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Eisenstein ideals and the rational torsion subgroups

of modular Jacobian varieties

By Masami Ohta
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Abstract. Let N ≥ 5 be a prime number. Conrad, Edixhoven and Stein
have conjectured that the rational torsion subgroup of the modular Jacobian
variety J1(N) coincides with the 0-cuspidal class group. We prove this conjec-
ture up to 2-torsion. To do this, we study certain ideals of the Hecke algebras,
called the Eisenstein ideals, related to modular forms of weight 2 with respect
to Γ1(N) that vanish at the 0-cusps.

Introduction.

In this paper, we fix a prime number N ≥ 5.
Let X0(N) be the canonical model over Q of the modular curve attached to

the congruence subgroup Γ0(N) =
{[

a b
c d

] ∈ SL2(Z)
∣∣ c ≡ 0 (modN)

}
. It has two

cusps, usually called ∞ and 0, both of which are rational over Q. Let J0(N) be
the Jacobian variety of X0(N) defined over Q. Ogg has shown that the divisor
class cl((0)− (∞)) of (0)− (∞) in J0(N)(Q) generates a group of order n := (the
numerator of (N − 1)/12) in [Og1], and conjectured that this is the full rational
torsion subgroup J0(N)(Q)tors in [Og2]:

J0(N)(Q)tors = 〈cl((0)− (∞))〉 ∼= Z/nZ.

Mazur then proved, among others, that this is indeed the case, in his celebrated
paper [Ma].

On the other hand, we have the modular curve attached to another congruence
subgroup Γ1(N) =

{[
a b
c d

] ∈ Γ0(N)
∣∣ a ≡ d ≡ 1 (mod N)

}
. There are two natural

choices of its model over Q. We denote by X1(N) the one of which the 0-cusps
(i.e. the cusps lying over 0 ∈ X0(N)(Q)) are rational over Q, and by J1(N) its
Jacobian variety defined over Q. Let C0 be the subgroup of J1(N)(Q)tors consisting
of the classes of divisors of degree zero supported at the 0-cusps. Klimek has
computed the order of this group, which is given by
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∏
χ

B2,χ

4
=: c(N)

where the product ranges over all nontrivial even Dirichlet characters modulo N ,
and B2,χ is the second generalized Bernoulli number (cf. Kubert and Lang [KL]).
As for the rational torsion subgroup of J1(N), Conrad, Edixhoven and Stein have
presented the following conjecture, together with numerical evidence:

Conjecture ([CES, Conjecture 6.2.2]). The rational torsion subgroup
J1(N)(Q)tors coincides with the 0-cuspidal class group C0:

J1(N)(Q)tors = C0.

In this direction, Kamienny [Kam3] proved that, if a prime p ≥ 5 divides the
order of A(Q)tors, where A is the quotient variety of J1(N) by the image of J0(N),
then p is a divisor of c(N). One of our main results of this paper is the following

Theorem I. The above conjecture of Conrad, Edixhoven and Stein is valid
up to 2-torsion. Namely, for any odd prime p,

J1(N)(Q)[p∞] = C0[p∞]

where the symbol “ [p∞]” indicates the p-torsion subgroup.

Let h2(Γ1(N);Z) be the Hecke algebra generated over Z by the diamond op-
erators 〈a〉 and the Hecke operators T (n) acting on the space S2(Γ1(N);C) of
cusp forms of weight 2 with respect to Γ1(N). It can be considered as a subal-
gebra of EndQ(J1(N)) in a natural way. To study the rational torsion subgroup
of J1(N), we are led, by [Ma], to seek an ideal, called the Eisenstein ideal I∞,Z
of h2(Γ1(N);Z) which enjoys the properties stated in the following Theorem II.
To define “correct” I∞,Z and study it, we are then led to consider the space, de-
noted M∞

2 (Γ1(N);R), of modular forms over a ring R which vanish at the 0-cusps
(equivalently, whose corresponding differentials have poles only at the∞-cusps, the
cusps lying over ∞ ∈ X0(N)(Q)). Let H∞

