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Abstract. A diffusion process associated with the real sub-Laplacian
Δb, the real part of the complex Kohn–Spencer Laplacian �b, on a strictly
pseudoconvex CR manifold is constructed via the Eells–Elworthy–Malliavin
method by taking advantage of the metric connection due to Tanaka and
Webster. Using the diffusion process and the Malliavin calculus, the heat
kernel and the Dirichlet problem for Δb are studied in a probabilistic manner.
Moreover, distributions of stochastic line integrals along the diffusion process
will be investigated.

Introduction.

Let M be an oriented strictly pseudoconvex CR manifold of dimension 2n+ 1, and

Δb be the real sub-Laplacian on M , i.e. the real part of the Kohn–Spencer Laplacian

�b. For definitions, see Section 1. The first aim of this paper is to construct the diffusion

process generated by −Δb/2 by extending the Eells–Elworthy–Malliavin method [2],

[10]. Precisely speaking, we consider stochastic development of the Brownian motion

on C
n in the complex unitary bundle of M . The second aim is to apply the diffusion

processes. The heat kernel and the Dirichlet problem associated with Δb will be studied

in a probabilistic manner with the help of the Malliavin calculus. Moreover, distributions

of stochastic line integrals along the diffusion process will be investigated by the partial

hypoelliptic argument.

The Eells–Elworthy–Malliavin method is one of constructions of the Brownian mo-

tion on a Riemannian manifold, and realizes the Brownian motion as the projection of the

solution of the stochastic differential equation (SDE in abbreviation) on the orthonormal

frame bundle over the Riemannian manifold (see, for example, [2], [6], [7], [10], [11]). We

will carry out this method on a CR manifold, but in the present paper we use a complex

unitary frame bundle instead of a real orthonormal frame bundle. This comes from the

fact that the CR structure is defined as a complex subbundle T1,0 of the complexified

tangent bundle CTM .

To be more precise, recall that in the Eells–Elworthy–Malliavin method on a Rie-

mannian manifold, the vector fields governing the SDE on the orthonormal bundle are

constructed with the help of the Riemannian connection. The SDE corresponds to the

stochastic parallel translation on the Riemannian manifold. In our constuction on a CR

manifold, we take advanage of the metric connection on the complex subbundle T1,0 due
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to Tanaka [14] and Webster [17] to have vector fields L1, . . . , Ln on the unitary bundle

U(T1,0) over M . Solving the SDE on U(T1,0)

dr(t) =

n∑
α=1

(Lα(r(t)) ◦ dBα(t) + Lα(r(t)) ◦ dBα(t)), r(0) = r ∈ U(T1,0), (0.1)

and projecting its solution onto M , we show the existence of the diffusion process

X = {({X(t)}t≥0, Px);x ∈ M} on M generated by −Δb/2 (Theorem 2.5). Here

(B1(t), . . . , Bn(t)) is a C
n-valued Brownian motion, and we have used super and sub-

scripts α’s to indicate the complex conjugates bα = bα and cα = cα.

By using the partial hypoelliplicity argument in the Malliavin calculus, we will obtain

the heat kernel related to this diffusion process. Precisely speaking, we will show the

transition probability function of X has a smooth density function p(t, x, y). Moreover,

we will give a sufficient condition for distributions of stochastic line integrals of 1-forms

on M along the diffusion process X to have smooth density functions (see Section 3).

We finally consider the Dirichlet problem associated with Δb. Let G be a relatively

compact open set in M with C3-boundary. We shall show in a probabilistic manner that,

for each f ∈ C(∂G), there is a u ∈ C(G) such that

Δbu = 0 on G in the weak sense, and u = f on ∂G. (0.2)

See Theorem 4.1. As will be seen in Remark 4.8, together with hypoelliplicity of Δb,

this u is a classical solution to the Dirichlet problem. In the proof, a key role is played

by the local representation of the sub-Laplacian Δb so that, on every sufficiently small

coordinate neighborhood U , there are aα ∈ C and C∞-vector fields Zα with C-valued

coefficients on U so that

Δb = −
n∑

α=1

(ZαZα + ZαZα) +

n∑
α=1

(aαZα + aαZα), (0.3)

and

spanC{(Zα)x, (Zα)x, [Zα, Zα]x; 1 ≤ α ≤ n} = CTxM, x ∈ U, (0.4)

where [·, ·] denotes the Lie product, and TxM is the tangent space of M at x.

In Section 1, we shall give a brief review on CR geometry. In the same section, we

shall construct vector fields on the complex bundle U(T1,0) over M , which are associated

with the metric connection due to Tanaka and Webster. These vector fields will be used

in Section 2 to construct a diffusion process X generated by −Δb/2. The heat kernel and

distributions of stochastic line integrals along X are studied in Section 3. Section 4 will

be devoted to the study of Dirichlet problems associated with Δb.

