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Abstract. We construct a certain class of Arakawa–Kaneko zeta-
functions associated with GL2(C), which includes the ordinary Arakawa–
Kaneko zeta-function. We also define poly-Bernoulli polynomials associated

with GL2(C) which appear in their special values of these zeta-functions. We
prove some functional relations for these zeta-functions, which are regarded
as interpolation formulas of various relations among poly-Bernoulli numbers.
Considering their special values, we prove difference relations and duality re-

lations for poly-Bernoulli polynomials associated with GL2(C).

1. Introduction.

For k ∈ Z, two types of poly-Bernoulli numbers {B(k)
n } and {C(k)

n } are defined by

Kaneko as follows:

Lik(1− e−t)

1− e−t
=

∞∑
n=0

B(k)
n

tn

n!
, (1.1)

Lik(1− e−t)

et − 1
=

∞∑
n=0

C(k)
n

tn

n!
, (1.2)

where Lik(z) is the polylogarithm defined by

Lik(z) =
∞∑

m=1

zm

mk
(|z| < 1)

(see Kaneko [7] and Arakawa–Kaneko [2], also Arakawa–Ibukiyama–Kaneko [1]). Since

Li1(x) = − log(1− x), we see that B
(1)
n coincides with the ordinary Bernoulli number.

In this decade, these numbers have been actively investigated (see, for example,

Kaneko [8]). The most remarkable formulas for them are the following ‘duality relations’:

B(−k)
m = B

(−m)
k , (1.3)
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C(−k−1)
m = C

(−m−1)
k (1.4)

for k,m ∈ Z≥0 (see [7, Theorem 2] and [8, Section 2]). Recently Kaneko and the

second-named author [10] showed (1.3), (1.4) and their generalization by investigating

the zeta-function of Arakawa–Kaneko type (defined below). Also it is known that

B(k)
m = C(k)

m + C
(k−1)
m−1 (1.5)

for k ∈ Z and m ∈ Z≥1 (see [2, Equation (9)]).

Corresponding to these numbers, Arakawa and Kaneko defined the zeta-function

ξ(k; s) =
1

Γ(s)

∫ ∞

0

ts−1Lik(1− e−t)

et − 1
dt (Re s > 0) (1.6)

for k ∈ Z≥1, which can be continued to C as an entire function (see [2, Section 3]).

Further they considered multiple versions of (1.6). Note that ξ(k; s) can be regarded

as generalizations of the Riemann zeta-function because ξ(1; s) = sζ(s + 1). They also

showed that

ξ(k;−m) = (−1)mC(k)
m (m ∈ Z≥0). (1.7)

From the observation of ξ(k; s) and its multiple versions, they gave several relation for-

mulas among the multiple zeta values defined by

ζ(l1, . . . , lr) =
∑

1<m1<···<mr

1

ml1
1 · · ·mlr

r

for l1, . . . , lr ∈ Z≥1 with lr ≥ 2 (see [2, Corollary 11]).

As a generalization of ξ(k; s), Coppo and Candelpergher [5] defined

ξ(k; s;w) =
1

Γ(s)

∫ ∞

0

ts−1e−wtLik(1− e−t)

1− e−t
dt

for k ∈ Z≥1 and w > 0, and studied its property. Note that ξ(k; s; 1) = ξ(k; s).

As a twin sibling of (1.6), Kaneko and the second-named author [10] recently defined

η(k; s) =
1

Γ(s)

∫ ∞

0

ts−1Lik(1− et)

1− et
dt (1.8)

for s ∈ C and for ‘any’ k ∈ Z, which interpolates the poly-Bernoulli numbers of B-type,

that is,

η(k;−m) = B(k)
m (k ∈ Z, m ∈ Z≥0). (1.9)

More generally, they defined the multi-variable version of (1.8) denoted by η((−kj); (sj))

for each kj ∈ Z≥0, and showed certain duality relations for multi-indexed poly-Bernoulli

numbers (see [10, Theorems 5.7 and 5.10]).

More recently, Yamamoto [12] considered η(u; s) (where u and s are variables) and

its multi-variable versions η((uj); (sj)) and proved functional duality relations for them.
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In particular, for the case of single zeta-function, he proved

η(u; s) = η(s;u) (u, s ∈ C), (1.10)

which interpolates (1.3) at non-positive integer points by (1.9).

In this paper, we consider, as generalizations of ξ(k; s), η(k; s) and ξ(k; s;w), the

Arakawa–Kaneko zeta-functions associated with GL2(C) defined as follows. For g =(
a b
c d

)
∈ GL2(C), we let

gz =
az + b

cz + d
, jD(g, z) = cz + d, jN (g, z) = az + b.

Note that jD(g, z) coincides with the factor of automorphy for g ∈ SL2(Z) (see [6, Section
1.2]). Let

Φ(z, u, y) =
∞∑

m=0

zm

(m+ y)u

be the Lerch transcendent for z, u, y ∈ C with |z| < 1 or (z = 1 and Reu > 1), and

Re y > 0 (see [3, Section 1.11]). For y, w ∈ C, we define

ξD(u, s; y, w; g) =
1

Γ(s)

∫ ∞

0

ts−1e−wtΦ(ge
t, u, y)

jD(g, et)
dt, (1.11)

which is the main object in this paper. We construct interpolation formulas of the well-

known relations among poly-Bernoulli numbers by use of ξD(u, s; y, w; g).

In Section 2, we define the Lerch transcendent and study its properties and related

results.

In Section 3, we define (1.11) (see Definition 3.1) and determine its domain (see

Theorem 3.6). We confirm that ξ(k; s), η(k; s) and ξ(k; s;w) can be regarded as special

cases of (1.11) (see Example 3.7).

In Section 4, we give two types of functional relations among (1.11) which include

(1.10) as a special case (see Theorems 4.1 and 4.3). Combining these formulas, we give

interpolation formulas of the well-known relations including (1.3)–(1.5) (see Example

4.5).

In Section 5, we consider the analytic continuation for (1.11) (see Theorems 5.3, 5.5

and 5.6), and introduce several examples of duality relations (see Examples 5.8 and 5.9).

In Section 6, we define the poly-Bernoulli polynomials associated with GL2(C) (see
Definition 6.1). From the results in Sections 4 and 5, we give general forms of difference

relations and duality relations for them (see Theorems 6.7 and 6.9). These include (1.3)–

(1.5) and also the duality relations for poly-Bernoulli polynomials (see Example 6.10)

given by Kaneko, Sakurai and the second-named author (see [9]). Furthermore, we give

new duality relations for certain sums of C
(−k)
m (see (6.19), (6.20) and (6.21) in Example

6.11).
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2. Preliminaries.

For z, u, y ∈ C with |z| < 1 or (z = 1 and Reu > 1), and Re y > 0, the Lerch

transcendent is defined by

Φ(z, u, y) =
∞∑

n=0

zn

(y + n)u
,

which is a generalization of the polylogarithm defined by

Liu(z) =

∞∑
n=1

zn

nu
,

and is related as

zΦ(z, u, 1) = Liu(z). (2.1)

For k ∈ Z≥0, the Lerch transcendent satisfies the following.

Φ(z, u, y) = zkΦ(z, u, y + k) +
k−1∑
n=0

zn

(y + n)u
(2.2)

= z−kΦ(z, u, y − k)−
k∑

n=1

z−n

(y − n)u
. (2.3)

Lemma 2.1. For (Reu > 0 and |z| < 1) or (Reu > 1 and z = 1), and Re y > 0,

Φ(z, u, y) has the integral representation

Φ(z, u, y) =
1

Γ(u)

∫ ∞

0

xu−1e−yx 1

1− ze−x
dx.

This expression gives the analytic continuation of Φ(z, u, y) for z ∈ C\ [1,+∞), Reu > 0

and Re y > 0.

Proof. First we assume |z| < 1 or z = 1. By an integral representation of the

gamma function Γ(u) for Reu > 0, we have

1

au
=

1

Γ(u)

∫ ∞

0

e−axxu−1dx

for Re a > 0. For (Reu > 0 and |z| < 1) or (Reu > 1 and z = 1), by substituting this

into the series expression, we obtain

Φ(z, u, y) =
1

Γ(u)

∞∑
n=0

∫ ∞

0

zne−nxe−yxxu−1dx

=
1

Γ(u)

∫ ∞

0

xu−1e−yx 1

1− ze−x
dx.
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By this integral representation, Φ(z, u, y) is analytically continued for z ∈ C \ [1,+∞),

Reu > 0 and Re y > 0. □

For a variable u, we define a difference operator Du by

Duf(u) = f(u+ 1).

We also define the Euler operator

ϑz = z
∂

∂z
.

Lemma 2.2.

(D−1
u − y)Φ(z, u, y) = ϑzΦ(z, u, y).

Proof. By the series expression, we have

Φ(z, u− 1, y) =
(
y + z

∂

∂z

)
Φ(z, u, y),

which is rewritten in terms of the difference operator Du. □

Lemma 2.3. For n ∈ Z≥0,( n∏
k=1

(
1 +

1

k
ϑz

)) 1

1− ze−x
=

1

(1− ze−x)n+1
,

( n∏
k=1

(
−1 +

1

k
ϑz

)) ze−x

1− ze−x
=
( ze−x

1− ze−x

)n+1

.

Proof. Since

ϑz
1

(1− ze−x)k
=

kze−x

(1− ze−x)k+1

=
k

(1− ze−x)k+1
− k

(1− ze−x)k
,

we have (
1 +

1

k
ϑz

) 1

(1− ze−x)k
=

1

(1− ze−x)k+1
,

which yields the first equation.

Similarly

ϑz

( ze−x

1− ze−x

)k
= k

( ze−x

1− ze−x

)k+1

+ k
( ze−x

1− ze−x

)k
implies
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(
−1 +

1

k
ϑz

)( ze−x

1− ze−x

)k
=
( ze−x

1− ze−x

)k+1

and the second equation. □

Lemma 2.4. For n ∈ Z≥0,

1

n!

