Topological proof of Bott periodicity and characterization of BR

By Daisuke Kishimoto

(Received Nov. 22, 2002) (Revised Feb. 16, 2005)

Abstract. We give another proof of (1,1)-periodicity of M. F. Atiyah's KR-theory and the characterization of the classifying space of KR-theory.

1. Introduction.

Recall that a real space is a space with an involution and that a real vector bundle E is a complex vector bundle over a real space X equipped with an involutive conjugate linear automorphism of E over the given involution of the base real space X ([2]). M. F. Atiyah defined KR-theory as the Grothendieck group of the monoid of real vector bundles. By its nature there are natural transformations from KR-theory to KU-theory and KO-theory. KR-theory can be regarded as \mathbb{Z}_2 -equivariant K-theory with action of \mathbb{Z}_2 given by a conjugate linear automorphism. KR-theory is known to be representable as are KU-theory and KO-theory. The classifying space, BR, of KR-theory is a real space BU with involution the conjugation of BU. As BU and BO have the periodicity, so does BR. The \mathbb{Z}_2 -equivariant periodicity of BR,

$$\mathbf{Z} \times BR \simeq_{\mathbf{Z}_2} \Omega^{1,1}(\mathbf{Z} \times BR),$$

is called the (1,1)-periodicity.

The purpose of this paper is to give another proof of the (1,1)-periodicity of BR and to characterize BR by a topological way. This paper is also the generalization of [4] to the \mathbb{Z}_2 -equivariant case. We prove the (1,1)-periodicity of certain spaces in Theorem 1 and of BR in Theorem 2, and characterize BR in Theorem 3.

2. τ -space.

According to [1] we call a space with an involution by a τ -space, which is a \mathbb{Z}_2 -equivariant space and also a real space in [2]. The involution of a τ -space is denoted by τ . A pointed τ -space is a τ -space with a base point which is a fixed point of τ . A \mathbb{Z}_2 -equivariant map between τ -spaces is called a τ -map. Let Top_0 be the category of pointed spaces and base point preserving maps, and Top_0^{τ} be the category of pointed τ -spaces and base point preserving τ -maps. A homotopy and a Hopf space in Top_0^{τ} are called a τ -homotopy and a Hopf τ -space. A τ -homotopy and the set of τ -homotopy classes are denoted by \simeq_{τ} and $[\ ,\]^{\tau}$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 55Rxx; Secondary 55R40, 55R50. Key Words and Phrases. KR-theory, Bott periodicity, classifying space.

We consider two functors from Top_0^{τ} to Top_0 called the forgetful functor and the fixed point functor. The forgetful functor

$$\psi: Top_0^{\tau} \to Top_0$$

is to forget involutions and the fixed point functor

$$\phi: Top_0^{\tau} \to Top_0$$

is to restrict to fixed point sets of τ . We denote the natural inclusion $\phi(X) \hookrightarrow \psi(X)$ by i_X . A τ -complex X is a CW-complex in Top_0^{τ} such that $\phi(X)$ is a subcomplex of $\psi(X)$. Let $\mathbf{R}^{p,q}$ be the τ -space of \mathbf{R}^{p+q} with the involution

$$\tau(x_1,\ldots,x_p,x_{p+1},\ldots,x_{p+q}) = (-x_1,\ldots,-x_p,x_{p+1},\ldots,x_{p+q}),$$

and $\Sigma^{p,q}$ be the pointed τ -space of the one point compactification of $\mathbb{R}^{p,q}$ with the base point ∞ . Let $\Omega^{p,q}X$ be $\operatorname{Hom}_{Top_0}((\Sigma^{p,q},\infty),(X,x_0))$ for a pointed τ -space X with a base point x_0 , then $\Omega^{p,q}X$ comes to be a pointed τ -space with the constant map as a base point and

$$\tau(f)(x) = \tau(f(\tau(x)))$$

as an involution for $f \in \Omega^{p,q}X, x \in X$. Let X, Y be pointed τ -spaces, then we have the canonical isomorphism as follows.

$$[\Sigma^{p,q} \wedge X, Y]^{\tau} \cong [X, \Omega^{p,q}Y]^{\tau}$$

By the isomorphism above we have the adjoint map of a base point preserving τ -map $f: \Sigma^{p,q} \wedge X \to Y$ denoted by $\mathrm{Ad}^{p,q} f: X \to \Omega^{p,q} Y$, which is a base point preserving τ -map.

LEMMA 2.1. Let X, Y be pointed τ -spaces and $f: \Sigma^{1,0} \wedge X \to Y$ be a base point preserving τ -map, then we have the following.

- 1. $\phi(i):\phi(X)\to\phi(\Sigma^{1,0}\wedge X)$ is a homeomorphism, where $i:X\to\Sigma^{1,0}\wedge X$ is the natural inclusion.
- 2. We have the following commutative diagram, where $ev_0: \phi(\Omega^{1,0}X) \to \phi(X)$ is the evaluation at 0.

$$\begin{array}{ccc} \phi(X) & \stackrel{\phi(i)}{---} & \phi(\varSigma^{1,0} \wedge X) \\ \phi(\operatorname{Ad}^{1,0}f) \Big\downarrow & & & \Big\downarrow \phi(f) \\ \phi(\varOmega^{1,0}Y) & \stackrel{\operatorname{evo}}{---} & \phi(Y) \end{array}$$

3. $\psi(\Omega^{1,0}X) \to \phi(\Omega^{1,0}X) \xrightarrow{\operatorname{ev}_0} \phi(X)$ is the fibration which is the pullback of the path fibration over $\psi(X)$ by i_X .

