + ε) = 0, η

(ε)
k (T ) = 0.

As ε → +0, η
(ε)
k (s) converges boundedly to a discontinuous function η

(0)
k (s; t), where

η
(0)
k (s; t) =

{
∂zk

γ[0,t](s, γ∗(t)) for s ≤ t

0 for t < s ≤ T.

Therefore, Lebesgues’ bounded convergence theorem applied to (4.5) gives

ak(t) = lim
ε→+0

∂zk
F (γ{t,ε}(∗, z))

∣∣
z=γ∗(t)

=
∫

[0, T ]

η
(0)
k (s; t) · σγ∗(ds) =

∫

[0, t]

∂zk
γ[0,t](s, γ∗(t)) · σγ∗(ds). (4.6)

This is a function of t continuous at the point where σγ∗(t) is continuous. Moreover we
obtain from (4.5) and (4.6) that

∣∣∣ak(t)− ∂zk
F (γ{t,ε}(∗, z))

∣∣
z=γ∗(t)

∣∣∣ ≤ C(1 + ‖γ∗‖+ |||γ∗|||)mρ((t, t + ε]). (4.7)

Now we prove that the limit of (4.4) exists.

∂2
zk

F (γ{t,ε}(∗, z))
∣∣
z=γ∗(t) = D2Fγ∗

[
η
(ε)
k ⊗ η

(ε)
k

]
+ DFγ∗

[
∂zk

η
(ε)
k

]
. (4.8)

First we prove that D2Fγ∗ [η
(ε)
k (∗)⊗ η

(ε)
k ] is a Cauchy sequence. Let ε, ε′ → +0.

∣∣D2Fγ∗
[
η
(ε)
k ⊗ η

(ε)
k

]−D2Fγ∗
[
η
(ε′)
k ⊗ η

(ε′)
k

]∣∣

≤
∣∣D2Fγ∗

[
η
(ε)
k ⊗ (

η
(ε)
k − η

(ε′)
k

)]∣∣ +
∣∣D2Fγ∗

[(
η
(ε)
k − η

(ε′)
k

)⊗ η
(ε′)
k

]∣∣.

Using Assumption 2 we know that
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∣∣D2Fγ∗
[
η
(ε)
k ⊗ η

(ε)
k

]−D2Fγ∗
[
η
(ε′)
k ⊗ η

(ε′)
k

]∣∣

≤ C(1 + ‖γ∗‖+ |||γ∗|||)m
(∥∥η

(ε)
k

∥∥ +
∥∥η

(ε′)
k

∥∥) ∫

[0,T ]

∣∣η(ε)
k (s)− η

(ε′)
k (s)

∣∣ρ(ds).

Since η
(ε)
k (s)− η

(ε′)
k (s) → 0 boundedly, we have

∫

[0,T ]

∣∣η(ε)
k (s)− η

(ε′)
k (s)

∣∣ρ(ds) → 0

as ε, ε′ → +0. Thus we have proved that D2Fγ∗ [η
(ε)
k ⊗ η

(ε)
k ] is a Cauchy sequence. We

know that

bk(t) = lim
ε→+0

D2Fγ∗
[
η
(ε)
k ⊗ η

(ε)
k

]

exists and

∣∣bk(t)−D2Fγ∗
[
η
(ε)
k ⊗ η

(ε)
k

]∣∣ ≤ C(1 + ‖γ∗‖+ |||γ∗|||)mρ((t, t + ε]). (4.9)

By Assumption 1 we see that

∣∣D2Fγ∗
[
η
(ε)
k ⊗ η

(ε)
k

]∣∣ ≤ C(1 + ‖γ∗‖+ |||γ∗|||)m
∥∥η

(ε)
k

∥∥2
.

Therefore D2Fγ∗ [η
(ε)
k ⊗ η

(ε)
k ] converges boundedly.

