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Abstract. This note has two goals. First, for those who have heard
the term but do not know what it means, it provides a gentle introduction
to Malliavin’s calculus as it applies to degenerate parabolic partial differential
equations. Second, it applies that theory to generalizations of Kolmogorov’s
example of a highly degenerate operator which is nonetheless hypoelliptic.

1. Background.

The regularity theory for the fundamental solution to the Cauchy intitial value
problem of parabolic equations of the form

∂tu =
1
2

N∑

i,j=1

aij∂xi∂xj u +
N∑

i=1

bi∂xiu on (0,∞)× RN

with u(0, · ) = f (1.1)

has been well developed. Assuming that the second order coefficients are continuous and
non-degenerate in the sense that

N∑

i,j=1

aijξiξj > 0 for ξ = (ξ1, . . . , ξN ) 6= 0, (1.2)

one knows (cf. Theorem 9.2.6 in [10]) that fundamental solution p(t, x, y) to an appropri-
ately generalized version of (1.1) exists and, under mild growth conditions, is integrable
to all orders. When the coefficients are Hölder continuous and satisfy (1.2), p(t, x, y) has
two Hölder continuous spacial derivatives and gives classical solutions to (1.1), and, when
the coefficients are smooth and satisfy (1.2), p(t, x, y) is smooth. (See [1] for the Hölder
continuous case and [9] for the smooth case.) The traditional approaches to studying
solutions to (1.1) involved one or another form of perturbation theory and relied heavily
on the non-degeneracy condition in (1.2). Outside the traditional framework was an ex-
ample found by Kolmogorov of a highly degenerate equation for which the fundamental
solution exists and is smooth. Namely, what Kolmogorov noticed is that
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p(t, x, y) =
1

2π
√

det(C(t))
exp

(
− 1

2
(
y −m(t, x), C(t)−1(y −m(t, x))

))
,

where C(t) =

(
t t2

2

t2

2
t3

3

)
and m(t, x) =

(
x1

x2 + tx1

)

is a fundamental solution to highly degenerate equation

∂tu =
1
2
∂2

x1
u + x1∂x2u.

The easiest way to understand how he discovered this solution is to use probability theory.
Namely, if {B(t) : t ≥ 0} is a standard, 1-dimensional Brownian motion, then the density
of the distribution of

X(t, x) ≡ m(t, x) +
(

B(t)∫ t

0
B(τ) dτ

)

will be a fundamental solution. Furthermore, because all elements in the span of {B(t) :
t ≥ 0} are centered (i.e., mean 0) Gaussian and E[B(s)B(t)] = s ∧ t, X(t, x) is an
R2-valued, Gaussian random variable with mean value m(t, x) and covariance C(t).

Kolmogorov’s example stood in isolation until 1967, when Hörmander [2] proved a
general theorem that put it in context. To state Hörmander’s result, one first has to
rewrite1 (1.1) in the form

∂tu =
1
2

r∑

k=1

V 2
k u + V0u,

where the Vk are vector fields. After writing (1.1) in this form, Hörmander’s theorem
shows that a smooth fundamental solution will exist if the Lie algebra generated by

{
V1, . . . , Vr, [V0, V1], . . . , [V0, Vr]

}

has rank N at each point. When {V1, . . . , Vr} already generate a Lie algebra of rank N

and V0 = 0, Rothschield and Stein [7] gave a beautiful geometric interpretation of these
equations. However in many ways, Hörmander’s theorem is most intriguing and difficult
when, as in Kolmogorov’s example, V0 plays an essential role.