PROOF. 1, 2 is trivial and the following commutative diagram shows 3, where * is the base point of X.

$$\psi(\Omega^{1,0}X) \longrightarrow \phi(\Omega^{1,0}X) \xrightarrow{\operatorname{ev}_0} \phi(X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$\Omega X \longrightarrow \operatorname{Map}(([0,1],0,1),(\psi(X),\phi(X),*)) \xrightarrow{\operatorname{ev}_0} \phi(X)$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow i_X$$

$$\Omega X \longrightarrow \operatorname{Map}(([0,1],0,1),(\psi(X),\psi(X),*)) \xrightarrow{\operatorname{ev}_0} \psi(X)$$

3. (1,1)-periodic τ -space.

In this section we prove the (1,1)-periodicity of the special kind of τ -spaces satisfying some common topological properties with BR.

Let CP_{τ}^n be the τ -space of CP^n with the conjugation as the involution and Z be the pointed τ -space with 0 as the base point and the trivial involution. It is obvious that $\phi(CP_{\tau}^n) = RP^n$ and $CP_{\tau}^1 = \Sigma^{1,1}$. The pointed τ -space of CP_{τ}^n with a disjoint point as the base point is denoted by $CP_{\tau+}^n$.

THEOREM 1. Let X be a Hopf τ -space which is a τ -complex of finite type and let

$$\lambda: \Sigma^{1,1} \wedge (\boldsymbol{Z} \times X) \to \boldsymbol{Z} \times X, \ j_{+}: \boldsymbol{CP_{\tau-+}^{\infty}} \to \boldsymbol{Z} \times X \ and \ \alpha: \psi(X) \to \phi(X)$$

be base point preserving τ -maps such that $j_+(\mathbb{C}P^{\infty}_{\tau}) \subset 1 \times X$ and a continuous map respectively. Suppose X, λ, j_+, α satisfy the following.

- 1. $H^*(\psi(X); \mathbf{Z}) = \mathbf{Z}[x_1, x_2, x_3, \ldots]$ and $H^*(\phi(X); \mathbf{Z}_2) = \mathbf{Z}_2[y_1, y_2, y_3, \ldots]$, where $|x_i| = 2i, |y_i| = i$ and $i_X^*(x_i) = y_i^2$.
- 2. $\psi(\lambda(1 \wedge j_+))^* : H^*(\psi(\mathbf{Z} \times X); \mathbf{Z}) \to H^*(\psi(\Sigma^{1,1} \wedge \mathbf{C}P_{\tau-+}^{\infty}); \mathbf{Z}) \text{ and } \phi(\lambda(1 \wedge j_+))^* : H^*(\phi(\mathbf{Z} \times X); \mathbf{Z}_2) \to H^*(\phi(\Sigma^{1,1} \wedge \mathbf{C}P_{\tau-+}^{\infty}); \mathbf{Z}_2) \text{ are epic.}$
- 3. $\alpha i_X \simeq \phi(\mu) \triangle$ and $i_X \alpha \simeq \psi(\mu)(1 \times \tau) \triangle$, where μ is the multiplication of X and \triangle is the diagonal map.
- 4. $\operatorname{Ad}^{1,1}\lambda$ is a Hopf τ -map.

Then we have:

$$\mathrm{Ad}^{1,1}\lambda: \mathbf{Z} \times X \simeq_{\tau} \Omega^{1,1}(\mathbf{Z} \times X).$$

For the rest of this paper the notations X, λ, j_+, α are fixed to those in Theorem 1. In order to show the periodicity of $\psi(\mathbf{Z} \times X)$, we need the following proposition [4, Theorem 2.1].

Proposition 3.1. Let Y be a Hopf space which is a CW-complex of finite type such that

$$H^*(Y; \mathbf{Z}) = \mathbf{Z}[c_1, c_2, c_3, \ldots], |c_i| = 2i.$$

Suppose that we have maps

$$i: \mathbb{C}P^{\infty} \to Y \text{ and } \kappa: \Sigma^2 Y \to Y$$

which satisfy the following.

- 1. $(\kappa(1 \wedge j))^* : H^*(Y; \mathbf{Z}) \to H^*(\Sigma^2 \mathbf{C} P^{\infty}; \mathbf{Z})$ is epic.
- 2. $\operatorname{Ad}^2 \tilde{\kappa}: Y \to \Omega^2(Y\langle 2 \rangle)$ is a Hopf map, where $Y\langle 2 \rangle$ is the 2-connected fibre space of Y and $\tilde{\kappa}$ is the lift of κ .

