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Abstract. In this article, we show that, Q :A mt ⊆ mt for all integers
t > 0, and for all parameter ideals Q ⊆ m2t−1 in a one-dimensional Cohen-
Macaulay local ring (A, m) provided that A is not a regular local ring. The
assertion obtained by Wang can be extended to one-dimensional (hence, ar-
bitrary dimensional) local rings after some mild modifications. We refer to
these quotient ideals I = Q :A mt, t-th quasi-socle ideals of Q. Examples are
explored.

1. Introduction.

Let A be a Noetherian local ring with the maximal ideal m, and dimA > 0. Let Q

be a parameter ideal in A. Let t > 0 be a positive integer. With these notation, we set
ideals I = Q :A mt, and call them t-th quasi-socle ideals of Q. This article studies t-th
quasi-socle ideals in one-dimensional Cohen-Macaulay local rings. The purpose of this
article is to extend Wang’s theorem (see [W]) to one-dimensional Cohen-Macaulay local
rings. We want to review the background of our researches briefly. When t = 1, the ideal
Q :A m is called the socle ideal of Q. Let us recall one fundamental result on socle ideals
given by Corso and Polini.

Theorem 1.1 ([CP, Theorem 2.2]). Let (A,m) be a Cohen-Macaulay local ring,
which is not a regular local ring. Let I = Q : m where Q is a parameter ideal in A. Then
I2 = QI.

It seems natural to ask, “What will happen in the case when t ≥ 2?” Bearing in
our mind the case where t = 1, Polini and Ulrich conjectured that, by setting some
conditions on the choice of parameter ideals Q, analogues of Theorem 1.1 might hold
true for t-th quasi-socle ideals I = Q :A mt, (t ≥ 2). Namely, they posed the following
profound conjecture. It is in the case when t ≥ 2, A is a Cohen-Macaulay local ring, and
dimA ≥ 2. Their conjecture is originally rooted in linkage theory.

Conjecture 1.2 ([PU]). Let (A,m) be a Cohen-Macaulay local ring with dimA ≥
2. Assume that dimA ≥ 3 when A is regular. Let t ≥ 2 be an integer and Q a parameter
ideal for A such that Q ⊆ mt. Then I = Q :A mt ⊆ mt.

In 2007, Wang proved Cojecture 1.2 affirmatively in his remarkable paper [W]. We
set G(m) =

⊕
n≥0 mn/mn+1 to be the associated graded ring of m.
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Theorem 1.3 ([W]). Let A be a Cohen–Macaulay local ring and let t ≥ 2 be an
integer.

(1) The conjecture of Polini and Ulrich is true. Hence, dimA ≥ 2, and assume that
dimA ≥ 3 when A is regular. Let t ≥ 2 be an integer and let Q be a parameter ideal
such that Q ⊆ mt. Then I = Q :A mt ⊆ mt, mtI = mtQ and I2 = QI.

(2) Assume that depthG(m) ≥ 2 and let Q be a parameter ideal in A such that Q ⊆ mt+1.
Put I = Q : mt. Then furthermore we have, I ⊆ mt+1, mtI = mtQ and I2 = QI.

The assumption that depthG(m) ≥ 2 is satisfied if the ring A is a regular local
ring of dimA ≥ 2. Wang’s Theorem 1.3 deals with all Cohen–Macaulay local rings of
dimA ≥ 2. It is natural to ask, “What will happen in the case when dimA = 1?” Goto,
Kimura, Matsuoka and Takahashi studied t-th quasi-socle ideals in one-dimensional local
rings, and they have shown that the one-dimensional cases are different from higher-
dimensional cases (dim A ≥ 2). It is difficult to control the t-th socle ideals Q :A mt

in one-dimensional local rings, even though A is a Cohen-Macaulay local ring and a
Gorenstein local ring (see [GKM], [GMT]). We give an example of a one-dimensional
Cohen-Macaulay local ring which shows that ideals I = Q :A mt, (t ≥ 2) are not contained
in mt when parameter ideal Q ⊆ mt.

Example 1.4. Let A = k[[X, Y ]]/(X2), where k[[X, Y ]] is the formal power series
ring with two indeterminates X and Y over a field k. Put m = (x, y) ⊂ A, where x and
y are the images of X and Y in A respectively. Then mn = (xyn−1, yn) for all positive
integers n > 0. Let t ≥ 2 be an integer and put Q = (y2t−2). Then Q ⊆ m2t−2 ⊆ mt and
I = Q :A mt = (xyt−2, yt−1) = mt−1 6⊆ mt.

With these notation and terminology, we state the main result of this article.

