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Abstract. We give another proof of (1, 1)-periodicity of M. F. Atiyah’s KR-
theory and the characterization of the classifying space of KR-theory.

1. Introduction.

Recall that a real space is a space with an involution and that a real vector bundle E is
a complex vector bundle over a real space X equipped with an involutive conjugate linear
automorphism of E over the given involution of the base real space X ([2]). M. F. Atiyah
defined KR-theory as the Grothendieck group of the monoid of real vector bundles. By
its nature there are natural transformations from KR-theory to KU -theory and KO-
theory. KR-theory can be regarded as Z2-equivariant K-theory with action of Z2 given
by a conjugate linear automorphism. KR-theory is known to be representable as are
KU -theory and KO-theory. The classifying space, BR, of KR-theory is a real space BU

with involution the conjugation of BU . As BU and BO have the periodicity, so does
BR. The Z2-equivariant periodicity of BR,

Z ×BR 'Z2 Ω1,1(Z ×BR),

is called the (1, 1)-periodicity.
The purpose of this paper is to give another proof of the (1, 1)-periodicity of BR

and to characterize BR by a topological way. This paper is also the generalization of [4]
to the Z2-equivariant case. We prove the (1, 1)-periodicity of certain spaces in Theorem
1 and of BR in Theorem 2, and characterize BR in Theorem 3.

2. τ -space.

According to [1] we call a space with an involution by a τ -space, which is a Z2-
equivariant space and also a real space in [2]. The involution of a τ -space is denoted by
τ . A pointed τ -space is a τ -space with a base point which is a fixed point of τ . A Z2-
equivariant map between τ -spaces is called a τ -map. Let Top0 be the category of pointed
spaces and base point preserving maps, and Topτ

0 be the category of pointed τ -spaces
and base point preserving τ -maps. A homotopy and a Hopf space in Topτ

0 are called a
τ -homotopy and a Hopf τ -space. A τ -homotopy and the set of τ -homotopy classes are
denoted by 'τ and [ , ]τ .
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We consider two functors from Topτ
0 to Top0 called the forgetful functor and the

fixed point functor. The forgetful functor

ψ : Topτ
0 → Top0

is to forget involutions and the fixed point functor

φ : Topτ
0 → Top0

is to restrict to fixed point sets of τ . We denote the natural inclusion φ(X) ↪→ ψ(X) by
iX . A τ -complex X is a CW-complex in Topτ

0 such that φ(X) is a subcomplex of ψ(X).
Let Rp,q be the τ -space of Rp+q with the involution

τ(x1, . . . , xp, xp+1, . . . . . . , xp+q) = (−x1, . . . ,−xp, xp+1, . . . , xp+q),

and Σp,q be the pointed τ -space of the one point compactification of Rp,q with the base
point ∞. Let Ωp,qX be HomTop0

((Σp,q,∞), (X, x0)) for a pointed τ -space X with a base
point x0, then Ωp,qX comes to be a pointed τ -space with the constant map as a base
point and

τ(f)(x) = τ(f(τ(x)))

as an involution for f ∈ Ωp,qX, x ∈ X. Let X, Y be pointed τ -spaces, then we have the
canonical isomorphism as follows.

[Σp,q ∧X, Y ]τ ∼= [X, Ωp,qY ]τ

By the isomorphism above we have the adjoint map of a base point preserving τ -map
f : Σp,q ∧ X → Y denoted by Adp,qf : X → Ωp,qY , which is a base point preserving
τ -map.

Lemma 2.1. Let X, Y be pointed τ -spaces and f : Σ1,0 ∧X → Y be a base point
preserving τ -map, then we have the following.

1. φ(i) : φ(X) → φ(Σ1,0 ∧X) is a homeomorphism, where i : X → Σ1,0 ∧X is the
natural inclusion.

2. We have the following commutative diagram, where ev0 : φ(Ω1,0X) → φ(X) is the
evaluation at 0.

φ(X)
φ(i)−−−−→ φ(Σ1,0 ∧X)

φ(Ad1,0f)

y
yφ(f)

φ(Ω1,0Y ) −−−−→
ev0

φ(Y )

3. ψ(Ω1,0X) → φ(Ω1,0X) ev0−→ φ(X) is the fibration which is the pullback of the path
fibration over ψ(X) by iX .
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Proof. 1, 2 is trivial and the following commutative diagram shows 3, where ∗ is
the base point of X.