Then we have

$$\operatorname{Ad}^2 \tilde{\kappa}: Y \xrightarrow{\sim} \Omega^2(Y\langle 2 \rangle).$$

Lemma 3.1.

$$\psi(\mathrm{Ad}^{1,1}\lambda): \psi(\mathbf{Z}\times X) \xrightarrow{\sim} \psi(\Omega^{1,1}(\mathbf{Z}\times X))$$

PROOF. Since $\psi(X)$, $\psi(\lambda|_{\Sigma^{1,1} \wedge X})$ and $\psi(j_+|_{\mathbf{C}P_{\tau}^{\infty}})$ satisfy the conditions in Proposition 3.1, we have:

$$\psi(\mathrm{Ad}^{1,1}\lambda): \psi(X) \xrightarrow{\sim} \psi(\Omega^{1,1}(X))_0,$$

where $\psi(\Omega^{1,1}(X))_0$ is the path component of the constant maps. By computing the Leray-Serre spectral sequence of the path fibration over $\psi(\mathbf{Z} \times X)$ and by Theorem 1.2, we have:

$$\psi(\mathrm{Ad}^{0,1}\lambda(1\wedge j_+))^*: H^1(\psi(\Omega^{0,1}(\mathbf{Z}\times X)); \mathbf{Z}) \xrightarrow{\sim} H^1(\psi(\Sigma^{1,0}\wedge \mathbf{C}P_{\tau_-}^{\infty}); \mathbf{Z}).$$

Since $\psi(\mathrm{Ad}^{1,1}\lambda)$ is a Hopf map and $j_+(\mathbb{C}P^{\infty}) \subset 1 \times X$, we have:

$$\psi(\mathrm{Ad}^{1,1}\lambda)_*: \pi_0(\psi(\mathbf{Z}\times X)) \xrightarrow{\sim} \pi_0(\psi(\Omega^{1,1}(\mathbf{Z}\times X))).$$

Let $\lambda_n: \Sigma^{1,1} \wedge \ldots \wedge \Sigma^{1,1} = \Sigma^{n,n} \to X$ be the following base point preserving τ -map.

$$\lambda(1 \wedge \lambda) \cdots (1 \wedge \ldots \wedge \lambda)(1 \wedge \ldots \wedge j_{+}|_{\mathbf{C}P_{-}^{1}})$$

COROLLARY 3.1. $\pi_{2n-1}(\psi(X)) = 0$ and $\pi_{2n}(\psi(X)) \cong \mathbf{Z}$ which is generated by $\psi(\lambda_n)$ (n > 0).

Next we show the periodicity of $\phi(X)$. Recall the class \mathscr{C} theory of abelian groups ([7]). We first show the periodicity of $\phi(X)$ modulo \mathscr{C}_2 , where \mathscr{C}_2 is the class of odd order finite abelian groups.

Proposition 3.2.

$$\phi(\mathrm{Ad}^{1,1}\lambda):\phi(X)\stackrel{\sim}{\to}\phi(\Omega^{1,1}(X))_0\mod\mathscr{C}_2.$$

PROOF. We compute the Leray-Serre spectral sequence of the fibration

$$\psi(\Omega^{1,0}X) \to \phi(\Omega^{1,0}X) \xrightarrow{p} \phi(X)$$

by making use of 3 in Lemma 2.1 and $i_X^*(x_i) = y_i^2$, where $p: \phi(\Omega^{1,0}X) \to \phi(X)$ is the evaluation at 0. By applying 2, 3 in Lemma 2.1 to $\lambda(1 \wedge j_+): \Sigma^{1,1}CP_{\tau}^{\infty} \to \mathbb{Z} \times X$ and by that $\phi(\mathrm{Ad}^{1,0}\lambda(1 \wedge j_+))^*$ is epic, we see that $\{\phi(\mathrm{Ad}^{1,0}\lambda(1 \wedge j_+))^*p^*(y_i)\}$ form a basis of generators of $H^*(\phi(\Omega^{1,0}X); \mathbb{Z}_2)$. Then, by the same way of computation of $H^*(U/O; \mathbb{Z}_2)$ from the fibration $U \to U/O \to BO$, we have:

$$H^*(\phi(\Omega^{1,0}X); \mathbf{Z}_2) \cong \bigwedge (p^*(y_1), p^*(y_2), p^*(y_3), \ldots).$$

Then we see that $\phi(\mathrm{Ad}^{1,0}\lambda(1\wedge j_+))^*p^*(y_i)$ are the basis of the \mathbb{Z}_2 -module $H^*(\phi(\Sigma^{0,1}\wedge \mathbb{C}P_{\tau_+}^{\infty});\mathbb{Z}_2)$, by 1, 2 in Lemma 2.1 and we have

$$H_*(\phi(\Omega^{1,0}(\mathbf{Z}\times X)); \mathbf{Z}_2) \cong \Delta(\operatorname{Im} \phi(\operatorname{Ad}^{1,0}\lambda(1\wedge j_+))_*),$$

where $\Delta(x_1, x_2, ...)$ is the \mathbb{Z}_2 -algebra whose \mathbb{Z}_2 -module basis are $x_{i_1} \cdots x_{i_k}$ ($i_1 < ... < x_{i_k}$). By computing the Leray-Serre spectral sequence of the path fibration over $\phi(\Omega^{1,0}(X))\langle 1 \rangle$, we obtain

$$H_*(\phi(\Omega^{1,1}X)_0; \mathbf{Z}_2) \cong \mathbf{Z}_2[\operatorname{Im} \phi(\operatorname{Ad}^{1,1}\lambda j_+|_{\mathbf{C}P_{\tau}^{\infty}})_*].$$