2 (Γ1(N);Z) be the Hecke algebra associ-
ated with M∞

2 (Γ1(N);C) in the same sense as above. We define I∞,Z (resp. I∞,Z)
as the ideal of H∞

2 (Γ1(N);Z) (resp. h2(Γ1(N);Z)) generated by T (l) − (1 + l〈l〉)
with prime numbers l 6= N , T (N)− 1 together with τ =

∑〈a〉 (the sum being over
(Z/NZ)×/{±1}). The (not necessarily proper) ideal I∞,Z is the image of I∞,Z
under the canonical surjective homomorphism H∞

2 (Γ1(N);Z) → h2(Γ1(N);Z),
and I∞,Z turns out to be the annihilator ideal of the space of Eisenstein series in
M∞

2 (Γ1(N);C), which, hopefully, justifies our terminology. Set
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{
h2(Γ1(N);Zp) := h2(Γ1(N);Z)⊗Z Zp,

I∞,Zp
:= I∞,Z · h2(Γ1(N);Zp)

for a prime number p.

Theorem II. Let p be an odd prime.

(1) We have the equality of indices:

|h2(Γ1(N);Zp) : I∞,Zp | = |Zp : c(N)Zp|.

(2) I∞,Zp
annihilates J1(N)(Q)[p∞].

This Theorem II is the key to the proof of Theorem I. But for the prime
N , we need some finer arguments, decomposing the above objects with respect
to the action of (Z/NZ)×. In this case, the situation is different from the other
cases in that J0(N) does not have good reduction at N (but A above attains
everywhere good reduction over Q(ζN )), and there is an extra factor N in the
definition of c(N), etc. However, there is no N -torsion in J0(N)(Q) by [Ma],
and the N -division points of A have been studied rather extensively, mainly in
connection with the theory of cyclotomic fields, by Ribet [Ri], Wiles [Wi], Mazur
and Wiles [MW1], [MW2], Kamienny [Kam2], [Oh1], [Oh2] and others. We
give the proofs of Theorems I and II for the prime N separately in the subsection
3.3, employing some of these works. We note that these works also guided us in
studying the other p-torsion parts.

In the rest of this introduction, we thus explain our plan mainly in the case
where p 6= 2, N in mind.

Section 1 is preliminary. In 1.1, we recall known facts on modular forms and
cusp forms of weight 2 with respect to Γ1(N), introduce M∞

2 (Γ1(N);R), and show
that this latter space has the usual properties such as the base changing property
and the q-expansion principle. (In Sections 1 and 2, we use another model Xµ(N)
of the modular curve which is suited to consider the q-expansions.) In 1.2, we
consider the Hecke algebras acting on these spaces, and recall some properties
of h2(Γ1(N);Z) viewed as an endomorphism subalgebra of the Jacobian variety
Jµ(N) of Xµ(N). In 1.3, we prove the duality between M∞

2 (Γ1(N);R) and its
Hecke algebra H∞

2 (Γ1(N);R) when N is invertible in R, which is an analogue of
the well-known duality in the case of cusp forms. This duality plays an important
role in the proof of Theorem II, (1).

In Section 2, we first recall Eisenstein series of weight 2 with respect to Γ1(N),
and introduce our Eisenstein ideals in 2.1. We show that one can exclude T (N)−1
from the list of generators of I∞,Zp

when p 6= N , which helps us in proving Theorem
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II, (2). The rest of Section 2 is devoted to the proof of Theorem II, (1) for p 6= 2, N .
For this, we use the method of [Oh1] and [Oh2], in which ordinary Λ-adic situation
was studied. In 2.2, we study the “residue mapping” for M∞

2 (Γ1(N);R) for later
use. In 2.3, we prove a result on the behavior of congruence modules under duality.
These results, together with the duality proved in 1.3, allow us to interpret the
index in question as the order of certain congruence module, which is much easier
to compute. We then accomplish the actual computation in 2.4.