1. CR geometry.

1.1. CR manifolds.

We begin this section with listing the results on CR manifolds which we shall use

later, following Dragomir–Tomassini [1] and Lee [9].
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A CRmanifoldM is a real differentiable manifold together with a complex subbundle

T1,0 of the complexified tangent bundle CTM = TM ⊗R C such that T1,0 ∩ T0,1 = {0}
and [T1,0, T1,0] ⊂ T1,0, where T0,1 = T1,0. We consider the case that M is orientable and

of real dimension 2n + 1 with n ∈ N = {1, 2, 3, . . .} and T1,0 is of complex dimension n,

i.e. the CR codimension is 1.

Set H = Re(T1,0 ⊕ T0,1), which is called the Levi distribution of (M,T1,0). There

exists a pseudo-Hermitian structure, that is, a real non-vanishing 1-form θ on M which

annihilates H. For such θ, the Levi form Lθ of θ is defined by

Lθ(Z,W ) = −√−1 dθ(Z,W ), Z,W ∈ Γ∞(T1,0 ⊕ T0,1),

where Γ∞(V ) stands for the space of C∞ cross sections of a vector bundle V . Throughout

the paper, we assume thatM is strictly pseudoconvex, that is, the Levi form Lθ is positive

definite. Then T1,0 is an Hermitian fiber bundle with Hermitian fiber metric Lθ. Let T

be the characteristic direction, that is, the unique real vector field on M transverse to

H, defined by

T 
dθ = 0, T 
θ = 1, (1.1)

where T 
ω is the interior product: T 
ω(X1, . . . , Xp−1) = ω(T,X1, . . . , Xp−1) for a p-form

ω.

As M is strictly pseudoconvex, the (2n + 1)-form ψ = θ ∧ (dθ)n on M determines

a volume form, where we have chosen the orientation of M so that ψ is a positive form.

Then it induces the L2-inner product on functions:

〈u, v〉θ =

∫
M

uvψ, u, v ∈ C∞
0 (M ;C) ≡ {f +

√−1 g; f, g ∈ C∞
0 (M)}.

The Levi form induces a metric on H (denoted by Lθ again), and the dual metric L∗
θ on

H∗. Then the L2-inner product on sections of H∗ is given by

〈ω, η〉θ =

∫
M

L∗
θ(ω, η)ψ, ω, η ∈ Γ∞(H∗).

Denoting by r : T ∗M → H∗ the natural restriction mapping, we define a section dbu for

u ∈ C∞(M) by dbu = r ◦ du. The real sub-Laplacian Δb on functions is given by

〈Δbu, v〉θ = 〈dbu, dbv〉θ, v ∈ C∞
0 (M).

Similarly, denoting by ∂bu the projection of du onto T ∗
0,1 for u ∈ C∞(M ;C), we introduce

the Kohn–Spencer Laplacian �b defined by

〈�bu, v〉θ = 〈∂bu, ∂bv〉θ, v ∈ C∞
0 (M ;C).

These two operators are related to each other by

�b = Δb +
√−1nT on C∞(M ;C).
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1.2. Tanaka–Webster connection.

We now review a connection due to Tanaka [14] and Webster [17].

Let J : H → H be the complex structure related to (M,T1,0); that is, the C-linear

extension of J is the multiplication by
√−1 on T1,0 and −√−1 on T0,1, where we have

used the fact that H ⊗R C = T1,0 ⊕ T0,1. Moreover, we extend J linearly to TM by

J(T ) = 0.

Since TM = H⊕RT = {X+aT | X ∈ H, a ∈ R}, there exists the unique Riemannian

metric gθ on M satisfying that

gθ(X,Y ) = dθ(X, JY ), gθ(X,T ) = 0, gθ(T, T ) = 1

for X,Y ∈ H. gθ is called the Webster metric. We extend gθ to CTM C-bilinearly.

The Tanaka–Webster connection is the unique linear connection ∇ on M satisfying

that

∇XY ∈ Γ∞(H), X ∈ Γ∞(TM), Y ∈ Γ∞(H), (1.2)

∇J = 0, ∇gθ = 0, (1.3)

T∇(Z,W ) = 0, Z,W ∈ Γ∞(T1,0), (1.4)

T∇(Z,W ) = 2
√−1Lθ(Z,W )T, Z ∈ Γ∞(T1,0),W ∈ Γ∞(T0,1), (1.5)

T∇(T, J(X)) + J(T∇(T,X)) = 0, X ∈ Γ∞(TM), (1.6)

where ∇X is the covariant derivative in the direction of X and T∇ is the torsion tensor

field of ∇: T∇(Z,W ) = ∇ZW −∇WZ − [Z,W ].