Since $\mathbf{Z}_2[\operatorname{Im} \phi(\operatorname{Ad}^{1,1}\lambda j_+|_{\mathbf{C}P^{\infty}_{\tau}})_*]$ has algebra generators in each positive dimension and $\phi(\operatorname{Ad}^{1,1}\lambda)$ is a Hopf map, we have

$$\phi(\mathrm{Ad}^{1,1}\lambda)_*: H_*(\phi(X); \mathbf{Z}_2) \xrightarrow{\sim} H_*(\phi(\Omega^{1,1}X)_0; \mathbf{Z}_2).$$

Therefore the proof is completed by the mod \mathscr{C}_2 J.H.C. Whitehead theorem.

Proposition 3.3.

$$\pi_n(\phi(X)) \otimes \mathbf{Z}[1/2] \cong \begin{cases} \mathbf{Z}[1/2] & n = 4k \ (k > 0) \\ 0 & otherwise, \end{cases}$$

 $i_{X_*}:\pi_{4k}(\phi(X))\otimes \mathbf{Z}[1/2]\to\pi_{4k}(\psi(X))\otimes \mathbf{Z}[1/2]$ is an isomorphism and

$$\pi_n(\phi(\Omega^{1,1}X)) \otimes \mathbf{Z}[1/2] \cong \begin{cases} \mathbf{Z}[1/2] & n = 0, 4k \ (k \ge 0) \\ 0 & otherwise, \end{cases}$$

 $i_{\Omega^{1,1}X_*}: \pi_{4k}(\phi(\Omega^{1,1}X)) \otimes \mathbf{Z}[1/2] \to \pi_{4k}(\psi(\Omega^{1,1}X)) \otimes \mathbf{Z}[1/2]$ is an isomorphism. Especially we have:

$$(i_{\Omega^{1,1}X})_*: \pi_0(\phi(\Omega^{1,1}X) \xrightarrow{\sim} \pi_0(\psi(\Omega^{1,1}X)) \cong \mathbf{Z}.$$

PROOF. By 3 in Theorem 1 we see that

$$(\alpha i_X)_* = 2 : \pi_*(\phi(X)) \to \pi_*(\phi(X))$$

and

$$(i_X\alpha)_* = 1 + \tau_* : \pi_*(\psi(X)) \to \pi_*(\psi(X)).$$

Then $i_{X_*}: \pi_*(\phi(X)) \otimes \mathbf{Z}[1/2] \to \pi_*(\psi(X)) \otimes \mathbf{Z}[1/2]$ is split monic. By Corollary 3.1 generators of $\pi_{2k}(\psi(X)) \cong \mathbf{Z}$ are represented by the τ -map λ_k . Then $\tau_*: \pi_{2k}(\psi(X)) \to \pi_{2k}(\psi(X)) \cong \mathbf{Z}$ is the mapping degree of $\tau: \psi(\Sigma^{k,k}) \to \psi(\Sigma^{k,k})$. Hence we have

$$(i_X\alpha)_* = 1 + (-1)^k : \pi_{2k}(\psi(X)) \to \pi_{2k}(\psi(X))$$

and complete the proof of the first part.

Consider the fibration

$$\psi(\Omega^{1,1}X) \xrightarrow{\alpha'} \phi(\Omega^{1,1}X) \to \phi(\Omega^{0,1}X)$$

as the one of 3 in Lemma 2.1, then we have the following exact sequence:

$$\cdots \to \pi_n(\psi(\Omega^{1,1}X)) \xrightarrow{\alpha'_*} \pi_n(\phi(\Omega^{1,1}X)) \to \pi_{n+1}(\phi(X)) \to \pi_{n-1}(\psi(\Omega^{1,1}X)) \to \cdots$$

It is easily seen by 3 in Lemma 2.1 that:

$$(i_{\Omega^{1,1}X}\alpha')_* = 1 - \tau_* : \pi_*(\psi(\Omega^{1,1}X)) \to \pi_*(\psi(\Omega^{1,1}X)).$$

Since $\tau_*: \pi_{2k+2}(\psi(\Omega^{1,1}X)) \to \pi_{2k+2}(\psi(\Omega^{1,1}X)) = \pi_{2k+4}(\psi(X)) \cong \mathbf{Z}$ is the mapping degree of $\tau: \Sigma^{k+1,k+1} \to \Sigma^{k+1,k+1}$, we have:

$$(i_{\Omega^{1,1}X}\alpha')_* = 1 - (-1)^{k+1} : \pi_{2k+2}(\psi(\Omega^{1,1}X)) \to \pi_{2k+2}(\psi(\Omega^{1,1}X)).$$

Then we complete the proof of the second part.