Next we prove that DFγ∗ [∂zk
η
(ε)
k ] converges as ε → +0. The function ∂zk

η
(ε)
k (s)

satisfies equation

d2

ds2
∂zk

η
(ε)
k (s) +∇∇V (s, γ∗(s))∂zk

η
(ε)
k (s) +∇∇∇V (s, γ∗(s))η(ε)

k (s) · η(ε)
k (s) = 0

for s ∈ (0, t) ∪ (t, t + ε) ∪ (t + ε, T ) and boundary conditions

∂zk
η
(ε)
k (0) = ∂zk

η
(ε)
k (t) = ∂zk

η
(ε)
k (t + ε) = ∂zk

η
(ε)
k (T ) = 0.

It is clear that ∂zk
η
(ε)
k (s) converges boundedly to ∂zk

η
(0)
k (s) as ε → +0, where ∂zk

η
(0)
k (s; t)

is the function

∂zk
η
(0)
k (s; t) =

{
∂2

zk
γ[0,t](s, γ∗(t)) for 0 ≤ s ≤ t,

0 for t < s ≤ T.

We have proved that

lim
ε→+0

DFγ∗
[
∂zk

η
(ε)
k

]
=

∫

[0,T ]

∂zk
η0

k(s; t) · σγ∗(ds) =
∫

[0, t]

∂2
zk

γ[0,t](s, γ∗(t)) · σγ∗(ds).
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We put

ck(t) = lim
ε→+0

DFγ∗
[
∂zk

η
(ε)
k

]
. (4.10)

Then

∣∣ck(t)−DFγ∗
[
∂zk

η
(ε)
k

]∣∣ ≤ C(1 + ‖γ∗‖+ |||γ∗|||)mρ((t, t + ε]). (4.11)

Consequently, we have obtained

q(t) = ∆z(D(t, z, y)−1/2)
∣∣
z=γ∗F (γ∗) + 2

d∑

k=1

∂zk
(D(t, z, y)−1/2)

∣∣
z=γ∗(t)ak(t)

+
d∑

k=1

D(t, γ∗(t), y)−1/2(bk(t) + ck(t)). (4.12)

Lemma has been proved.

4.2. Proof of Theorem 3.
Since q(t) is Riemannian integrable the right hand side of (2.21) is meaningful. Let

∆ : 0 = T0 < T1 < · · · < TJ < TJ+1 = T

be an arbitrary division of the interval [0, T ]. Then

∫ T

0

D(t, γ∗(t), y)1/2q(t)dt = lim
|∆|→0

J∑

j=0

tj+1D(Tj , γ
∗(Tj), y)1/2q(Tj). (4.13)

q(Tj) = ∆z(D(Tj , z, y)−1/2)
∣∣
z=γ∗(Tj)

F (γ∗)

+ 2
( d∑

k=1

∂zk
(D(Tj , z, y)−1/2)

∣∣
z=γ∗(tj)

)
· ak(Tj)

+ D(Tj , γ
∗(Tj), y)−1/2

d∑

k=1

(bk(Tj) + ck(Tj)). (4.14)

For any j = 1, 2, . . . , J + 1 we set ∆(j) the following division of [0, T ] coarser than
∆

∆(j) : 0 = T0 < Tj < Tj+1 < · · · < TJ+1 = T

and we denote by ∆(j)c the following division of the interval [0, Tj ]

∆(j)c : 0 = T0 < T1 < · · · < Tj−1 < Tj .
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In particular ∆(1) = ∆ and ∆(J + 1) = [0, T ]. Set F∆(xJ+1, xJ , . . . , x1, x0) = F (γ∆).
And we shall apply Theorem 1 of [11] to the integral I(F∆)(∆,x, y). Then

I[F∆](∆;x, y) =
(

ν

2πiT

)d/2

eiνS(T,x,y)

×
[
D(∆;x, y)−1/2

(
F (γ∗) +

i

2ν
p∆(x, y)