Let {Zα}α∈〈n〉, where 〈n〉 = {1, . . . , n}, be a local orthonormal frame for T1,0 on

an open set U , that is, Zα is a T1,0-valued section defined on U and gθ(Zα, Zβ) = δαβ ,

where Zβ = Zβ . If we set 〈〈n〉〉 = {0, 1, . . . , n, 1, . . . , n} and Z0 = T , then {ZA}A∈〈〈n〉〉 is

a local frame for CTM . We define Christoffel symbols ΓC
AB for A,B,C ∈ 〈〈n〉〉 by

∇ZA
ZB =

∑
C∈〈〈n〉〉

ΓC
ABZC .

Note that ΓC
AB = 0 unless (B,C) ∈ {(β, γ), (β, γ);β, γ ∈ 〈n〉}, because ∇X(Γ∞(T1,0)) ⊂

Γ∞(T1,0) and ∇T = 0 by the conditions (1.2) and (1.3). We also have that

Γγ
Aβ + Γβ

Aγ = 0, β, γ ∈ 〈n〉, A ∈ 〈〈n〉〉 (1.7)

by the condition (1.3).

1.3. Canonical vector fields.

To construct diffusion processes on CR manifolds in the next section, we introduce

suitable vector bundles and principal bundles on them. The method employed there is

a modification of the Eells–Elworthy–Malliavin method, which constructs the Brownian

motion on a Riemannian manifold via the SDE on the orthonormal frame bundle [2], [6],

[7], [10], [11].

Let p : [a, b] → M , where a < b, be a smooth curve. We say that a smooth curve
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W : [a, b] → T1,0 is a parallel section along p if W (t) ∈ (T1,0)p(t) and ∇ṗW = 0, where

the dot means the differentiation in t.

For any v ∈ (T1,0)p(a), there exists a unique parallel section W with W (a) = v.

This can be seen by the localization argument as follows: Let {Zα}α∈〈n〉 be a local

orthonormal frame for T1,0 on U and suppose that p([a, b]) ⊂ U . Then for a smooth

curve W : [a, b]→ T1,0 satisfying W (t) ∈ (T1,0)p(t), it holds that

W (t) =
∑

α∈〈n〉
cα(t)(Zα)p(t),

where cα(t) = gθ(W (t), (Zα)p(t)) for α ∈ 〈n〉. By the very definition of the covariant

derivative,

∇ṗW (t) =
∑

α∈〈n〉
(ċα(t)(Zα)p(t) + cα(t)∇ṗZα(t))

=
∑

α∈〈n〉
ċα(t)(Zα)p(t) +

∑
A∈〈〈n〉〉
α,β∈〈n〉

cα(t)gθ(ṗ(t), (ZA)p(t))Γ
β
Aα(p(t))(Zβ)p(t),

where we have used the convention that 0 = 0. Therefore ∇ṗW = 0 if and only if

ċβ(t) +
∑

A∈〈〈n〉〉
α∈〈n〉

cα(t)gθ(ṗ(t), (ZA)p(t))Γ
β
Aα(p(t)) = 0

for each β ∈ 〈n〉. Now, as an elementary application of the theory of ordinary differential

equations, for given v ∈ (T1,0)p(a) there exists a unique parallel section W along p such

that W (a) = v.

Let U(n) be the group of n × n unitary matrices. We denote the n × n identity

matrix by In. Parallel sections can be represented locally as follows:

Lemma 1.8. Let {Zα}α∈〈n〉 be a local orthonormal frame for T1,0 on U and suppose

that p([a, b]) ⊂ U . Then there exists a unique Λp : [a, b] → U(n) such that Λp(a) = In
and

Λ̇p(t)
γ
β +

∑
A∈〈〈n〉〉
δ∈〈n〉

Λp(t)
δ
βgθ(ṗ(t), (ZA)p(t))Γ

γ
Aδ(p(t)) = 0, (1.9)

where Λ̇p(t) = (Λ̇p(t)
γ
β)γ,β∈〈n〉, holds for each β, γ ∈ 〈n〉. Moreover, for given v ∈

(T1,0)p(a),

W (t) =
∑

β,γ∈〈n〉
Λp(t)

γ
βgθ(v, (Zβ)p(a))(Zγ)p(t)

is a parallel section along p and satisfies W (a) = v.

Proof. It is clear that the condition for Λp defines a unique curve on Mn(C),
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where Mn(C) is the group of n × n complex matrices. By (1.7) and (1.9) it is easy to

check that

d

dt

( ∑
γ∈〈n〉

Λp(t)
γ
αΛp(t)

γ
β

)
= 0

holds for α, β ∈ 〈n〉, which in conjunction with Λp(a) = In implies that Λp(t) ∈ U(n).

We next show the second assertion. Recall that

∇ṗW (t) =
∑

β,γ∈〈n〉
gθ(v, (Zβ)p(a))(Λ̇p(t)

γ
β(Zγ)p(t) + Λp(t)

γ
β∇ṗZγ(t)).