Although Kolmogorov used probability theory to find his example, it was not un-
til Malliavin’s groundbreaking work [5] that anyone was able to use probability theory
to understand the theory for even non-degenerate cases, much less for degenerate ones.
Malliavin’s program was carried to completion by Kusuoka and me in Section 8 of [4],
where Hörmander’s result is proved using Malliavin’s ideas starting from Itô’s representa-

1To do this, one has to find a smooth square root of the coefficient matrix ((ai,j))1≤i,j≤N , and, in the
degenerate case, such a square root need not exist. Based on ideas of J. J. Kohn, Olenik and Radekevich

[6] later extended Hörmander’s result to remove the need for a smooth square root.
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tion of the diffusion process for which (1.1) is the backward equation. Just like the other
approaches, the case when V0 is needed gave us the greatest trouble, and our treatment
of it relies on a trick that is rather unsatisfying. For this reason, I was pleased when I
realized that natural extensions of Kolmogorov’s example can be handled by relatively
elementary and transparent techniques using Malliavin’s ideas. Specifically, in this note,
I will prove that the initial value problem for equations of the form

∂tu =
1
2
∂2
1u + b(x1)∂2 (1.3)

admits a fundamental solution when b is a smooth function whose derivatives have at
most polynomial growth and for which there exist a κ > 0, β ∈ [0, 2), and δ ∈ (0, 1] such
that

|b′(η)| ≥ κe−|η−ξ|−β

for (ξ, η) ∈ R2 with |η − ξ| ≤ 2δ. (1.4)

Although I will not prove that the solution is more than continuous, those familiar with
Malliavin’s ideas will be able to show from the results here that the solution is smooth.
In addition, if, for some β ∈ [0,∞) and δ ∈ (0, 1],

|b′(η)| ≥ exp
(−(log+ |η − ξ|−1)β

)
for (ξ, η) ∈ R2 with |η − ξ| ≤ 2δ, (1.5)

I will argue that the operator

∂t − 1
2
∂2
1 − b(x1)∂2

is hypoelliptic. It may be of some interest to observe that (1.4) and even (1.5) can hold
even though Hörmander’s condition does not.

2. Elements of Malliavin’s calculus.

Let

Ω =
{

ω ∈ C([0,∞);R) : ω(0) = 0 = lim
t→∞

|ω(t)|
1 + t

}
,

and turn Ω into the separable Banach space with norm

‖ω‖Ω ≡ sup
t≥0

|ω(t)|
1 + t

.

Next, set

H = {h ∈ Ω : h is absolutely continuous and ḣ ∈ L2([0,∞);R)},
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and make H into a separable Hilbert space with inner product

(h1, h2)H ≡ (ḣ1, ḣ2)L2([0,∞);R).

If h ∈ H is smooth and ḣ has compact support, define I(h) : Ω −→ R by

[I(h)](ω) =
∫ ∞

0

ḣ(t) dω(t), (∗)

where the integral is taken in the sense of Riemann–Stieltjes. Then Wiener measure W
is the unique Borel measure on Ω with the property that

EW
[
eiI(h)

]
= e−(1/2)‖h‖2H (2.1)

for all smooth h ∈ H such that ḣ has compact support. In particular, I(h) is a centered,
R-valued, Gaussian random variable with variance ‖h‖2H , and so there exists a unique
isometric extension of I as map from H into L2(W;R), and (2.1) continues to hold for
this extension. From this one sees that, for any h ∈ H, the distribution of ω 7−→ ω + h

under W is absolutely continuous with respect to W and has Radon–Nikodym derivative
given by

Rh = exp
(
I(h)− ‖h‖2H

2

)
.

Given h ∈ H and a smooth2 function F : Ω −→ R, define DhF : Ω −→ R by

DhF (ω) =
d

dt
F (ω + th)

∣∣∣∣
t=0

.

Then, from the preceding, it is easy to derive the integration by parts formula

EW [ΨDhΦ] = EW [I(h)ΦΨ− ΦDhΨ] (2.2)

for smooth functions Φ and Ψ satisfying reasonable bounds.
To see how (2.2) gets applied in the proof of regularity results, let n ≥ 0 and consider

the Itô representation

X(t, x, ω) =

(
x1 + ω(t)

x2 +
∫ t

0

(
x1 + ω(τ)

)2n+1
dτ

)

of the diffusion whose backward equation is

2In general, one has to consider functions on Ω which are differentiable in the sense of Sobolev but
not classically. However, for the application here, we need only deal with functions that have classical

Fréchet derivatives.
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∂tu =
1
2
∂2
1u + x2n+1∂2u.