ψ(Ω1,0X) −−−−→ φ(Ω1,0X) ev0−−−−→ φ(X)

o
y o

y
∥∥∥

ΩX −−−−→ Map(([0, 1], 0, 1), (ψ(X), φ(X), ∗)) ev0−−−−→ φ(X)
∥∥∥

y
yiX

ΩX −−−−→ Map(([0, 1], 0, 1), (ψ(X), ψ(X), ∗)) ev0−−−−→ ψ(X) ¤

3. (1,1)-periodic τ -space.

In this section we prove the (1, 1)-periodicity of the special kind of τ -spaces satisfy-
ing some common topological properties with BR.

Let CPn
τ be the τ -space of CPn with the conjugation as the involution and Z be

the pointed τ -space with 0 as the base point and the trivial involution. It is obvious that
φ(CPn

τ ) = RPn and CP 1
τ = Σ1,1. The pointed τ -space of CPn

τ with a disjoint point as
the base point is denoted by CPn

τ +.

Theorem 1. Let X be a Hopf τ -space which is a τ -complex of finite type and let

λ : Σ1,1 ∧ (Z ×X) → Z ×X, j+ : CP∞τ + → Z ×X and α : ψ(X) → φ(X)

be base point preserving τ -maps such that j+(CP∞τ ) ⊂ 1 × X and a continuous map
respectively. Suppose X, λ, j+, α satisfy the following.

1. H∗(ψ(X);Z) = Z[x1, x2, x3, . . .] and H∗(φ(X);Z2) = Z2[y1, y2, y3, . . .], where
|xi| = 2i, |yi| = i and i∗X(xi) = y2

i .
2. ψ(λ(1∧ j+))∗ : H∗(ψ(Z ×X);Z) → H∗(ψ(Σ1,1 ∧CP∞τ +);Z) and φ(λ(1∧ j+))∗ :

H∗(φ(Z ×X);Z2) → H∗(φ(Σ1,1 ∧CP∞τ +);Z2) are epic.
3. αiX ' φ(µ)4 and iXα ' ψ(µ)(1 × τ)4, where µ is the multiplication of X and
4 is the diagonal map.

4. Ad1,1λ is a Hopf τ -map.

Then we have:

Ad1,1λ : Z ×X 'τ Ω1,1(Z ×X).

For the rest of this paper the notations X, λ, j+, α are fixed to those in Theorem 1.
In order to show the periodicity of ψ(Z ×X), we need the following proposition [4,

Theorem 2.1].

Proposition 3.1. Let Y be a Hopf space which is a CW-complex of finite type
such that

H∗(Y ;Z) = Z[c1, c2, c3, . . .], |ci| = 2i.
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Suppose that we have maps

j : CP∞ → Y and κ : Σ2Y → Y

which satisfy the following.

1. (κ(1 ∧ j))∗ : H∗(Y ;Z) → H∗(Σ2CP∞;Z) is epic.
2. Ad2κ̃ : Y → Ω2(Y 〈2〉) is a Hopf map, where Y 〈2〉 is the 2-connected fibre space of

Y and κ̃ is the lift of κ.

Then we have

Ad2κ̃ : Y
∼→ Ω2(Y 〈2〉).

Lemma 3.1.

ψ(Ad1,1λ) : ψ(Z ×X) ∼→ ψ(Ω1,1(Z ×X))

Proof. Since ψ(X), ψ(λ|Σ1,1∧X) and ψ(j+|CP∞τ ) satisfy the conditions in Propo-
sition 3.1, we have:

ψ(Ad1,1λ) : ψ(X) ∼→ ψ(Ω1,1(X))0,

where ψ(Ω1,1(X))0 is the path component of the constant maps. By computing the
Leray-Serre spectral sequence of the path fibration over ψ(Z ×X) and by Theorem 1.2,
we have:

ψ(Ad0,1λ(1 ∧ j+))∗ : H1(ψ(Ω0,1(Z ×X));Z) ∼→ H1(ψ(Σ1,0 ∧CP∞τ +);Z).

Since ψ(Ad1,1λ) is a Hopf map and j+(CP∞) ⊂ 1×X, we have:

ψ(Ad1,1λ)∗ : π0(ψ(Z ×X)) ∼→ π0(ψ(Ω1,1(Z ×X))). ¤

Let λn : Σ1,1∧ . . .∧Σ1,1 = Σn,n → X be the following base point preserving τ -map.