Since $H^1(\phi(X); \mathbb{Z}_2) \neq 0$, we have $\pi_1(\phi(X)) \neq 0$. By the above we have:

$$(i_{\Omega^{1,1}X}\alpha')_* = 2: \pi_0(\psi(\Omega^{1,1}X)) \to \pi_0(\psi(\Omega^{1,1}X))$$

Thus we obtain that:

$$i_{\Omega^{1,1}X*}:\pi_0(\phi(\Omega^{1,1}X))\stackrel{\sim}{\to}\pi_0(\psi(\Omega^{1,1}X))\cong \mathbf{Z}.$$

This completes the proof of the last part.

Lemma 3.2.

$$\phi(\mathrm{Ad}^{1,1}\lambda):\phi(X)\stackrel{\sim}{\to}\phi(\Omega^{1,1}(X))_0$$

PROOF. Consider the following commutative diagram, where $(i_X)_*, (i_{\Omega^{1,1}X})_*, \psi(\mathrm{Ad}^{1,1}\lambda)_*$ are isomorphisms for n > 0 by Lemma 3.1 and Proposition 3.3.

$$\pi_{4n}(\phi(X)) \otimes \mathbf{Z}[1/2] \xrightarrow{\phi(\mathrm{Ad}^{1,1}\lambda)_*} \pi_{4n}(\phi(\Omega^{1,1}X)) \otimes \mathbf{Z}[1/2]$$

$$\downarrow (i_{X})_* \downarrow \qquad \qquad \qquad \downarrow (i_{\Omega^{1,1}X})_*$$

$$\pi_{4n}(\psi(X)) \otimes \mathbf{Z}[1/2] \xrightarrow{\psi(\mathrm{Ad}^{1,1}\lambda)_*} \pi_{4n}(\psi(\Omega^{1,1}X)) \otimes \mathbf{Z}[1/2]$$

Then we see that:

$$\phi(\mathrm{Ad}^{1,1}\lambda)_*: \pi_{4n}(\phi(X)) \otimes \mathbf{Z}[1/2] \xrightarrow{\sim} \pi_{4n}(\phi(\Omega^{1,1}X)) \otimes \mathbf{Z}[1/2].$$

By Proposition 3.2, the class \mathscr{C} theory and J.H.C. Whitehead theorem, we obtain

$$\phi(\mathrm{Ad}^{1,1}\lambda):\phi(X)\stackrel{\sim}{\to}\phi(\Omega^{1,1}X)_0.$$

We have the following commutative diagram, where $(i_{\mathbf{Z}\times X})_*, (i_{\Omega^{1,1}(\mathbf{Z}\times X)})_*, \psi(\mathrm{Ad}^{1,1}\lambda)_*$ are isomorphisms by Proposition 3.3. We complete the proof by J.H.C.Whitehead theorem.

$$\pi_{0}(\phi(\boldsymbol{Z} \times X)) \xrightarrow{\phi(\operatorname{Ad}^{1,1}\lambda)_{*}} \pi_{0}(\phi(\Omega^{1,1}(\boldsymbol{Z} \times X)))$$

$$\downarrow^{(i_{\boldsymbol{Z} \times X})_{*}} \qquad \qquad \downarrow^{(i_{\Omega^{1,1}(\boldsymbol{Z} \times X)})_{*}}$$

$$\pi_{0}(\psi(\boldsymbol{Z} \times X)) \xrightarrow{\psi(\operatorname{Ad}^{1,1}\lambda)_{*}} \pi_{0}(\psi(\Omega^{1,1}(\boldsymbol{Z} \times X)))$$

PROOF OF THEOREM 1. Let Y, Z be τ -spaces and $f: Y \to Z$ be a τ -map. We see that f is a τ -homotopy equivalence if and only if $\psi(f)$ and $\phi(f)$ are homotopy equivalences by [1]. By Lemmas 3.1 and 3.2 we have

$$\psi(\mathrm{Ad}^{1,1}\lambda):\psi(\boldsymbol{Z}\times X)\overset{\sim}{\to}\psi(\varOmega^{1,1}(\boldsymbol{Z}\times X))$$

and

$$\phi(\mathrm{Ad}^{1,1}\lambda): \phi(\mathbf{Z} \times X) \xrightarrow{\sim} \phi(\Omega^{1,1}(\mathbf{Z} \times X)).$$

4. (1,1)-periodicity of BR.

We prove the (1,1)-periodicity of KR-theory.

Let BR be the τ -space of BU with the conjugation as the involution. As in section 1, $\mathbf{Z} \times BR$ is the classifying space of KR-theory. It is obvious that

$$\psi(BR) = BU$$
 and $\phi(BR) = BO$.