In Section 3, we at length start the study of J1(N)(Q)tors. In 3.1, we prove
Theorem II, (2) for p 6= 2, N . Among the generators of I∞,Zp , the annhilation of
J1(N)(Q)[p∞] by T (l)−(1+l〈l〉) (l 6= N) is a rather well-known consequence of the
Eichler-Shimura congruence relation and a result of Raynaud [Ra]. The point here
is the annihilation by τ for which we invoke results of [CES] and [Ma] (whereas
for J1(N)(Q)[N∞], we need an effort to prove the annihilation by T (N) − 1 in
3.3). We finish the proof of Theorem I for p 6= 2, N using the method of [Wi] and
[MW1] in 3.2. Finally in 3.4, we derive the results on Jµ(N)(Q)tors corresponding
to Theorems I and II from them.

1. Modular forms and Hecke algebras.

1.1. Modular forms.
Throughout the paper, we fix a prime number N ≥ 5.
In this section, we consider modular forms of weight 2 and level N . We are

especially interested in the space M∞
2 (Γ1(N);R) below, and the associated Hecke

algebras. Our purpose here is to recall known facts and to see that these objects
have usual good properties as in the case of cusp forms or modular forms. Basic
references are Deligne and Rapoport [DR], Katz [Kat1], [Kat2], Katz and Mazur
[KM] and Shimura [Sh]; cf. also Diamond and Im [DI] and Gross [G] which
contain good summary of the algebraic theory of modular forms with respect to
Γ1(N).

Let R be a Z[1/N ]-algebra. We denote by Xµ(N)/R the (fine) moduli scheme
classifying the pairs (E, α) consisting of

{
a generalized elliptic curve E over an R-scheme S, and

a closed immersion α : µµµN ↪→ Ereg of S-group schemes.
(1.1.1)

Here, Ereg denotes the smooth locus of E/S, and we require that the image of
α meets every geometric irreducible component of E/S. Xµ(N)/R is a proper,
smooth and geometrically irreducible curve over R.

There is the universal family
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π : E → Xµ(N)/R together with µµµN ↪→ Ereg (1.1.2)

of the pair (1.1.1). We set

ω/R := Lie(Ereg)∨ (1.1.3)

the dual of the sheaf of Lie algebras. If Yµ(N)/R denotes the open subscheme
of Xµ(N)/R which classifies the pairs (E, α) with E a genuine elliptic curve, the
restriction of ω/R to Yµ(N)/R is isomorphic to π∗(Ω1

E/Yµ(N)/R
). (See [G, Section

2] for these.)
Let

C/R := Xµ(N)/R − Yµ(N)/R (1.1.4)

considered as a reduced closed subscheme of Xµ(N)/R, be the scheme of cusps of
Xµ(N)/R. It is finite and étale over R.

Let X0(N)/R be the (coarse) moduli scheme classifying generalized elliptic
curves together with a locally free subgroup scheme of rank N in place of α above.
Its subscheme of cusps is a disjoint union of two copies of Spec(R), usually called
∞ and 0 (cf. [DI, Example 9.3.4] for their descriptions in terms of Tate curves).
We denote by C∞/R and C0/R their inverse images by the natural morphism
Xµ(N)/R → X0(N)/R. Thus

C/R = C∞/R

∐
C0/R. (1.1.5)

C∞/Z[1/N ] is isomorphic to the disjoint sum of (N − 1)/2 copies of Spec(Z[1/N ]),
while C0/Z[1/N ] is isomorphic to Spec(Z[ζN ]+[1/N ]). Here, ζN ∈ Q is a primitive
N -th root of unity, and Z[ζN ]+ is the ring of integers of the maximal real subfield
of Q(ζN ). Points of C∞/R or C0/R (with values in R-algebras) will be called ∞-
cusps or 0-cusps, respectively. We may consider C/R, C∞/R and C0/R as effective
Cartier divisors in Xµ(N)/R.