( n∏
k=1

(D−1
u − y + k)

)
Φ(z, u, y) =

1

Γ(u)

∫ ∞

0

xu−1e−yx 1

(1− ze−x)n+1
dx,

1

n!

( n∏
k=1

(D−1
u − y − k)

)
(Φ(z, u, y)− y−u) =

1

Γ(u)

∫ ∞

0

xu−1e−yx
( ze−x

1− ze−x

)n+1

dx.

Proof. The results follow from Lemmas 2.2 and 2.3. □

Let Ĉ = C ∪ {∞} denote the Riemann sphere. For g =
(
a b
c d

)
∈ GL2(C), we define

the Möbius transformation

gz =
az + b

cz + d

for z ∈ Ĉ. Note that it is well known that Möbius transformations are conformal and

map circular arcs to circular arcs, where circular arcs include line segments. Let

V (g) = {g1, g∞} ∩ {1,∞}

be the intersection of the extremal points of the two circular arcs g([1,+∞]) and [1,+∞].

Let

jD(g, z) = cz + d, jN (g, z) = az + b

for z ∈ C. Then for g, h ∈ GL2(C), we have

jD(gh, T ) = jD(g, hT )jD(h, T ),

jN (gh, T ) = jN (g, hT )jD(h, T ).

If two circular arcs intersect at their extremal points, we call such point a vertex.

Moreover if the vertex angle is zero, then we call the vertex a cusp.

For Z ∈ {1,∞}, we denote Z̃ = 1/Z ∈ {0, 1}. Let

Wa,ϵ,R = {z ∈ C | 0 < |z − a| < ϵ} ∪ {z ∈ R | a < z < R}

for a ≥ 0, ϵ, R > 0. We abbreviate Wa,ϵ = Wa,ϵ,+∞.

The following lemmas give certain inequalities under the assumption that the two

circular arcs g([1,+∞]) and [1,+∞] intersect each other possibly only at their extremal

points. See Figure 1 for typical configurations. These estimations play important roles

when the domains of the main objects are determined. Their proofs will be given in

Section 7.
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Figure 1. typical configurations.

Lemma 2.5. Let g =
(
a b
c d

)
∈ GL2(C) and T0, X0 ∈ {1,∞}. Assume that gT = X

for only (T,X) = (T0, X0) in its neighborhood in [1,+∞]2.

1. For 0 ≤ q ≤ 1, there exists M > 0 such that∣∣∣ 1

jD(g, T )

1

(1− (gT )X−1)

∣∣∣
≤


M

T

∣∣∣ T

T̃0T − 1

∣∣∣1−q∣∣∣ X

X̃0X − 1

∣∣∣q if the vertex is not a cusp,

M

T

∣∣∣ T

T̃0T − 1

∣∣∣2(1−q)∣∣∣ X

X̃0X − 1

∣∣∣2q if the vertex is a cusp

in a sufficiently small neighborhood of (T0, X0) in (1,+∞)2.

2. There exists ϵ > 0 such that

1

ϵ

∣∣∣X̃0X − 1

X

∣∣∣ > ∣∣∣ T̃0T − 1

T

∣∣∣ > ϵ
∣∣∣X̃0X − 1

X

∣∣∣ (2.4)

for any pair (T,X) satisfying gT = X in a sufficiently small neighborhood of

(T0, X0) in C2.

Lemma 2.6. Let g =
(
a b
c d

)
∈ GL2(C) be such that

g([1,+∞]) ∩ [1,+∞] ⊂ {g1, g∞} ∩ {1,∞} = V (g).

Let N be a neighborhood of {(T0, X0) | X0 ∈ V (g), T0 = g−1X0} in Ĉ2. Then there exist

ϵ > 0 and M > 0 such that ∣∣∣ 1

jD(g, T )

1

(1− (gT )X−1)

∣∣∣ ≤ M

|T |

for all (T,X) ∈ W 2
1,ϵ \N .

3. Arakawa–Kaneko zeta-functions associated with GL2(C).

Here and hereafter we only consider g ∈ GL2(C) which satisfies that

g([1,+∞]) ∩ [1,+∞] ⊂ {g1, g∞} ∩ {1,∞} = V (g). (3.1)
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In this section, we give the definition of generalizations of the Arakawa–Kaneko zeta-

function. The domains of the functions will be given later, which depend on the config-

uration of the three points {g0, g1, g∞} on the Riemann sphere Ĉ.

Definition 3.1. For g ∈ GL2(C) satisfying (3.1), we define the Arakawa–Kaneko

zeta-function associated with g by

ξD(u, s; y, w; g) =
1

Γ(s)

∫ ∞

0

ts−1e−wtΦ(ge
t, u, y)

jD(g, et)
dt. (3.2)

We define an auxiliary function

ξN (u, s; y, w; g) = ξD(u, s; y + 1, w; g). (3.3)

We have the following integral representation of ξN (u, s; y, w; g), which clarifies the

meaning of the subscripts “D” and “N”.

Lemma 3.2.

ξN (u, s; y, w; g) =
1

Γ(s)

∫ ∞

0

ts−1e−wt (Φ(ge
t, u, y)− y−u)

jN (g, et)
dt. (3.4)

Proof. Since

zΦ(z, u, y + 1) = Φ(z, u, y)− y−u,

we have

ξN (u, s; y, w; g) =
1

Γ(s)

∫ ∞

0

ts−1e−wt ge
tΦ(get, u, y + 1)

jN (g, et)
dt

=
1

Γ(s)

∫ ∞

0

ts−1e−wt (Φ(ge
t, u, y)− y−u)

jN (g, et)
dt. □

By the integral representation of the Lerch transcendent in Lemma 2.1, we have

double integral representations of the Arakawa–Kaneko zeta-functions.

Lemma 3.3.

ξD(u, s; y, w; g) =
1

Γ(s)Γ(u)

∫ ∞

0

∫ ∞

0

ts−1xu−1e−wte−yx

jD(g, et)

1

1− (get)e−x
dtdx, (3.5)

ξN (u, s; y, w; g) =
1

Γ(s)Γ(u)

∫ ∞

0

∫ ∞

0

ts−1xu−1e−wte−yx

jN (g, et)

(get)e−x

1− (get)e−x
dtdx. (3.6)

To determine the domain of ξD(u, s; y, w; g), we need to study when the integral

(3.5) (hence (3.6)) is convergent. Here we give a sufficient condition below. It should be

noted that generally the domain is wider and is dependent on g. To describe the domain,

we define the following constants.

Definition 3.4. Consider the two circular arcs g([1,+∞]) and [1,+∞] on the

Riemann sphere Ĉ. Then for T0, X0 ∈ {1,∞}, we fix µT0 , νX0 ≥ 0 as follows. For
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gT0 /∈ V (g) (resp. X0 /∈ V (g)), we set µT0 = 0 (resp. νX0 = 0). Further for a pair

(T0, X0) such that gT0 = X0 ∈ V (g), we set

µT0 + νX0 =

{
1 if gT0 = X0 is not a cusp,

2 if gT0 = X0 is a cusp.

Lemma 3.5. 1. There exists M > 0 such that for all (t, x) ∈ (0,+∞)2,∣∣∣ 1

jD(g, et)

1

1− (get)e−x

∣∣∣ ≤ Mt−µ1x−ν1e(µ∞−1)teν∞x(t+ 1)µ1(x+ 1)ν1 . (3.7)

2. Let Z be a neighborhood of {(log T0, logX0) | X0 ∈ V (g), T0 = g−1X0} in C2. Then

there exist M > 0 and ϵ > 0 such that for all (t, x) ∈ W 2
0,ϵ \ Z,∣∣∣ 1

jD(g, et)

1

1− (get)e−x

∣∣∣ ≤ Me−Re t. (3.8)

3. If g1 ̸= 1, then for any sufficiently large R > 0, there exist M > 0 and ϵ > 0 such

that for all (t, x) ∈ W 2
0,ϵ,R,∣∣∣ 1

jD(g, et)

1

1− (get)e−x

∣∣∣ ≤ M. (3.9)

4. If g1 = ∞, then there exists ϵ > 0 such that

|t| > ϵe−x (3.10)

for any pair (t, x) satisfying get = ex in a sufficiently small neighborhood of (0,+∞)

in C× R.

5. If g∞ = 1, then there exists ϵ > 0 such that

|x| > ϵe−t (3.11)

for any pair (t, x) satisfying get = ex in a sufficiently small neighborhood of (+∞, 0)

in R× C.

Proof. Let Z be a neighborhood of {(log T0, logX0) | X0 ∈ V (g), T0 = g−1X0}
in C2. If V (g) ̸= ∅, then for each X0 ∈ V (g), consider a sufficiently small neighborhood

N ′(X0) of (T0, X0) in (1,+∞)2 such that J ′(X0) = {(log T, logX) | (T,X) ∈ N ′(X0)} ⊂
Z. By Lemma 2.5, there exists M > 0 such that∣∣∣ 1

jD(g, et)

1

1− (get)e−x

∣∣∣ ≤ Me−t
∣∣∣ et

T̃0et − 1

∣∣∣µT0
∣∣∣ ex

X̃0ex − 1

∣∣∣νX0

for all (t, x) ∈ J ′(X0).

Let N be a sufficiently small neighborhood of {(T0, X0) | X0 ∈ V (g), T0 = g−1X0}
in Ĉ2 such that N ∩ (1,+∞)2 is contained in the union of the neighborhoods N ′(X0)



08-7501: 2017.12.26

188 Y. Komori and H. Tsumura

taken in the previous paragraph for each X0 ∈ V (g). By Lemma 2.6, there exist ϵ > 0

and M > 0 such that ∣∣∣ 1

jD(g, et)

1

1− (get)e−x

∣∣∣ ≤ Me−Re t (3.12)

for all (t, x) ∈ J , where I = W 2
1,ϵ \N and J = {(log T, logX) | (T,X) ∈ I}. Let ϵ′ > 0 be

sufficiently small such that ez ∈ W1,ϵ for all z ∈ W0,ϵ′ . This implies (3.8). In particular,

if g1 ̸= 1, then W 2
0,ϵ′,R ⊂ J for any sufficiently large R > 0. Thus (3.12) implies (3.9).

