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Abstract. We introduce a natural definition of Riesz measures and
Wishart laws associated to an Q-positive (virtual) quadratic map, where
) C R"™ is a regular open convex cone. In this context we prove new general
formulas for moments of the Wishart laws on non-symmetric cones. For ho-
mogeneous cases, all the quadratic maps are characterized and the associated
Riesz measure and Wishart law with its moments are described explicitly. We
apply the theory of relatively invariant distributions and a matrix realization
of homogeneous cones obtained recently by the second author.

1. Introduction.

The objective and motivation of this paper is to present a natural approach to
Wishart laws and Riesz measures on regular convex cones via quadratic maps, and to
apply it to the computation of moments of Wishart laws, in particular on homogeneous
cones. Note that such a “quadratic” approach and moment formulas are lacking in a
series of recent papers ([1], [3], [20]) devoted to certain Wishart laws on non-symmetric
cones.

Riesz measures and distributions on convex cones form one of fundamental tools of
harmonic analysis and of the theory of the wave equation, cf. [5] in the case of symmetric
cones and [7], [8], [12] for homogeneous cones. Moreover, exponential families generated
by Riesz measures are composed of Wishart laws and are of great significance in random
matrix theory and in statistics.

Wishart laws are probability distributions on symmetric or Hermitian matrices with
very important applications in multivariate statistics. Their role in statistics is due to
two reasons:

— they are probability distributions of the maximum likelihood estimator (MLE) of the
covariance matrix in a multivariate normal sample ([21], [1]).

— in Bayesian statistics, Wishart laws form a Diaconis-Ylvisaker family ([4]) of prior
distributions for the covariance parameter in a covariance selection model ([20]).

On the other hand, recent developments in random matrix theory of chiral Gaus-
sian ensembles containing Wishart laws, are intense and motivated by applications in
mathematical physics, cf. [17] and references therein.

These numerous modern applications of Wishart laws make it necessary to develop
the theory of Wishart laws and Riesz measures on more general cones than in the classical
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case of the symmetric cones of real symmetric or complex Hermitian matrices. For
example, in an r-dimensional Gaussian model X, if the marginal variables X; and X
are known to be conditionally independent given all the other variables, the statistical
analysis of the covariance matrix of X must be done on the cone P of positive definite
symmetric matrices Y with Y;; = Y}; = 0 and on its dual cone Q ([20]). The cones P and
Q are usually no longer symmetric. This led to some important papers in recent statistical
and probabilistic literature about Wishart laws on more general cones: homogeneous
cones ([1]) or cones related to graphical models ([20]). In these papers, Wishart laws are
introduced via their density functions (see Section 3.8).

A natural approach and definition of Wishart laws is by quadratic maps. If X is a
standard normal random matrix, then the symmetric matrix

Y = X'X

has a Wishart law and this is the first step of a usual definition of all classical Wishart
laws [21], [5]. However, the authors of [1], [20] never consider a quadratic construction
of Wishart laws. For Riesz measures, a quadratic construction is presented for symmetric
cones in [5], but not explicitly noticed in [7], [12] for homogeneous cones.

In this paper we construct and study Riesz measures and Wishart laws on regular
convex cones via quadratic maps. For a regular open convex cone {2 C R™ and an -
positive quadratic map ¢ : R™ — R"™, the Riesz measure associated to ¢ is defined as
the image of the Lebesgue measure dr on R™ by q. Wishart laws studied in this paper
are obtained from R™-valued normal random vectors X as the law of Y := ¢(X)/2.

In Section 2 of the paper we explain the details of the quadratic construction of
Riesz measures on regular convex cones and next we define the corresponding Wishart
laws. We compute their Laplace transforms. More general Riesz measures and Wishart
laws associated to wvirtual quadratic maps are introduced in Section 2.4.

In Sections 2.3 and 2.5 we get formulas for the expectation, covariance and higher
moments of Wishart laws (Theorems 2.8, 2.9 and 2.12), following in a straightforward
way from the Laplace transform formulas. Moments formulas are generalized in Theorem
2.13, which is not so obvious as it may seem. These results on moments are an essential
contribution into the theory of Wishart laws on non-symmetric cones and they have
important statistical applications. Without introducing of the associated linear map ¢
in Definition 2.2, the moment formulas were unavailable by the techniques of [1], [20].
Moreover, the notion of virtuality is indispensable here.

Group equivariance of Wishart laws is studied at the end of the Section 2.

Section 3 of the article is thoroughly devoted to the case when (2 is a homogeneous
cone and the quadratic map ¢ is homogeneous. A crucial role in the analysis of these
maps and of related Riesz measures and Wishart laws is played by a matrix realization of
any homogeneous cone, coming from [15] and explained in Section 3.2. It allows, among
others, to define basic and standard quadratic maps in Sections 3.3 and 3.4. They play
a role of generators for homogeneous quadratic maps ¢ needed to construct all Riesz
measures and Wishart laws on 2. Next we apply the results of [12] on Gindikin-Riesz
distributions on € and on the orbit decomposition of €, the closure of Q. We explain
the relation between Riesz measures related to homogeneous quadratic maps and the
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Gindikin-Riesz distributions on Q (Theorem 3.13). In Section 3.7, we prove the Bartlett
decomposition for the Wishart laws on homogeneous cones (Theorems 3.15 and 3.17).

Here we summarize what we have done, compared with preceding works. Families
of Wishart laws that we construct and study in Section 3 comprise Wishart distribu-
tions studied in papers [1] and [20] (homogeneous case) and are significantly bigger: we
describe all singular Wishart laws and many more absolutely continuous Wishart laws
than in papers [1] and [20]. For the symmetric cone case, our Wishart laws cover the
ones studied in [11] as well. All the results of Section 2 apply to them, in particular
the formula in Theorem 2.13 does for the moments. Let us underline the novelty and
usefulness of the technique of matrix realization of homogeneous cones in the study of
Wishart laws on such cones. The Bartlett decomposition via the standard quadratic
maps is obtained on homogeneous cones thanks to this technique. Moment formulas are
explicit thanks to basic quadratic maps construction.

ACKNOWLEDGEMENTS. We thank Professors Gerard Letac and Yoshihiko Konno
for discussions on the topic of the article. We are very grateful to the referee for his
remarks that helped to improve the paper and the presentation of its results.

2. Riesz measure and Wishart law on a convex cone. Moments of
Wishart laws.

2.1. Regular cones and quadratic maps.

In this paper, an open convex cone ) C R" is always assumed to be regular, that
is, QN (—=Q) = {0}, where Q denotes the closure of Q. Then the dual cone Q* :=
{ne(®R")"; (y,n) >0 (Vy € Q\{0})} is a regular open convex cone again in the dual
vector space (R™)*, and we have (Q*)* = Q.

DEFINITION 2.1. A quadratic map q : R™ > z — *(fi(z),..., fa(z)) € R" is a
map where each fi(z) (k=1,...,n) is a quadratic form of z. We say that ¢ is Q-positive
if

(i) g(x) € Q for all x € R™, and
(ii) ¢(z) = 0 implies = 0.

The conditions (i) and (ii) are restated in a single condition g(z) € Q\ {0} (Vx €

R™\ {0}).

DEFINITION 2.2. For the quadratic map g, we define the associated linear map
¢ = ¢q: (R")* — Sym(m, R) in such a way that

‘rp(n)r = (q(x),n)  (n€(R")", z € R™).

Note that the associated linear map ¢ is a generalization of the coefficient matrix of
a quadratic form on a linear space. The -positivity of ¢ is equivalent to the following

property of ¢:

n € Q* = ¢(n) is positive definite. (2.1)
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EXAMPLE 1. Let Q be the open convex cone in R? defined by

0 1 1 0
Q= t1{0) +t2 |0 )+t 1| +t4]1 ; 11, to, B3, T4 > 0
1 1 1 1
U1
=S|y | Ry >0,12>0, —y1+ys>0, —ya+ys>0p.  (22)
Y3

If we identify (R*)* with R® by (y,n) := yim + 212 + ysns (y,n € R?), we have

Uit

Q= m| €R 03 >0, m4ns>0, m+n2+n3>0, n24n3>0
UE
1 0 -1 0
=qti |0+t 1) +t3| 0 ) +ta| =1 5t1,t2,t3,84>0,
0 0 1 1

see [14]. Let ¢ : R* — R? be the quadratic map given by

0 1 1
q(@) = (x1)* |0 + (@2)? [0 ] +(z3)* | 1| +(x0)? [1] (x € RY.
1 1 1 1

13 0 0 0
0 m+mns 0 0 3
= € R).
o) 0 0 m+n2+ 13 0 ( )
0 0 0 2 + 13

EXAMPLE 2. Let Sym;" be the set of positive definite real symmetric matrices of
size r. Then Sym," is a regular open convex cone in the vector space Sym(r, R) of real
symmetric matrices. If we identify the space Sym(r, R) with its dual vector space by the
inner product (y,n) := tr(yn) (y, n € Sym(r, R)), then the dual cone (Sym;)* coincides
with Sym;". We define ¢, , : Mat(r, s; R) — Sym(r, R) by

¢rs(x) =z'z (x € Mat(r, s; R)).