Recall that there is the Kodaira-Spencer isomorphism

ω⊗2
/R
∼= Ω1

/R(C/R) with Ω1
/R := Ω1

Xµ(N)/R/R. (1.1.6)

Definition 1.1.7. For a Z[1/N ]-algebra R, we set
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



S2(Γ1(N);R) := H0
(
Xµ(N)/R, ω⊗2

/R(−C/R)
) ∼= H0

(
Xµ(N)/R,Ω1

/R

)
,

M∞
2 (Γ1(N);R) := H0

(
Xµ(N)/R, ω⊗2

/R(−C0/R)
) ∼= H0

(
Xµ(N)/R,Ω1

/R(C∞/R)
)
,

M2(Γ1(N);R) := H0
(
Xµ(N)/R, ω⊗2

/R

) ∼= H0
(
Xµ(N)/R,Ω1

/R(C/R)
)
.

If f is an element of one of the spaces in the left hand side, we denote by ωf the
corresponding differential in the right hand side.

S2(Γ1(N);R) and M2(Γ1(N);R) are of course the spaces of cusp forms and
modular forms in the usual sense, and M∞

2 (Γ1(N);R) lies between them:

S2(Γ1(N);R) ⊆ M∞
2 (Γ1(N);R) ⊆ M2(Γ1(N);R).

Proposition 1.1.8. The formation of the above spaces commutes with
change of base rings. Namely for any Z[1/N ]-algebra R, we have canonical iso-
morphisms





S2(Γ1(N);Z[1/N ])⊗Z[1/N ] R ∼= S2(Γ1(N);R),

M∞
2 (Γ1(N);Z[1/N ])⊗Z[1/N ] R ∼= M∞

2 (Γ1(N);R),

M2(Γ1(N);Z[1/N ])⊗Z[1/N ] R ∼= M2(Γ1(N);R).

Proof. The first and the third isomorphisms are well-known (cf. [DI, The-
orem 12.3.2]), and the second one can be obtained in a similar manner, as fol-
lows. Set S = Spec(Z[1/N ]), X = Xµ(N)/Z[1/N ] and C∞ = C∞/Z[1/N ], and let
f : X → S be the structural morphism. In view of [EGAIII, (7.7.5) and (7.8.5)],
it is enough to show that R1f∗(Ω1

/Z[1/N ](C∞)) is a locally free OS-module. For a
point s ∈ S, indicate by the subscript “s” the base change to the residue field κ(s)
at s. Then we see that H1(Xs,Ω1

/Z[1/N ](C∞)s) vanishes for each s since it is Serre
dual to H0(Xs,OXs

(−C∞/κ(s))). It follows from Mumford [Mu, II, 5, Corollary
2] that we in fact have R1f∗(Ω1

/Z[1/N ](C∞)) = 0. ¤

We have the q-expansion mappings (at the cusp ∞ of Xµ(N)/R)





S2(Γ1(N);R) → qR[[q]],

M∞
2 (Γ1(N);R) → R[[q]],

M2(Γ1(N);R) → R[[q]]

(1.1.9)

(cf. [G, Section 2]). The image under any one of the above mappings of f is denoted
by f(q), and called the q-expansion of f . The differential ωf corresponding to f
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then has the expansion f(q)dq/q around the cusp ∞. We have the following q-
expansion principle:

Proposition 1.1.10. (1) The above q-expansion mappings are injective.
(2) If R0 is a Z[1/N ]-subalgebra of R, an element f in one of the spaces in the left

hand side of (1.1.9) is defined over R0 if and only if f(q) belongs to R0[[q]].