Theorem 1.5. Let (A,m) be a one-dimensional Cohen-Macaulay local ring and
t > 0 a positive integer. Then, Q :A mt ⊆ mt for all parameter ideals Q ⊆ m2t. Moreover
if A is not a regular local ring, then Q :A mt ⊆ mt for all parameter ideals Q ⊆ m2t−1.

We shall remark that Example 1.4 shows that the value 2t−1 of an order of parameter
ideals Q ⊆ m2t−1 in Theorem 1.5 is the best possible.

Goto, Kimura, Phuong and Truong explored quasi-socle ideals I = Q :A mt in
numerical semigroup rings, and they have shown some interesting results. Among them,
they have shown some conditions for the associated graded ring G(I) =

⊕
n≥0 In/In+1

to be Cohen–Macaulay [GKPT, Theorem 3.1]. However, their results do not cover
Theorem 1.5. Because Theorem 1.5 and our discussion deal with all Cohen–Macaulay
local rings of d = 1, and also for d ≥ 1 (see Corollary 2.5, for the assertion d ≥ 1).

2. Proof of Theorem 1.5.

In this section, we give a proof of Theorem 1.5. Firstly, we prove Theorem 2.3, and
we derive Theorem 1.5 as a corollary. Let us begin with the following.

Lemma 2.1. Let A be a commutative ring, and let a, b, and c be ideals of A.
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Suppose that a contains a non-zero divisor and a ⊆ b. Furthermore assume that there
exists a subset F of a such that a is generated by F , and we assume that (f) :A b ⊆ c for
all elements f ∈ F . Then we have (a) :A b ⊆ c, for all non-zero divisors a ∈ a.

Proof. Let a ∈ a be any non-zero divisor in A. Choose any element x ∈ (a) :A b

and f ∈ F . Since F ⊆ a ⊆ b, we have fx = ay for some y ∈ A. On the other hand, take
any element b ∈ b, then we can express bx = az for some z ∈ A. Thereby, we have

bay = b(fx) = f(bx) = faz.

Since a is a non-zero divisor, we get by = fz. Thus we see that y ∈ (f) :A b. By our
assumption (f) :A b ⊆ c, we get y ∈ c. Therefore, fx = ay ∈ ac, and thus, x ∈ ac :A a

because a is generated by the set F . Now, because a ∈ a, we have ax ∈ ac. It is easy to
see that x ∈ c, since a is a non-zero divisor. We get (a) :A b ⊆ c as claimed. ¤

Next Lemma is the key in our discussion.

Lemma 2.2. Let (A,m) be a commutative local ring and assume that m contains
a non-zero divisor. Let t > 0 be a positive integer and let s ≥ 0 be an integer. Let
a1, a2, . . . , at+s ∈ m be non-zero divisors of A and we assume that (a1) 6= m. Then
(a1a2 · · · at+s) :A mt ⊆ ms+1.

Proof. Firstly, we prove the assertion in the case when s > 0. It is easy to see
that

(a1a2 · · · at+s) :A mt ⊆ (a1a2 · · · at+s) :A a1a2 · · · at ⊆ [(0) :A a1 · · · at] + (at+1 · · · at+s).

Thereby, we have (a1a2 · · · at+s) :A mt ⊆ (at+1 · · · at+s), since a1 · · · at is a non-zero divi-
sor. We choose any element x ∈ (a1a2 · · · at+s) :A mt and express it as x = at+1 · · · at+sy

where y ∈ A. It is enough to prove the following claim.

Claim 1. y ∈ (a1) :A m.

Proof of Claim 1. We choose any element α ∈ m. Then we can express
αa2 · · · atx = αa2 · · · atat+1 · · · at+sy, because x = at+1 · · · at+sy. On the other hand,
we have that αa2 · · · at ∈ mt, hence, we have αa2 · · · atx = a1 · · · at+sz, for some z ∈ A.
Thus from these equations (recall that a2 · · · at+s is a non-zero divisor), we have αy = a1z.
Therefore, y ∈ (a1) :A m as claimed. ¤

Thanks to the assumption (a1) 6= m, we have (a1) :A m ⊆ m. Hence, we have
y ∈ (a1) :A m ⊆ m. Therefore, x = at+1 · · · at+sy ∈ ms+1, thus, we get (a1a2 · · · at+s) :A
mt ⊆ ms+1 as claimed. The proof also works in the case when s = 0. We consider an
element x itself instead of y, that is, the above proof of Claim 1 shows that (a1a2 · · · at) :A
mt ⊆ (a1) :A m. ¤

We are ready to prove the key theorem.