Then g, is Sym; -positive. We denote the (i,j) component of x € Mat(r,s; R) by
Ty(j—1)4i> S0 that Mat(r, s; R) is identified with R"™. Then we have for n € Sym(r, R)
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o(n) = . € Sym(rs, R),
n

where 7 is put s times. In this case, the map ¢ : Sym(r, R) — Sym(rs, R) is a Jordan al-
gebra representation, and q is exactly the quadratic map associated to the representation
([5, Chapter IV, Section 4]).

EXAMPLE 3. Let Z be a subspace of Sym(r, R), and put P := Z N Sym,". Then
P is a regular open convex cone in Z. Let @ C Z* be the dual cone of P. We shall
construct a Q-positive quadratic map gz : R" — Z* whose associated linear map ¢z :
Z — Sym(r, R) equals the inclusion map. Let us define the surjective linear map mz« :
Sym(r, R) — Z* by

(y,mz+(9)) :=trys (y€ Z, S € Sym(r, R)).

Then the quadratic map ¢z : R” — Z* is given by qz(z) := 7z« (a'z) (z € R"). In fact,
for x € R"\ {0} and y € P we have

(Y,qz(x)) = tr(ya'z) = "zyz > 0 (2.3)

because y is positive definite. Therefore we get ¢z (z) € Q\ {0}, so that ¢z is Q-positive.
Keeping the natural isomorphism (Z*)* ~ Z in mind, we see from (2.3) that ¢z(y) =y
(y € Z). Soon later, we shall consider the cases

yiu 0 O
Z = 0 yo2 Y32 | €Sym(3, R); y11, Y22, Y32, Y33 € R (2.4)
0 y32 y33
and
y11 0 w31
Z = 0 w22 w32 | €Sym(3,R); y11, Y31, Y32, Y22, Y33 € R (2.5)
Y31 Y32 Y33

as concrete examples. Actually, in the latter case (2.5), the cones Q and P are called the
Vinberg cone and the dual Vinberg cone respectively, which are the lowest dimensional
non-symmetric homogeneous cones ([24]). We shall see another realization of the Vinberg
cone Q in (3.6) and the last paragraph of Section 3.3.

Let I = {i1,42,...,ix} beasubset of {1,...,r} with 1 <i; <is <--- <ix <r,and
define

Rl.={xe€R";x;=0ifi ¢ I}. (2.6)
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We denote by gL the restriction of ¢z to the space Rl C R". Clearly ¢% : R — Z*
is Q-positive. The associated linear map qbqé : Z — Sym(k, R) gives a submatrix of
elements y € Z, that is, ¢,r (y) = (yiaiﬁ), which we denote by y;.

2.2. Riesz measures and Wishart laws associated to quadratic maps.
In this section, for a given quadratic map ¢ we define related Riesz measures and
Wishart laws and we compute their Laplace transforms.

DEFINITION 2.3. For a regular open convex cone ) C R™ and an {)-positive
quadratic map g : R™ — R", let the Riesz measure ji, associated to q be the image
of the Lebesgue measure dr on R™ by ¢q. Namely, the measure ;1, on R" is defined in
such a way that

f(Y) pq(dy) = f(q(x)) dz (2.7)

R‘IL R?n
for a measurable function f on R™.

The terminology “the Riesz measure associated to ¢” is introduced by analogy to [5,
Proposition VII.2.4]. The Q-positivity of ¢ implies that the support of 14 is contained in
the closure Q of the cone €.

LEMMA 2.4. Let ¢ : (R")* — Sym(m,R) be the linear map associated to q.
Then, for n € QF, the Laplace transform L, (n) = fR" e*<’7’y>uq(dy) of pq equals
w2 (det ¢(n)) /2.

PROOF. By definition, we have L, (1) = [z e~ w¢M dg. Since ¢(n) is positive
definite, the assertion follows from a formula of the Gaussian integral. 0

DEFINITION 2.5. The members of the exponential family {v,.¢}scq~ generated by
g are called the Wishart laws on 0 associated to q. Namely,

€7<y’9>

Wﬂq(dy) (y € R"). (2.8)

Yq,0(dy) = 17
Hq

REMARK 2.6. By (2.7), (2.8) and Lemma 2.4, we have for a measurable function
fon R

- FW)vge(dy) =7 ™/>(det ¢(6))"/? - Flg(z))e="*O7 dz.

Putting ¥ := #(6)~! and replacing the variable z by x/v/2, we rewrite the right-hand
side as

27)"™2(det £) V2 | f(q(z)/2)e” " w2 4y,
Rm,
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Therefore, if X is an R™-valued random variable with the normal law N (0, ¢(6)~!), then
7Yq,0 is nothing else but the law of Y := ¢(X)/2. In particular, the classical Wishart law
as defined in [21, Definition 3.1.3] coincides with our 7, in Example 2.

PROPOSITION 2.7.  Let Y be an R™-valued random variable with the Wishart law
Yq,6- Then the Laplace transform L. ,(n) = E(e‘<Y’")) of vq,0 15 given by

Lo, o (n) = det(Ln, + ¢(0) ' o(n)) /2
forne —0+4Q*.

PROOF. By definition, we have L, ,(n) = L, (0) 'Ly, (n+ 0). Thus the for-
mula follows from Lemma 2.4 and the observation that (det¢(f))~!detd(n + 6) =

det{p(0) "1 (#(0) + ¢(n))} = det(Im + 6(0) " ¢(n)). O

2.3. Moments of Wishart laws: quadratic case.

First we shall consider the mean and the covariance of the Wishart law 7, 6. It is well
known ([19]) that the mean E((Y, 7)) is given by the directional derivative —D,, log L,,(6),
while the covariance E(((Y,n)—M)((Y,n')—M")) equals D, D, log L, (#). Using Lemma
2.4 we obtain

THEOREM 2.8. LetY be an R"-valued random variable with the Wishart law vq,0.

(i) Forne (R™)*, one has

E((Y,n)) = tro(6) "' ¢(n)/2.

(ii) Forn,n' € (R™)*, one has

E(((Y,n) = M)((Y. 1) = M) = tr 6(0) " o(m)g(0) " o(01') /2,
where M := E((Y,n)) and M' := E((Y,7n)).

Computation of higher moments of the Wishart law «y, ¢ boils down to writing ex-
plicitly higher derivatives of the Laplace transform L, (6) = 7™/2(det ¢(#))~'/2. It can
be done similarly as in [9, Lemma 5]. For an element 7 of the symmetric group &y, we
write C(m) for the set of cycles of 7.

THEOREM 2.9. LetY be an R"-valued random variable with the Wishart law vq,0.
Formi, n2,...,nn € (R™)*, one has

$C(m)
EQY,m)(Y,n2)...(Y,nn)) = Z (;)

TESN

I )tr(H 00000 ).

ceC(m j€Ec

2.4. Wishart laws associated to virtual quadratic maps.
We shall consider virtual quadratic maps, that is ’formal linear combinations’ of
quadratic maps, and the associated Wishart laws. First we introduce the notion of
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direct sum of quadratic maps. Let ¢; : R™ — R™ (i = 1,...,s) be Q-positive quadratic
maps. Then the direct sum ¢ = q1 ® g2 D --- D ¢s is an R™-valued quadratic map on
R™ ¢ R™ @ --- @ R™: given by

q(x) == qu(@1) + ga(w2) + -+ gs () (x =D @, @ € R””).

i=1

It is easy to see that ¢ is also Q-positive. If g1 = g2 = - -+ = g5, then the direct sum gq is
denoted by ¢°.

The linear map ¢ : (R")* — Sym(m, R) (m := Y_;_, m;) associated to the direct
sum g = 5% ¢; is given by

é1(n)
o) = 7200 (e (R)"). (2.9)

bs(n)

Conversely, if a symmetric matrix ¢(n) is expressed by ¢1(n), ..., ¢s(n) as above for all
n € (R™)*, then the corresponding quadratic map ¢ is the direct sum of ¢q,...,¢s. In
Example 1, the quadratic map ¢ : R* — R? is the direct sum of 4 quadratic maps
¢ R>xw— 2%v;, € R® (i=1,...,4), where

0 1 1 0
vi:=(0], vo:=(0), v3:=11], qu:=1|1
1 1 1 1

In Example 2, we see that g, s : Mat(r, s; R) — Sym(r, R) is naturally identified with
qS?‘f. In Example 3 with Z given by (2.4), we have ¢z = q{zl} &) qi;’?’}, while we do not
have such a decomposition for the case (2.5).