Plugging (1.9) and the identity

∇ṗZγ(t) =
∑

A∈〈〈n〉〉
gθ(ṗ(t), (ZA)p(t))(∇ZA

Zγ)p(t)

into this, we obtain the desired equality ∇ṗW = 0. �

Now we introduce the bundles over M given by

L(T1,0) =
∐
x∈M

{r : Cn → (T1,0)x; r is a non-singular linear map},

U(T1,0) = {r ∈ L(T1,0); r is isometric}.

For r ∈ L(T1,0) with r : Cn → (T1,0)x, let π(r) = x. We write rξ for the image of ξ ∈ C
n

by r ∈ L(T1,0).

The Lie group U(n) acts on U(T1,0). For each Λ ∈ U(n) we have the map

RΛ : U(T1,0)→ U(T1,0) defined by

(RΛr)(ξ) = rΛξ, r ∈ U(T1,0), ξ ∈ C
n.

Moreover, if Λ : [a, b] → U(n) is a smooth curve with Λ(a) = In and r ∈ U(T1,0), then

Λ̇(a) is a skew Hermitian matrix and (d/dt)|t=aRΛ(t)r = λ(Λ̇(a))r, where λ is given by

λ(u)r =
d

ds

∣∣∣∣
s=0

Rexp(su)r.

It should be remarked that, while the fiber of U(T1,0) is a complex vector space and

complex group U(n) acts on it, U(T1,0) is a real manifold since so is the base manifold

M .

For smooth curves p : [a, b]→M and p̂ : [a, b]→ U(T1,0), we say that p̂ is a horizontal

lift of p to U(T1,0) if π ◦ p̂ = p and p̂(t)eα is a parallel section for any α ∈ 〈n〉, where
{eα}α∈〈n〉 is the standard coordinate of Cn. For v ∈ TxM , r ∈ π−1(x) and η ∈ TrU(T1,0),

we say that η is a horizontal lift of v if there exist a smooth curve p on M and a smooth

curve p̂ on U(T1,0) which is a horizontal lift of p, satisfying p̂(0) = r, ˙̂p(0) = η and

π∗η = v.

For each v ∈ TxM , there exists a unique horizontal lift ηx(r) ∈ TrU(T1,0). Indeed,
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let {Zα}α∈〈n〉 be a local orthonormal frame for T1,0 on U and suppose the curve p is

contained in U . Let Z : U → U(T1,0) be the section determined by {Zα}α∈〈n〉, i.e.

Z(x)eα = (Zα)x. Let p : [a, b] → M be a smooth curve. By virtue of Lemma 1.8,

p̂ : [a, b]→ U(T1,0) is a horizontal lift of p if and only if π(p̂(a)) = p(a) and

p̂(t) = RZ(p(a))−1◦p̂(a) ◦RΛp(t)Z(p(t)), (1.10)

where Z(p(a))−1 ◦ p̂(a) : Cn → C
n is regarded as an element of U(n) and Λp is the curve

defined in Lemma 1.8.

Under the identification of Z(x) ∈ U(T1,0) with ((Z1)x, . . . , (Zn)x) ∈ (T1,0)
n
x , we

have RΛZ(x) = Z(x)Λ for Λ ∈ U(n). Then we can calculate as

d

dt
(RΛp(t)Z(p(t))) =

d

dt
(Z(p(t))Λp(t)) = Z∗(ṗ(t))Λp(t) + Z(p(t))Λ̇p(t).

By differentiating (1.10) and substituting the above identity, we arrive at the unique

horizontal lift of v:

ηr(v) = (RZ(x)−1◦r)∗(Z∗(v)− λ(Φ(v))Z(x)) ∈ TrU(T1,0), (1.11)

where Φ: TxM → u(n) (u(n) is the set of n× n skew Hermitian matrices) is defined by

Φ(v) =

( ∑
A∈〈〈n〉〉

gθ(v, (ZA)x)Γ
γ
Aβ(x)

)
β,γ∈〈n〉

.

For each r ∈ U(T1,0), the horizontal subspace at r is defined by

HorrU(T1,0) = {ηr(v); v ∈ TxM} ⊂ TrU(T1,0).

If we set the vertical subspace VerrU(T1,0) by VerrU(T1,0) = Ker(π∗ : TrU(T1,0) →
Tπ(r)M), then

TrU(T1,0) = VerrU(T1,0)⊕HorrU(T1,0)

holds.

ηr extends naturally to a C-linear map from TxM ⊗R C to HorrU(T1,0)⊗R C. Then

for each ξ ∈ C
n, we can define the canonical vector field L(ξ) by L(ξ)r = ηr(rξ) for

r ∈ U(T1,0). We set

Lα = L(eα), α ∈ 〈n〉

and call {Lα}α∈〈n〉 the canonical vector fields.