Since for all z > 0,

1 ≤
∣∣∣ ez

Z̃0ez − 1

∣∣∣ ≤


z + 1

z
(Z0 = 1),

ez (Z0 = ∞),

we have

1,
∣∣∣ et

T̃0et − 1

∣∣∣µT0 ≤ t−µ1eµ∞t(t+ 1)µ1 ,

1,
∣∣∣ ex

X̃0ex − 1

∣∣∣νX0 ≤ x−ν1eν∞x(x+ 1)ν1

and hence for all (t, x) ∈ (0,+∞)2,∣∣∣ 1

jD(g, et)

1

1− (get)e−x

∣∣∣ ≤ M ′t−µ1x−ν1e(µ∞−1)teν∞x(t+ 1)µ1(x+ 1)ν1

for some M ′ > 0, which implies (3.7).

Inequalities (3.10) and (3.11) follow from (2.4). □

Theorem 3.6. For Reu > ν1, Re s > µ1, Re y > ν∞, Rew > µ∞ − 1,

ξD(u, s; y, w; g) is defined and analytic in u, s, y, w.

Proof. By Lemma 3.5,∫ ∞

0

∫ ∞

0

∣∣∣ ts−1xu−1e−wte−yx

jD(g, et)

1

1− (get)e−x

∣∣∣dtdx
≤ M

∫ ∞

0

∫ ∞

0

tRe s−1−µ1xReu−1−ν1e(µ∞−1−Rew)t

× e(ν∞−Re y)x(t+ 1)µ1(x+ 1)ν1dtdx < ∞.

The analyticity in u, s, y, w follows from the Morera theorem and the Fubini theorem. □

Example 3.7. Let gη :=
(−1 1

0 1

)
. We can see that g−1

η = gη and det gη = −1 which

are important properties. For g = gη, we have gT = 1 − T , namely, g1 = 0, g∞ = ∞
and

g([1,+∞]) ∩ [1,+∞] = {∞} = V (g).
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Hence, by Definition 3.4, we obtain µ1 = 0 and ν1 = 0. Since ∞ is not a cusp, we

have µ∞, ν∞ ∈ [0, 1] satisfying µ∞ + ν∞ = 1. Therefore ξD(u, s; y, w; gη) is defined for

Reu > 0,Re s > 0,Re y > ν∞,Rew > µ∞ − 1, where µ∞, ν∞ ∈ [0, 1] with µ∞ + ν∞ = 1.

We see that

Liu(g e
t) = Liu(1− et), jD(g, et) = 1, jN (g, et) = 1− et.

Hence, noting (2.1) and (3.3), we define

η(u; s) = ξN (u, s; 0, 0; gη) = ξD(u, s; 1, 0; gη),

which was already considered by Yamamoto [12].

Let gξ :=
(
1 −1
1 0

)
. Then det gξ = 1. For g = gξ, we have gT = 1 − T−1, namely,

g1 = 0, g∞ = 1 and

g([1,+∞]) ∩ [1,+∞] = {1} = V (g).

Hence we obtain µ1 = 0 and ν∞ = 0. Since 1 is not a cusp, we have µ∞, ν1 ∈ [0, 1]

satisfying µ∞ + ν1 = 1. Therefore ξD(u, s; y, w; gξ) is defined for Reu > ν1,Re s >

0,Re y > 0,Rew > µ∞ − 1, where µ∞, ν1 ∈ [0, 1] with µ∞ + ν1 = 1. We have

Liu(g e
t) = Liu(1− e−t), jD(g, et) = et, jN (g, et) = et − 1.

Hence, noting (2.1) and (3.3), we define

ξ(u; s;w) = ξN (u, s; 0, w − 1; gξ) = ξD(u, s; 1, w − 1; gξ)

and, in particular,

ξ(u; s) = ξN (u, s; 0, 0; gξ) = ξD(u, s; 1, 0; gξ),

which is a generalization of (1.6).

4. Relations among Arakawa–Kaneko zeta-functions.

In this section, we give two types of functional relation formulas for ξD and ξN (see

Theorems 4.1 and 4.3). We will see that these give functional relations which interpolate

the well-known relations among poly-Bernoulli numbers in Section 6.

For g =
(
a b
c d

)
, we put jN (g,Du) = aDu + b for the difference operator Du and so

on.

Theorem 4.1 (Difference relations). For g =
(
a b
c d

)
, we have

jN (g,D−1
w )ξN (u, s; y, w; g) = jD(g,D−1

w )ξD(u, s; y, w; g)− y−uw−s, (4.1)

namely,
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aξN (u, s; y, w − 1; g) + bξN (u, s; y, w; g)(
=aξD(u, s; y + 1, w − 1; g) + bξD(u, s; y + 1, w; g)

)
= cξD(u, s; y, w − 1; g) + dξD(u, s; y, w; g)− y−uw−s.

Proof. The assertion follows from the integral representations (3.2) and (3.4)

with

aT + b

jN (g, T )
− cT + d

jD(g, T )
= 1− 1 = 0

and

1

Γ(s)

∫ ∞

0

ts−1e−wty−udt = y−uw−s. □

For g ∈ GL2(C) and indeterminates X,T , we define

FD =
1

1− (gT )X−1
, GD =

1

1− (g−1X)T−1
,

FN =
(gT )X−1

1− (gT )X−1
, GN =

(g−1X)T−1

1− (g−1X)T−1
.

From Lemma 3.3, we see that these come from the integrands of the double integral

representations. We have the key relations, which are the core of duality relations.

Lemma 4.2.

T

jD(g, T )
FD = − 1

det g

X

jD(g−1, X)
GD,

1

jN (g, T )
FN = − 1

det g

1

jN (g−1, X)
GN ,

1

jD(g, T )
FD = − 1

det g

X

jN (g−1, X)
GN .

Proof. The first equation follows from

FD =
1

1− (gT )X−1

=
jD(g, T )X

(cX − a)T − (−dX + b)

= − jD(g, T )T−1

1− (g−1X)T−1

X

−cX + a

= − 1

det g

jD(g, T )T−1

1− (g−1X)T−1

X

jD(g−1, X)

= − 1

det g

jD(g, T )T−1X

jD(g−1, X)
GD,

and the third, from
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FD = − 1

det g

jD(g, T )T−1X

jD(g−1, X)

jD(g−1, X)

jN (g−1, X)T−1
GN

= − 1

det g

jD(g, T )X

jN (g−1, X)
GN ,

and finally the second, from

FN =
jN (g, T )X−1

jD(g, T )
FD

= − 1

det g

jN (g, T )X−1

jD(g, T )

jD(g, T )X

jN (g−1, X)
GN

= − 1

det g

jN (g, T )

jN (g−1, X)
GN . □

There are three types of duality relations, namely, ascending-ascending, descending-

descending, and ascending-descending types.

Theorem 4.3 (Duality relations). For n ∈ Z≥0,

jD(g−1, D−1
y )nD−n−1

w

( n∏
k=1

(D−1
u − y + k)

)
ξD(u, s; y, w; g)

=
( −1

det g

)n+1

jD(g,D−1
w )nD−n−1

y

( n∏
k=1

(D−1
s − w + k)

)
ξD(s, u;w, y; g−1), (4.2)

jN (g−1, D−1
y )n

( n∏
k=1

(D−1
u − y − k)

)
ξN (u, s; y, w; g)

=
( −1

det g

)n+1

jN (g,D−1
w )n

( n∏
k=1

(D−1
s − w − k)

)
ξN (s, u;w, y; g−1) (4.3)

and

jN (g−1, D−1
y )n

( n∏
k=1

(D−1
u − y + k)

)
ξD(u, s; y, w; g)

=
( −1

det g

)n+1

jD(g,D−1
w )nD−n−1

y

( n∏
k=1

(D−1
s − w − k)

)
ξN (s, u;w, y; g−1). (4.4)

Proof. From Lemmas 2.3, 2.4 and 3.2, we have

1

n!

( n∏
k=1

(D−1
u − y + k)

)
ξD(u, s; y, w; g)

=
1

Γ(s)Γ(u)

∫ ∞

0

∫ ∞

0

ts−1xu−1e−wte−yx

jD(g, et)

1

(1− (get)e−x)n+1
dtdx,
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and

1

n!

( n∏
k=1

(D−1
u − y − k)

)
ξN (u, s; y, w; g)

=
1

Γ(s)Γ(u)

∫ ∞

0

∫ ∞

0

ts−1xu−1e−wte−yx

jN (g, et)

( (get)e−x

1− (get)e−x

)n+1

dtdx.

Lemma 4.2 implies

jD(g−1, X)n
Tn+1

jD(g, T )
Fn+1
D =

( −1

det g

)n+1

jD(g, T )n
Xn+1

jD(g−1, X)
Gn+1

D ,

jN (g−1, X)n
1

jN (g, T )
Fn+1
N =

( −1

det g

)n+1

jN (g, T )n
1

jN (g−1, X)
Gn+1

N ,

jN (g−1, X)n
1

jD(g, T )
Fn+1
D =

( −1

det g

)n+1

jD(g, T )n
Xn+1

jN (g−1, X)
Gn+1

N .

By noting that

jD(g−1, D−1
y )nD−n−1

w (ts−1xu−1e−wte−yx) = jD(g−1, ex)ne(n+1)t(ts−1xu−1e−wte−yx)

and so on, we obtain the result. □

The n = 0 case reduces to the following.

Corollary 4.4.

ξD(u, s; y, w − 1; g) = − 1

det g
ξD(s, u;w, y − 1; g−1), (4.5)

ξN (u, s; y, w; g) = − 1

det g
ξN (s, u;w, y; g−1), (4.6)

ξD(u, s; y, w; g) = − 1

det g
ξN (s, u;w, y − 1; g−1), (4.7)

which are essentially the same formulas.