Let ¢; : R™ — R" (i = 1,2) be Q-positive quadratic maps, and ¢ the direct sum
g1 @ g2. Then it is easy to see that the measure p, equals the convolution jig, * ptq,. Thus,
for 0 € Q* we have Ly, (0) = L, (0)L,,,(0) and 740 = V4,0 * Vg,,0- In general, if we set

q=qP" ¢y @ g for Q-positive quadratic maps ¢; : R™ — R™ (i = 1,2,...,t)

and positive integers si, So,..., S, then we have
t
L,,0) = H Ly, ()% (0€Q). (2.10)
i=1

Now we remark that, even though s;’s are not positive integers, there may exist a
positive measure y, on § for which the relation (2.10) holds.

DEFINITION 2.10. For real numbers si,...,s;, we call a formal sum ¢ = q?sl o
45 @ @ ¢ a virtual Q-positive quadratic map. If a positive measure ltq satisfying
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(2.10) exists, then p, is called the Riesz measure associated to q. In this case, the Wishart
laws 4,9 (0 € Q) are defined again as members of the exponential family generated by

Hq-

Observe that by the injectivity of the Laplace transform, the Riesz measure p,
associated to a virtual ¢ is unique if it exists.

PROPOSITION 2.11. Let g¢; : R™ — R™ (i = 1,...,t) be Q-positive quadratic
maps. Assume that there exists a measure [y associated to the virtual quadratic map
q= q?sl DD qtea‘” for certain s1,...,s¢ € R. Let Y be an R"-valued random variable
with the Wishart law ~yq,9. Then the Laplace transform L., ,(n) = E(e=Y'"M) of the law
Yq.0 15 given by

t t
Loy () = [ Zraro (0% = T [ det (T, + ¢4(8) " () />
i=1 i=1
forn e —04Q*.

PrOOF. We have L7 o(m) =Ly, (0)"*L,, (n+0) by definition, and the right-hand
side equals ]_[1 1(Lu 0)~'L, (n—l—ﬂ))si by (2.10). Since L, ,(n) = Ly, (0)*1L#qi (n+
6), we obtain the first equahty The second equality follows from Proposition 2.7. (|

2.5. Moments of Wishart laws: general case.
Since we see immediately from (2.10) that

t
log L, (0) = Z s;log Ly, (0)

the virtual version of Theorem 2.8 is given as follows:

PRrROPOSITION 2.12.  Under the same assumption of Proposition 2.11, one has

(i) B((Y,m) = ¥izy sitréi(0) " i(n)/2 forn € (R")",
(i) B(((Y,n) = M)((Y,n') = M) = i, 5:tr ¢4(0) " ds(n)$i(0) = ¢i (') /2 for n,n' €
(R™)*, where M := E((Y,n)) and M' := E((Y,n})).

As for higher moments, we generalize the formula in Theorem 2.9 as follows:

THEOREM 2.13.  Under the same assumption of Proposition 2.11, one has

EQY, n)(Y,m2) - (Y,1n))

_ Z (;>ﬂ0(w)

TESN

{Xt:sztr(Hqﬁz Lo (m; >} (2.11)

ceC(m) ~ =1 jE€c

fO’I” m, n2,...,7IN S (Rn)*
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Theorem 2.13 easily follows by (2.9) from Theorem 2.9 when s1,...,s; are positive
integers, that is, ¢ is a true quadratic map. To prove (2.11) for general case, one veri-
fies that the quantity E((Y,n1)(Y,n2) - (Y,nn)) is a polynomial of s1,...,s;. For this
purpose, we make some calculations involving the semi-invariants or the cummulants (cf.
[19]). We omit the details.

Another possibility is to prove first the following Proposition and next apply polar-
ization.

PROPOSITION 2.14. One has

al —1)N d i S; )
B =Yg Y gmagll(Sieeorm”) e

0=1"" ki+kot-+ke=N i=1

2.6. Group equivariance of the Wishart laws.

Let G(Q2) be the linear automorphism group {g € GL(n, R); ¢gQ2 = Q} of Q. For an
Q-positive quadratic map ¢ : R™ — R™ and g € G(Q2), the quadratic map go¢: R™ —
R" is again {)-positive. It is easy to see that the Riesz measure ji404 is the image of p,
by g, that is,

figog(A) = p1g(g~ ' A) (2.13)

for a measurable set A C R". Let us discuss the Wishart laws 404, for 8 € Q*. For
n € (R")*, we denote by g*n the linear form nog € (R™)*. If n € Q*, then g*n € Q*
because (y, g*n) = (gy,n) > 0 for y € O\ {0}. We observe

L (g°0) = / ()" gy / e (0oa@ O gy = L, (). (2.14)
Therefore, denoting by 14 the characteristic function of a measurable set A C R", we
have
Ygo.0(A) = $/ La(g o g(@))e” 919 dg
7 LNQOq (0) m
1 Ctla) o B
- o ) O < 219

We restate (2.15) as follows.

LEMMA 2.15.  Let g be an element of G(Q2). If a random variable Y obeys the
Wishart law vyq,9, the law of gY s Vgoq, (g-1)*6-

Let ¢; : R™ — R™ (i = 1,...,t) be Q-positive quadratic maps, and ¢ the virtual

quadratic map q?sl b B qt@““ with s1,...,s; € R. Then we define g o ¢ to be the

virtual quadratic map (g o q1)®5t @ --- @ (g o g;)®**.
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ProPOSITION 2.16.  If the Riesz measure i, exists, then the Riesz measure [igoq
exists and equals the image of g by g. Moreover Yyoq, (4-1)+9 s the image of v4.0 by g.

PROOF. Let i/ be the image of uq by g. For § € Q*, we have

L@ = [0y = [ e ay)
— [T () = Ly, (570), (2.16)

By (2.10) and (2.14), the last term equals Hle Ly, (g70)% = Hle Ljiyo, (0)%. Thus we
get L,/ (0) = HE:l Ljiyo,, (0)° which means p' = 504 by (2.10).

Let 4" be the image of 74,9 by g. Similarly to (2.16), we have L./ (n) = L, ,(g*n) for
n € —(g7)*0 + Q*, while Ly o g=1y=0 (M) = Ly, 4(g"n) by Lemma 2.15. On the other
hand, we see from Proposition 2.11 that

t

t
L’Yq,e(g*n) = HL'Yqi,Q (g*n)& = HL'Ygoqi,(yfl)*e(n)Si = L'Ygoq,(gfl)*e(n)'
=1 =1

Thus we get L/(n) = ngoq‘(g_lw(n), so that 7' = Y4oq,(g-1)=¢ Dy the injectivity of the
Laplace transform. O

Let Aut(€2, ¢) be the set of pairs (g1, g2) € G(2) x GL(m, R) for which g; oq = gogo.
Then Aut(£?,q) forms a Lie subgroup of GL(n, R) x GL(m, R), and we have a group
homomorphism

pr1 s Aut(Q,9) 3 (91,92) — g1 € G(Q).
The condition (g1, g2) € Aut(£, q) is also equivalent to

bq(gim) = "g204(m)g2 (1 € (R")"). (2.17)

Then we obtain
det ¢4(gim) = Cdet pg(n) (n € (R")") (2.18)

with C = (det g2)?, which means that det ¢,(n) is a relatively invariant polynomial
on (R™)* under the contragredient action of pri(Aut(£2,¢)). The following proposition
describes a transformation rule of the family of the Wishart laws {4 ¢}oco+ under the

group pri(Aut(£2, q)).

PROPOSITION 2.17.  For a measurable set A C R"™ and (g1,g2) € Aut(Q,q), one
has
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(1) pq(gr " A) = pg,0q(A) = | det ga| g (A),
(il) vg.970(A) = 74.0(914).

PROOF. (i) Because of (2.13), we only have to show the second equality. By
definition, we have

oo = [ Lalroa(@)do = [ 1a(ge o) do.

m

Putting 2’ = gox, the last term equals

| det go| ! / La(g(a')) dz’ = | det go] = 1q(A),
Rm

whence (i) follows.
(ii) By (2.15), we get for y € R"

e—(919,0)
'Vq,gf9(di‘/) = '7910q,9(91dy) = 7 ) Mgloq(gldy)7
Hgyoq

Since fig,04 = | det g2| ' uq by (i), the last term equals

e—(914.,0)

et g det ol Halgrdy) = dy).
|detgg|—1Luq(9)| et g2| ™ pq(91dy) = v4,0(91dy)

Hence (ii) is verified. O

3. Homogeneous Case.

3.1. Homogeneous quadratic map.

DEFINITION 3.1.  An Q-positive map ¢ : R™ — R" is said to be homogeneous if,
for any y, y' € Q, there exists (g1,92) € Aut(Q, ¢) for which g1y = ¢'. In other words, ¢
is homogeneous if pri(Aut(€2, q)) acts on Q transitively.