Let {Zα}α∈〈n〉 be a local orthonormal frame for T1,0 on U . Define {eβα(r)} ∈ C
n⊗C

n

for r ∈ L(T1,0) with π(r) ∈ U by r(eα) =
∑

β∈〈n〉 e
β
α(r)(Zβ)π(r). We can then introduce

a local coordinate system {(xk, eβα)} of L(T1,0), where (x
k)1≤k≤2n+1 is a local coordinate

system of M . With respect to this coordinate we represent the canonical vector field Lα,

α ∈ 〈n〉 as follows.
Recall that U(T1,0) can be identified with M × U(n) locally, and under this identi-
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fication RΛ((x, e)) = (x, eΛ) for (x, e) ∈M × U(n). Therefore it holds that

(RZ(x)−1◦r)∗Z∗(v) = v, v ∈ TxM ⊗R C, r ∈ U(T1,0),

where Z : U → U(T1,0) is the section determined by {Zα}α∈〈n〉 as before. Since

Φ

(
Re

∑
β∈〈n〉

eβαZβ

)
=

(
1

2

∑
β∈〈n〉

(eβαΓ
γ
βδ + eβαΓ

γ

βδ
)

)
γ,δ∈〈n〉

,

Φ

(
Im

∑
β∈〈n〉

eβαZβ

)
=

(
1

2
√−1

∑
β∈〈n〉

(eβαΓ
γ
βδ − eβαΓ

γ

βδ
)

)
γ,δ∈〈n〉

,

we have

λ

(
Φ

(
Re

∑
β∈〈n〉

eβαZβ

))
=

1

2

∑
β,γ,δ∈〈n〉

(
(eβαΓ

γ
βδ + eβαΓ

γ

βδ
)
∂

∂eγδ
+(eβαΓ

γ

βδ
+ eβαΓ

γ

βδ
)
∂

∂eγ
δ

)
,

λ

(
Φ

(
Im

∑
β∈〈n〉

eβαZβ

))
=

1

2
√−1

∑
β,γ,δ∈〈n〉

(
(eβαΓ

γ
βδ − eβαΓ

γ

βδ
)
∂

∂eγδ
− (eβαΓ

γ

βδ
− eβαΓ

γ

βδ
)
∂

∂eγ
δ

)
.

Therefore we have from (1.11) that

(Lα)r =
∑

β∈〈n〉
eβαZβ −

∑
β,γ,δ,ε∈〈n〉

Γγ
βδe

δ
εe

β
α

∂

∂eγε
−

∑
β,γ,δ,ε∈〈n〉

Γγ

βδ
eδεe

β
α

∂

∂eγε
. (1.12)

2. Construction of a diffusion process.

In this section, we construct a diffusion process X = {({X(t)}t≥0, Px);x ∈ M}
generated by −Δb/2.

Let {Lα}α∈〈n〉 be the canonical vector fields on U(T1,0) constructed in the pre-

vious section. Take a C
n-valued Brownian motion {B(t) = (B1(t), . . . , Bn(t))}t≥0,

that is, {B(t)}t≥0 is a C
n-valued continuous martingale with 〈Bα, Bβ〉(t) = 0 and

〈Bα, Bβ〉(t) = δαβt, where 〈M,N〉(t) denotes the quadratic variation of continuous mar-

tingales {M(t)}t≥0 and {N(t)}t≥0. Let {r(t) = r(t, r, B)}t≥0 be the unique solution to

an SDE on U(T1,0):

dr(t) =
∑

α∈〈n〉
(Lα(r(t)) ◦ dBα(t) + Lα(r(t)) ◦ dBα(t)), r(0) = r ∈ U(T1,0), (2.1)

or equivalently

dr(t) =
∑

α∈〈n〉
(
√
2ReLα(r(t)) ◦ dξα(t) +

√
2 ImLα(r(t)) ◦ dηα(t)), r(0) = r ∈ U(T1,0),

(2.2)

where ReLα = (Lα+Lα)/2, ImLα = (Lα−Lα)/2
√−1 , ξα(t) = √2ReBα(t) and ηα(t) =√

2 ImBα(t). The process r(t) may explode. Note that (ξ1(t), η1(t), . . . , ξn(t), ηn(t)) is

an R
2n-valued Brownian motion. The manipulation of taking the real part on the right
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hand side of the SDE (2.1) is due to that U(T1,0) is a real manifold.

Let {Zα}α∈〈n〉 be a local orthonormal frame for T1,0 and (xk, eβα) be the associated

local coordinate of L(T1,0) as in the previous section. Then (2.1) can be rewritten locally

as⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx(t) =

∑
α,β∈〈n〉

(eβα(t)Zβ(x(t)) ◦ dBα(t) + eβα(t)Zβ(x(t)) ◦ dBα(t)),

deγε (t) = −
∑

α,β,δ∈〈n〉
(Γγ

βδ(x(t))e
δ
ε(t)e

β
α(t) ◦ dBα(t) + Γγ

βδ
(x(t))eδε(t)e

β
α(t) ◦ dBα(t)).