Then, for any ϕ ∈ C∞c (R2;R),

Dh

(
ϕ ◦X(t, x)

)
= h(t)∂1ϕ ◦X(t, x) + (2n + 1)

∫ t

0

h(τ)(x1 + ω(τ)
)2n

dτ∂2ϕ ◦X(t, x).

Now set h1(τ) = (3(τ ∧ t)2/t2)− (2(τ ∧ t)/t) and h2(τ) = τ(t− (τ ∧ t)). Then

Dh2

(
ϕ ◦X(t, x)

)
= (2n + 1)

∫ t

0

h2(τ)
(
x1 + ω(τ)

)2n
dτ∂x2ϕ ◦X(t, x)

and

Dh1

(
ϕ ◦X(t, x)

)
= ∂1ϕ ◦X(t, x) + (2n + 1)

∫ t

0

h1(τ)
(
x1 + ω(τ)

)2n
dτ∂x2ϕ ◦X(t, x)

= ∂x1ϕ ◦X(t, x) +

∫ t

0
h1(τ)(x1 + ω(τ))2n dτ∫ t

0
h2(τ)(x1 + ω(τ))2n dτ

Dh2

(
ϕ ◦X(t, x)

)
.

Hence

∂x1ϕ ◦X(t, x) = Dh1

(
ϕ ◦X(t, x)

)− Φ1

Φ2
Dh2

(
ϕ ◦X(t, x)

)

and

∂x2ϕ ◦X(t, x) =
1

(2n + 1)Φ2
Dh2

(
ϕ ◦X(t, x)

)
,

where

Φ1 =
∫ t

0

h1(τ)
(
x1 + ω(τ)

)2n
dτ and Φ2 =

∫ t

0

h2(τ)
(
x1 + ω(τ)

)2n
dτ.

After applying (1.2), we find that

EW
[
∂x1ϕ ◦X(t, x)

]
= EW

[(
I(h1)− I(h2)Φ1

Φ2
+ Dh2

Φ1

Φ2

)
ϕ ◦X(t, x)

]

and

EW
[
∂x2ϕ ◦X(t, x)

]
= EW

[(
I(h2)−Dh2

1
Φ2

)
ϕ ◦X(t, x)

]
.

Therefore, if ψ1 : R2 −→ R and ψ2 : R2 −→ R are determined by
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ψ1 ◦X(t, x) = EW
[
I(h1)− I(h2)Φ1

Φ2
+ Dh2

Φ1

Φ2

∣∣∣∣ X(t, x)
]

and

ψ2 ◦X(t, x) = EW
[
I(h2)−Dh2

1
Φ2

∣∣∣∣ X(t, x)
]
,

and if P (t, x, · ) denotes the distribution of X(t, x) under W, then

∫

R2
∂xj ϕ(y) P (t, x, dy)µ =

∫

R2
ϕ(y)ψj(y) P (t, x, dy) for j ∈ {1, 2}. (2.3)

Given (2.3), the proof that P (t, x, · ) admits a continuous density relies on the fol-
lowing simple variant of Sobolev’s embedding theorem. This result is Lemma 1.26 in [3]
and is included here for the convenience of the reader.

Lemma 1. Let µ be a probability measure on RN and p ∈ (N,∞). If, for each
1 ≤ j ≤ N , there is a ψj ∈ Lp(µ;R) such that ∂xj µ = ψjµ, then there is an f ∈
Cb(RN ; [0,∞)) such that µ(dy) = f(y) dy. In fact, there is a C < ∞, depending only on
N and p, such that

‖f‖u ≤ C
(

max
1≤j≤N

‖ψj‖Lp(µ;R)

)N

.