Proof. For M2(Γ1(N);R), this is [G, Proposition 2.7], and the same holds
for its subspaces M∞

2 (Γ1(N);R) and S2(Γ1(N);R). Indeed, for any Z[1/N ]-
module K, we can define

M2(Γ1(N);K) := H0
(
Xµ(N)/Z[1/N ], ω

⊗2
/Z[1/N ] ⊗Z[1/N ] K

)

and similarly M∞
2 (Γ1(N);K) and S2(Γ1(N);K), which coincide with the previous

ones when K is a Z[1/N ]-algebra. The first assertion for M2(Γ1(N);R) implies
the injectivity of the q-expansion mapping M2(Γ1(N);K) → K[[q]], and hence the
same holds for the subspaces M∞

2 (Γ1(N);K) and S2(Γ1(N);K) of M2(Γ1(N);K).
The second assertion then follows from this (cf. [Kat1, 1.6]). ¤

It follows from this that M∞
2 (Γ1(N);Z[1/N ]) is the submodule of

M∞
2 (Γ1(N);C) consisting of forms that have q-expansions in Z[1/N ][[q]], and sim-

ilarly for S2(Γ1(N);Z[1/N ]) and M2(Γ1(N);Z[1/N ]). Now set





S2(Γ1(N);Z) := {f ∈ S2(Γ1(N);Z[1/N ]) | f(q) ∈ qZ[[q]]},
M∞

2 (Γ1(N);Z) := {f ∈ M∞
2 (Γ1(N);Z[1/N ]) | f(q) ∈ Z[[q]]},

M2(Γ1(N);Z) := {f ∈ M2(Γ1(N);Z[1/N ]) | f(q) ∈ Z[[q]]}
(1.1.11)

(see [DI, Theorem 12.3.7] for geometric descriptions). Then we see from the
remark above that





S2(Γ1(N);Z)⊗Z Z[1/N ] = S2(Γ1(N);Z[1/N ]),

M∞
2 (Γ1(N);Z)⊗Z Z[1/N ] = M∞

2 (Γ1(N);Z[1/N ]),

M2(Γ1(N);Z)⊗Z Z[1/N ] = M2(Γ1(N);Z[1/N ])

(1.1.12)

since the coefficients of the q-expansion of every element in the right hand side
have bounded denominators. For any ring R, we set
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



S2(Γ1(N);R) := S2(Γ1(N);Z)⊗Z R,

M∞
2 (Γ1(N);R) := M∞

2 (Γ1(N);Z)⊗Z R,

M2(Γ1(N);R) := M2(Γ1(N);Z)⊗Z R.

(1.1.13)

In view of Proposition 1.1.8 and (1.1.12), this notation coincides with the previous
one when R is a Z[1/N ]-algebra. The formation of these spaces clearly commutes
with arbitrary change of base rings.

1.2. Hecke operators.
For the moment, we again work over a Z[1/N ]-algebra R. Set

G := (Z/NZ)×/{±1}. (1.2.1)

For each a ∈ G, we have an automorphism 〈a〉 of Xµ(N)/R over X0(N)/R, which
sends an S-valued point (corresponding to the pair) (E, α) as in (1.1.1) to (E, aα).
Xµ(N)/R is a Galois covering of X0(N)/R whose Galois group is isomorphic to G

via 〈−〉.
On the other hand, we have the Hecke correspondence on Xµ(N)/R, for each

prime number l (cf. [G, Section 3]): We denote by Xµ(N ; l)/R the moduli scheme
which classifies the triples (E, α,C), where (E, α) is the same as in (1.1.1), and C

is a locally free subgroup scheme of Ereg of rank l. Here we require that (image of
α) × C meets every geometric irreducible component of E/S; and moreover that
(image of α) ∩ C is trivial when l = N . We then have two morphisms

{
π1 : Xµ(N ; l)/R → Xµ(N)/R,

π2 : Xµ(N ; l)/R → Xµ(N)/R

(1.2.2)

which are uniquely determined by the following rules for points of Yµ(N)/R, i.e.
with genuine elliptic curves E,