λ(1 ∧ λ) · · · (1 ∧ . . . ∧ λ)(1 ∧ . . . ∧ j+|CP 1
τ
)

Corollary 3.1. π2n−1(ψ(X)) = 0 and π2n(ψ(X)) ∼= Z which is generated by
ψ(λn) (n > 0).

Next we show the periodicity of φ(X). Recall the class C theory of abelian groups
([7]). We first show the periodicity of φ(X) modulo C2, where C2 is the class of odd
order finite abelian groups.

Proposition 3.2.

φ(Ad1,1λ) : φ(X) ∼→ φ(Ω1,1(X))0 mod C2.
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Proof. We compute the Leray-Serre spectral sequence of the fibration

ψ(Ω1,0X) → φ(Ω1,0X)
p→ φ(X)

by making use of 3 in Lemma 2.1 and i∗X(xi) = y2
i , where p : φ(Ω1,0X) → φ(X) is the

evaluation at 0. By applying 2, 3 in Lemma 2.1 to λ(1∧ j+) : Σ1,1CP∞τ + → Z ×X and
by that φ(Ad1,0λ(1∧ j+))∗ is epic, we see that {φ(Ad1,0λ(1∧ j+))∗p∗(yi)} form a basis of
generators of H∗(φ(Ω1,0X);Z2). Then, by the same way of computation of H∗(U/O;Z2)
from the fibration U → U/O → BO, we have:

H∗(φ(Ω1,0X);Z2) ∼=
∧

(p∗(y1), p∗(y2), p∗(y3), . . .).

Then we see that φ(Ad1,0λ(1 ∧ j+))∗p∗(yi) are the basis of the Z2-module H∗(φ(Σ0,1 ∧
CP∞τ +);Z2), by 1, 2 in Lemma 2.1 and we have

H∗(φ(Ω1,0(Z ×X));Z2) ∼= ∆(Im φ(Ad1,0λ(1 ∧ j+))∗),

where ∆(x1, x2, . . .) is the Z2-algebra whose Z2-module basis are xi1 · · ·xik
(i1 <

. . . < xik
). By computing the Leray-Serre spectral sequence of the path fibration over

φ(Ω1,0(X))〈1〉, we obtain

H∗(φ(Ω1,1X)0;Z2) ∼= Z2[Im φ(Ad1,1λj+|CP∞τ )∗].

Since Z2[Im φ(Ad1,1λj+|CP∞τ )∗] has algebra generators in each positive dimension and
φ(Ad1,1λ) is a Hopf map, we have

φ(Ad1,1λ)∗ : H∗(φ(X);Z2)
∼→ H∗(φ(Ω1,1X)0;Z2).

Therefore the proof is completed by the mod C2 J.H.C. Whitehead theorem. ¤

Proposition 3.3.

πn(φ(X))⊗Z[1/2] ∼=
{

Z[1/2] n = 4k (k > 0)

0 otherwise,

iX∗ : π4k(φ(X))⊗Z[1/2] → π4k(ψ(X))⊗Z[1/2] is an isomorphism and

πn(φ(Ω1,1X))⊗Z[1/2] ∼=
{

Z[1/2] n = 0, 4k (k ≥ 0)

0 otherwise,

iΩ1,1X∗ : π4k(φ(Ω1,1X))⊗Z[1/2] → π4k(ψ(Ω1,1X))⊗Z[1/2] is an isomorphism.
Especially we have:
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(iΩ1,1X)∗ : π0(φ(Ω1,1X) ∼→ π0(ψ(Ω1,1X)) ∼= Z.

Proof. By 3 in Theorem 1 we see that

(αiX)∗ = 2 : π∗(φ(X)) → π∗(φ(X))

and

(iXα)∗ = 1 + τ∗ : π∗(ψ(X)) → π∗(ψ(X)).