Example 4.5. As for η(u; s) = ξD(u, s; 1, 0; gη) defined in Example 3.7, noting

g−1
η = gη, we see that (4.5) (resp. (4.6) and (4.7)) with (y, w) = (1, 1) (resp. (0, 0) and

(1, 0)) implies Yamamoto’s result η(u; s) = η(s;u) in (1.10), which interpolates (1.3) (for

the values of η(u; s) at nonpositive integers, see (6.4)). We will further introduce several

duality relations for ξD(u, s; y, w; g) in Section 5 (see Examples 5.8 and 5.9).

Remark 4.6. ξ(u, s; y, w; g) can be slightly generalized with two elements g, h ∈
GL2(C) and two appropriate paths I, J which start at 0 and go to +∞ as

ξ(u, s; y, w;h, g; I, J) =
1

Γ(s)Γ(u)

∫
J

dt

∫
I

dx
ts−1xu−1e−wte−yx

jD(g, et)jD(h, ex)

1

hex − get
.
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Since variables are treated completely symmetrically, it is easy to see that the trivial

symmetry

ξ(u, s; y, w;h, g; I, J) = −ξ(s, u;w, y; g, h; J, I)

holds. Moreover we can show that

ξ(u, s; y − 1, w;h, g; (0,+∞), (0,+∞)) =
1

deth
ξD(u, s; y, w;h−1g),

which implies (4.5).

From the above we see that the pair (g, h) does not give rise to a generalization,

while two paths I, J are essential because by this modification, it is possible to avoid

cusps and to define ξD for any element g ∈ GL2(C) without the restriction (3.1).

5. Analytic continuation.

We give integral representations with Hankel contours to enlarge the domain of

ξD(u, s; y, w; g). In the following, Hϵ,R denotes the Hankel contour, which consists of a

path from R to ϵ on the real axis, around the origin counter clockwise with radius ϵ,

and back to R, where R ∈ (0,+∞] and ϵ is an arbitrarily small positive number. We

abbreviate H = Hϵ,+∞.

In the following proofs, since the analyticities follow from the Morera theorem and

the Fubini theorem, we omit them.

Lemma 5.1. Let k ∈ Z≥0. Then Φ(z, u, y) has the integral representation

Φ(z, u, y) =
1

Γ(u)(e2πiu − 1)

∫
H

xu−1e−(y+k)x zk

1− ze−x
dx+

k−1∑
n=0

zn

(y + n)u
.

This expression gives the analytic continuation of Φ(z, u, y) and is valid for z ∈
C \ [1,+∞) or z = 1, u ∈ C and y ∈ C \ (−∞, 0] with Re y > −k except for appropriate

branch cuts. Therefore Φ(z, u, y) is analytically continued in z ∈ C \ [1,+∞) or z = 1,

u ∈ C and y ∈ C \ (−∞, 0] except for appropriate branch cuts.

Proof. By (2.2) and Lemma 2.1, we have

Φ(z, u, y) =
1

Γ(u)

∫ ∞

0

xu−1e−(y+k)x zk

1− ze−x
dx+

k−1∑
n=0

zn

(y + n)u
,

which gives the integral representation with the Hankel contour. □

We study integral representations of ξD(u, s; y, w; g) with Hankel contours by con-

sidering slightly general forms given in Lemma 3.3, namely, for k ∈ Z≥0,
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ξD(u, s; y, w; g) =
1

Γ(s)Γ(u)

∫ ∞

0

∫ ∞

0

ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x
dtdx

+
1

Γ(s)

k−1∑
n=0

1

(y + n)u

∫ ∞

0

ts−1e−wt (get)n

jD(g, et)
dt,

by (2.3) and (3.2). We denote the first term and the second term by ξ1,k(u, s; y, w; g)

and ξ2,k(u, s; y, w; g) respectively so that

ξD(u, s; y, w; g) = ξ1,k(u, s; y, w; g) + ξ2,k(u, s; y, w; g).

First we give the explicit form of ξ2,k(u, s; y, w; g), which gives its analytic continu-

ation.

Lemma 5.2. Let k ∈ Z≥0.

ξ2,k(u, s; y, w; g) =
k−1∑
n=0

1

(y + n)u
jN (g,D−1

w )n

×



1

dn+1

1

ws
(g∞ = ∞),

1

cn+1

1

(w + n+ 1)s
(g0 = ∞),

1

cn+1

1

n!
Dn+1

w

( n∏
j=1

(D−1
s − w + j)

)
Φ(−d/c, s, w) (otherwise),

(5.1)

which gives the analytic continuation to the whole space in u, s, y, w except for appropriate

branch cuts.

Proof. If g∞ = ∞, then c = 0 and∫ ∞

0

ts−1e−wt (get)n

jD(g, et)
dt =

1

dn+1
jN (g,D−1

w )n
∫ ∞

0

ts−1e−wtdt

=
Γ(s)

dn+1
jN (g,D−1

w )n
1

ws
,

which implies (5.1) in this case. If g0 = ∞, then d = 0 and∫ ∞

0

ts−1e−wt (get)n

jD(g, et)
dt =

1

cn+1
jN (g,D−1

w )n
∫ ∞

0

ts−1e−(w+n+1)tdt

=
Γ(s)

cn+1
jN (g,D−1

w )n
1

(w + n+ 1)s
,

which implies (5.1) in this case. If g0, g∞ ≠ ∞, then c, d ̸= 0 and
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0

ts−1e−wt (get)n

jD(g, et)
dt =

1

cn+1
jN (g,D−1

w )nDn+1
w

∫ ∞

0

ts−1e−wt 1

(1− (−d/c)e−t)n+1
dt

=
Γ(s)

cn+1
jN (g,D−1

w )nDn+1
w

1

n!

( n∏
j=1

(D−1
s − w + j)

)
Φ(−d/c, s, w),

by Lemma 2.4. If −d/c = T with 1 < T < ∞, then cT + d = 0, which implies

{∞} ∈ g((1,+∞)) and contradicts to the assumption (3.1) and hence −d/c ∈ C\(1,+∞).

Hence we obtain (5.1) in this case. □

Theorem 5.3. Let k ∈ Z≥0. Assume g1 ̸= 1. Then we have

ξD(u, s; y, w; g)

=
1

Γ(s)Γ(u)(e2πis − 1)(e2πiu − 1)

∫
Hϵ,1

dx

∫
Hϵ,1

dt
ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x

+
1

Γ(s)Γ(u)(e2πis − 1)

∫ ∞

1

dx

∫
Hϵe−x

,1

dt
ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x

+
1

Γ(s)Γ(u)(e2πiu − 1)

∫ ∞

1

dt

∫
Hϵe−t

,1

dx
ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x

+
1

Γ(s)Γ(u)

∫ ∞

1

dt

∫ ∞

1

dx
ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x

+ ξ2,k(u, s; y, w; g),

(5.2)

which, except for the branch cuts due to ξ2,k(u, s; y, w; g), gives the analytic continuation

for u, s ∈ C, Re y > ν∞ − k, Rew > µ∞ − 1 + k(δg∞,∞ − δg∞,0), and the continuous

extension for Re y = ν∞−k when Reu < 0 and Rew = µ∞−1+k(δg∞,∞− δg∞,0) when

Re s < 0.

Proof. There exists M > 0 such that for all sufficiently large t > R′,

|get| ≤


Me−t (g∞ = 0),

Met (g∞ = ∞),

M (otherwise)

= Me(δg∞,∞−δg∞,0)t

and for all sufficiently small |t| < ϵ′

|get| ≤


M |t| (g1 = 0),

M |t|−1 (g1 = ∞),

M (otherwise)

= M |t|(δg1,0−δg1,∞).

Assume g1 ̸= 1. By Lemma 3.5,
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∣∣∣ ts−1xu−1e−wte−yx

jD(g, et)

1

1− (get)e−x

∣∣∣
≤ M ′

{
e(µ∞−1−Rew)te(ν∞−Re y)x ((t, x) ∈ (ϵ′,+∞)2),

|t|Re s−1|x|Reu−1 ((t, x) ∈ W 2
0,ϵ′,R′).

Thus for Reu > ν1,Re s > µ1 + k(δg1,∞ − δg1,0),Re y > ν∞ − k,Rew > µ∞ − 1 +

k(δg∞,∞ − δg∞,0), we see that∫ ∞

ϵ′

∫ ∞

ϵ′

ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x
dtdx

and∫ R′

0

∫ R′

0

ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x
dtdx

=
1

(e2πis − 1)(e2πiu − 1)

∫
Hϵ,R′

∫
Hϵ,R′

ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x
dtdx

are integrable. Let

A =

∫ ∞

R′
dx

∫ ϵ′

0

dt
ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x
.

If g1 = ∞, then by (3.10), the denominator does not vanish for ϵe−x ≥ |t|. Hence

A =
1

e2πis − 1

∫ ∞

R′
dx

∫
Hϵe−x,ϵ′

dt
ts−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x
. (5.3)

If g1 ̸= ∞, then it is easier to see that the denominator does not vanish in the same

region as the above, and (5.3) holds.

In the region (0, ϵ′) × (R′,∞), the same argument works well and we have the

assertion by rearranging the regions. □

Remark 5.4. For k ∈ Z<0, we have similar results as in Lemma 5.2 and Theorem

5.3 by use of (2.3), though we omit the detail.

In the case k = 0, we obtain the following theorem.

Theorem 5.5. If g1 /∈ {1,∞}, then we have

ξD(u, s; y, w; g) =
1

Γ(s)Γ(u)(e2πis − 1)

∫
H

dt

∫ ∞

0

dx
ts−1xu−1e−wte−yx

jD(g, et)

1

1− (get)e−x
,

which gives the analytic continuation for Reu > ν1, s ∈ C, Re y > ν∞, Rew > µ∞ − 1,

and the continuous extension for Rew = µ∞ − 1 when Re s < 0.