In this case, © is clearly a homogeneous cone, that is, a linear group on R"™ acts
on the cone Q transitively. Then the dual cone * C (R™)* is also a homogeneous cone
on which the group pri(Aut(£,q)) acts transitively by the contragredient action ([25]).
We see from (2.1) and (2.17) that the quadratic map ¢ is homogeneous if and only if the
associated linear map ¢, : (R™)* — Sym(m, R) is a representation of the dual cone Q*
in the sense of Rothaus [23] (see also [16]).

A typical example of a homogeneous cone is Sym;” C Sym(r, R). For A € GL(r, R),
we denote by p(A) the linear map on Sym(r, R) defined by p(A)y = Ay'A (y €
Sym(r, R)). Then the group p(GL(r, R)) acts on Sym, transitively. Moreover, the lin-
ear automorphism group G(Sym,") equals p(GL(r, R)). We see that the quadratic map
¢r.s : Mat(r, s; R) — Sym(r, R) in Example 2 is homogeneous. Indeed, we have a surjec-
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tive homomorphism GL(r, R) x O(s) 3 (A, B) — (p(A), 7,.s(A, B)) € Aut(Sym,", ¢.s),
where 7, (A, B) is a linear map on Mat(r,s; R) given by 7,.4(A, B)z = AzB~!
(x € Mat(r,s; R)). Thus we have pri(Aut(Sym,, ¢.s)) = p(GL(r, R)), which acts on
Sym," transitively.

For a subset I C {1,...,7}, we denote by ¢! the restriction of ¢,.; : R" — Sym(r, R)
to the space R! C R" defined in (2.6). The map ¢’ coincides with ¢% in Example 3 with
Z = Sym(r, R). Let us observe that ¢’ is homogeneous in general. Let P! be the linear
group consisting of A € GL(r, R) for which AR! = R!. For example, if r = 3, we have

a11 aiz2 a13

PM=SdA=| 0 ax aj3|;A€GLB,R) . (3.1)
0 asze asz
ail 0 0

P23 = S A= [az an an | A€GLB.R)§. (32)

asz1 asz a33

Since we have a homomorphism P! > A — (p(A4), A) € Aut(Sym,, ¢¥), it is
enough to show that p(P!) acts on Sym, transitively. Put k := #I and take a per-
mutation matrix wy € &, C GL(r, R) sending R{"=*+%-7} onto R!. Then we have
pl = ’onP{T_k+1""’T}wO_1, and

P{rkarl,..‘,r} _ A 0 ) Ay € GL(kJ,R), As € Mat(r —k+ l,k‘;R) .
Ao Aj ’A3€GL(T7]€+1,R)

Since P{r=k+1--7} contains the group of lower triangular matrices, p(P{"—#+1%-7}) acts
on Sym, transitively. Therefore p(P') = p(wo)p(P{ = L") p(we)~" also acts on
Sym:' transitively, so that ¢’ is homogeneous.

Coming back to the examples (3.1) and (3.2), we note that ¢ = ¢t} ©¢{?3} is not ho-
mogeneous as Sym;f—positive quadratic map, while both ¢{*} and ¢{>?} are. Indeed, the
image of ¢ generates the space Z C Sym(3, R) in (2.4). Thus, if (g1, g2) € Aut(Symid, ),
then g; must preserve both Z and Symj. Let us take y € Sym3 \Z. Then g; does not
send I3 € Symj to y because I3 € Z. Thus the action of pr;(Aut(Symjy, ¢)) on Symj is
not transitive.

On the other hand, if we regard ¢ as a map from R} @ R{%3} to Z, then ¢ is a
homogeneous P-positive quadratic map, where P := ZNSymy . In fact, since (p(A), A) €
Aut(P, ¢t N Aut(P, ¢123}) for A € P N P{23}) we have p(A) € pri(Aut(P,q)).
Therefore pri(Aut(P, q)) contains a group p(Pi N P12:3}) which acts on P transitively.

In Example 1, the quadratic map ¢ : R* — R? is not homogeneous because Q C R*
in (2.2) is not a homogeneous cone ([14]).

3.2. Matrix realization of homogeneous cones.

In this section, we shall discuss a homogeneous cone realized as Py = Zy N Sym}
with Zy C Sym(N, R) constructed from an appropriate system V = {Vj} of vector
spaces in a specific way explained below, following [15, section 3.1]. The investigation
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of such cones is fundamental because all homogeneous cones are linearly equivalent to
some Py due to [15, Theorem D].

Let us take a partition N = ny +ns + - - + n, of a positive integer N, and consider
a system of vector spaces Vi C Mat(n;, ng; R) (1 < k <1 < r) satisfying the following
three conditions:

(Vl)AGV{k,B€ij=>AB€Vlj (1§j<k}<l§7’)7
(VZ)AGVlj,BEijﬁAtBGVlk (1§j<k<l§7’),
(V3) AeVy=AA€e R, (1<k<l<r).

Let Zy be the subspace of Sym(N, R) defined by

Yirn Yo o0 Y
Yor Yo Yoo | Yik =yrklny, yow €ER (E=1,....7)
: YVie €V 1<k <I<7)

Yiin Yoo - Yoy

We set Py := Zy N Sym}. Then Py is a regular open convex cone in the vector space
Zy. Let Hy be the group of real lower triangular matrices with positive diagonals, and
Hy, a Lie subgroup of Hy defined by

Ty
T21 T22 Tkk = tkklnka ter > 0 (k‘ = 1,...,7‘)
HV =T = . . )
TreVir (1<k<i<r)

Trl Tr2 Tr'r‘

If T € Hy and y € Zy, then p(T)y = Ty'T belongs to Zy thanks to (V1)—(V3).
Moreover p(Hy) acts on the cone Py C 2y simply transitively (cf. [15, Proposition
3.2]).

Keeping (V3) in mind, we define an inner product on the vector space Vi, (1 < k <
I < r) by the equality

A = (A|A) L, = |A|IPL, (A€ V). (3.3)
For y,y’ € 2y, we set
Z Yk Ykr + 2 Z Yie|YR,) (3.4)
1<k<I<r

where ygr and Y (respectively y;, and Y;)) denote the components of y (respectively
y'). Note that the inner product is not equal to tryy’ unless ny = --- = n,. = 1. By this
coupling, we identify the dual space Z;; with Zy,. Let us observe that Iy belongs to the
dual cone Py, of Py, that is,
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0<(y,IN) =y 4+ +ym (yePy\{0}).

Indeed, since each yyy, is a diagonal entry of the non-negative matrix y € Py,\ {0}, we have
Yk > 0. Suppose >, ykk =0. Then y11 =+ =y, =0 and try = >, npyrr = 0.
This together with the non-negativity of y implies y = 0, which is a contradiction.

For T' € Hy, define p*(T) € GL(2y) by (y, p*(T)n) = (p(T)y,n) (y, n € 2v). By
[25], we have Py, = {p*(T)In; T € Hy}. Moreover, the map Hy > T +— p*(T)In €
Py is a diffeomorphism. For ¢ = (o1,...,0,) € C", we define the one-dimensional
representation X, : Hy — C* by x4 (T) := (t11)%7* -+ (t+)?*?" (T € Hy). Note that any
one-dimensional representation x of Hy is of the form x,, so that x is determined by
the values on the subgroup Ay C Hy consisting of diagonal matrices.

Let us give some examples. When ny =ng =---=n, =1and V = Rforall 1 <
k <1 <, the conditions (V1)—(V3) are clearly satisfied, and we have Z,, = Sym(r, R)
and PV = Symj' For the case r = 3, ny =mng = nNng = 1, V21 - {O} and V31 = V32 = R,
the space Zy, equals Z in (2.5).

Letusset r=3,n1 =2, npo=ng =1,

Vo ={(v 0);v € R}, V31 ={(0 v);v € R},

and V32 = {0}. Then we have

yiu 0 y21 O
0 w1 0 w31
Zy, =
v y21 0 yao O
0 w31 0 wys3

S Y11, Y22, Y33, Y21, Y31 € R (3.5)

and

Py ={y € Zy; y is positive definite}

={y€Zv;yn1 >0, yr1ya2 — (y21)* > 0, y11y33 — (y31)* > 0}, (3.6)

which is exactly the Vinberg cone [24].
Set r=2,n1 =m >1,ny =1 and Vo = Mat(1,m; R). Then

Y11 V1
ZV: ;yllay227vlu"'7vm€R )
Y11 Um
V1 - Um Y22
Pv={y€Zy;y1 >0, yuyar — (v1)> — -+ = (vn)*> > 0}, (3.7)

so that we obtain the Lorentz cone of dimension m + 2.
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3.3. Basic quadratic maps.
Let W5, (i = 1,...,7) be the subspace of Mat(V,n;; R) consisting of matrices = of
the form

0n1+--~+m71,ni
Xii Xii = xiidn,, v € R
T XliEVli(l:i—‘rl,...J’) '
Xri

For example, when 2y, is the one in (3.5), we have

T11 0
1 0 z11 | .
Wy = 2oy 0 | T T2 T3 €ER,,
0 z3
0 0
2 0 3 0
Wy = ;T2 € RS, Wy = ;33 € RS, (3.8)
T22 0
0 Z33
while for the case that Zy is the space Z in (2.5), we have
T11 0
W) = 0 |z, 25 €Ry, W3= oo | 3 22, x32 € R 5,
T31 T32
0
WS = 0 ;33 € R
33

For T' € Hy and z € W},, we see from (V1) that Tz € WY,, which defines a representation
T ° HV - GL(W{;)

DEFINITION 3.2.  We define the basic quadratic maps qy,...,q, for Py in the
following way. Since Wy, C Mat(N,n;; R), we can consider the restriction ¢, of the
Sym};-positive quadratic map g, : Mat(N,n;; R) — Sym(N, R) in Example 2 to the
space Wy,. Thanks to (V2) and (V3), we have ¢},(z) = 'z € 2y, for x € Wy,. Then the
quadratic map q{, : Wf, 3>z — 'z € Zy is Py-positive.