)
+ ν−2r∆(ν, x, y)

]
,

where

p∆(x, y) =
J+1∑

j=1

Tjtj+1

Tj+1
ι
∆(j)
∆(J+1)

× {
D(∆(j)c;xj , x0)1/2∆xj

(
D(∆(j)c;xj , x0)−1/2ι∆∆(j)F∆

)
(xJ+1, . . . , xj , x0)

}
.

and for any multi-indices α, β

lim sup
|∆|→0

∣∣∂α
x ∂β

y r∆(ν, x, y)
∣∣ ≤ Cα,β lim sup

|∆|→0

(|∆|(T + T 2ν) + T 2)(1 + |x|+ |y|)m

= Cα,βT 2(1 + |x|+ |y|)m.

We claim that lim|∆|→0
i
2p∆(x, y) exists and equals to A1 of (2.21). This claim implies

(2.23) and Theorem 3.
Now we shall prove the claim. Calculation shows that

ι
∆(j)
∆(J+1)

{
D(∆(j)c;xj , x0)1/2∆xj

(
D(∆(j)c;xj , x0)−1/2ι∆∆(j)F∆

)
(xJ+1, . . . , xj , x0)

}

= ι
∆(j)
∆(J+1)

(
D(∆(j)c;xj , x0)1/2∆xj

D(∆(j)c;xj , x0)−1/2
)
(ι∆∆(J+1)F∆)(x, y)

+ 2ι
∆(j)
∆(J+1)

(
D(∆(j)c;xj , x0)1/2∇xj

D(∆(j)c;xj , x0)−1/2
)

· ι∆(j)
∆(J+1)

(∇xj (ι
∆
∆(j)F∆)

)
(x, y) + ι

∆(j)
∆(J+1)

(
∆xj (ι

∆
∆(j)F∆)(xJ+1, xJ , . . . , xj , y)

)
,

(4.15)

where ∇xj
stands for nabla operator in xj space. It is clear that

(ι∆∆(J+1)F∆)(x, y) = F (γ∗). (4.16)

Applying (2.12) to the division ∆(j)c of the interval [0, Tj ], we know for any α there
exists a constant Cα such that

∣∣∂α
z (D(∆(j)c; z, x0)−D(Tj , z, x0))

∣∣ ≤ Cα|∆(j)c|T. (4.17)
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We have

∣∣∣ι∆(j)
∆(J+1)

(
D(∆(j)c;xj , x0)1/2∆xj

D(∆(j)c;xj , x0)−1/2
)
(ι∆∆(J+1)F∆)(x, y)

−D(Tj , γ
∗(Tj), y)1/2∆zD(Tj , z, x0)−1/2

∣∣
z=γ∗(Tj)

F (γ∗)
∣∣∣

≤ C(1 + ‖γ∗‖+ |||γ∗|||)m|∆|. (4.18)

Let xjk denote the k-th component of xj . Then for l = 1, 2

ι
∆(j)
∆(J+1)

(
∂l

xjk
(ι∆∆(j)F∆)(xJ+1, xJ , . . . , xj , y)

)
= ∂l

zk
F (γ{Tj ,tj+1}(∗, z))

∣∣
z=γ∗(Tj)

.

Thus we know from (4.7) that

∣∣∣ι∆(j)
∆(J+1)

(
∂xjk

(ι∆∆(j)F∆)(xJ+1, xJ , . . . , xj , y)
)− ak(Tj)

∣∣∣

≤ C(1 + ‖γ∗‖+ |||γ∗|||)mρ((Tj , Tj+1]). (4.19)

From this we have

∣∣∣ι∆(j)
∆(J+1)

(
D(∆(j)c;xj , x0)1/2∂xjk

D(∆(j)c;xj , x0)−1/2
)(

ι
∆(j)
∆(J+1)

(
∂xjk

(ι∆∆(j)F∆)
))

(x, y)