Proof. If g1 /∈ {1,∞}, then in the proof of Theorem 5.3, the radius of the Hankel

contours can be taken uniformly in t while x ∈ (0,+∞). Thus patching contours, we
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have the assertion. □

When u, s or both are nonpositive integers, further analytic continuation is possible,

which leads us to generalizations of the poly-Bernoulli polynomials.

Theorem 5.6. Assume g1 ̸= 1. For s = −m ∈ Z≤0, ξD(u, s; y, w; g) is analytically

continued to u, y, w ∈ C except for appropriate branch cuts and we have the integral

representation

ξD(u,−m; y, w; g)

=
(−1)mm!

2πi

1

Γ(u)(e2πiu − 1)

∫
H

dx

∫
|t|=ϵe−Re x

dt
t−m−1xu−1e−wte−(y+k)x

jD(g, et)

(get)k

1− (get)e−x

+ ξ2,k(u,−m; y, w; g).

(5.4)

For u = −m ∈ Z≤0, ξD(u, s; y, w; g) is analytically continued to s, y, w ∈ C except

for appropriate branch cuts.

Proof. If s = −m ∈ Z≤0, then by Theorem 5.3, we see that the Hankel contour

in the first and the second terms of (5.2) with respect to t reduces to a small circle around

the origin and that the third and the fourth terms vanish. Thus we obtain the integral

representation. The integral converges for any w ∈ C. Since the analytic continuation is

valid for Re y > ν∞ − k with arbitrary k ∈ Z≥0, we have the first assertion.

The second assertion follows from Corollary 4.4. □

Example 5.7. For g = gη, gξ in Example 3.7, we see that g1 ̸= 1. Hence, by

Theorem 5.3, we see that ξD(u, s; y, w; gη) is analytic for u, s ∈ C, Re y > ν∞ and Rew >

µ∞ − 1 with µ∞ + ν∞ = 1. In the case when (y, w) = (1, 0), η(u; s) = ξD(u, s; 1, 0; gη) is

analytic for u, s ∈ C. Furthermore, when (y, w) = (1,−1), we can define

ξ̃(u; s) = ξN (u, s; 0,−1; gη) = ξD(u, s; 1,−1; gη)

for u, s ∈ C with Reu < 0 and Re s < 0. In particular when u = −k ∈ Z≤0, by Theorem

5.6, we see that ξ̃(−k; s) can be analytically continued to s ∈ C, which was already

considered in [10, Section 4].

Also ξD(u, s; y, w; gξ) is analytic for u, s ∈ C, Re y > 0 and Rew > −1. In particular,

ξ(u; s) = ξD(u, s; 1, 0; gξ) is analytic for u, s ∈ C.

Example 5.8. Consider ξ̃(u; s) = ξD(u, s; 1,−1; gη). By (4.2) with (n, y, w, g) =

(1, 1, 1, gη), we obtain

ξ̃(u− 1; s) = ξ̃(s− 1;u), (5.5)

which interpolates (1.4) (see Example 6.3). Note that from (4.7) with (y, w) = (0, 0), we

have
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ξD(u, s; 0, 0; gη) = ξN (s, u; 0,−1; gη) = ξD(s, u; 1,−1; gη).

Therefore it follows from (5.5) that

ξD(u, s; 0, 0; gη) = ξD(u− 1, s+ 1; 1,−1; gη) = ξ̃(u− 1; s+ 1). (5.6)

Let g = gξ and ξ(u; s) := ξD(u, s; 1, 0; gξ) in Example 3.7. Since g−1
ξ =

(
0 1
−1 1

)
, we

have g−1
ξ T = 1/(1−T ) which satisfies (3.1). Let h = g−1

ξ . Then hT = 1/(1−T ), namely,

h1 = ∞, h∞ = 0 and

h([1,+∞]) ∩ [1,+∞] = {∞} = V (h).

Hence we obtain µ∞ = 0 and ν1 = 0. Therefore, noting (4.5) with (y, w, g) = (0, 0, gξ),

we can define

ξ̌(u; s) : = ξD(u, s; 0,−1; g−1
ξ ) = −ξD(s, u; 0,−1; gξ) (5.7)

for Reu < 0 and Re s < 0. Setting (n, y, w, g) = (1, 1, 0, gξ) in (4.4) and noting (3.3), we

obtain

ξD(u− 1, s; 1, 0; gξ) = ξD(s− 1, u; 0,−1; g−1
ξ ).

Therefore we see from (5.7) that

ξ(u− 1; s) = ξ̌(s− 1;u), (5.8)

which also interpolates (1.4) (see Example 6.6). The symbol ξ̌ is derived from this fact.

From this relation, ξ̌(s;u) is analytic for u, s ∈ C.

Example 5.9. From (4.2) with n = 1, we obtain

jD(g−1, D−1
y )D−2

w (D−1
u − y + 1)ξD(u, s; y, w; g)

=
(
− 1

det g

)2
jD(g,D−1

w )D−2
y (D−1

s − w + 1)ξD(s, u;w, y; g−1).

Substituting (4.7) into the right-hand side and noting jD(g,D−1
w )w = wjD(g,D−1

w ) −
cD−1

w , we have

jD(g−1, D−1
y )D−2

w (D−1
u − y + 1)ξD(u, s; y, w; g)

=
(
− 1

det g

)2
(− det g)jD(g,D−1

w )D−2
y (D−1

s − w + 1)ξD(u, s; y + 1, w − 1; g)

= − 1

det g
D−2

y ((D−1
s − w + 1)jD(g,D−1

w ) + cD−1
w )ξD(u, s; y + 1, w − 1; g)

= − 1

det g
D−2

y (D−1
s − w + 1)jD(g,D−1

w )ξD(u, s; y + 1, w − 1; g)

− 1

det g
cD−2

y D−1
w ξD(u, s; y + 1, w − 1; g).

(5.9)
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Moreover, substituting (4.1) into the right-hand side of (5.9), we obtain

jD(g−1, D−1
y )D−2

w (D−1
u − y + 1)ξD(u, s; y, w; g)

= − 1

det g
D−2

y (D−1
s −w+1)(jN (g,D−1

w )ξD(u, s; y+2, w−1; g)+(y+1)−u(w−1)−s)

− 1

det g
cD−2

y D−1
w ξD(u, s; y+1, w−1; g).

In particular, setting (y, w, gη) = (1, 1, gη), we obtain

ξD(u− 1, s; 1,−1; gη) = ξD(u, s− 1; 1, 0; gη)− ξD(u, s− 1; 1,−1; gη),

namely,

η(u; s− 1) = ξ̃(u; s− 1) + ξ̃(u− 1; s). (5.10)

This can be regarded as an interpolation formula of (1.5) (see Example 6.8).

Remark 5.10. If g1 = 1, then the analytic properties of ξD(u, s; y, w; g) in u, s

drastically change because the two paths of the integral can not be replaced by the Hankel

contours due to the singularities of the integrand near the origin in t, x. In this case, by

use of the technique employed in the case of multiple zeta functions (see [11]), we see

that ξD(u, s; y, w; g) has possible singularities on the hyperplanes s+ u ∈ Z.

6. Poly-Bernoulli polynomials associated with GL2(C).

In this section, let g ∈ GL2(C) satisfying (3.1) and g1 ̸= 1. We generalize the

poly-Bernoulli polynomials from the result in Theorem 5.6.

Definition 6.1. For u, y, w ∈ C except for appropriate branch cuts, we define the

poly-Bernoulli polynomials {B(u)
m (y, w; g)} associated with g by

B(u)
m (y, w; g) = ξD(u,−m; y, w; g) (m ∈ Z≥0). (6.1)

In particular when g1 ̸= ∞, it follows from Lemma 2.1 and Theorem 5.5 that

ξD(u, s; y, w; g) =
1

Γ(s)(e2πis − 1)

∫
H

ts−1e−wtΦ(ge
t, u, y)

jD(g, et)
dt

for Reu > ν1, s ∈ C, Re y > ν∞ and Rew > µ∞ − 1. Let s → −m ∈ Z≤0. Then we

obtain the following result.

Theorem 6.2. If g1 ̸= ∞, then

ewtΦ(ge
−t, u, y)

jD(g, e−t)
=

∞∑
m=0

B(u)
m (y, w; g)

tm

m!
(6.2)

for u, y, w ∈ C except for appropriate branch cuts. B(u)
m (y, w; g) is a polynomial in w.
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Example 6.3. We consider the poly-Bernoulli polynomials defined by

e−wtLiu(1− e−t)

1− e−t
=

∞∑
m=0

B(u)
m (w)

tm

m!
(u ∈ C) (6.3)

(see Coppo–Candelpergher [5] in the case u ∈ Z). We define B
(u)
m := B

(u)
m (0) and

C
(u)
m := B

(u)
m (1) which are generalizations of (1.1) and (1.2). Furthermore, we have

B
(1)
m (w) = Bm(1−w) = (−1)mBm(w), where Bm(w) is the classical Bernoulli polynomial.

From Example 3.7, for g = gη =
(−1 1

0 1

)
, we see that the left-hand side of (6.2) is equal

to that of (6.3) with replacing −w by w and y by 1. Hence we have B(u)
m (1, w; gη) =

B
(u)
m (−w). Note that B(k)

m (1, w; gη) (k ∈ Z) coincides with the poly-Bernoulli polynomial

defined by Bayad and Hamahata in [4]. We emphasize that

η(u;−m) = ξD(u,−m; 1, 0; gη) = B(u)
m (1, 0; gη) = B(u)

m ,

ξ̃(u;−m) = ξD(u,−m; 1,−1; gη) = B(u)
m (1,−1; gη) = C(u)

m

(6.4)

for m ∈ Z≥0. Hence, from (5.5), we obtain (1.4). Further, from (5.6), we obtain

B(u)
m (0, 0; gη) = B(u−1)

m−1 (1,−1; gη) = C
(u−1)
m−1 (m ∈ Z≥1). (6.5)

Therefore it follows from (6.2) with (y, w, g) = (0, 0, gη) that

Φ(1− e−t, u, 0) = Liu(1− e−t) =
∞∑

m=1

C
(u−1)
m−1

tm

m!
. (6.6)

Combining (5.4) with k = 0 and (6.1), we obtain the following.