On the other hand, we observe
¢o(1i(T)x) = (Tx)Y(Tx) = p(T)g(z) (x € Wy, T € Hy), (3.9)

which yields the group homomorphism Hy 3 T +— (p(T),7(T)) € Aut(Py, ¢},). It follows
that the quadratic map q%, is homogeneous.
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Recalling the inner product on Vi given by (3.3), we define an inner product on the
space Wf; via the natural isomorphism

. &)
Wy ~R® Y Vi (3.10)

1>

Taking an orthonormal basis of W{, with respect to the inner product, we identify Wf,
with R™®) | where m(i) := dim Wi,. Then we consider the linear map ¢}, : 2y = Z}; —
Sym(m(i), R) associated to the quadratic map ¢},. Note that, if we write n;; for dimV;,
we have m(i) = 14 >,o, n-

PROPOSITION 3.3. (i) One has
det 7i(T) = xXmi),2(T) (T € Hy),
where
m(i) :==(0,...,0,1,n41,4,...,0p) € Z". (3.11)
(ii) Formn = p*(T)In € Py, with T € Hy, one has

det ¢% (1) = Xm(i)(T)-

In particular, (t..)? = det ¢},(n).
(iii) For 1 <i <r, there exist integers cit1,i,- .-, Cri such that

(tii)? = det ¢,(n) - (det @3 (1)) +27 --- (det ¢, ()"
(n=p"(T)In € P}, T € Hy).

(iv) One has Py = {n € Zy; detdl,(n) >0 (i=1,...,r)}.

PrOOF. (i) Since Hy > T +— det7;(T) € C* is a one-dimensional represen-
tation, it is sufficient to check the equality for diagonal matrices T € Ay. In this
case, the isomorphism (3.10) gives the eigenspace decomposition of 7;(T), where R
and V;; correspond to the eigenvalues t;; and t; respectively. Therefore we have
det Ti(T) = t“' Hl>i ﬁ?i“’ = Xm(i)/Z (T) _ .

(ii) Thanks to (3.3), we have (z|r) = (q},(z), In), which implies ¢},(In) = Ip(i)-
Thus we get det ¢,(n) = det ¢4, (p*(T)In) = (det 75(T))* = Xum()(T) by (2.17) and (i).

(iii) We see from (ii) that (¢;;)? = det ¢%,(n) - (fix1,i41) 2"+1 -+ () "2, whence
we can deduce (iii) recursively.

(iv) It is known ([25, Chapter 3, Section 3] and [7, Section 1]) that a homogeneous
cone is described as the subset of the ambient vector space consisting of points at which all
relatively invariant (appropriately normalized) functions are positive. Thus the assertion
follows from (iii). O
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EXAMPLE 4. Let Py be the Vinberg cone, that is, Zy is as in (3.5). Then we have

. M1 T21 731 )
¢v(77) =|{m1 m22 0 |, ¢>v(77) = 722, ¢?;(77) =733
n31 0 733

forn e Zy. If n = p*(T)14 for T € Hy, we have

(t11)(t22)*(t33)* = det ¢11;(77)7 (t22)* = M2, (t33)? = mas,

so that

o detoy(n) (121)®  (131)?
(tin)" = ——F =m1 — .
71227]33 122 733

On the other hand, we have by Proposition 3.3 (iv)
Py ={n € Zv; minzanss — n33(m21)® — n22(n31)* > 0, 122 >0, n33 > 0} .

Therefore, if Z is the space in (2.5), the linear isomorphism

0 0
7761 0 nél " n33 0 731
L:Zy 3 11 il ITEE ) M2 Mo1 | €2
1 0 722 O
731 721 M11

0 m31 0 m33

gives a bijection from P3;, onto P = Z N Sym3. The adjoint map ¢* : Z* — Z5 =2y
gives the matrix realization of the Vinberg cone Q as the homogeneous cone Py,.

3.4. Standard quadratic maps and H-orbits in Pjy,.

In this section a class of very important quadratic maps called standard is distin-
guished and analysed. Further we will see their applications to easy recognizing whether
Riesz and Wishart measures are singular or absolutely continuous, as well as to prove
the Bartlett decomposition of Wishart laws.

Let us introduce the virtual quadratic map

@S =(gh)® @ @ (g))® (3.12)

for s = (s1,...,8,) € R". Take ¢ € {0,1}" with £ # (0,...,0). We write I(g) for the
set {1 <i<r;e; =1}. Then we identify ¢}, with a direct sum Z?H(E) ¢, on the space

e ._ i
Wy, = Zie[(g) Wy

DEFINITION 3.4. We call the maps ¢, (¢ € {0,1}", e # (0,...,0)) standard
quadratic maps.
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Recalling (3.10), we have the isomorphism W3 =~ Z?E[@(R ® Z?;V“), which
enables us to describe y = ¢5;(z) € 2y (# € W5;) as the matrix composed of the blocks

Y = Z Xt Xy (1<k<Il<vr), (3.13)
i<k, icI(e)

where X;; 1= 241, for i € I(g). For the case | = k, we have Y, = yirl,, and

vk = Y Xkl (3.14)

i<k, i€l(e)
thanks to (3.3), where we put || X;;|| := |zi|. For each x € Wy, let T, € Mat(N, R) be a

lower triangular matrix whose (k,)-block component is Xy; for k > ¢ with ¢ € I(e), and
other components are zero. Then we have

q%(:z:) =T, 'T,. (3.15)

For example, if r = 3 and € = (1,0,1), then an element z of Wy, = W & W3 is of the
form

. §11 . 8 X1 =x11lyn,, X33 = 23315,
N X21 ¥ x11, T3z € R, Xo1 € Vo1, X31 € V1)’
31 33

and we have
X1

T.=1 X1 0 € Mat(N, R)
X31 0 X33

For € € {0,1}", let E, be the element of Zy, given by
51-[77,1

erln,

and O the Hy-orbit p(Hy)E. C 2y through E.. In particular, the orbit O, o) is the
origin {0}, while O, 1) = p(Hy)In equals the cone Py. It is shown in [12, Theorem
3.5] that the Hy-orbit decomposition of the closure Py, is given as

Pv= || oO.

e€{0,1}"
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PROPOSITION 3.5.  Ife #(0,...,0), the image of the quadratic map q% equals the
closure O, of the orbit O..

PrROOF. We define
Wot = {eeWs;2:>0(3G€le))}. (3.16)

For y = p(T)E. = TE.'T € O, with T € Hy, we take a unique = € W§’+ for which
T, equals TE.. Then we have y = ¢5,(z) by (3.15). Conversely, for any = € W§’+
we put T := T, + I — E. € Hy so that ¢5(z) = TE.'T € O.. Therefore we obtain
O: = qp(Wy ™). On the other hand, putting W™ = {zeWy; i #0 (i € I(2))},
we see easily that ¢5(Wy") = q%(W%ﬂ Since W™ is an open dense subset of W7,
the orbit O, is dense in the image of the quadratic map qu, which is necessarily closed.
Indeed, introducing the projective imbedding ¢y of a vector space V by vy : V 3 y —
[1,y] € PV := (R x V\ {(0,0)})/R*, we can extend ¢, : Wy, — Zy to the map
Gy : PWy > [t,z] — [, q5(2)] € P2y because gy(z) # 0 for © # 0. The image
Gy (PW7y) is compact, so that gy (W5;) = LZV (G (PWy)) is closed. O

REMARK 3.6. In the proof of Proposition 3.5, we see that the quadratic map q%
gives a surjective map from W§ onto O,. The map is also one-to-one thanks to [12,
Lemma 3.3 (ii)], while the map 5, : W™ — O, is 2#/(5)to-one. Actually, a large part of
the content of this section is presented in language of normal j-algebra in [12, Sections
3 and 4].