(2.3)

Hence it follows from the uniqueness of {r(t, r, B)}t≥0 that r(t, rΛ,ΛB) = r(t, r, B) for

every unitary matrix Λ. Denoting by M̃ a one-point compactification of M , we have

that the induced measures Qr of π(r(·, r, B)) on C([0,∞); M̃), the space of M̃ -valued

continuous functions defined on [0,∞), coincide for all r ∈ π−1(x). Put

Px = Qr ◦ π−1, r ∈ π−1(x).

Set

L =
1

2

∑
α∈〈n〉

(LαLα + LαLα)|M .

It is easily seen that

f(X(t))−
∫ t

0

Lf(X(s))ds

is a martingale under Px for every x ∈ M and f ∈ C∞
0 (M), where X(t) denotes the

position of X ∈ C([0,∞); M̃) at time t. By a straightforward computation, we have a

local representation of L as follows:

L =
1

2

( ∑
α∈〈n〉

(ZαZα + ZαZα)−
∑

α,β∈〈n〉
(Γα

ββ
Zα + Γα

ββ
Zα)

)
. (2.4)

Let {θ, θα, θα}α∈〈n〉 be the dual basis to {T, Zα, Zα}α∈〈n〉. Recall, moreover, an identity

that

dbf =
∑

α∈〈n〉
(Zαfθ

α + Zαfθ
α)

and Greenleaf’s result [5] that

〈Zαf, g〉θ =

〈
f,

(
−Zα +

∑
β∈〈n〉

Γα
ββ

)
g

〉
θ

.

Plugging these into (2.4), we see that
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L = −1

2
Δb.

Thus we have shown that

Theorem 2.5. There exists a diffusion process X = {({X(t)}t≥0, Px);x ∈ M}
generated by −Δb/2 and which is obtained via the SDE (2.1).

Example 2.6. Let Hn = C
n × R be the (2n + 1)-dimensional Heisenberg group

with a coordinate system (z, t), z = (z1, . . . , zn) ∈ C
n, t ∈ R. Define

θ =
1

2

(
dt−√−1

n∑
α=1

(zαdzα − zαdzα)

)
,

T1,0 =
n⊕

α=1

CZα, where Zα =
∂

∂zα
+
√−1 zα ∂

∂t
.

Then Hn is a strictly pseudoconvex CR manifold, see [1]. Since {Zα}α∈〈n〉 is a global

orthonormal frame for T1,0 and

dθ =
√−1

n∑
α=1

dzα ∧ dzα, d(dzα) = 0,

the associated covariant derivation is a null mapping. In particular, Δb = −
∑

α

(
ZαZα+

ZαZα

)
. The diffusion process described in Theorem 2.5 is exactly the same one as that

studied by Gaveau in [3].

Remark 2.7. Diffusion processes on sub-Riemannian manifolds, which include CR

manifolds, are studied from the point of view of sub-Riemannian geometry. For example,

In Gordina–Laetsch [4] diffusion processes on sub-Riemannian manifolds are constructed

as the limit of random walks constructed piecewisely via the Hamiltonian-flow associated

with a sub-Riemannian structure.

3. Heat kernel and stochastic line integral.

In this section, we apply the result [15] on partial hypoellipticity to the diffusion

process constructed in the previous section and stochastic line integrals along the diffusion

process.

We first consider the heat equation

∂

∂t
u = −1

2
Δbu, u(0, x) = f(x), (3.1)

where f ∈ C∞
b (M), via the diffusion process X = {({X(t)}t≥0, Px);x ∈ M} constructed

in Theorem 2.5.

By Whitney’s embedding theorem, we may think of U(T1,0) as a closed submanifold

of Rk for some k. We further assume that

(H) there exist C∞ vector fields L′
α, α ∈ 〈n〉, on R

k with C-valued coefficients such
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that (i) Lα = L′
α on U(T0,1), and (ii) the coefficients of L′

α and their derivatives of

all orders are bounded.

The hypothesis (H) implies that r(t) does not explode. For example, this hypothesis is

fulfilled if M is compact. We shall establish

Theorem 3.2. Assume that (H) holds. Then there is a p ∈ C∞((0,∞)×M ×M)

such that

Px(X(t) ∈ dy) = p(t, x, y)ψ(dy).

Proof. Recall the expression (2.2). By virtue of [15, Theorem 3.1] and [16,

Lemma 3.1], it suffices to show that

spanR{(π∗)rReLα, (π∗)rImLα, (π∗)r[ReLα, ImLα];α ∈ 〈n〉} = Tπ(r)M (3.3)

for every r ∈ U(T1,0), where spanR stands for taking all real linear combinations.

To see this, let {Zα}α∈〈n〉 be a local orthonormal frame for T1,0. By (1.12), it holds

that

(π∗)Lα =
∑

β∈〈n〉
eβαZβ . (3.4)

We next observe that

(π∗)[Lα, Lα] = −2
√−1T mod {Zα, Zα}α, (3.5)

where we have meant by “A = B mod {Zα, Zα}α” that A = B +
∑

α∈〈n〉 a
αZα +∑

α∈〈n〉 b
αZα for some aα, bα ∈ C. For this purpose, recall that

dθ(Z,W ) =
1

2
(Z(θ(W ))−W (θ(Z))− θ([Z,W ])), Z,W ∈ CTM.