Theorem 6.4. For y, w ∈ C,

ewteyx

jD(g, e−t)

1

1− (ge−t)ex
=

∞∑
k=0

∞∑
l=0

B(−l)
k (y, w; g)

tkxl

k!l!
.

B(−l)
k (y, w; g) is a polynomial in y and w.

ξD(u, s; y, w; g) or B(u)
m (y, w; g) satisfies simple transformation formulas for g = hf

with a general h ∈ GL2(C) and a special f ∈ GL2(C).

Theorem 6.5. Let h ∈ GL2(C) and α ∈ C \ {0}.

1. For f = ( α 0
0 α ),

ξD(u, s; y, w;hf) =
1

α
ξD(u, s; y, w;h).

2. For f = ( 0 1
1 0 ), which corresponds to the inversion T 7→ 1/T ,

B(u)
m (y, w;hf) = (−1)mB(u)

m (y,−w − 1;h). (6.7)
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Proof. The first statement follows directly from the definition. We show the

second statement.

B(u)
m (y, w;hf)

= ξD(u,−m; y, w;hf)

=
(−1)mm!

2πi

1

Γ(u)(e2πiu − 1)

∫
H

dx

∫
|t|=ϵe−Re x

dt
t−m−1xu−1e−wte−yx

jD(hf, et)

1

1− (hfet)e−x

=
(−1)mm!

2πi

1

Γ(u)(e2πiu − 1)

∫
H

dx

∫
|t|=ϵe−Re x

dt
t−m−1xu−1e−wte−yx

jD(h, e−t)jD(f, et)

1

1− (he−t)e−x

=
(−1)mm!

2πi

1

Γ(u)(e2πiu − 1)

∫
H

dx

∫
|t|=ϵe−Re x

dt
t−m−1xu−1e−(w+1)te−yx

jD(h, e−t)

1

1− (he−t)e−x

= (−1)m+1−1 (−1)mm!

2πi

1

Γ(u)(e2πiu − 1)

×
∫
H

dx

∫
|v|=ϵe−Re x

dv
v−m−1xu−1e(w+1)ve−yx

jD(h, ev)

1

1− (hev)e−x

= (−1)mB(u)
m (y,−w − 1;h),

where we changed variables as v = −t. □

Example 6.6. Consider gη and gξ in Example 3.7. Since gξ = gηf for f = ( 0 1
1 0 ),

we have from (6.7) that

B(u)
m (y, w; gξ) = (−1)mB(u)

m (y,−w − 1; gη).

Therefore, from (6.4), we obtain

ξ(u;−m) = B(u)
m (1, 0; gξ) = (−1)mB(u)

m (1,−1; gη) = (−1)mC(u)
m (6.8)

for m ∈ Z≥0, which includes (1.7). Hence, by (5.8) and (1.4), we obtain

ξ̌(−l;−m) = ξ(−m− 1;−l + 1) = (−1)l−1C
(−m−1)
l−1 = (−1)l−1C(−l)

m (6.9)

for l ∈ Z≥1 and m ∈ Z≥0. It follows from (6.8) and (6.9) that (5.8) is an interpolation

formula of (1.4).

Theorem 6.7 (Difference relations). For g =
(
a b
c d

)
,

aB(u)
m (y + 1, w − 1; g) + bB(u)

m (y + 1, w; g)

= cB(u)
m (y, w − 1; g) + dB(u)

m (y, w; g)− y−uwm (6.10)

holds for u, y, w ∈ C except for appropriate branch cuts.

Proof. Letting s = −m ∈ Z≤0 in Theorem 4.1 and using Theorem 6.2, we obtain

the assertion. □
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Example 6.8. It follows from (6.4) and (6.5) that (6.10) with (y, w, g) = (0, 0, gη)

gives

B(u)
m = C(u)

m + C
(u−1)
m−1 (6.11)

(see [2, Section 3] with u ∈ Z). It is to be noted that (5.10) with s = −m + 1 implies

(6.11).

Next we prove the duality relations for poly-Bernoulli polynomials associated with

g which include ordinary duality relations (1.3) and (1.4). Let
[
n
m

]
(n,m ∈ Z≥0) be the

Stirling numbers of the first kind defined by[
0

0

]
= 1,

[
0

m

]
= 0 (m ≥ 1),

n−1∏
j=0

(X + j) =
n∑

m=0

[
n

m

]
Xm (n ≥ 1).

Note that

n−1∏
j=0

(X − j) =

n∑
m=0

(−1)n+m

[
n

m

]
Xm (n ≥ 1).

Theorem 6.9 (Duality relations). Let g =
(
a b
c d

)
. For k,m, n ∈ Z≥0 and y, w ∈ C,

n∑
τ=0

(
n

τ

)
(−c)τan−τ

n∑
j=0

[
n

j

] j∑
σ=0

(
j

σ

)
(τ−y+1)j−σB(−k−σ)

m (y−τ, w−n−1; g) (6.12)

=
(−1)n+1

det g

n∑
τ=0

(
n

τ

)
cτdn−τ

n∑
j=0

[
n

j

] j∑
σ=0

(
j

σ

)
(τ−w+1)j−σB(−m−σ)

k (w−τ, y−n−1; g−1),

n∑
τ=0

(
n

τ

)
dτ (−b)n−τ

n∑
j=0

(−1)j
[
n

j

] j∑
σ=0

(
j

σ

)
(τ−y−1)j−σB(−k−σ)

m (y+1−τ, w; g) (6.13)

=
(−1)n+1

det g

n∑
τ=0

(
n

τ

)
aτ bn−τ

n∑
j=0

(−1)j
[
n

j

] j∑
σ=0

(
j

σ

)
(τ − w − 1)

j−σ

× B(−m−σ)
k (w + 1− τ, y; g−1),

n∑
τ=0

(
n

τ

)
dτ (−b)n−τ

n∑
j=0

[
n

j

] j∑
σ=0

(
j

σ

)
(τ − y + 1)j−σB(−k−σ)

m (y − τ, w; g) (6.14)

=
(−1)

det g

n∑
τ=0

(
n

τ

)
cτdn−τ

n∑
j=0

(−1)j
[
n

j

] j∑
σ=0

(
j

σ

)
(τ − 1− w)j−σ

× B(−m−σ)
k (w + 1− τ, y − n− 1; g−1).

In particular when n = 0,

B(−m)
k (y, w − 1; g) = − 1

det g
B(−k)
m (w, y − 1; g−1). (6.15)
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Proof. First we assume that Rew and Re y are sufficiently large. By (4.2), we

obtain

n∑
τ=0

(
n

τ

)
(−c)τan−τ

n∑
j=0

[
n

j

] j∑
σ=0

(
j

σ

)
(1− y + τ)j−σξD(u− σ, s; y − τ, w − n− 1; g)

=
(−1)n+1

det g

n∑
τ=0

(
n

τ

)
cτdn−τ

n∑
j=0

[
n

j

] j∑
σ=0

(
j

σ

)
(1−w+τ)j−σξD(s−σ, u;w−τ, y−n−1; g−1).

It is noted that, for example, D−1
y and D−1

u are commutative and D−τ
y (D−1

u − y + k) =

(D−1
u −(y−τ)+k)D−τ

y . Letting (u, s) = (−k,−m), we obtain from (6.1) that (6.12) holds

for y, w ∈ C if Re y and Rew are sufficiently large. Since B(−k)
m (y, w; g) is a polynomial

in y, w, we see that (6.12) holds for all y, w ∈ C. Similar argument works well for (6.13)

and (6.14) by considering (4.3) and (4.4), respectively. When n = 0, each equation gives

(6.15). This completes the proof. □

Example 6.10. Let (y, w, g) = (1, 1, gη) in (6.12). Then, from Example 6.3, we

obtain

n∑
j=0

[
n

j

]
B(−k−j)

m (n) =
n∑

j=0

[
n

j

]
B

(−m−j)
k (n),

which was given by Kaneko, Sakurai and the second-named author (see [9]). In particular

when n = 0 and 1, we obtain (1.3) and (1.4). Hence we can regard (4.2)–(4.4) in

Theorem 4.3 as interpolation formulas of the duality relations (1.3) and (1.4) and their

generalizations. Therefore we can give more general examples. For α ∈ C, let g = gα =(−1 α
0 1

)
. Suppose Reα < 2 and let (y, w) = (1, 1) in (6.2). Then g1 = α − 1 ̸∈ {1,∞}

and

ewtLiu(α− et)

α− et
=

∞∑
m=0

B(u)
m (1, w; gα)

tm

m!
. (6.16)

We have det gα = −1 and g−1
α = gα. By (6.12) with gα, we have

n∑
j=0

[
n

j

]
B(−k−j)
m (1,−n; gα) =

n∑
j=0

[
n

j

]
B(−m−j)
k (1,−n; gα). (6.17)

Note that (6.17) holds for α ∈ C \ {2}. In fact, B(−k)
m (1,−n; gα) is a rational function in

α and continuous for α ∈ C \ {2}, because the left-hand side of (6.16) is analytic around

t = 0 when α ∈ C \ {2}. In particular,

B(−k)
m (1, 0; gα) = B(−m)

k (1, 0; gα).

For example, when α = 3, −2 and
√
−1, then we can check that

B(−3)
2 (1, 0; g3) = B(−2)

3 (1, 0; g3) = 242,
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B(−3)
2 (1, 0; g−2) = B(−2)

3 (1, 0; g−2) = − 1

512
,

B(−3)
2 (1, 0; g√−1) = B(−2)

3 (1, 0; g√−1) = − 4

125
− 22

125

√
−1.