Let ξ_n, η_n and \boldsymbol{n} be the universal bundle of $BU(n), \boldsymbol{C}P^n$ and the trivial complex bundle of rank n respectively, then $\xi_n, \eta_n, \boldsymbol{n}$ are the real vector bundle. We denote the virtual real vector bundle $\lim_{\longrightarrow} (\xi_n - \boldsymbol{n})$ on BR by ξ . We regard ξ, η_n as the virtual real vector bundles on $\boldsymbol{Z} \times BR$ and $\boldsymbol{C}P_{\tau}^n$. The Bott map $\beta: \Sigma^{1,1}(\boldsymbol{Z} \times BR) \to \boldsymbol{Z} \times BR$ is defined as the classifying map of the virtual real vector bundle $(\eta_1 - \boldsymbol{1}) \hat{\otimes}_{\boldsymbol{C}} \xi$ on $\boldsymbol{C}P_{\tau}^1 \wedge (\boldsymbol{Z} \times BR) = \Sigma^{1,1}(\boldsymbol{Z} \times BR)$.

Lemma 4.1. Let

$$\beta: \Sigma^{1,1}(\mathbf{Z} \times BR) \to \mathbf{Z} \times BR, \ i_+: \mathbf{C}P_{\tau-+}^{\infty} \hookrightarrow \mathbf{Z} \times BR \ \ and \ \mathbf{r}: \psi(BR) \to \phi(BR)$$

be the Bott map, the natural inclusion such that $i_+(\mathbb{C}P_{\tau}^{\infty}) \subset 1 \times BR$ and the realization map respectively. Then we have the following.

- 1. $H^*(\psi(BR); \mathbf{Z}) = \mathbf{Z}[c_1, c_2, c_3, \ldots]$ and $H^*(\phi(BR); \mathbf{Z}_2) = \mathbf{Z}_2[w_1, w_2, w_3, \ldots],$ where $|c_i| = 2i, |w_i| = i$ and $i_{BR}^*(c_i) = w_i^2$.
- 2. $\psi(\beta(1 \wedge i_+))^* : H^*(\psi(\mathbf{Z} \times BR); \mathbf{Z}) \to H^*(\psi(\Sigma^{1,1} \wedge \mathbf{C}P_{\tau_+}^{\infty}); \mathbf{Z}) \text{ and } \phi(\beta(1 \wedge i_+))^* : H^*(\phi(\mathbf{Z} \times BR); \mathbf{Z}_2) \to H^*(\phi(\Sigma^{1,1} \wedge \mathbf{C}P_{\tau_+}^{\infty}); \mathbf{Z}_2) \text{ are epic.}$
- 3. $\mathbf{r}i_{BR} \simeq \phi(\mu') \triangle$, $i_{BR}\mathbf{r} \simeq \psi(\mu')(1 \times \tau) \triangle$, where μ' is the natural multiplication of BR and \triangle is the diagonal map.
- 4. $\operatorname{Ad}^{1,1}\beta$ is a Hopf τ -map.

PROOF.

- Well-known.
- 2. By computing the Chern classes of $\psi((\eta_1 \mathbf{1}) \hat{\otimes}_{\mathbf{C}} \xi)$, [4, Proposition 3.1] shows that

$$\psi(\beta(1 \wedge i_+))^*: H^*(\psi(\boldsymbol{Z} \times BR); \boldsymbol{Z}) \to H^*(\psi(\boldsymbol{\varSigma}^{1,1} \wedge \boldsymbol{CP^{\infty}_{\tau-+}}); \boldsymbol{Z}) \text{ is epic.}$$

Let $w(\phi(\xi)) = 1 + w_1(\phi(\xi)) + w_2(\phi(\xi)) + \dots$ Then we have the following.

$$\phi(\beta(1 \wedge i_{+}))^{*}w(\phi(\xi))$$

$$= w(\phi(\beta(1 \wedge i_{+}))^{-1}\phi(\xi))$$

$$= w(\phi(\eta_{1} - \mathbf{1})\hat{\otimes}_{\mathbf{R}}\phi(\eta_{\infty} - \mathbf{1}))$$

$$= w(\phi(\eta_{1})\hat{\otimes}_{\mathbf{R}}\phi(\eta_{\infty}) - \phi(\eta_{1})\hat{\otimes}_{\mathbf{R}}\phi(\mathbf{1}) - \phi(\mathbf{1})\hat{\otimes}_{\mathbf{R}}\phi(\eta_{\infty}) + \phi(\mathbf{1})\hat{\otimes}_{\mathbf{R}}\phi(\mathbf{1}))$$

$$= w(\phi(\eta_{1})\hat{\otimes}_{\mathbf{R}}\phi(\eta_{\infty}))w(\phi(\eta_{1})\hat{\otimes}_{\mathbf{R}}\phi(\mathbf{1}))^{-1}w(\phi(\mathbf{1})\hat{\otimes}_{\mathbf{R}}\phi(\eta_{\infty}))^{-1}$$

$$= (1 + w_{1}(\phi(\eta_{1})) + w_{1}(\phi(\eta_{\infty})))(1 + w_{1}(\phi(\eta_{1})))^{-1}(1 + w_{1}(\phi(\eta_{\infty})))^{-1}$$

$$= 1 + \sum_{i=1}^{\infty} w_{1}(\phi(\eta_{1}))w_{1}(\phi(\eta_{\infty}))^{i}$$

Since $w_1(\phi(\eta_1))w_1(\phi(\eta_\infty))^i$ is the basis of $H^*(\phi(\Sigma^{1,1} \wedge CP_{\tau_+}^{\infty}); \mathbb{Z}_2)$, we have

$$\phi(\beta(1 \wedge i_+))^* : H^*(\phi(\mathbf{Z} \times BR); \mathbf{Z}_2) \to H^*(\phi(\Sigma^{1,1} \wedge \mathbf{C}P_{\tau_+}^{\infty}); \mathbf{Z}_2)$$
 is epic.