Theorem 2.3. Let (A,m) be a Noetherian local ring with depthA > 0. Let t > 0
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be a positive integer and let s ≥ 0 be an integer. Assume that m is not principal. Then
we have (a) :A mt ⊆ ms+1 for all non-zero divisors a ∈ mt+s.

Proof. First of all, it is easy to see that mt+s is generated by the following set
F :

F = {a1a2 · · · at+s | a1, a2, . . . , at+s ∈ m are non-zero divisors}.

Since m is not principal, we have (a1a2 · · · at+s) :A mt ⊆ ms+1 for all elements
a1a2 · · · at+s ∈ F , by Lemma 2.2. Therefore, we get (a) :A mt ⊆ ms+1 for all non-zero
divisors a ∈ mt+s, by Lemma 2.1. ¤

Applying Theorem 2.3 to one-dimensional Cohen-Macaulay local rings, we get the
following.

Corollary 2.4. Let (A,m) be a one-dimensional Cohen-Macaulay local ring. Let
t > 0 be a positive integer, and let s ≥ 0 be an integer. Then we have, Q :A mt ⊆ ms

for all parameter ideals Q ⊆ mt+s. Moreover, if A is not a regular local ring, we have
Q :A mt ⊆ ms+1 for all parameter ideals Q ⊆ mt+s.

Proof. If A is a regular local ring, then A is a DVR. Thereby, it is clear that
Q :A mt ⊆ ms for all parameter ideals Q ⊆ mt+s. Hence, we may assume that A is
not a regular local ring. The assertion readily follows from Theorem 2.3, since m is not
principal. ¤

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Set s = t (resp. s = t − 1) in Corollary 2.4, we have
the first (resp. second) assertion in Theorem 1.5. ¤

Finally the authors would like to give the following, which settles Polini-Ulrich Con-
jecture 1.2 of arbitrary dimension, although the assertion is almost covered by Wang’s
theorem (see [W]) in the case when dim A ≥ 2.

Corollary 2.5. Let (A,m) be a Cohen-Macaulay local ring with d = dimA > 0.
Let t > 0 be a positive integer and let s ≥ 0 be an integer, and assume that t + s ≥ 2.
Suppose that m is not principal. Then we have, Q :A mt ⊆ ms+1 for all parameter ideals
Q ⊆ mt+s.

Proof. We prove the assertion by induction on d = dim A. When d = 1, the
assertion readily follows from Theorem 2.3. Suppose that d ≥ 2 and assertion holds for
d− 1. Let Q = (a1, a2, . . . , ad) ⊆ mt+s be a parameter ideal in A. We see that A/(a1) is
not a regular local ring, since a1 ∈ mt+s ⊆ m2. Thus, by passing to A/(a1), and thanks
to the hypothesis of induction on d, we have,

Q :A mt ⊆ ms+1 + (a1) ⊆ ms+1. ¤
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3. One dimensional local rings.

In this section, we apply Theorem 1.5 to one-dimensional local rings (A,m). To do
this, we give an application of Theorem 1.5 (see Corollary 3.1). We denote H0

m(A) the
0-th local cohomology module of A with respect to the maximal ideal m. First of all,
we notice that if A is not a Cohen-Macaulay local ring, the assertion Q :A mt ⊆ mt

does not hold for any parameter ideal Q ⊆ mt, provided that the integer t À 0. In
fact, suppose that A is not a Cohen-Macaulay local ring, hence H0

m(A) 6= (0). Then,
there exists an integer n > 0 such that H0

m(A) * mn. On the other hand, there exists
an integer ` > 0 such that H0

m(A) = (0) :A m`. We set an integer t ≥ max{n, `},
thus, H0

m(A) = (0) :A m` ⊆ Q :A mt for every parameter ideal Q in A. Then, since
H0

m(A) 6⊆ mt, we have Q :A mt 6⊆ mt. What will happen in case A is not necessarily a
Cohen-Macaulay local ring? We give a following consequence.

Corollary 3.1. Let (A,m) be a one-dimensional Noetherian local ring and t > 0
be a positive integer. Then, Q :A mt ⊆ mt + H0

m(A) for all parameter ideals Q ⊆ m2t.
Moreover if A/H0

m(A) is not a regular local ring, then Q :A mt ⊆ mt + H0
m(A) for all

parameter ideals Q ⊆ m2t−1.