Proof. For λ > 0, set rλ(x) = (4π)−N/2
∫∞
0

t−N/2e−λte−|x|
2/4t dt. Then

rλ(x) = λ(N/2)−1r1(λ1/2x) and so ∇rλ(x) = λ(N/2)−(1/2)∇r1(λ1/2x).

Hence

‖λrλ‖Lq(RN ;R) = λN/2q′‖r1‖Lq(RN ;R) and

‖∇rλ‖Lq(RN ;R) = λ(N/2q′)−(1/2)‖∇r1‖Lq(RN ;R),

where q′ = q/(q − 1) is the Hölder conjugate of q. When N = 1, r1 is bounded,
‖r1‖L1(RN ;R) = 1, and so ‖r1‖Lq(RN ;R) < ∞ for all q ∈ [1,∞]. When N ≥ 2, and
p > N/2, choose θ ∈ (0, 1) so that p = (N − 2θ + 2)/2. Then

r1(x)p′ = (4π)−Np′/2

( ∫ ∞

0

t−(N/2)+θe−|x|
2/4tt−θe−t dt

)p′

≤ (4π)−Np′/2Γ(1− θ)p′−1

∫ ∞

0

t−((N−2θ)p′/2)−θe−te−|x|
2p′/4t dt,

and so there is an A(p, θ) < ∞ such that
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‖r1‖p′

Lp′ (RN ;R)
≤ A(p, θ)p′

∫ ∞

0

t−(p′−1)((N/2)−θ)e−t dt < ∞,

since (p′− 1)((N/2)− θ) = (N − 2θ)/(N − 2θ + 2) < 1. Hence, ‖r1‖Lp′ (RN ;R) < ∞ for all
p > N/2. Similarly, ‖∇r1‖Lp′ (RN ;R) < ∞ for all p > N .

Next observe that µ = µ ∗ r1 +
∑N

j=1(ψjµ) ∗ (∂x1r1), and therefore that µ = fλN
R

for some non-negative f ∈ L1(RN ;R) with integral 1. Set g = f1/p, and note that
∂xj g = (1/p)ψjg. Since ‖g‖Lp(RN ;R) = 1 and ‖∂xj g‖Lp(RN ;R) = ‖ψj‖1/p

Lp(µ;R), for any

λ > 0, g = λg ∗ rλ +
∑N

j=1(ψjg) ∗ (∂xj rλ), and so g is continuous and

‖g‖u ≤ C(p,N)
(

λN/2p + λ(N/2p)−(1/2)
N∑

j=1

‖ψj‖1/p
Lp(µ;R)

)

for some C(p,N) < ∞. Now minimize with respect to λ and use the fact that ‖f‖u =
‖g‖p

u. ¤

In view of Lemma 1, we will know that P (t, x, · ) admits a continuous density once
we know that the ψ1 and ψ2 in (1.3) belong to Lp(µ;R) for all p ∈ [1,∞), and, because
conditioning is a Lp-contraction, this comes down to showing that

I(h1)− I(h2)Φ1

Φ2
+ Dh2

Φ1

Φ2
and I(h2)−Dh2

1
Φ2

are in Lp(W;R) for all p ∈ [1,∞). Clearly, the only terms in doubt are

Dh2

Φ1

Φ2
=

2n
∫ t

0
h1(τ)h2(τ)(x1 + ω(τ))2n−1 dτ∫ t

0
h2(τ)(x1 + ω(τ))2n dτ

− 2n
∫ t

0
h2(τ)2(x1 + ω(τ))2n−1 dτ

∫ t

0
h1(τ)(x1 + ω(τ))2n dτ

( ∫ t

0
h2(τ)(x1 + ω(τ))2n dτ

)2

and

Dh2

1
Φ2

= −2n
∫ t

0
h2(τ)2(x1 + ω(τ))2n−1 dτ

( ∫ t

0
h2(τ)(x1 + ω(τ))2n dτ

)2 .

Hence, all that we have to check is that

EW
[(∫ t

0

h2(τ)(x1 + ω(τ))2n dτ

)−p]
< ∞ for all p ∈ [1,∞).