- 3. Well-known.
- 4. We show the following diagram is homotopy commutative.

$$\begin{array}{ccc} \varSigma^{1,1} \wedge (BR \times BR) & \xrightarrow{1 \wedge \mu'} & \varSigma^{1,1} \wedge BR \\ & & & \downarrow \beta & \\ & & BR \times BR & \xrightarrow{\mu'} & BR \end{array}$$

Since both $(1 \wedge \mu')\beta$ and $(\beta \times \beta)\mu'$ are the classifying map of the same virtual real vector bundle $(\eta_1 - 1)\hat{\otimes}_{\mathbf{C}}(\xi \times \xi)$, then we have $(1 \wedge \mu')\beta \simeq (\beta \times \beta)\mu'$.

By Lemma 4.1 we apply Theorem 1 to BR and obtain the (1,1)-periodicity of BR.

Theorem 2.

$$\operatorname{Ad}^{1,1}\beta: \mathbf{Z} \times BR \simeq_{\tau} \Omega^{1,1}(\mathbf{Z} \times BR)$$

5. Characterization of BR.

We prove that $X \simeq_{\tau} BR$, which is the characterization of BR by X.

Let Y be a pointed τ -space and Q(Y) be $\lim_{\to} \Omega^{n,n} \Sigma^{n,n} Y$. We call a τ -space Y an infinite loop τ -space if there is a pointed τ -space Z_n for any n such that $Y \simeq_{\tau} \Omega^{n,n} Z_n$. Note that BR and X are the infinite loop τ -spaces by Theorems 1 and 2. For the infinite loop τ -space Y we define the infinite loop τ -map $\xi_Y : Q(Y) \to Y$ as follows.

$$\xi_Y = \lim \nu_n^{-1} \Omega^{n,n} ((\mathrm{Ad}^{n,n})^{-1} \nu_n) : Q(Y) \to Y,$$

where $\nu_n: Y \simeq_{\tau} \Omega^{n,n} Z_n$ for a pointed τ -space Z. According to [3] and [5] we have the Segal-Becker τ -splitting

$$\epsilon: \mathbf{Z} \times BR \to Q(\mathbf{C}P_{\tau}^{\infty})$$

such that ϵ is a pointed τ -map and

$$\xi_{\mathbf{Z}\times BR}Q(i_+)\epsilon \simeq_{\tau} \mathrm{id}_{\mathbf{Z}\times BR},$$

where i_{+} is as in Lemma 4.1. It is shown in [6] that

$$\psi(\xi_{\mathbf{Z}\times BR}Q(i_+)):\psi(Q(\mathbf{C}P_{\tau_+}^{\infty}))\to\psi(\mathbf{Z}\times BR)$$

splits by ϵ such that

$$\psi(Q(\mathbf{C}P_{\tau+}^{\infty})) \simeq \psi(\mathbf{Z} \times BR) \times F,$$

where $\pi_n(F)$ is finite for any n.

THEOREM 3.

$$\xi_{\mathbf{Z}\times X}Q(j_+)\epsilon:\mathbf{Z}\times BR\simeq_{\tau}\mathbf{Z}\times X$$

PROOF. We denote $\xi_{Z\times X}Q(j_+)\epsilon$ by f. As in the proof of Theorem 2, we show that $\psi(f)$ and $\phi(f)$ are homotopy equivalences.

As in the proof of [4, Theorem 4.1] we consider the following commutative diagram, where $i: \mathbb{C}P^{\infty}_{\tau} \hookrightarrow Q(\mathbb{C}P^{\infty}_{\tau})$ is the natural inclusion.

$$\psi(\mathbf{C}P^{\infty}_{\tau +}) \xrightarrow{\psi(j_{+})} \psi(\mathbf{Z} \times X)$$

$$\psi(i) \downarrow \qquad \qquad \parallel$$

$$\psi(\mathbf{Z} \times BR) \xrightarrow{\epsilon} \psi(\xi_{\mathbf{Z} \times X} Q(\mathbf{C}P^{\infty}_{\tau +})) \xrightarrow{\psi(Q(j_{+}))} \psi(\mathbf{Z} \times X)$$

Then we have the following commutative diagram.