{
π1(E, α,C) = (E, α),

π2(E, α,C) = (E/C, α′)
(1.2.3)

where α′ is the composite of α and the quotient morphism E → E/C.
Actually, we need such correspondences only over Q. When f is in one of the

spaces S2(Γ1(N);Q), M∞
2 (Γ1(N);Q) or M2(Γ1(N);Q), and ωf is the correspond-

ing differential on Xµ(N)/Q, we can define the endomorphisms 〈a〉 and T (l) of the
above spaces by the formulas
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{
ωf |〈a〉 = ωf | 〈a〉 := 〈a〉∗(ωf ),

ωf |T (l) = ωf | T (l) := π1∗ ◦ π∗2(ωf )
(1.2.4)

where the superscript “∗” and the subscript “∗” mean the pullback and the trace of
differentials, respectively. This is well-known for S2(Γ1(N);Q) and M2(Γ1(N);Q).
As for M∞

2 (Γ1(N);Q), in 2.1 below, we will explicitly describe the Eisenstein series
belonging to M∞

2 (Γ1(N);C) and show that this latter space has a basis consisting
of Hecke eigenforms. The subspace M∞

2 (Γ1(N);Q) of M2(Γ1(N);Q) is thus stable
under 〈a〉 and T (l). Then it is known that these operators preserve the subspaces in
(1.1.11) ([DI, Propositions 12.3.11 and 12.4.1]), and hence induce endomorphisms
of the spaces in (1.1.13) for arbitrary R. All these operators will be denoted by
the same symbols 〈a〉 and T (l).

Definition 1.2.5. For any ring R, we let h2(Γ1(N);R), H∞
2 (Γ1(N);R) and

H2(Γ1(N);R) be the R-subalgebra of End(S2(Γ1(N);R)), End(M∞
2 (Γ1(N);R))

and End(M2(Γ1(N);R)) generated by all 〈a〉 and T (l), respectively. We consider
them as algebras over the group ring R[G] via G 3 a 7→ 〈a〉.

Let Jµ(N)/Q = Jµ(N) be the Jacobian variety of Xµ(N)/Q defined over
Q. The automorphism 〈a〉 of Xµ(N)/Q (resp. the Hecke correspondence above
on Xµ(N)/Q) induces covariantly (i.e. by “Albanese functoriality”) an automor-
phism (resp. an endomorphism) of Jµ(N) over Q, which we call 〈a〉 (resp. T (l))
again. The cotangent space of Jµ(N) at the origin is canonically isomorphic to
H0(Xµ(N)/Q,Ω1

/Q). The (contravariant) action of the endomorphisms 〈a〉 and
T (l) of Jµ(N) on this cotangent space then corresponds to 〈a〉 and T (l) defined in
(1.2.4) on differentials. The subalgebra of End(Jµ(N)) generated by all 〈a〉 and
T (l) is thus canonically isomorphic to h2(Γ1(N);Z), and we identify these two
rings.

Let ζN = ζ ∈ Q be a primitive N -th root of unity. When R is a Z[1/N, ζ]-
algebra, we have an involutive R-automorphism wζ of Xµ(N)/R; cf. [G, Section 6].
It sends an S-valued point (E, α) of Yµ(N)/R to (E′, α′), where E′ = E/α(µµµN ) and
α′ sends ζ to the image to E′ of an N -division point t of E satisfying eN (α(ζ), t) =
ζ. For a cusp form f over R as in Definition 1.1.7, we set

ωf |wζ
= ωf |wζ := w∗ζ (ωf ). (1.2.6)

We denote by the same symbol wζ the endomorphism of Jµ(N)/Q(ζ) = Jµ(N)⊗Q
Q(ζ) induced (covariantly) by wζ . It is in fact defined over Q(ζ)+, the maximal
real subfield of Q(ζ). We have the following relations in End(Jµ(N)/Q(ζ)+)
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{
w−1

ζ ◦ 〈a〉 ◦ wζ = 〈a−1〉 for a ∈ G,

w−1
ζ ◦ T (l) ◦ wζ = T (l) ◦ 〈l〉−1 for l 6= N.