Then iX∗ : π∗(φ(X)) ⊗ Z[1/2] → π∗(ψ(X)) ⊗ Z[1/2] is split monic. By Corollary 3.1
generators of π2k(ψ(X)) ∼= Z are represented by the τ -map λk. Then τ∗ : π2k(ψ(X)) →
π2k(ψ(X)) ∼= Z is the mapping degree of τ : ψ(Σk,k) → ψ(Σk,k). Hence we have

(iXα)∗ = 1 + (−1)k : π2k(ψ(X)) → π2k(ψ(X))

and complete the proof of the first part.
Consider the fibration

ψ(Ω1,1X) α′→ φ(Ω1,1X) → φ(Ω0,1X)

as the one of 3 in Lemma 2.1, then we have the following exact sequence:

· · · → πn(ψ(Ω1,1X))
α′∗−→ πn(φ(Ω1,1X)) → πn+1(φ(X)) → πn−1(ψ(Ω1,1X)) → · · · .

It is easily seen by 3 in Lemma 2.1 that:

(iΩ1,1Xα′)∗ = 1− τ∗ : π∗(ψ(Ω1,1X)) → π∗(ψ(Ω1,1X)).

Since τ∗ : π2k+2(ψ(Ω1,1X)) → π2k+2(ψ(Ω1,1X)) = π2k+4(ψ(X)) ∼= Z is the mapping
degree of τ : Σk+1,k+1 → Σk+1,k+1, we have:

(iΩ1,1Xα′)∗ = 1− (−1)k+1 : π2k+2(ψ(Ω1,1X)) → π2k+2(ψ(Ω1,1X)).

Then we complete the proof of the second part.
Since H1(φ(X);Z2) 6= 0, we have π1(φ(X)) 6= 0. By the above we have:

(iΩ1,1Xα′)∗ = 2 : π0(ψ(Ω1,1X)) → π0(ψ(Ω1,1X))

Thus we obtain that:

iΩ1,1X∗ : π0(φ(Ω1,1X)) ∼→ π0(ψ(Ω1,1X)) ∼= Z.

This completes the proof of the last part. ¤
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Lemma 3.2.

φ(Ad1,1λ) : φ(X) ∼→ φ(Ω1,1(X))0

Proof. Consider the following commutative diagram, where (iX)∗, (iΩ1,1X)∗,
ψ(Ad1,1λ)∗ are isomorphisms for n > 0 by Lemma 3.1 and Proposition 3.3.

π4n(φ(X))⊗Z[1/2]
φ(Ad1,1λ)∗−−−−−−−→ π4n(φ(Ω1,1X))⊗Z[1/2]

(iX)∗

y
y(iΩ1,1X)∗

π4n(ψ(X))⊗Z[1/2]
ψ(Ad1,1λ)∗−−−−−−−→ π4n(ψ(Ω1,1X))⊗Z[1/2]

Then we see that:

φ(Ad1,1λ)∗ : π4n(φ(X))⊗Z[1/2] ∼→ π4n(φ(Ω1,1X))⊗Z[1/2].

By Proposition 3.2, the class C theory and J.H.C. Whitehead theorem, we obtain

φ(Ad1,1λ) : φ(X) ∼→ φ(Ω1,1X)0.

We have the following commutative diagram, where (iZ×X)∗, (iΩ1,1(Z×X))∗, ψ(Ad1,1λ)∗
are isomorphisms by Proposition 3.3. We complete the proof by J.H.C.Whitehead theo-
rem.

π0(φ(Z ×X))
φ(Ad1,1λ)∗−−−−−−−→ π0(φ(Ω1,1(Z ×X)))

(iZ×X)∗

y
y(iΩ1,1(Z×X))∗

π0(ψ(Z ×X))
ψ(Ad1,1λ)∗−−−−−−−→ π0(ψ(Ω1,1(Z ×X))) ¤

Proof of Theorem 1. Let Y, Z be τ -spaces and f : Y → Z be a τ -map. We
see that f is a τ -homotopy equivalence if and only if ψ(f) and φ(f) are homotopy
equivalences by [1]. By Lemmas 3.1 and 3.2 we have

ψ(Ad1,1λ) : ψ(Z ×X) ∼→ ψ(Ω1,1(Z ×X))

and

φ(Ad1,1λ) : φ(Z ×X) ∼→ φ(Ω1,1(Z ×X)). ¤

4. (1,1)-periodicity of BR.

We prove the (1, 1)-periodicity of KR-theory.
Let BR be the τ -space of BU with the conjugation as the involution. As in section

1, Z ×BR is the classifying space of KR-theory. It is obvious that
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ψ(BR) = BU and φ(BR) = BO.