$$H_{*}(\psi(\boldsymbol{C}P_{\tau}^{\infty}_{+});\boldsymbol{Z}) \xrightarrow{\psi(j_{+})_{*}} H_{*}(\psi(\boldsymbol{Z}\times X);\boldsymbol{Z})$$

$$\downarrow^{\psi(i)_{*}}\downarrow \qquad \qquad \parallel$$

$$H_{*}(\psi(\boldsymbol{Z}\times BR);\boldsymbol{Z}) \xrightarrow{\epsilon_{*}} H_{*}(\psi(Q(\boldsymbol{C}P_{\tau}^{\infty}_{+}));\boldsymbol{Z}) \xrightarrow{\psi(\xi_{\boldsymbol{Z}\times X}Q(j_{+}))_{*}} H_{*}(\psi(\boldsymbol{Z}\times X);\boldsymbol{Z})$$

$$\parallel \qquad \parallel$$

$$H_{*}(\psi(\boldsymbol{Z}\times BR);\boldsymbol{Z}) \xrightarrow{\sim} H_{*}(\psi(Q(\boldsymbol{C}P_{\tau}^{\infty}_{+}));\boldsymbol{Z})/\text{torsion} \xrightarrow{\varphi} H_{*}(\psi(\boldsymbol{Z}\times X);\boldsymbol{Z})$$

We see that $\operatorname{Im} \psi(j_+)_* \subset \operatorname{Im} \varphi$. It is shown in the proof of [4, Theorem 2.1] that $\operatorname{Im} \psi(j_+)_*$ generates the algebra $H_*(\psi(\mathbf{Z} \times X); \mathbf{Z})$. Since $\psi(\xi_{\mathbf{Z} \times X})$ and $\psi(Q(j_+))$ are loop maps, $\psi(\xi_{\mathbf{Z} \times X}Q(j_+))_*$ is an algebra map. Hence we obtain that φ is an isomorphism. Therefore we obtain $\psi(f): \psi(\mathbf{Z} \times BR) \simeq \psi(\mathbf{Z} \times X)$.

For any $x \in H^*(\psi(\mathbf{Z} \times BR); \mathbf{Z}_2)$ there exists a unique $y \in H^*(\phi(\mathbf{Z} \times BR); \mathbf{Z}_2)$ such that $i_{\mathbf{Z} \times BR}^*(x) = y^2$. Since $(i_{\mathbf{Z} \times X})^*(x_i) = y_i^2$ for $x_i \in H^*(\psi(\mathbf{Z} \times X); \mathbf{Z}_2)$ and $y_i \in H^*(\phi(\mathbf{Z} \times X); \mathbf{Z}_2)$, we obtain that $\phi(f)$ is a homotopy equivalence $\text{mod } \mathscr{C}_2$ by the following commutative diagram.

$$\begin{array}{ccc} H^*(\psi(\boldsymbol{Z}\times X);\boldsymbol{Z}_2) & \xrightarrow{\psi(f)^*} & H^*(\psi(\boldsymbol{Z}\times BR);\boldsymbol{Z}_2) \\ & \downarrow^{(i_{\boldsymbol{Z}\times X})^*} & & \downarrow^{(i_{\boldsymbol{Z}\times BR})^*} \\ H^*(\phi(\boldsymbol{Z}\times X);\boldsymbol{Z}_2) & \xrightarrow{\phi(f)^*} & H^*(\phi(\boldsymbol{Z}\times BR);\boldsymbol{Z}_2) \end{array}$$

Consider the following commutative diagram, where $(i_{\mathbf{Z}\times BR})_*, (i_{\mathbf{Z}\times X})_*, \psi(f)_*$ are split monic by the above and Proposition 3.3.

$$\pi_*(\phi(\boldsymbol{Z} \times BR)) \otimes \boldsymbol{Z}[1/2] \xrightarrow{\phi(f)_*} \pi_*(\phi(\boldsymbol{Z} \times X)) \otimes \boldsymbol{Z}[1/2]$$

$$\downarrow^{(i_{\boldsymbol{Z} \times BR})_*} \downarrow \qquad \qquad \downarrow^{(i_{\boldsymbol{Z} \times X})_*}$$

$$\pi_*(\psi(\boldsymbol{Z} \times BR)) \otimes \boldsymbol{Z}[1/2] \xrightarrow{\psi(f)_*} \pi_*(\psi(\boldsymbol{Z} \times X)) \otimes \boldsymbol{Z}[1/2]$$

Then we see that $\phi(f)_*: \pi_*(\phi(\mathbf{Z} \times BR)) \times \mathbf{Z}[1/2] \to \pi_*(\phi(\mathbf{Z} \times X)) \times \mathbf{Z}[1/2]$ is an isomorphism. Hence the proof is completed.

References

- [1] S. Araki and M. Murayama, τ -cohomology theories, Japan. J. Math., 4 (1978), 363–416.
- [2] M. F. Atiyah, K-theory and reality, Quart. J. Math. Oxford Ser. (2), 17 (1966), 367–386.
- [3] A. Kono, Segal-Becker theorem for KR-theory, Japan. J. Math., 7 (1981), 195–199.
- [4] A. Kono and K. Tokunaga, A topological proof of Bott periodicity theorem and a characterization of BU, J. Math. Kyoto Univ., 35 (1994), 873–880.
- [5] M. Nagata, G. Nishida and H. Toda, Segal-Becker theorem for KR-theory, J. Math. Soc. Japan, 34 (1982), 15–33.
- [6] G. B. Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford Ser. (2), 24 (1973), 1–5.
- [7] J.-P. Serre, Groupes d'homotopie et classes des groupes abéliens, Ann. Math., 58 (1953), 258–294.