To this end, first observe that
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∫ t

0

τ(t− τ)
(
x1 + ω(τ)

)2n
dτ = t3

∫ 1

0

τ(1− τ)
(
x1 + ω(tτ)

)2n
dτ

≥ 6n−1t3
( ∫ 1

0

τ(1− τ)
(
x1 + ω(tτ)

)2
dτ

)n

≥ 3 · 6n−1t3

16

( ∫ 3/4

1/4

(
x1 + ω(tτ)

)2
dτ

)n

.

By Brownian scaling,
∫ 3/4

1/4
(x1 + ω(tτ))2 dτ and t

∫ 3/4

1/4
(t−1/2x1 + ω(τ))2 dτ have the same

distribution under W, and, by standard Brownian computations (cf. Section 10.3.36 in
[8]), for all α > 0,

EW
[

exp
(
− α

∫ 3/4

1/4

(
t−1/2x1 + ω(τ)

)2
dτ

)]

=
∫

R
EW

[
exp

(
− α

∫ 1/2

0

(
ξ + ω(τ)

)2
dτ

)]
γt−1/2x1,1/4(dξ) ≤ (

cosh
√

2α
)−1/2

,

where γm,σ2 is the Gaussian measure on R with mean m and variance σ2. Starting from
this, we know that

W
(

∆ ≤ 1
R

)
≤ eEW

[
e−R∆

] ≤ e
(
cosh

√
2R

)−1/2
,

and therefore that

lim
R→∞

RMW
( ∫ t

0

h2(τ)
(
x1 + ω(τ)

)2n
dτ ≤ 1

R

)
= 0 for all M ≥ 0.

3. The general case.

Because b′ ≥ 0 in the cases treated in Section 1, we were able to handle them by
differentiating in only two directions, h1 and h2. However to handle the general case,
or, for that matter, even the case b(ξ) = ξ2, we will need to differentiate in an infinite
number of directions.

Let {hn : n ≥ 1} ⊆ C∞c
(
[0,∞);R

)
be an orthonormal basis in H, and if Φ : Ω −→ R

is a smooth function for which

∞∑
n=1

|Dhn
Φ(ω)|2 < ∞ for all ω ∈ Ω,

define DΦ : Ω −→ H so that (DΦ(ω), h)H = DhΦ(ω) for all ω ∈ Ω and h ∈ H.
The Itô representation for the diffusion whose backward equation is (1.3) is
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X(t, x) =
(

x1 + ω(t)
x2 +

∫ t

0
b
(
x1 + ω(τ)

)
dτ

)
. (3.1)

Thus, what we want to show is that the distribution P (t, x, · ) of X(t, x) under W admits
a bounded, continuous density. By trivial rescaling and translation, it is easy to see that
it suffices to treat the case when t = 1 and x = 0. Therefore, set X = X(1, 0). Clearly,

DhX =

(
h(1)∫ 1

0
h(τ)b′

(
ω(τ)

)
dτ

)
,

and so

[DX(ω)](t) ≡
(

[DX1(ω)](t)
[DX2(ω)](t)

)
=

(
t ∧ 1∫ t∧1

0

( ∫ 1

s
b′(ω(τ)) dτ

)
ds

)
.

Now let ϕ ∈ C∞c (R2;R) be given. Then

D(ϕ ◦X) = (∂x1ϕ ◦X)DX1 + (∂x2ϕ ◦X)DX2.

Hence, if

A ≡ ((
(DX)i, DXj

)
H

)
1≤i,j≤2

=

(
1

∫ 1

0

( ∫ 1

s
b′

(
ω(τ)

)
dτ

)
ds

∫ 1

0

( ∫ 1

s
b′

(
ω(τ)

)
dτ

)
ds

∫ 1

0

( ∫ 1

s
b′

(
ω(τ)

)
dτ

)2
ds

)
,

then

(
D(ϕ ◦X), DXi

)
H

=
2∑

j=1

Aij∂xj
ϕ ◦X for i ∈ {1, 2}. (3.2)

In order to take the next step, we will need to know that the matrix A is W-almost
surely invertible. For this purpose, set

∆ ≡ det(A) =
∫ 1

0

( ∫ 1

s

b′
(
ω(τ)

)2
dτ

)
ds−

( ∫ 1

0

( ∫ 1

s

b′
(
ω(τ)

)
dτ

)
ds

)2

=
∫∫

0≤s<t≤1

( ∫ t

s

b′
(
ω(τ)

)
dτ

)2

dsdt.