Example 6.11. By (6.15) with (y, w, g) = (−l,−l, gη) for l ∈ Z≥0, we have

B(−m)
k (−l,−l − 1; gη) = B(−k)

m (−l,−l − 1; gη) (k,m ∈ Z≥0). (6.18)

Since

Φ(z,−k,−l) =
∞∑

n=0

zn(n− l)k =
l−1∑
i=0

zi(i− l)k + zlLi−k(z),

we obtain from (6.6) that

e−(l+1)tΦ(1− e−t,−k,−l) =
l−1∑
i=0

(i− l)k
i∑

j=0

(
i

j

)
(−1)je−(l+j+1)t

+

l∑
j=0

(−1)je−(l+j+1)t
∞∑

n=1

C
(−k−1)
n−1

tn

n!
.

Hence, by (6.2), we have

B(−k)
m (−l,−l − 1; gη) = (−1)m

l−1∑
i=0

(i− l)k
i∑

j=0

(
i

j

)
(−1)j(l + j + 1)m

+
m∑
i=1

(
m

i

) l∑
j=0

(−1)j(−l − j − 1)m−iC
(−k−1)
i−1 .

Therefore, for example, (6.18) in the cases l = 0, 1 give new duality relations

m∑
i=1

(
m

i

)
(−1)m−iC

(−k−1)
i−1 =

k∑
i=1

(
k

i

)
(−1)k−iC

(−m−1)
i−1 , (6.19)

(−1)k+m2m +
m∑
i=1

(
m

i

){
(−2)m−i − (−3)m−i

}
C

(−k−1)
i−1 (6.20)

= (−1)k+m2k +

k∑
i=1

(
k

i

){
(−2)k−i − (−3)k−i

}
C

(−m−1)
i−1

for k,m ∈ Z≥1.

By (6.15) with (y, w, g) = (−l, l + 1, gη) for l ∈ Z≥0, we obtain

B(−m)
k (−l, l; gη) = B(−k)

m (l + 1,−l − 1; gη).

Similar to the above consideration, this produces new duality relations among C
(−k)
m
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different from the above formulas. For example, the case l = 0 implies (1.4), and the

case l = 1 gives a new formula

k−1∑
j=1

(
k

j

)
C

(−m−1)
j−1 =

m∑
j=0

(
m

j

)
Cm−jC

(−k)
j+1

j + 1
(k,m ∈ Z≥0). (6.21)

Finally, we give certain explicit expressions of poly-Bernoulli polynomials.

Lemma 6.12. Assume g1 = 0. For m ∈ Z≥0 and u, y, w ∈ C except for appropriate

branch cuts,

B(u)
m (y, w; g) = ξ2,m+1(u,−m; y, w; g). (6.22)

Proof. Since g1 = 0, we have O(get) = O(t) (t → 0). Substitute s = 1 − k

(k ∈ Z≥1) into (5.4). Then the first term on the right-hand side of (5.4) vanishes,

because its integrand is holomorphic in t around the origin. Hence, from Theorem 6.2,

we see that (6.22) holds for u, y, w ∈ C except for appropriate branch cuts. Replacing

m = k − 1, we have the assertion. □

Combining Lemmas 5.2 and 6.12, we have the following.

Example 6.13. Let g =
(
a b
c d

)
. First we assume g1 = 0 and g∞ = ∞, namely,

a + b = 0 and c = 0. By Theorem 6.5, we have only to consider g = hd :=
(−1 1

0 d

)
for

d ∈ C\{0}. Note that h1 = gη (see Example 3.7). Combining Lemma 5.2 with k = m+1,

Theorem 6.2 and Lemma 6.12, we have

B(u)
m (y, w;hd) =

m∑
n=0

1

(y + n)u
(1−D−1

w )n
wm

dn+1

=
m∑

n=0

1

(y + n)u

n∑
j=0

(
n

j

)
(−1)j

(w − j)m

dn+1
.

In particular when (d, y, w) = (1, 1, 0), from Example 6.3, we obtain the well-known

expression

B(u)
m = (−1)m

m∑
n=0

(−1)nn!

(n+ 1)u

{
m

n

}
(see [7, Theorem 1]), where

{
m
n

}
is the Stirling number of the second kind determined

by {
m

n

}
=

(−1)n

n!

n∑
j=0

(−1)j
(
n

j

)
jm (m,n ∈ Z≥0).

Next we assume g1 = 0 and g0 = ∞, namely, a + b = 0 and d = 0. Hence we consider

g = h′
c :=

(
1 −1
c 0

)
for c ∈ C \ {0}. Note that h′

1 = gξ (see Example 3.7). Combining

Lemma 5.2 with k = m+ 1, Theorem 6.2 and Lemma 6.12, we have
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B(u)
m (y, w;h′

c) =
m∑

n=0

1

(y + n)u
(1−D−1

w )n
(w + n+ 1)m

cn+1

=
m∑

n=0

1

(y + n)u

n∑
j=0

(
n

j

)
(−1)j

(w + n+ 1− j)m

cn+1
.

7. Proofs of Lemmas 2.5 and 2.6.

Lemma 7.1. Let N be a neighborhood of the origin in R≥0. Let a(U), b(U), c(U)

be real continuous functions in U ∈ N such that a(U), c(U) > 0 and −
√

a(U)c(U) ≤
b(U) <

√
a(U)c(U) for all U ∈ N . Let 0 ≤ q ≤ 1. Then there exists M > 0 such that

F (U, Y ) =
a(U)Y 2 − 2b(U)UY + c(U)U2

U2−qY q
≥ M

for all (U, Y ) in a sufficiently small neighborhood of the origin in R2
≥0 unless the denom-

inator vanishes.

Proof. We denote a(U0), b(U0), c(U0) by a, b, c respectively for short.

First assume 0 < q ≤ 1. Fix a sufficiently small U0 > 0. Then

∂F (U0, Y )

∂Y
=

a(2− q)Y 2 − 2b(1− q)U0Y − cqU2
0

U2−q
0 Y q+1

= 0

implies the unique solution

Y0 = AU0 > 0 (7.1)

with

A =
b(1− q) +

√
b2(1− q)2 + ac(2− q)q

a(2− q)
> 0.

Thus we have

F (U0, Y ) ≥ F (U0, Y0) = 2
ac(2− q)− b2(1− q)− b

√
b2(1− q)2 + ac(2− q)q

a(2− q)2Aq
.

Here

ac(2− q)− b2(1− q) = ac+ (ac− b2)(1− q) ≥ ac > 0,

−b
√
b2(1− q)2 + ac(2− q)q ≥ −|b|

√
ac(1− q)2 + ac(2− q)q ≥ −|b|

√
ac.

If a(0)c(0) ̸= b(0)2, then

F (U0, Y0) ≥ 2

√
ac(

√
ac− |b|)

a(2− q)2Aq

and there exists M > 0 such that
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F (U, Y ) ≥ M

for all (U, Y ) in a sufficiently small neighborhood of the origin in R2
>0. If a(0)c(0) = b(0)2,

then by the assumption we have b(0) = −
√
a(0)c(0) < 0 and b(U) < 0 for all sufficiently

small U ≥ 0. Then

−b
√
b2(1− q)2 + ac(2− q)q ≥ 0

and

F (U0, Y0) ≥
2ac

a(2− q)2Aq
.

Hence we have the same conclusion.

Next assume q = 0. Fix a sufficiently small U0 > 0. Then

∂F (U0, Y )

∂Y
= 2

aY − bU0

U2
0

= 0

implies the unique solution

Y0 =
bU0

a
∈ R. (7.2)

If a(0)c(0) ̸= b(0)2, then we have

F (U0, Y ) ≥ F (U0, Y0) =
ac− b2

a

and there exists M > 0 such that

F (U, Y ) ≥ M

for all (U, Y ) in a sufficiently small neighborhood of the origin in R>0×R≥0. If a(0)c(0) =

b(0)2, then by the assumption we have b(0) = −
√
a(0)c(0) < 0 and b(U) < 0 for all

sufficiently small U ≥ 0. Then

F (U0, Y ) ≥ F (U0, 0) = c

for Y ≥ 0 and we have the same conclusion. □

Lemma 7.2. Let N be a neighborhood of the origin in R≥0. Let a(U), b(U), c(U)

be real continuous functions in U ∈ N such that a(U), c(U) > 0, −
√
a(U)c(U) ≤ b(U) <√

a(U)c(U) for all U ∈ N \ {0}, b(0) =
√
a(0)c(0) and

K = lim
U→0

a(U)c(U)− b(U)2

U2
> 0.

Let 0 ≤ q ≤ 2. Then there exists M > 0 such that
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G(U, Y ) =
a(U)Y 2 − 2b(U)UY + c(U)U2

U4−qY q
≥ M

for all (U, Y ) in a sufficiently small neighborhood of the origin in R2
≥0 unless the denom-

inator vanishes.

Proof. We denote a(U0), b(U0), c(U0) by a, b, c respectively for short. Note that

G(U, Y ) = U−2F (U, Y ), where F (U, Y ) is given in Lemma 7.1.

First assume 0 < q < 2. Fix a sufficiently small U0 > 0. Then G(U0, Y ) attains its

minimum at the same Y0 as (7.1), which is also valid for 1 ≤ q < 2 and

G(U0, Y ) ≥ G(U0, Y0) = 2
ac(2− q)− b2(1− q)− b

√
b2(1− q)2 + ac(2− q)q

a(2− q)2AqU2
0

with

ac(2− q)− b2(1− q) = b2 + (ac− b2)(2− q) ≥ 0,

(ac(2− q)− b2(1− q))2 − (b
√
b2(1− q)2 + ac(2− q)q)2 = ac(ac− b2)(2− q)2.

Since

B = ac(2− q)− b2(1− q) + b
√

b2(1− q)2 + ac(2− q)q → 2a(0)c(0),

A →
√
c(0)/a(0)

as U0 → 0, we have

G(U0, Y ) ≥ G(U0, Y0) = 2
ac(2− q)2

a(2− q)2AqB

ac− b2

U2
0

→ K

a(0)
√
c(0)/a(0)

q > 0

as U0 → 0. Thus there exists M > 0 such that

G(U, Y ) ≥ M

for all (U, Y ) in a sufficiently small neighborhood of the origin in R2
>0.