We define the representation 7. : Hy — GL(W5;) as the direct sum of the represen-

tations (7;, W3,) of Hy for i € I(g). Then we have by (3.9)

3 (1e(T)z) = p(T)ay () (v € Wy, T € Hy), (3.17)

which implies that ¢;; is homogeneous.
The open set W* C Wg is preserved by the action of 7.(Hy). We put

Ri(e):={u= (u1,...,ur) E R";u; =0 (if g, =0), w; >0 (ife; =1)}.
For u € Ry(g), let Mg be the measure on W§’+ given by

2(xi;) %~ day; dXy;
Mi(dx) = H { F(uz Hwnh/2

i€l(e) >

_ [Licrco (@) ™!
e (u)

dv (z € Wy™), (3.18)

where I' (1) = 7dimWy/2 [Ticre)(I(wi)/2y/m). When u = ¢/2, the measure /\/l 5 equals

a constant multiple of the Lebesgue measure, that is, M= /Z(dx) = o) dlmW v/2dz.
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We define p(g) := (p1(g), p2(€), ..., pr(g)) by

= E EiMNi-

i<k
LEMMA 3.7. (i) For a measurable set A C W$’+, one has

ME(7e(T)A) = Xutp(e)2(T)MG(A) (T € Hy).

(ii) One has

/ e~ l=ll” ME(dz) = 1.
wg T -

337

(3.19)

(3.20)

Proor. () Ifz' =7.(T)zx € W§’+ with z € W§’+, we have z;, = t;;x;; fori € I(g).

Thus

H (xgi)%iil :XE—Q/Q(T) H (xii)Quifl.

i€l(g) i€l(e)

On the other hand, we observe that

= |det 7. (T)|dz = ( H det 7;(T >

i€l(g)
and the last term equals ([T;c (o) Xm(i)/2(T))dz by Proposition 3.3 (i). Since
> m Z eim(i) = £ +p(e),
i€l(e)

we have dz’ = X¢ /24 p(e)/2(T)dx, which together with (3.21) implies (i).
(ii) By definition, we have

ol = 3 {e? + L Ixil2}.
i€l(e) 1>i
Thus the left-hand side of (3.20) equals

9 2 dXy;
(z”) )2ui-1 eI Xul? &40
11 {rmi)/ & )™ H/ | w"uﬂ}‘

i€l(e) 0 I1>i Y Vi

(3.21)
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Therefore we obtain (3.20) from [, e~ IIXul®gx,, = 7mi/2 and I e~ (@i)* (g;;)2ui~1

REMARK 3.8. Lemma 3.7 tells us that e~/l=Il’ M3 (dzx) is a probability measure on
W§’+. Actually, we see from the proof that if X% is an Wé’Jr—valued random variable
with the law eIz Mg (dzx), then its components are independent and satisfy \/iXﬁ ~
N(0,1,,), and (vV2X75)? ~ x2(2u;), where x?(u) denotes the chi-square law with the
density 27"T'(u/2) " 'e~t/2t*=1 (t > 0). We shall see later that any Wishart law associated
to a homogeneous quadratic map is the image of this measure by an appropriate quadratic
map.

For instance, let us consider the case where 2y is the one in (3.5) and ¢ = (1,0, 1).
Then, keeping (3.8) in mind, we see that the measure Mz on W§’+ C Wy =Wy e W
is given by

4

m = m(zu)%lil(iﬂs:})hgil dry1dzadrsidss

(x11 >0, 233 >0, z91, 231 € R)

for u = (u1,0,u3) with u; > 0, ug > 0.

3.5. Gindikin-Riesz distributions.
For g = (01,...,0,) € C", we denote (o,...,01) by g*. Let A} be the function on
the cone Py, given by

Ay (p*(T)IN) = Xo+(T) (T € Hy). (3.22)

By Proposition 3.3 (ii) and (iii), A} (n) can be expressed as a product of powers of the
polynomials det ¢%,(n). Putting

771[n1
By = € 2y
77rInT
for n = (n1,...,m) € RL,, we have
AG(Ey) = ()7 (n2)7=" -+ (ny) (3.23)

DEFINITION 3.9. For each ¢ € C", a tempered distribution R, € §'(2y) whose
Laplace transform Lz (0) = R, (e~ %) is given by

Lr,(0) = A*,.(0) (0 €P}) (3.24)

is called a Gindikin-Riesz distribution on the homogeneous cone Py.
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Gindikin ([7], [8]) constructed R, as a composition of an absolutely continuous
complex measure on Py with a differential operator. The support of R, is contained in
Py, and R, is relatively invariant under the action of p(Hy), that is,

Ro(f o p(T)) = X-o(T)Re(f) (3.25)

for T € Hy and f € S(2y).

PROPOSITION 3.10.  For non-zero ¢ € {0,1}" and u € R (g), put o := u+p(g)/2.
Then R, is the image of Mg by the standard quadratic map gs;.

PROOF. By (3.24), it is sufficient to show that

/ e~ (@50 ME (dz) = A* . (6)
wet B a

for § € Py;. Take T' € Hy for which 6 = p*(T')In. Then the left-hand side is

/ =05 @)0" (TN (2 () = /
wgt -

e+
WV

o~ (a5 (re(T)a), In) ME (dz)
by (3.17), and it is equal to

X—(utp(e)/2) (1) /W e~ @I ME (dur)

£,+
v

by Lemma 3.7 (i). Since (g5;(z), In) = ||z||? by (3.14), we see from Lemma 3.7 (ii) that

/WE L € VO ME(dr) = X (o) /2 (T) = AL, (0). =

v

g€ R ;0,=pi(e)/2 (ife; =0), o;>pi(e)/2 (ife; =1)}. (3.26)

If ¢ # (0,...,0) and ¢ € E(g), then R, is a positive measure on the orbit O, by
Proposition 3.10. For the case e = (0,...,0), we have Z(0,...,0) = {(0,...,0)} and
Ro....,0) is the Dirac measure at the origin {0}. It is proven in [12] that they exhaust all
the cases that R, is a positive measure.

THEOREM 3.11 ([12, Theorem 6.2]). The Gindikin-Riesz distribution R, is a pos-
itive measure if and only if o € E := |_|§€{071}T E(eg). Moreover, if o € Z(g), then R, is
a measure on O.
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The parameter set = is also described as

== {Zei(a...,oyuiynmﬂ-/z...,nm-/2); g €{0,1}, u; >0 (i = 1,...770)}.
i=1

3.6. Riesz measures and Gindikin-Riesz distributions.
Let us investigate a relation of the Riesz measures p, associated to homogeneous
Py-positive quadratic maps ¢ and the Gindikin-Riesz distributions on Py,.

PropoOsSITION 3.12.  Fori=1,...,r, one has Ihgi, = Wm(i)/QRm(i)/2.

PrOOF. From Lemma 2.4 and Proposition 3.3 (ii), we have

thq% (9) _ ﬂ,m(i)/Q det ¢7i}(0)*1/2 _ ﬂm(l)/2Aim(1)*/2(a) (9 c ,P;;)a (327)
which implies the statement. O

Assume that there exists the Riesz measure JIes associated to a virtual quadratic
map gy = (¢,)®% @ -+ @ (¢,)®*. By (2.10) and (3.27), we have for 6 € P},

T

Ly (0) = [T (w20 0y 12(6)) ™

v i=1 o
We put
r L
o= ; sim()/2 = 5 ; $i(0,...,0, 1, g1 45 e vy Mg (3.28)

Then the equality above can be rewritten as
L, . (0) = 7'7IA7,.(6),
QT; -

where |o| := 01 + -+ 0. Thus s, equals 7/2IR,, so that ¢ belongs to Z(g) for some
e € {0,1}" owing to Theorem 3.11. The converse argument is also valid. Therefore we
obtain

THEOREM 3.13.  For a virtual quadratic map ¢ = (q5,)®% @ -+ - & (¢,)®%", there
exists the associated Riesz measure fi,s if and only if o := iy sim(i)/2 belongs to

E. In this case pgz = ml2l Ry, and there exist ¢ € {0,1}" and w € Ry (g) for which
oc=u+p(e)/2. Ife#(0,...,0), ng is the image of the measure el MG on W5 by the
standard quadratic map q%.

Let ¢ : R™ — Zy, be any homogeneous Py-positive quadratic map. As is noted in
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Section 3.1, the group prqi(Aut(Py, q)) acts on the cone Py, transitively. Assume first that
pri(Aut(Py, q)) contains p(Hy). Then the polynomial det ¢4(n) is relatively invariant
under the action of p(Hy) by (2.18). Namely, for each T' € Hy, there exists ¢y > 0 such
that det ¢4 (p*(T)n) = crdet ¢q(n) (n € Zy). It is easy to see that the correspondence
Hy 5T +— cr € R is a one-dimensional representation, so that we have cp = xm(T)
for some m € R". Thus det ¢4(p*(T)1,,) = xm(T) det ¢,(In) for T € Hy, which means
that det ¢q(n) = CA},.(n) for n € P};, where C := det ¢4(In). By (3.23), we have

det ¢g(Ey) = C (m)™ --- (n,)",

which gives a practical way to determine m;. Indeed, we see from this formula that m,; are
non-negative integers. Comparing the degrees of both sides, we obtain m = mq+- - -+m,..
Similarly to Proposition 3.12, we have

pg = C 2R, 1o (3.29)

Let us consider the virtual quadratic map ¢®°. The associated Riesz measure exists if
and only if sm/2 € E, and in this case

As for the general case, we have the following result.