− (
D(Tj , γ

∗(Tj), y)1/2∂zk
D(Tj , z, x0)−1/2

)∣∣
z=γ∗(Tj)

ak(Tj)
∣∣∣

≤ C(1 + ‖γ∗‖+ |||γ∗|||)m(|∆|+ ρ((Tj , Tj+1])). (4.20)

Similarly, it follows from (4.8), (4.9) and (4.11) that

∣∣∣ι∆(j)
∆(J+1)

(
∂2

xjk
(ι∆∆(j)F∆)(xJ+1, xJ , . . . , xj , y)

)− (bk(Tj) + ck(Tj))
∣∣∣

≤ C(1 + ‖γ∗‖+ |||γ∗|||)mρ((Tj , Tj+1]). (4.21)

Now combining (4.18), (4.20) and (4.21), we obtain

∣∣∣∣p∆(x, y)−
J∑

j=0

tj+1D(Tj , γ
∗(Tj), y)1/2q(Tj)

∣∣∣∣

≤ C
J+1∑

j=1

tj+1(1 + ‖γ∗‖+ |||γ∗|||)m(|∆|+ ρ((Tj , Tj+1]))

≤ C|∆|(1 + ‖γ∗‖+ |||γ∗|||)m(T + ρ((0, T ])).

This together with (4.13) mean that
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lim
|∆|→0

p∆(x, y) =
∫ T

0

D(t, γ∗(t), y)1/2q(t)dt.

Theorem has been proved.

5. Simple examples.

If F (γ) is simple we can calculate the second term A1 of the semi-classical asymptotic
expansion more explicitly. We assume |s′ − s| ≤ µ. We treat the following examples,
which are treated in [15].

Let f(t, x) be a C∞ function of (t, x) ∈ [s, s′]×Rd satisfying

|∂α
x f(t, x)| ≤ Cα(1 + |x|)m. (5.1)

Then for any multi-indices α, β satisfying |α|+ |β| ≥ 0,

∂α
x ∂β

y f(t, γ(t)) =
∑

∂τ
xf(t, x)

∣∣
x=γ(t)

pα,β;µ

({∂α′
x ∂β′

y γ(t)}),

where pα,β;τ ({∂α′
x ∂β′

y γ(t)}) is a polynomial of degree |τ | of {∂α′
x ∂β′

y γ(t);α′ ≤ α, β′ ≤
β, α′ + β′ 6= 0}. Therefore, for any multi-indices α, β there exists a positive constant
Cα,β such that

|∂α
x ∂β

y f(t, γ(t))| ≤ Cα,β(1 + |γ(t)|)m.

This means that for fixed u ∈ [0, T ] the functional

γ −→ Fu(γ) = f(u, γ(u))

satisfies our Assumption 1 and Assumption 2.
Now we denote by ∇ the nabla-operator in the configuration space, i.e., (∇f)(t, x) =

(∂x1f(t, x), . . . , ∂xd
f(t, x)) ∈ Rd. Calculation shows that

ak(t) = lim
ε→0

∂zk
Fu(γ{t,ε}(∗, z))

∣∣
z=γ∗(t)

=

{
0 for 0 ≤ t < u ≤ T,

(∇f)(u, γ∗(u)) · η(0)
k (u; t) for 0 ≤ u ≤ t ≤ T.

Here · stands for inner product in Rd. Further we obtain

bk(t) = lim
ε→0

D2Fu(γ∗)
[
η
(ε)
k ⊗ η

(ε)
k

]

=

{
0 for 0 ≤ t < u ≤ T

(∇∇f)(u, γ∗(u))η(0)
k (u; t) · η(0)

k (u; t) for 0 ≤ u ≤ t ≤ T.
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ck(t) = lim
ε→0

DFu(γ∗)
[
∂zk

η
(ε)
k

]

=

{
0 for 0 ≤ t < u ≤ T

(∇f)(u, γ∗(u))∂zk
η
(0)
k (u; t) for 0 ≤ u ≤ t ≤ T.