Secondly assume q = 0. Fix a sufficiently small U0 > 0. Then G(U0, Y ) attains its

minimum at the same Y0 as (7.2) and

G(U0, Y ) ≥ G(U0, Y0) =
ac− b2

aU2
0

→ K

a(0)
> 0

as U0 → 0. Thus there exists M > 0 such that

G(U, Y ) ≥ M

for all (U, Y ) in a sufficiently small neighborhood of the origin in R>0 × R≥0.

Thirdly we assume q = 2. Fix a sufficiently small U0 > 0. Then
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∂G(U0, Y )

∂Y
= 2

bU0Y − cU2
0

U2
0Y

3
= 0

implies the unique solution

Y0 =
cU0

b
> 0

because by the assumption, b(U) > 0 for all sufficiently small U ≥ 0. Thus we have

G(U0, Y ) ≥ G(U0, Y0) =
ac− b2

cU2
0

→ K

c(0)
> 0

as U0 → 0 and there exists M > 0 such that

G(U, Y ) ≥ M

for all (U, Y ) in a sufficiently small neighborhood of the origin in R2
>0. □

Lemma 7.3. Assume that h =
(

α β
γ δ

)
∈ GL2(C) satisfies hU = Y for only (U, Y ) =

(0, 0) in a neighborhood of the origin in R2
≥0. Then for 0 ≤ q ≤ 1, there exists M > 0

such that

1

|αU + β − Y (γU + δ)|
≤


M

U1−qY q
if the origin is not a cusp,

M

U2(1−q)Y 2q
if the origin is a cusp

in a neighborhood of the origin in R2
>0.

Proof. Assume that h =
(

α β
γ δ

)
∈ GL2(C) satisfies hU = Y for only (U, Y ) =

(0, 0) in the neighborhood of the origin in R2
≥0, Then h0 = 0 implies β = 0 and deth =

αδ ̸= 0. Hence hU = Y is rewritten as

Y =
αU

γU + δ
=

(αγU + αδ)U

|γU + δ|2
. (7.3)

Assume that αδ ∈ R>0 and αγ ∈ R. Then in any neighborhood of the origin, a pair

(U, Y ) with a small U > 0 and Y given by (7.3) is a solution. Thus if the solution is only

(U, Y ) = (0, 0) in a neighborhood of the origin in R2
≥0, then αδ /∈ R>0 or αγ /∈ R.

If the origin is a cusp, then (d/dU)hU |U=0 = (deth)/δ2 = αδ/|δ|2 > 0 and hence

αδ ∈ R>0. The converse is also true.

Assume 0 ≤ q ≤ 1/2. Consider

|αU − δY − γUY |2 = |δ + γU |2Y 2 − 2Re(αδ + αγU)UY + |α|2U2

and let

a(U) = |δ + γU |2, b(U) = Re(αδ + αγU), c(U) = |α|2.
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We check the assumptions in Lemmas 7.1 and 7.2. Since α, δ ̸= 0, we see that

a(U), c(U) > 0 for all sufficiently small U ≥ 0. Furthermore

a(U)c(U)− b(U)2 = |αδ + αγU |2 − (Re(αδ + αγU))2 = (Im(αδ + αγU))2 ≥ 0,

which implies −
√
a(U)c(U) ≤ b(U) ≤

√
a(U)c(U). Since αδ /∈ R>0 or αγ /∈ R,√

a(U)c(U)− b(U) = |αδ + αγU | − Re(αδ + αγU) ̸= 0

holds for all sufficiently small U ≥ 0 if αδ /∈ R>0, and for all sufficiently small U > 0 if

αδ ∈ R>0. In the latter case,

b(0) = Reαδ = |αδ| =
√
a(0)c(0)

and

a(U)c(U)− b(U)2

U2
=

(Im(αδ + αγU))2

U2
=

(ImαγU)2

U2
= (Imαγ)2 > 0.

Thus we have checked the assumptions required and have the assertions in this case.

For 1/2 < q ≤ 1, exchanging the roles of U and Y , and applying Lemmas 7.1 and

7.2 with

|αU − δY − γUY |2 = |α− γY |2U2 − 2Re(δα− δγY )Y U + |δ|2Y 2

and

a(Y ) = |α− γY |2, b(Y ) = Re(δα− δγY ), c(Y ) = |δ|2,

we have the assertions in this case. Here we used the fact that αδ ∈ R>0 implies αγ /∈ R,
and hence δα ∈ R>0 and δγ /∈ R. □

Lemma 7.4. Assume that h =
(

α β
γ δ

)
∈ GL2(C) satisfies hU = Y for only (U, Y ) =

(0, 0) in a neighborhood of the origin in R2
≥0. Then there exists ϵ > 0 such that

1

ϵ
|Y | > |U | > ϵ|Y |

for any pair (U, Y ) satisfying hU = Y in a sufficiently small neighborhood of the origin

in C2.

Proof. From the first paragraph of the proof of Lemma 7.3, we see that β = 0

and αδ ̸= 0. Since hU = Y is rewritten as Y = αU/(γU + δ), we have

|Y | ≥ |α|

|δ|
∣∣∣1 + γ

δ
U
∣∣∣ |U | ≥ |α|

2|δ|
|U |.

Similarly U = δY /(γY − α) implies
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|U | ≥ |δ|
2|α|

|Y |. □

Proof of Lemma 2.5. For Z ∈ {1,∞}, let

kZ =

(
Z̃ −1

−(−1)Z̃ 0

)
=



(
1−1

1 0

)
(Z = 1),(

0 −1

−1 0

)
(Z = ∞).

Note that kZ maps a neighborhood of Z in [1,+∞] to a neighborhood of the origin in

R≥0.

By putting U = kT0T and Y = kX0X, we see that h = kX0gk
−1
T0

=
(

α β
γ δ

)
satisfies

the assumption in Lemma 7.3. Since

k−1
Z =

(
0 −(−1)Z̃

−1−(−1)Z̃Z̃

)

and

jD(k−1
X0

hkT0 , k
−1
T0

U) =
jD(k−1

X0
h,U)

jD(k−1
T0

, U)
,

jD(k−1
X0

h,U) = jD(k−1
X0

, hU)jD(h, U), jN (k−1
X0

h,U) = jN (k−1
X0

, hU)jD(h,U),

we have

jD(g, T )(1− (gT )X−1) = jD(k−1
X0

hkT0 , k
−1
T0

U)(1− (k−1
X0

hU)(k−1
X0

Y )−1)

=
jD(k−1

X0
h,U)

jD(k−1
T0

, U)

(
1−

jN (k−1
X0

h,U)

jD(k−1
X0

h,U)

jD(k−1
X0

, Y )

jN (k−1
X0

, Y )

)
=

jD(k−1
X0

h,U)jN (k−1
X0

, Y )− jN (k−1
X0

h,U)jD(k−1
X0

, Y )

jD(k−1
T0

, U)jN (k−1
X0

, Y )

=
jD(k−1

X0
, hU)− jD(k−1

X0
, Y )

jD(k−1
T0

, U)
jD(h,U)

=
jN (h,U)− Y jD(h, U)

U + (−1)T̃0 T̃0

=
αU + β − Y (γU + δ)

U + (−1)T̃0 T̃0

.

(7.4)

Hence∣∣∣ 1

jD(g, T )

1

(1− (gT )X−1)

∣∣∣
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≤ M |U + (−1)T̃0 T̃0| ×


1

U1−qY q
if the vertex is not a cusp,

1

U2(1−q)Y 2q
if the vertex is a cusp.

Since

U = kT0T =
T̃0T − 1

−(−1)T̃0T
,

Y = kX0X =
X̃0X − 1

−(−1)X̃0X
,

we obtain the first result.

The second statement follows from Lemma 7.4. □

Proof of Lemma 2.6. We use the same notation as in Lemma 2.5. If V (g) ̸= ∅,
then we fix X0 ∈ V (g) and T0 = g−1X0, and otherwise put X0 = T0 = ∞. Further put

U = kT0T , Y = kX0X, h = kX0gk
−1
T0

=
(

α β
γ δ

)
and S(g) = {(U, Y ) ∈ [0, 1]2 | hU = Y }.

We see that

S(g) =


∅ (♯V (g) = 0),

{(0, 0)} (♯V (g) = 1),

{(0, 0), (1, 1)} (♯V (g) = 2),

and S(g) coincides with the set of all solutions of αU + β = Y (γU + δ) in [0, 1]2. Let

Nϵ′ ⊂ (kT0 × kX0)(N) be an open ϵ′-neighborhood of S(g) in C2 and Bϵ′′ be an ϵ′′-

neighborhood of [0, 1] in C. Since [0, 1]2 \Nϵ′ is a compact set in C2, there exists M > 0

and ϵ′′ > 0 such that

|αU + β − Y (γU + δ)| > 1

M

for all (U, Y ) ∈ B2
ϵ′′ \Nϵ′ . By the same calculation as (7.4), we have

jD(g, T )(1− (gT )X−1) =
αU + β − Y (γU + δ)

U + (−1)T̃0 T̃0

.

Hence ∣∣∣ 1

jD(g, T )

1

(1− (gT )X−1)

∣∣∣ ≤ M

|T |

for all (T,X) ∈ (kT0 × kX0)
−1(B2

ϵ′′ \Nϵ′) ∩C2. Since k−1
1 (Bϵ′′) = k−1

∞ (Bϵ′′) ⊃ W1,ϵ for a

sufficiently small ϵ > 0, we have

(kT0 × kX0)
−1(B2

ϵ′′ \Nϵ′) ∩ C2 ⊃ ((k−1
T0

(Bϵ′′)× k−1
X0

(Bϵ′′)) \N) ∩ C2 ⊃ W 2
1,ϵ \N,

and the assertion. □
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