ProposiTIiON 3.14. Let ¢ : R™ — Zy be a homogeneous Py -positive quadratic
map. Then there exist go € G(Py), m € Z", and C > 0 for which

det ¢q((gg 1)*n) = CAL.(n) (€ Py).

The Riesz measure jiy0s associated to the virtual quadratic map q®* exists if and only if
sm/2 € 2. In this case, jgo- equals the image of C‘s/27rsm/2725m/2 by go-

PROOF. We note that pri(Aut(Py, ¢)) acts on the cone Py transitively, and that
the identity component of pri(Aut(Py,q)) equals the identity component of an alge-
braic group (cf. [16, Theorem 2]). It follows that an Iwasawa subgroup (maximal
connected split solvable subgroup) H of pri(Aut(Py,q)) acts on Py simply transitively
([25, Chapter 1]). Since H is also an Iwasawa subgroup of G(Py), it is conjugate to
another Iwasawa subgroup p(Hy) C G(Py). Namely, there exists gy € G(Py) for which
9o “Hgo = p(Hy). Let ¢ be the Py-positive quadratic map gy oq : R™ — Zy. We
have ¢q (1) = ¢4((g5')*n) for n € 2y because Lxgy (n)z = (¢'(x),n) = (q(z), (95 ')*n) =
trd,((gy ') n)x for x € R™. Tt is easy to see that

Aut(Py,q') = {(95 '9190, 92) € GL(Zy) x GL(R™); (g1, 92) € Aut(Py,q)} -

Then pri(Aut(Py,q')) = g5 'pri(Aut(Py,q))g0 D go "Hgo = p(Hy). Thus we can apply
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the argument preceding Proposition 3.14 for ¢/, so that we have

det ¢y ((go )™n) = det oy (1) = CAL,-(n)

with some C' > 0 and m € Z". Moreover p,)es equals C*S/zwsm/stm/g if sm/2 € =.
Since ¢®* = gg o (¢/)®*, we get the last statement from Proposition 2.16. O

Proposition 3.14 states that the Riesz measure p, associated to a homogeneous ¢
is equal to some Gindikin-Riesz distribution up to a linear transform on G(Py). On
the other hand, Theorem 3.13 tells us that if a Gindikin-Riesz distribution is a positive
measure, then it equals a Riesz measure associated to the virtual sum qu = (q%/)éle &)

@ (¢},)®* of basic quadratic maps up to a constant multiple. For example, let us recall
the homogeneous Sym;,"-positive quadratic map ¢’ : R — Sym(r, R) with I C {1,...,7}
and the permutation matrix wy € &, C GL(r, R) in Section 3.1. Putting go := p(wo),
we have ¢! = ggoq"=F+1r} (k.= #I), while ¢t"—#+ 17} is exactly the basic quadratic

map q{;kﬂ for Zy = Sym(r, R). Therefore, the Riesz measure ji(4rye- exists if and only
if (0,...,0,8/2,...,5/2) € E, that is, s € {0,1,...,k —1} U (k — 1,400). In this case,
—_—

k
H(gryes equals the image of 713/273(0,”,’0’3/2,”,75/2) = ,u(qc_kﬂ)@s by go.

Let g1 : R™ — Zy, and ¢ : R™? — Zy, be two homogeneous Py-positive quadratic
maps. As we have seen in Section 3.1, the direct sum ¢; @ g2 is not necessarily homo-
geneous. Let us assume that the group pri(Aut(Py,q1)) N pri(Aut(Py, g2)) acts on Py
transitively. In this case, we see easily that g1 ®¢s is homogeneous. As in Proposition 3.14,
we can take gy € G(Py) for which gop(Hy)gy ' C pri(Aut(Py,q1)) N pri(Aut(Py, g2)).
Then we have det ¢, ((95)*n) = C1A,(n) and det b (95 ) n) = C2A,(n) for
n € (R™* with some C1,Cy > 0 and m/, m” € Z". Now we consider a vir-
tual quadratic map ¢ = ¢©% @ ¢¥*>. We see that the associated Riesz measure
g exists if and only if sym' + sem’/2 € E, and in this case, p, is the image of
C;Sl/20552/2W(81ml+S2m2)/27€(51m/+52mu)/2 by go. Obviously, the same argument is
valid for general quadratic maps ¢ = ¢*' @ ¢3** @ - @ g™,

3.7. Bartlett decomposition of the Wishart laws.

Let ¢ : R™ — Zy be a homogeneous Py-positive quadratic map. Then the Wishart
law 74,0 (6 € Py;) is the image of the normal law N(0,$(6)™!) on the vector space R™
by the quadratic map ¢/2, see Remark 2.6.

However, this description of the Wishart law does not permit us to determine its
support in general. In this section, we shall give another construction of the Wishart
random matrices, which is a generalization of the Bartlett decomposition (]2], [21, Theo-
rem 3.2.14]) and has the advantage of controlling the support of the underlying Wishart
law. Moreover, the result is valid for virtual quadratic maps.

First we consider the virtual quadratic map ¢, = (¢3,)%** & -+ @ (¢},)®* whose
associated Riesz measure pi,s exists. Then o = >i_y sim(i)/2 belongs to = and we have
thgs = 7l2IR, by Theorem 3.13. Moreover, we have L,Lq% 9) = 7r|£|A’ig* (9). Therefore
we obtain from (2.8) that
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Teso(dy) = e WIAL(O)Ro(dy) (y € R™). (3.30)

We remark that distributions of this type are considered in [11] for the case when Py is
a symmetric cone. Assume that Y26 is not the Dirac measure. Then o # (0,...,0), so
that we can take a non-zero ¢ € {0,1}" and u € R, (g) for which ¢ = u + p(g)/2. Recall
the standard quadratic map ¢ : W — 2y and the subset W™ € Wy introduced
in Section 3.4. As noted in (3.15), each element z € W§’+ is identified with a lower
triangular matrix T, for which q‘%(:v) = T,'T,. Thus, the W§’+—valued random variable
X% in the following theorem can be regarded as a triangular random matrix, similarly
to the Bartlett decomposition of the classical Wishart laws.

THEOREM 3.15.  Let 0 = u+p(e)/2 and X* be an W§’+-valued random variable
whose components are independent and satisfy (Xi5)* ~ x*(2u;) and Xj; ~ N(0,I,,,) for
ie€le) andl > i.

(i) The Wishart law Voi.1y S the law of Y = g (X%)/2 and is supported by O..
(ii) For 0 = p*(T)In € Py, with T € Hy, the Wishart law Voi.0 15 the law of Y =
p(T)~' o g5(X%)/2 and is supported by O..

PROOF. For a measurable function f on Zy, we see from (3.30) and Proposition
3.10 that

£ g (dn) = [ e W OR ) = [l O (),
Zy Zy Wy

Since (g5(x), In) = ||z|?, by the change of variable of @ by x/v/2, we rewrite the last
term as

[ 1@ @2 M V2.

Keeping Remark 3.8 in mind, we see that the law of the random variable X* is
e=1#I°/2 ME (dz/v/2). Hence (i) holds. To show (ii), it suffices to check that Vei0 18
the image of Vs In by p(T)~!. Since 'yq%,IN(dy) = e~ WINIR, (dy), we have

Yooty (P(T) dy) = e~ PDWINIR, (p(T) dy) = e~ x0 (T)Ro (dy)

by (3.25). Therefore (3.30) together with (3.22) leads us to the assertion (ii). O

Now we consider the Wishart laws 7,es g, where ¢ is a general homogeneous Py-
positive quadratic map. First we show a refinement of the first part of Proposition 3.14.

LEMMA 3.16. Let q: R™ — 2y, be a homogeneous Py -positive quadratic map, and
0 an element of Py;. Then there exist go € G(Py), m € Z" and C > 0 for which
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det ¢g((g95 ")) = CAL-(n) (n€P}) (3.31)
and g5 = In.

PROOF. It is shown in the proof of Proposition 3.14 that there exists ag € G(Py)
for which aop(HV)agl C pri(Aut(Py,q)). Since ajf € Py, we take Ty € Hy for which
o (To)In = agf. Put go := aop(To) ™' € G(Py). Then gop(Hy)gy ' C pri(Aut(Py,q))
and g30 = p*(Ty) " tay0 = Iy. Similarly to Proposition 3.14, we see that g together with
an appropriate m and C > 0 satisfies the required properties. O

Assume that there exists the Riesz measure p,e. associated to a virtual quadratic
map ¢9*, and that fges is not the Dirac measure. Then we can take non-zero € € {0,1}"
and u € Ry (g) such that sm/2 = u + p(g)/2 as in Theorem 3.13. Using these data
together with gp in Lemma 3.16, we obtain the Bartlett decomposition of the Wishart
law v @5 ¢.