Let ξn, ηn and n be the universal bundle of BU(n),CPn and the trivial complex bundle
of rank n respectively, then ξn, ηn,n are the real vector bundle. We denote the virtual
real vector bundle lim→(ξn − n) on BR by ξ. We regard ξ, ηn as the virtual real vector
bundles on Z×BR and CPn

τ +. The Bott map β : Σ1,1(Z×BR) → Z×BR is defined as
the classifying map of the virtual real vector bundle (η1− 1)⊗̂Cξ on CP 1

τ ∧ (Z ×BR) =
Σ1,1(Z ×BR).

Lemma 4.1. Let

β : Σ1,1(Z ×BR) → Z ×BR, i+ : CP∞τ + ↪→ Z ×BR and r : ψ(BR) → φ(BR)

be the Bott map, the natural inclusion such that i+(CP∞τ ) ⊂ 1×BR and the realization
map respectively. Then we have the following.

1. H∗(ψ(BR);Z) = Z[c1, c2, c3, . . .] and H∗(φ(BR);Z2) = Z2[w1, w2, w3, . . .],
where |ci| = 2i, |wi| = i and i∗BR(ci) = w2

i .
2. ψ(β(1∧ i+))∗ : H∗(ψ(Z×BR);Z) → H∗(ψ(Σ1,1∧CP∞τ +);Z) and φ(β(1∧ i+))∗ :

H∗(φ(Z ×BR);Z2) → H∗(φ(Σ1,1 ∧CP∞τ +);Z2) are epic.
3. riBR ' φ(µ′)4, iBRr ' ψ(µ′)(1 × τ)4, where µ′ is the natural multiplication of

BR and 4 is the diagonal map.
4. Ad1,1β is a Hopf τ -map.

Proof.

1. Well-known.
2. By computing the Chern classes of ψ((η1 − 1)⊗̂Cξ), [4, Proposition 3.1] shows

that

ψ(β(1 ∧ i+))∗ : H∗(ψ(Z ×BR);Z) → H∗(ψ(Σ1,1 ∧CP∞τ +);Z) is epic.

Let w(φ(ξ)) = 1 + w1(φ(ξ)) + w2(φ(ξ)) + . . .. Then we have the following.

φ(β(1 ∧ i+))∗w(φ(ξ))

= w(φ(β(1 ∧ i+))−1φ(ξ))

= w(φ(η1 − 1)⊗̂Rφ(η∞ − 1))

= w(φ(η1)⊗̂Rφ(η∞)− φ(η1)⊗̂Rφ(1)− φ(1)⊗̂Rφ(η∞) + φ(1)⊗̂Rφ(1))

= w(φ(η1)⊗̂Rφ(η∞))w(φ(η1)⊗̂Rφ(1))−1w(φ(1)⊗̂Rφ(η∞))−1

= (1 + w1(φ(η1)) + w1(φ(η∞)))(1 + w1(φ(η1)))−1(1 + w1(φ(η∞)))−1

= 1 +
∞∑

i=1

w1(φ(η1))w1(φ(η∞))i

Since w1(φ(η1))w1(φ(η∞))i is the basis of H∗(φ(Σ1,1 ∧CP∞τ +);Z2), we have
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φ(β(1 ∧ i+))∗ : H∗(φ(Z ×BR);Z2) → H∗(φ(Σ1,1 ∧CP∞τ +);Z2)is epic.

3. Well-known.
4. We show the following diagram is homotopy commutative.

Σ1,1 ∧ (BR×BR)
1∧µ′−−−−→ Σ1,1 ∧BR

β×β

y
yβ

BR×BR
µ′−−−−→ BR

Since both (1∧µ′)β and (β×β)µ′ are the classifying map of the same virtual real vector
bundle (η1 − 1)⊗̂C(ξ × ξ), then we have (1 ∧ µ′)β ' (β × β)µ′. ¤

By Lemma 4.1 we apply Theorem 1 to BR and obtain the (1, 1)-periodicity of BR.

Theorem 2.

Ad1,1β : Z ×BR 'τ Ω1,1(Z ×BR)

5. Characterization of BR.

We prove that X 'τ BR, which is the characterization of BR by X.
Let Y be a pointed τ -space and Q(Y ) be lim→Ωn,nΣn,nY . We call a τ -space Y an

infinite loop τ -space if there is a pointed τ -space Zn for any n such that Y 'τ Ωn,nZn.
Note that BR and X are the infinite loop τ -spaces by Theorems 1 and 2. For the infinite
loop τ -space Y we define the infinite loop τ -map ξY : Q(Y ) → Y as follows.