Since θ(T1,0 ⊕ T0,1) = 0, it holds that

θ([Zα, Zβ ]) = −2dθ(Zα, Zβ) = −2
√−1Lθ(Zα, Zβ) = −2

√−1 δαβ . (3.6)

Hence

[Zα, Zβ ] = −2
√−1 δαβT mod {Zα, Zα}α, (3.7)

which yields that (3.5) holds.

(3.3) follows from (3.4) and (3.5). �

Remark 3.8. By Theorem 3.2, a bounded solution to the heat equation (3.1) can

be written as

u(t, x) = Ex[f(X(t))] =

∫
M

f(y)p(t, x, y)ψ(dy).
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We next investigate stochastic line integrals. Let Ξ be a 1-form on M , which, under

the imbedding made in the assumption (H), can be extended to a 1-form on R
k such that

its derivatives of all orders are bounded.

Denote by
∫
X[0,t]

Ξ the stochastic line integral of Ξ along {X(t)}t≥0 from time 0 to

t. For definition, see [7]. It is easily checked that∫
X[0,t]

Ξ =
∑

A∈〈〈n〉〉\{0}

∫ t

0

(π∗Ξ)r(s)(LA) ◦ dBA(s),

where π∗Ξ is the pull-back of Ξ through π : U(T1,0)→M and (π∗Ξ)r(LA) is the pairing

of cotangent vector (π∗Ξ)r and tangent vector (LA)r at r ∈ U(T1,0). Thus, {r̃(t) =

(r(t),
∫
X[0,t]

Ξ)}t≥0 obeys the SDE

dr̃(t) =
∑

A∈〈〈n〉〉\{0}
L̃A(r̃(t)) ◦ dBA(t),

where L̃A’s are vector fields on U(T1,0)× R defined by

L̃A = LA + (π∗Ξ)(LA)
∂

∂ξ
,

and ξ is the coordinate on R.

For x ∈ M , take a local orthonormal frame {Zα}α∈〈n〉 for T1,0 on U , and set ΞA =

Ξ(ZA) for A ∈ 〈〈n〉〉 \ {0}. For A1, . . . , Am ∈ 〈〈n〉〉 \ {0}, define ΦA1,...,Am
(Ξ) : U → C

successively by

ΦA1
(Ξ) = ΞA1

and ΦA1,...,Am
(Ξ) = ZA1

ΦA2,...,Am
(Ξ)− [ZA2

, [. . . , [ZAm−1
,ZAm

] . . . ]]ΞA1
.

Theorem 3.9. Suppose that (H) holds and for each x ∈ M there exists

A1, . . . , Am ∈ 〈〈n〉〉\{0} such that ΦA1,...,Am
(Ξ)(x) �= 0. Then the distribution of

∫
X[0,t]

Ξ

under Px admits a smooth density function with respect to the Lebesgue measure on R

for every x ∈M .

Proof. Under the same notation as used in (1.12), set (fβ
α )α,β∈〈n〉 = (eβα)

−1
α,β∈〈n〉

and define locally

L̂α =
∑

β∈〈n〉
fβ
α L̃β .

Then it is easily seen that

spanC
{
(L̃A)r, ([L̃A1

, [. . . , [L̃Am−1
, L̃Am

] . . . ]])r;A,A1, . . . ,Am ∈ 〈〈n〉〉\{0},m= 2,3, . . .
}

= spanC
{
(L̂A)r, ([L̂A1 , [. . . , [L̂Am−1 , L̂Am ] . . . ]])r;A,A1, . . . ,Am ∈ 〈〈n〉〉\{0},m= 2,3, . . .

}
.

We have
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(π̃∗)r(L̂α)r =
∑

β,γ∈〈n〉
fβ
αe

γ
βΞγ(π(r))

∂

∂ξ
= Φα(Ξ)(π(r))

∂

∂ξ
,

where π̃ : U(T1,0)× R→ R is the natural projection. By induction on m we have

(π̃∗)r([L̂A1
, [. . . , [L̂Am−1

, L̂Am
] . . . ]])r = ΦA1,...,Am

(Ξ)(π(r))
∂

∂ξ
.

Hence, applying [15, Theorem 3.1], we obtain the desired result. �

Remark 3.10. Although ZA’s in the definition of ΦA1,...,Am
(Ξ) are all in T1,0⊕T0,1,

the direction T appears in ΦA1,...,Am
(Ξ)’s because the expression [Zα, Zα] contains T -part

by (3.7). Hence, for example, even if ΞA(x) = 0 for each A ∈ 〈〈n〉〉 \ {0}, the assumption

ΦA1,...,Am(Ξ)(x) �= 0 may be satisfied.