Thus

lim
ε→0

∂2
zk

Fu(γ{t,ε}(∗, z))
∣∣
u=γ∗(t)

=





0 for 0 ≤ t < u ≤ T

(∇∇f)(u, γ∗)η(0)
k (u; t) · η(0)

k (u; t)
+(∇f)(u, γ∗(u))∂zk

η(0)(u; t)
for 0 ≤ u ≤ t ≤ T.

Therefore, in case 0 ≤ t < u ≤ T

q(t) = (∆zD(t, z, y)−1/2)
∣∣
z=γ∗(t)f(u, γ∗(u)) (5.2)

in case 0 ≤ u ≤ t ≤ T

q(t) = (∆zD(t, z, y)−1/2)
∣∣
z=γ∗(t)f(u, γ∗(u))

+ 2
d∑

k=1

∂zk
D(t, z, y)−1/2

∣∣
z=γ∗(t)(∇f)(u, γ∗(u)) · η0

k(u; t)

+ D(t, γ∗(t), y)−1/2
d∑

k=1

(
(∇∇f)(u, γ∗(u))η(0)

k (u; t) · η(0)
k (u; t)

+ (∇f)(u, γ∗(u))∂zk
η
(0)
k (u; t)

)
. (5.3)

If 0 ≤ u ≤ t, we may write

η
(0)
k (u; t) = ∂zk

γ[0,t](u, z)
∣∣
z=γ∗(t), ∂zk

η
(0)
k (u; t) = ∂2

zk
γ[0,t](u, z)

∣∣
z=γ∗(t).

Next we consider another example. Let ρ(t) be a function of bounded variation on
the interval [0, T ] and consider the functional defined by Stieltjes integral

F (γ) =
∫ T

0

f(t, γ(t))ρ(dt). (5.4)

That is

F (γ) =
∫ T

0

Fu(γ)ρ(du).
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This also satisfies our Assumption 1 and Assumption 2. Using above calculation we know
that

q(t) = (∆zD(t, z, y)−1/2)
∣∣
z=γ∗(t)

∫ T

0

f(u, γ∗(u))ρ(du)

+ 2
d∑

k=1

∂zk
D(t, z, y)−1/2

∣∣∣∣
z=γ∗(t)

∫ t

0

(∇f)(u, γ∗(u)) · ∂zk
γ[0,t](u; γ∗(t))ρ(du)

+ D(t, γ∗(t), y)−1/2

∫ t

0

( d∑

k=1

(∇∇f)(u, γ∗(u))∂zk
γ[0,t](u; γ∗(t)) · ∂zk

γ[0,t](u; γ∗(t))

+ (∇f)(u, γ∗(u))∆zγ[0,t](u, γ∗(t))
)

ρ(du).

6. Birkhoff’s formula revisited.

G. D. Birkhoff gave an semi-classical asymptotic expansion of solution to Schrödinger
equation in his famous paper [1]. In this section we show that the first and second term
of his expansion can be explained from our point of view which is completely different
from that of Birkhoff.

It is known that the Feynman path integral is the fundamental solution of
Schrödinger equation if F (γ) = 1. Let

F (γ) = 1

i.e.,

F (γ) =
∫ T

0

1H(dt)

where H(t) is Heaviside’s function.
We apply our discussion of previous section to this case. Then for any t ∈ [0, T ]

(5.2) and (5.3) yield that

q(t, x, y) = (∆zD(t, z, y)−1/2)
∣∣
z=γ∗[0,T ](t,x,y)

. (6.1)

Therefore, we have

∫

Ω

eiνS(γ)D [γ]

=
(

ν

2πiT

)d/2

eiνS(T,x,y)D(T, x, y)−1/2

(
1 +

i

2ν
p(T, x, y) + ν−2r(ν, T, x, y)

)
,

where
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p(T, x, y) =
∫ T

0

D
(
t, γ∗[0,T ](t;x, y), y)1/2(∆zD(t, z, y)−1/2

)∣∣∣∣
z=γ∗[0,T ](t;x,y)

dt.