Lemma 2. Referring to the preceding, EW [∆−p] < ∞ for all p ∈ [1,∞).

Proof. Define {σn : n ≥ 1} and {τn : n ≥ 1} by

σn(ω) = 1 ∧ inf
{

t ≥ 0 : |ω(t)| ≥ δ

n

}
and
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τn(ω) = 1 ∧ inf
{

t ≥ σn(ω) : |ω(t)| ≤ δ

2n
or |ω(t)| ≥ 2δ

}
.

Then, by (1.4), there is an c > 0 such that ∆ ≥ c(τn − σn)4e−(2δ−1n)β

for all n ≥ 1, and
therefore

EW
[
e−α∆

] ≤ EW
[
e−cαe−(2δ−1)β

(τ1−σ1)
4
, σ1 ≤ 1

2

]

+
∞∑

n=2

EW
[
e−cαe−(2δ−1n)β

(τn−σn)4 , σn ≤ 1
2

< σn−1

]

≤ EW
[
e−cαe−(2δ−1)β

(τ1−σ1)
4
, σ1 ≤ 1

2

]

+
∞∑

n=2

(
EW

[
e−2cαe−(2δ−1n)β

(τn−σn)4 , σn ≤ 1
2

])1/2

W
(

σn−1 >
1
2

)1/2

.

Standard Brownian calculations (cf. Exercise 10.3.36 in [8]) show that

W
(

σn−1 >
T

2

)1/2

≤ Ce−γTn2
for some C < ∞ and γ > 0.

Next, set ζr(ω) = inf{t ≥ 0 : ω(t) ≥ r}, and note that, by Brownian scaling, ζr has the
same distribution under W as r2ζ1. Hence, for any ρ > 0,

EW
[
e−ρ(τn−σn)4 , σn ≤ 1

2

]

= EW
[
e−ρ(τn−σn)4 , σn ≤ 1

2
& τn > 1

]
+ EW

[
e−ρ(τn−σn)4 , σn ≤ 1

2
& τn ≤ 1

]

≤ e−ρ/16 + EW
[
e−ρ(ζδ/2n∧ζ(2−(1/n))δ)4

]

≤ e−ρ/16 + EW
[
e−ρζδ/2n

]
+ EW

[
e−ρζ4

(2−(1/n))δ
]

≤ e−ρ/16 + 2EW
[
e−(ρδ2/4n2)ζ4

1
]
.

At the same time, for λ > 0,

√
π

2
E

[
e−λζ4

1
]

=
∫ ∞

0

t−3/2e−(1/2t)−λt4 dt

≤
∫ (4λ)−1/5

0

t−3/2e−1/2t dt + e−4−4/5λ1/5
∫ ∞

(4λ)−1/5
t−3/2e−1/2t dt

≤ 4
√

πe−4−4/5λ1/5
.
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Thus, there exist a C < ∞ and an ε > 0 such that

E
[
e−α∆

] ≤ C
∞∑

n=1

(
exp

(−εαn−8e−(2δ−1n)β )
+ exp

(−ε(αn−8e−(2δ−1n)β

)1/5
))

e−γn2
.