ξY = lim
→

ν−1
n Ωn,n((Adn,n)−1νn) : Q(Y ) → Y,

where νn : Y 'τ Ωn,nZn for a pointed τ -space Z. According to [3] and [5] we have the
Segal-Becker τ -splitting

ε : Z ×BR → Q(CP∞τ +)

such that ε is a pointed τ -map and

ξZ×BRQ(i+)ε 'τ idZ×BR,

where i+ is as in Lemma 4.1. It is shown in [6] that

ψ(ξZ×BRQ(i+)) : ψ(Q(CP∞τ +)) → ψ(Z ×BR)

splits by ε such that

ψ(Q(CP∞τ +)) ' ψ(Z ×BR)× F,
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where πn(F ) is finite for any n.

Theorem 3.

ξZ×XQ(j+)ε : Z ×BR 'τ Z ×X

Proof. We denote ξZ×XQ(j+)ε by f . As in the proof of Theorem 2, we show
that ψ(f) and φ(f) are homotopy equivalences.

As in the proof of [4, Theorem 4.1] we consider the following commutative diagram,
where i : CP∞τ + ↪→ Q(CP∞τ +) is the natural inclusion.

ψ(CP∞τ +)
ψ(j+)−−−−→ ψ(Z ×X)

ψ(i)

y
∥∥∥

ψ(Z ×BR) ε−−−−→ ψ(ξZ×XQ(CP∞τ +))
ψ(Q(j+))−−−−−−→ ψ(Z ×X)

Then we have the following commutative diagram.

H∗(ψ(CP∞τ +);Z)
ψ(j+)∗−−−−−→ H∗(ψ(Z ×X);Z)

ψ(i)∗
??y

‚‚‚

H∗(ψ(Z ×BR);Z)
ε∗−−−−−→ H∗(ψ(Q(CP∞τ +));Z)

ψ(ξZ×XQ(j+))∗−−−−−−−−−−−→ H∗(ψ(Z ×X);Z)
‚‚‚ projection

??y
‚‚‚

H∗(ψ(Z ×BR);Z)
∼−−−−−→ H∗(ψ(Q(CP∞τ +));Z)/torsion

ϕ−−−−−→ H∗(ψ(Z ×X);Z)

We see that Im ψ(j+)∗ ⊂ Im ϕ. It is shown in the proof of [4, Theorem 2.1] that Im ψ(j+)∗
generates the algebra H∗(ψ(Z × X);Z). Since ψ(ξZ×X) and ψ(Q(j+)) are loop maps,
ψ(ξZ×XQ(j+))∗ is an algebra map. Hence we obtain that ϕ is an isomorphism. Therefore
we obtain ψ(f) : ψ(Z ×BR) ' ψ(Z ×X).

For any x ∈ H∗(ψ(Z × BR);Z2) there exists a unique y ∈ H∗(φ(Z × BR);Z2)
such that iZ×BR

∗(x) = y2. Since (iZ×X)∗(xi) = y2
i for xi ∈ H∗(ψ(Z × X);Z2) and

yi ∈ H∗(φ(Z ×X);Z2), we obtain that φ(f) is a homotopy equivalence mod C2 by the
following commutative diagram.

H∗(ψ(Z ×X);Z2)
ψ(f)∗−−−−→ H∗(ψ(Z ×BR);Z2)

(iZ×X)∗
y

y(iZ×BR)∗

H∗(φ(Z ×X);Z2)
φ(f)∗−−−−→ H∗(φ(Z ×BR);Z2)

Consider the following commutative diagram, where (iZ×BR)∗, (iZ×X)∗, ψ(f)∗ are split
monic by the above and Proposition 3.3.
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π∗(φ(Z ×BR))⊗Z[1/2]
φ(f)∗−−−−→ π∗(φ(Z ×X))⊗Z[1/2]

(iZ×BR)∗

y
y(iZ×X)∗

π∗(ψ(Z ×BR))⊗Z[1/2]
ψ(f)∗−−−−→ π∗(ψ(Z ×X))⊗Z[1/2]

Then we see that φ(f)∗ : π∗(φ(Z × BR)) × Z[1/2] → π∗(φ(Z × X)) × Z[1/2] is an
isomorphism. Hence the proof is completed. ¤
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