THEOREM 3.17.  Let sm/2 = u+p(g)/2 and X* be the W§’+—valued random variable
in Theorem 3.15. Then the Wishart law v,0: g is the law of Y = go o g3 (X%) /2.

ProOOF. Put ¢ := gO_1 oq. As is seen in the proof of Proposition 3.14, the Riesz
measure f(gnes equals C~*/2rs™/2R 5. Thus, similarly to the proof of Theorem 3.15
(i), we see that vy e 1y (dy) = e WIVIR,, n(dy), and that vyge- 1, is the law of
Y = ¢5,(X%)/2. Since ¢®* = go o (¢')®*, Theorem 3.17 follows from Proposition 2.16. [J

We have seen that Riesz measures and Wishart laws associated to a homogeneous
quadratic map are obtained (up to linear transforms as in Proposition 3.14 and Theorem
3.17) as the ones associated to a virtual quadratic map ¢y, = (¢3,)%** @ --- @ (¢f,)®*7,
that is, a virtual sum of basic quadratic maps. However, it does not mean that every
homogeneous quadratic map is equal to a direct sum of basic quadratic maps. The
structure of homogeneous quadratic maps is more rich than the maps generated by basic
quadratic maps. Let us study the following example.

EXAMPLE 5. Let Herm(2, C) be the vector space of Hermitian matrices of size 2,
and Q C Herm(2, C) the subset of positive definite matrices. Then we see that

L
b= {<y3 gliy4 " y2zy4> sy >0, yige — (v3)” — () > 0},

so that €2 is the 4-dimensional Lorentz cone. Recalling (3.7), we have the linear isomor-
phism

i y1 0 ys
t: Herm(2,C) > ( oY y4> =10 y1 ya| €2y
Y3 +1Y4 Y2
Ys Ya Y2

which gives a matrix realization of Q. Let us consider the quadratic map §: C? 3 z —
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2'z € Herm(2, C), which is clearly Q-positive. We have a group homomorphism
GL(2,C) 3 A (p(A), A) € Aut(9,q),
where 5(A) € GL(Herm(2, C)) is defined by p(A)(Z) := AZ*A (Z € Herm(2, C)). Since

p(GL(2,C)) acts on £ transitively, the quadratic map ¢ is homogeneous. Keeping the
natural isomorphism C? ~ R* in mind, we define the quadratic map ¢ : R* — Zy by

o) =oq (712

T3 +1iTq
- < (ZZ?1)2 + (ZE2)2 ($1l’3 + 1721‘4) — i(.171334 — 56‘2:63))
(x123 + T2xq) + i(T124 — ToT3) (23)2 + (24)?
(21)? + (22)? 0 123 + TaTy
= 0 (21)® + (22)* @124 — 2223

Ir1x3 + XToxy T1XT4 — ToX3 (I3)2 + (I4)2
Then we have

m 0 nm3 m
0 m —n1 m3
3 —na M2 0
n mz 0 m

bq(n) =

for n € Zy. It is easily checked that the map ¢, o ¢ : Herm(2,C) — Sym(4, R) is a
Jordan algebra representation. For nn € Q* we have

Ly, (—n) = 72(det ¢q(n)) "/ = w2 (mnz — (n3)* — (ma)*) ™ (3.32)

by Lemma 2.4. On the other hand, the basic quadratic maps ¢}, : W), — Zy (i = 1,2)
are given by

X 0 (1'1)2 0 13 0 00 0
w0 x|=[ 0 (1) T124 , @lofl=(oo0o o |,
Tr3 T4 1Tz T1X4 ($3)2 + (,1134)2 €To 00 (332)2

so that we have for n € Z5;

L M3 M4 )
dym) = 1ns m 0|, &(n)=mn.
ne 0 m

Thus we obtain
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Ly (=) = 7*2(n2) "2 (mnz — (n3)? — (n4)*) /%, Ly, (=n) =7"/2(n2)7"/? (3.33)
for n € P},. Comparing (3.32) and (3.33), we see that 1ig = f1(g1)e26(42 o (-2, Whereas the
quadratic map ¢ is by no means equal to the virtual quadratic map (¢5,)®2 @ (¢3)®(=2.
We see also from (3.32) and (3.33) that 1, g2)e2 = pi(g)e2, whereas the two (true)
quadratic maps ¢ @ (¢3)®? and (g,)®* do not coincide even up to linear transforms
go € G(Q), as the domains of these maps are different.

Therefore two different quadratic maps may correspond to the same Riesz measure.

3.8. Density function for the non-singular case.

Since the orbit O, = p(H)E; is contained in the boundary 9Py of the homogeneous
cone Py unless € = (1,...,1), the Gindikin-Riesz distribution R, is a singular measure
for ¢ € E(g) with € # (1,...,1) thanks to Proposition 3.10. On the other hand, if
o € E(1,...,1), that is,

Ui>pi/2 (iZl,...,’I“),

where p; := p;(1,...,1) = > ;. ny, then the Gindikin-Riesz distribution is an absolutely
continuous measure with respect to the Lebesgue measure, and the density function is
given explicitly in [7] as follows.

Noting that the group Hy acts on Py simply transitively, we define the function
A, : Py — C* for g = (01,...,0,) € C" by Ay (p(T)IN) := xo(T) (T € Hy). For y =
p(T)In =TT € Py, we can express A, (y) as a product of powers of principal minors of
y (cf. [5, p.122]). Define d = (dy,...,d.) € Z"/2 by dy := 14+ (3,0 mak + D5 p ki) /2.
Then A_4(y)dy gives a G(Py)-invariant measure on Py ([7, Proposition 2.2]). Take
g€ E(1,...,1). We see from [7, Theorem 2.1] that the integral

I'p,(a) 52/ e WINVA,_(y) dy
Pv

converges and equals (4™ 2v=")/2T]"_ T(o; — p;/2). By [7, Proposition 2.3], we see
that

((jy)) dy (y € Py). (3.34)

Owing to (3.30) and (3.34), we conclude the following proposition.

PROPOSITION 3.18.  Let g = (q1)®5* & - & (¢},)®* be the virtual quadratic map
such that o = Y _._, sim(i)/2 belongs to Z(1,...,1), that is, o; > p;/2 (i = 1,...,7).
Then one has for 6 € P3;

e WAL (0)As—a(y)
FPV (Q)

Va5 .0(dy) = dy (y € Py). (3.35)
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Note that the formula (3.35) served as a definition of a Wishart law in [1].

EXAMPLE 6. Let Zy be the space defined in (3.5). If y = p(T)Iy = T'T € Py
with T' € Hy, then we see easily that

yi1 = (t11)% yiyee — (y21)? = (011)%(t22)?, yi1yss — (y31)? = (t11)%(ts3)?,
so that A, (y) = (t11)%71 (t22)?72 (t33)7% equals

g3

(y11)7 77 (y1ry22 — (21)%) 7 (y11yss — (y31)°)

On the other hand, we have (p1, pa, p3) = (0,1,1) and (d1, d2, d3) = (2, 3/2, 3/2). Thus
we have by (3.34)

(y11)7 =277 (Y110 — (y21)%)72 =%/ 2 (y11yss — (ys1)?) 72~ %/2
wl(01)(o2 — 1/2) (05 — 1/2)

R(o’l,az,ag)(dy) = dy
if o1 > 0,09 > 1/2 and o5 > 1/2. Let us consider the Wishart laws associated to the
virtual quadratic map (qb)@s, where q}, : Wﬁ — Zy is the basic quadratic map. Since
m(1) = (1, 1, 1), we observe that sm(1)/2 € Eif and only if s € {0, 1}U(1,+00). If s = 0,
the associated Wishart law is the Dirac measure. If s = 1, the associated Wishart law
Vqb,.0 (6 € Py;) is described as the image of the normal law N (0, $3,(0)71) on Wy = R3
by the quadratic map ¢i,/2, where ¢3,(0) is given in Example 4 after Proposition 3.3.
If s > 1, then sm(1)/2 = (s/2, s/2, s/2) belongs to Z(1,1,1). Since

sm(1)2(0) = det P(0)°/% = (011022033 — 033(621)* — 922(931)2)5/2 0 € Py,
we have

e WO (011022035 — O33(021) — O22(031)2)*/
Vab)@e.0(dy) = Wr(s/z)rg(g(s —113)/2)F((s - 1)/32)

x (y11) 2 (y11ye2 — (¥21)2) ™ 2 (yr1yss — (y31)H) 2 dy  (y € Py)

by Proposition 3.18.
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