By splitting the sum according to whether n ≤ (log(2−1δα1/2))1/β or n >

(log(2−1δα)1/2)1/β , one sees that E[e−α∆] goes to 0 faster than α−p for every p ≥ 1
and therefore, since

W
(

∆ ≤ 1
R

)
≤ eEW [e−R∆],

that ∆−p is integrable for all p ∈ [1,∞). ¤

For those adept with the techniques used in Malliavin’s calculus, it is easy to pass
from Lemma 2 to the conclusion that the distribution of X admits a smooth density.
What follows is a somewhat formal summary of the steps that show the existence of a
bounded, continuous density.

Knowing that A is W-almost surely invertible, we can rewrite (3.2) as

∂xiϕ ◦X =
2∑

j=1

A−1
ij (Dϕ ◦X, DXj)H .

By writing (D(ϕ ◦X), DXj)H as
∑∞

n=1(Dhn
(ϕ ◦X))(Dhn

Xj) and applying (1.2), we see
that

EW
[
A−1

ij

(
D(ϕ ◦X), DXj

)
H

]
=

∞∑
n=1

EW
[(

A−1
ij I(hn)Dhn

Xj −Dhn
(A−1

ij Dhn
Xj)

)
ϕ ◦X

]
.

If ω ∈ H, one sees that

∞∑
n=1

[I(hn)]DXj(hn) =
(
ω, DXj

)
H

=

{
ω(1) if j = 1,
∫ 1

0

( ∫ 1

t
b′

(
ω(τ)

)
dτ

)
dω(t) if j = 2,

and by a limiting procedure one can show the conclusion just drawn holds for W-almost
every ω ∈ Ω when, for j = 2, the integral is interpreted in the sense of Riemann–Stieltjes.
As for the other term, note that

Dhn

(
A−1

ij DhnXj

)
=

(
DhnA−1

ij

)(
DhnXj

)
+ A−1

ij D2
hn

Xj ,

and therefore

∞∑
n=1

Dhn

(
A−1

ij DhnXj

)
=

(
DA−1

ij , DXj

)
H

+ A−1
ij

∞∑
n=1

D2
hn

Xj .
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Clearly, D2
hn

X1 = 0, and, because
∑∞

n=1 hn(s)2 = ‖hs‖2H = s where hs(τ) = τ ∧ s,

∞∑
n=1

D2
hn

X2 =
∞∑

n=1

∫ 1

0

hn(s)2b′′
(
ω(s)

)
ds =

∫ 1

0

sb′′
(
ω(s)

)
ds.

Finally, for i 6= j,

(
DA−1

ii , DXi

)
H

=
1
∆

(
DAjj , DXi

)
H
− Ajj

∆2

(
D∆, DXi

)
H

and

(
DA−1

ij , DXj

)
H

= − 1
∆

(
DAij , DXj

)
H

+
Aij

∆2

(
D∆, DXj

)
H

.

Since A11 = 1, (DA11, DX1)H = 0. Note that

A12 = A21 =
∫ 1

0

τb′
(
ω(τ)

)
dτ,

and so

DhA12 = DhA21 =
∫ 1

0

τh(τ)b′′
(
ω(τ)

)
dτ.

Hence, since
∑∞

n=1 hn(s)hn(t) = (hs, ht)H = s ∧ t,

(DA21, DX1)H =
∫ 1

0

τ2b′′(ω(τ)) dτ

and

(DA12, DX2)H =
∫∫

[0,1]2

(τ1 ∧ τ2)τ1b
′′(ω(τ1))b′(ω(τ2)) dτ1dτ2.

Finally,

∆ =
∫∫

[0,1]2

(τ1 ∨ τ2)(1− τ1 ∨ τ2)b′(ω(τ1))b′(ω(τ2)) dτ1dτ2,

and so

Dh∆ = 2
∫∫

[0,1]2

(τ1 ∧ τ2)(1− τ1 ∨ τ2)h(τ1)b′′(ω(τ1))b′(ω(τ2)) dτ1dτ2,
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from which it follows that

(D∆, DX1) = 2
∫∫

[0,1]2

(τ1 ∧ τ2)(1− τ1 ∨ τ2)τ1b
′′(ω(τ1))b′(ω(τ2)) dτ1dτ2

and

(D∆, DX2) = 2
∫∫∫

[0,1]3

(τ1 ∧ τ2)(1− τ1 ∨ τ2)(τ1 ∧ τ3)b′′(ω(τ1))b′(ω(τ2))b′(ω(τ3)) dτ1dτ2dτ3.