We set

v0(T, x, y) =
(

ν

2πiT

)d/2

D(T, x, y)−1/2,

v1(T, x, y) =
−1
2

(
ν

2πiT

)d/2

D(T, x, y)−1/2p(T, x, y).

Then in accordance with Birkhoff’s notation, we can write

∫

Ω

eiνS(γ)D [γ] = eiνS(T,x,y)
(
v0(T, x, y) + (iν)−1v1(T, x, y) + O(ν−2)

)
.

We already knew in [9] that v0(T, x, y) satisfies the first transport equation:

δ

δT
v0(T, x, y) +

1
2
∆xS(T, x, y)v0(T, x, y) = 0, (6.2)

where the linear differential operator

δ

δT
= ∂T +∇xS(T, x, y) · ∇x (6.3)

is the differentiation along the classical orbit γ∗(t;x, y) = γ∗[0,T ](t;x, y) starting y at time
0 and passing through x at time T . Note that this equation (6.2) is a consequence of the
fact that D(T, x, y) comes from the determinant of Hessian and we do not use Birkhoff’s
method to prove (6.2) (cf. [9]).

We shall prove that v1(T, x, y) satisfies the second transport equation:

δ

δT
v1(T, x, y) +

1
2
∆xS(T, x, y)v1(T, x, y) +

1
2
∆xv0(T, x, y) = 0. (6.4)

Since we can write

v1(T, x, y) =
−1
2

v0(T, x, y)p(T, x, y), (6.5)

we obtain

δ

δT
v1(T, x, y) =

−1
2

(
δ

δT
v0(T, x, y)p(T, x, y) + v0(T, x, y)

δ

δT
p(T, x, y)

)
.

It is clear from definition of p(T, x, y) that
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δ

δT
p(T, x, y) =

d

ds

∫ s

0

D(t, γ∗[0,T ](t;x, y), y)1/2(∆zD(t, z, y)−1/2)
∣∣
z=γ∗[0,T ](t;x,y)

dt
∣∣
s=T

= D(T, γ∗[0,T ](T ;x, y), y)1/2(∆zD(T, z, y)−1/2)
∣∣
z=γ∗[0,T ](T ;x,y)

= D(T, x, y)1/2∆xD(T, x, y)−1/2.

Thus we obtain

v0(T, x, y)
δ

δT
p(T, x, y) =

(
ν

2πiT

)d/2

∆xD(T, x, y)−1/2 = ∆xv0(T, x, y).

Therefore, using the first transport equation (6.2), we obtain

δ

δT
v1(T, x, y) = −1

2

(
δ

δT
v0(T, x, y)p(T, x, y) + ∆xv0(T, x, y)

)

= −1
2

(
− 1

2
∆xS(T, x, y)v0(T, x, y)p(T, x, y) + ∆xv0(T, x, y)

)

= −1
2
(∆xS(T, x, y)v1(T, x, y) + ∆xv0(T, x, y)).

We have proved that v1(T, x, y) satisfies the second transport equation (6.4). Therefore,
our v1 coincides with that of Birkhoff.

References

[ 1 ] G. D. Birkhoff, Quantum mechanics and asymptotic series, Bull. Amer. Math. Soc., 39 (1933),

681–700.

[ 2 ] R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J.

Math. Phys., 39 (1960), 126–140.

[ 3 ] C. P. Enz, Pauli lectures on Physics, (ed. C. P. Enz), 6, MIT Press, 1973.

[ 4 ] R. P. Feynman, Space time approach to non relativistic quantum mechanics, Rev. Modern Phys.,

20 (1948), 367–387.

[ 5 ] D. Fujiwara, A construction of fundamental solutions for Schrödinger equations, Journal
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