Proof. Apply Theorem 1.5 to a Cohen-Macaulay local ring A/H0
m(A). ¤

Goto and the authors explored quasi-socle ideals in Buchsbaum local rings [GHS].
They have shown that quasi-socle ideals behave very well inside Buchsbaum local rings
provided that d = dim A ≥ 2. Our interest for the application of Corollary 3.1 is
especially Buchsbaum local rings. We refer to [SV] for basic properties of Buchsbaum
local ring. It is known, among them, that, if A is a Buchsbaum local ring, then H0

m(A) =
(0) :A m (see [SV]). In the Example 3.2, we keep the same notation as in Example 1.4.

Example 3.2. Let A = k[[X, Y, Z]]/(X2, XY, XZ, Y Z), then A is a one-
dimensional Buchsbaum local ring which is not a Cohen-Macaulay local ring. Put
m = (x, y, z), then we have H0

m(A) = (0) :A m = (x). Hence, we have, A/H0
m(A) '

k[[Y, Z]]/(Y Z). It is easy to check, mn = (yn, zn) for all integers n > 1. Let t be a positive
integer and put Q = (y2t−1+z2t−1). Then, we have Q : mt = (yt, zt)+(x) = mt+H0

m(A).

Let A be a one-dimensional Cohen-Macaulay local ring (resp. Buchsbaum local
ring). Thanks to Theorem 1.5 (resp. Corollary 3.1), we have I = Q :A mt ⊆ mt (resp.
I = Q :A mt ⊆ mt + H0

m(A)), whence I2 ⊆ Q. It is natural to expect that the equality
I2 = QI holds true, but it is not true. In [GKPT], Goto and et al. explored the quasi-
socle ideals I = Q :A mt in numerical semigroup rings and they gave an example which
shows that the reduction number of I with respect to parameter ideal Q is not equal to
one. Thus, the equality I2 = QI does not hold true in general.

Example 3.3 ([GKPT, Example 3.7]). Let k be a field and R = k[[t5, t8, t12]] ⊆
k[[t]] be a numerical semigroup ring. Then (R, m) is a one-dimensional Gorenstein local
ring, where m = (t5, t8, t12). Let 0 < α ∈ 〈5, 8, 12〉 be an integer, and suppose that
α ≥ 20. Let Q = (tα) be a parameter ideal in R, and let I = Q : m3. We can check
that m3I 6= m3Q and I2 6= QI, hence the reduction number of I with respect to Q is not
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equal to one.

Question 3.4. Can we describe the reduction number of I with respect to Q in
one-dimensional Cohen-Macaulay (Buchsbaum) local rings?

Acknowledgements. The authors would like to thank all members of Commu-
tative Algebra Seminar at Meiji University for their suggestions and comments. Our
thanks especially go to Dr. Satoru Kimura for his support and discussion.

References

[CP] A. Corso and C. Polini, Links of prime ideals and their Rees algebras, J. Algebra, 178 (1995),

224–238.

[GHS] S. Goto, J. Horiuchi and H. Sakurai, Quasi-socle ideals in Buchsbaum rings, Nagoya Math.

J., 200 (2010), 93–106.

[GKM] S. Goto, S. Kimura and N. Matsuoka, Quasi-socle ideals in Gorenstein numerical semigroup

rings, J. Algebra, 320 (2008), 276–293.

[GKPT] S. Goto, S. Kimura, T. T. Phuong and H. L. Truong, Quasi-socle ideals and Goto numbers

of parameters, J. Pure Appl. Algebra, 214 (2010), 501–511.

[GMT] S. Goto, N. Matsuoka and R. Takahashi, Quasi-socle ideals in a Gorenstein local ring, J.

Pure Appl. Algebra, 212 (2008), 969–980.

[PU] C. Polini and B. Ulrich, Linkage and reduction numbers, Math. Ann., 310 (1998), 631–651.

[SV] J. Stückrad and W. Vogel, Buchsbaum Rings and Applications, Springer-Verlag, 1986.

[W] H.-J. Wang, Links of symbolic powers of prime ideals, Math. Z., 256 (2007), 749–756.

Jun Horiuchi

Department of Mathematics

Nippon Institute of Technology

Miyashiro

Saitama 345-8501, Japan

E-mail: jhoriuchi.math@gmail.com

Hideto Sakurai

Department of Liberal Arts

Toyama National College of Technology

1-2 Ebieneriya, Imizu-shi

Toyama 933-0293, Japan

E-mail: sakurai-h@nc-toyama.ac.jp

http://dx.doi.org/10.1006/jabr.1995.1346
http://dx.doi.org/10.1016/j.jalgebra.2008.01.015
http://dx.doi.org/10.1016/j.jpaa.2009.06.011
http://dx.doi.org/10.1016/j.jpaa.2007.07.018
http://dx.doi.org/10.1007/s002080050163
http://dx.doi.org/10.1007/s00209-006-0099-7