Since all these are in Lp(W;R) for all p ∈ [1,∞), we have now proved that P (1, 0, · )
admits a bounded, continuous density p(1, 0, · ), and, as we said above, from this it follows
that P (t, x, dy) admits a bounded, continuous density p(t, x, · ) for all (t, x) ∈ (0,∞)×R2.
Given Lemma 2, going further and proving that (t, x, y) Ã p(t, x, y) is smooth requires
essentially no new ideas and is basically a matter of book keeping. See [4] for details.

To prove that ∂t−(1/2)∂2
x1
−b(x1)∂x2 is hypoelliptic when (1.5) holds, set (cf. (3.1))

X(T ) = X(T, 0), A(T ) = ((DX(T )i, DX(T )j)H)1≤i,j≤2, and ∆(T ) = det(A(T )). By the
results in Section 8 of [4], it suffices for us to show that

lim
T↘0

e−ε/TEW
[
∆(T )−p

]
= 0 for all ε > 0 and p ∈ [1,∞). (3.3)

Reasoning as before,

∆(T ) =
∫∫

0≤s<t≤T

( ∫ t

s

b′
(
ω(τ)

)
dτ

)2

dsdt,

and so, just as before,

EW
[
e−α∆(T )

] ≤ C
∞∑

n=1

(
exp

(−εαT 2n−8e−(log 2n)β )

+ exp
(−ε(αn−8e−(log 2n)β

)1/5
))

e−γTn2
.

Without loss in generality, we will assume that β ≥ 1, in which case we have that

EW
[
e−α∆(T )

] ≤ C
∞∑

n=1

(
exp

(−εαT 2e−κ(log n)β )
+ exp

(−ε(αe−κ(log n)β

)1/5
))

e−γTn2

for an appropriate choices of ε > 0 and κ < ∞. Splitting the sum according to whether n

is dominated by or dominates exp((log+ α)/κ)1/β , one sees that the preceding is bounded
above by
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F (T, α) ≡ C√
γT

(
e−εT 2α1/2

+ e−εα1/10
+ 2 exp

[
− γT exp

[
2
(

log+ α

κ

)1/β]])
.

Hence W(∆ ≤ 1/R) ≤ eF (T,R), and so

EW
[
∆−p

] ≤ pe

∫ ∞

0

Rp−1F (T, R) dR.

When T ∈ (0, 1], the contribution to the above by the first two terms in the expression
for F (T, R) is bounded by a constant times T−4p−(1/2). To handle the third term, we
must estimate

∫ ∞

1

Rp−1 exp
[
− γT exp

[
2
(

log R

κ

)1/β]]
dR =

∫ ∞

0

epr exp
[
− γT exp

[
2
(

r

κ

)1/β]]
dr.

To this end, note that

γ exp
[
2
(

r

κ

)1/β]
≥ ρr4 for some ρ ∈ (0,∞),

and therefore that the preceding integral is dominated by

∫ ∞

0

epre−ρTr4
dr = T−1/4

∫ ∞

0

eprT−1/4
e−ρr4

dr.

Finally, set R(T ) = (2p/ρT 1/4)1/β , and decompose the preceding integral into

∫ R(T )

0

eprT−1/4
e−ρr4

dr +
∫ ∞

R(T )

eprT−1/4
e−ρr4

dr.

Since

pr

T 1/4
− ρr4 ≤





3
4

(
p4

4ρT

)1/3

for all r > 0,

−ρr4

2
for r ≥ R(T ),

it follows that, for each p ∈ [1,∞), there exists a Cp < ∞ such that

EW
[
∆(T )−p

] ≤ Cpe
CpT−1/3

for T ∈ (0, 1].

Hence, (3.3) holds.
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