4. Dirichlet problem.

In this section, we study Dirichlet problems related to Δb. For f ∈ C(∂G), what to

be found is a uf ∈ C2(G) ∩C(G) such that Δbuf = 0 and uf |∂G = f . We first establish

a weak solution in a probabilistic manner following Stroock and Varadhan [13]. As will

be seen in Remark 4.8, we indeed obtain a classical solution stated above.

Let X = {({X(t)}t≥0, Px);x ∈M} be the diffusion process obtained in Theorem 2.5.

Let G be a relatively compact connected open set in M with C3 boundary. Define

τ ′ = inf{t ≥ 0;X(t) /∈ G}.

We shall show that

Theorem 4.1. For f ∈ C(∂G), define uf (x) = Ex[f(X(τ ′))]. Then uf ∈ C(G)

and satisfies that

〈uf ,Δbv〉θ = 0 for any v ∈ C∞
0 (G), and uf = f on ∂G.

Due to the result by Stroock and Varadhan [13], the theorem is verified once we

have established the following two lemmas.

Lemma 4.2. It holds that

sup
x∈G

Ex[τ
′] <∞.

Lemma 4.3. Every boundary point is τ ′-regular, that is,

Px(τ
′ = 0) = 1, x ∈ ∂G.

Proof of Lemma 4.2. On account of [13, Remark 5.2], it suffices to show that

Px(τ
′ < T ) > 0, x ∈ G and T > 0. (4.4)
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To do this, take a family {Uj}Nj=1 of coordinate neighborhoods of M such that G ⊂
∪N
j=1Uj . Let Λ = {j;Uj ∩∂G �= ∅}. Take j ∈ Λ and a local orthonormal frame {Zα}α∈〈n〉

for T1,0 on Uj . Then, by virtue of (2.4), we may assume that the part of {X(t)}t≥0 on

Uj is governed by an SDE

dX(t) =
∑

α∈〈n〉
(
√
2ReZα(X(t)) ◦ dξα(t) +

√
2 ImZα(X(t)) ◦ dηα(t)) + b(X(t))dt, (4.5)

where (ξ1(t), η1(t), . . . , ξn(t), ηn(t)) is an R
2n-valued Brownian motion and

b = −
∑

α,β∈〈n〉
(Γα

ββ
Zα + Γα

ββ
Zα).

Due to (3.7), applying the support theorem (cf. [8, Theorem 3.2]), we obtain that

Px(τ
′ < T ) > 0, x ∈ Uj , j ∈ Λ, T > 0. (4.6)

For Uk such that k /∈ Λ and Uk ∩ Uj �= ∅ for some j ∈ Λ, by the same reasoning as

above, applying the support theorem again, we have that

Px(X(t) hits Uj before T ) > 0, x ∈ Uk, T > 0.

Combined with (4.6) and the strong Markov property, this yields that

Px(τ
′ < T ) > 0, x ∈ Uk, T > 0.

Repeating this argument successively, we can conclude (4.4). �

Proof of Lemma 4.3. Let x ∈ ∂G and U be a coordinate neighborhood of x.

For a local orthonormal frame {Zα}α∈〈n〉 for T1,0 defined on U , we may and will assume

that the part of {X(t)}t≥0 on U obeys the SDE (4.5).

Let ϕ be a locally defining function of G around x, which means that there is an

open set V containing x such that ϕ ∈ C3(V ), V ∩G = {y ∈ V ;ϕ(y) < 0}, and dϕ(y) �= 0

for y ∈ ∂G∩ V . If either (ReZα)ϕ(x) �= 0 or (ImZα)ϕ(x) �= 0, then by [12, Corollary 4],

x is τ ′-regular. Now we suppose that

(ReZα)ϕ(x) = (ImZα)ϕ(x) = 0, α ∈ 〈n〉. (4.7)

Since {ReZα, ImZα, T}α∈〈n〉 forms a local basis of TM on U , this implies that Tϕ(x) �= 0.

Moreover, in conjunction with (3.7) and (4.7) it also implies that

[ReZα, ImZα]ϕ(x) = Tϕ(x) �= 0.

Hence it follows that, for each α, either (ReZα)(ImZα)ϕ(x) �= 0 or (ImZα)(ReZα)ϕ(x) �=
0 and that a matrix
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(ImZα)(ReZβ)ϕ(x) (ImZβ)(ImZβ)ϕ(x)

⎞⎠
α,β∈〈n〉

is not symmetric. Applying [12, Corollary 7], we see that x is τ ′-regular. �

Remark 4.8. Since Δb is hypoelliptic ([1, Theorem 2.1]), that is, if Δbv = g and

g ∈ C∞(U) then v ∈ C∞(U), uf is a classical solution to the Dirichlet problem, namely

it holds that uf ∈ C∞(G) ∩ C(G), Δbuf = 0 and uf |∂G = f .
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