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(Received Nov. 9, 2011)

Abstract. We correct the proof of Theorem 3.8 in [GP2].

The proof of Theorem 3.8 in [GP2] is not correct from the sentence starting
at line 5 to the end of line 14 of page 995. The correction is done by the replacing
this part by the following:

If α(x)F η1
1 · · ·F ηj−1

j−1 with ordxα(x) = η0 ≥ 0, is a term appearing in the

(F1, . . . , Fj)-expansions of Fj+1, different from F
Nj

j and α
(j)
0 (x)F η

(j)
1

1 · · ·F η
(j)
j−1

j−1 ,
then the straight line condition implies that

(1/Ej)NjB̄j < (1/Ej)
(
η0B̄0 + · · ·+ ηj−1B̄j−1

)
. (1)

The inequality (1) is strict since
∑j−1

i=0 ηiB̄i 6=
∑j−1

i=0 η
(j)
i B̄i by the numerical prop-

erties of the semigroup Γ generated by B̄0, . . . , B̄G, see Lemma 1.15.
We re-embed the germ (C, 0) defined by F = 0, in (CG+1, 0) by setting

u0 = x, u1 = F1, . . . , uG = FG. (2)

We also set the weight of ui equal to B̄i, for i = 0, . . . , G. The equations defin-
ing the embedding of (C, 0) are obtained by making the replacement (2) in the
(F1, . . . , Fj)-expansion of Fj+1 for j = 1, . . . , G. The inequalities of the form
(1) together with NjB̄j =

∑j−1
i=0 η

(j)
i B̄i for j = 1, . . . , G and NjB̄j < B̄j+1 for

j = 1, . . . , G − 1, are precisely the weight conditions on the equations of defining
the embedding (C, 0) ⊂ (CG+1, 0) indicated in Proposition 39 of [GP]. By the
proof of Theorem 6.1 in [G-T] or by Theorem 2, page 1867 in [GP] one toric
modication of CG+1 provides a simultaneous embedded resolution of both the
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monomial curve (CΓ, 0) parametrized by ui = tB̄i , i = 0, . . . , G and the germ
(C, 0) ⊂ (CG+1, 0). In addition, the strict transforms of both curves intersect
the exceptional divisor at exactly one point. In particular, this implies that the
normalization of (C, 0) is smooth, and the germ (C, 0) is irreducible hence F is
irreducible. 2
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