(1.2.7)

Finally, we recall the effect of the above operators on cusps. In Shimura’s
notation, the set of cusps C/Q(Q) is identified with the set of equivalence classes

{[
x
y

] ∣∣∣∣ x, y ∈ Z/NZ, x 6= 0 or y 6= 0
}

/∼

where
[ x

y

] ∼ [
x′
y′

]
if and only if

[
x′
y′

]
= ±[

x+cy
y

]
with some c ∈ Z/NZ. We use

the same symbol
[ x

y

]
to denote its equivalence class. Then we have





C∞/Q(Q) =
{[

x
0

] ∣∣∣∣ x ∈ G

}
,

C0/Q(Q) =
{[

0
y

] ∣∣∣∣ y ∈ G

} (1.2.8)

and each set consists of (N − 1)/2 elements. The action of wζ , 〈a〉 and T (l),
considered as correspondences on Xµ(N)/Q, on cusps is given as follows (cf. Wiles
[Wi, Section 2]):





wζ :
[
x
0

]
↔

[
0
x

]
when ζ = e2πi/N ,

〈a〉 :





[
x
0

]
7→

[
a−1x

0

]

[
0
y

]
7→

[
0
ay

] for a ∈ G,

T (l) :





[
x
0

]
7→ l

[
x
0

]
+

[
l−1x

0

]
= (l + 〈l〉)

[
x
0

]

[
0
y

]
7→ l

[
0
ly

]
+

[
0
y

]
= (l〈l〉+ 1)

[
0
y

] for l 6= N,

T (N) :





[
x
0

]
7→ N

[
x
0

]

[
0
y

]
7→

[
0
y

]
+ 2

∑
z∈G

[
z
0

]
.

(1.2.9)

Especially, G acts on C∞/Q(Q) and C0/Q(Q) simply transitively.
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1.3. Duality between modular forms and Hecke algebras.
In each Hecke algebra in Definition 1.2.5, we can define the operator T (n) for

every positive integer n by the usual formulas, and it is well-known that all T (n)
generate that Hecke algebra over R (cf. e.g. [DI, Proposition 3.5.1]). If a modular
form f has the q-expansion

f(q) =
∞∑

n=0

a(n; f)qn

then we have

a(1; f | T (n)) = a(n; f). (1.3.1)

It is also well-known that the pairing

S2(Γ1(N);Z)× h2(Γ1(N);Z)
( , )−→ Z defined by (f, t) := a(1; f | t) (1.3.2)

gives a perfect duality between free Z-modules of finite rank (cf. e.g. [DI, Propo-
sition 12.4.13]).

Proposition 1.3.3. The pairing

M∞
2 (Γ1(N);Z[1/N ])×H∞

2 (Γ1(N);Z[1/N ])
( , )−→ Z[1/N ]

defined by the same formula (f, t) := a(1; f |t) sets up a perfect duality between free
Z[1/N ]-modules of finite rank.

For the proof, we need the following

Lemma 1.3.4. (1) ([Ma, II, Lemma 5.9], [Kam1, Lemma 5.2]) Let R be a
Z[1/N ]-algebra. If the q-expansion of an element f ∈ M2(Γ1(N);R) is a power
series in qN : f(q) = ξ(qN ) with ξ(q) ∈ R[[q]], then ξ(q) is the q-expansion of
a modular form g of level 1 and weight 2 over R in the sense of Katz [Kat1].

(2) Let k be a field of characteristic p 6= N . If the q-expansion of f ∈
M∞

2 (Γ1(N); k) is a power series in qN , then f = 0.

Proof. We first review the proof of (1) for later use. We may assume
that R is a Z[1/N, ζ]-algebra. The general case then follows from the q-expansion
principle (for modular forms of level 1; [Kat1, Corollary 1.9.1]). We can thus fix
an isomorphism µµµN

∼= Z/NZ over R by ζ ↔ 1mod N .
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Let Y (N)/R be the moduli scheme classifying the pairs (E, φ) where E is an
elliptic curve over an R-scheme S and φ is a (“naive”) level N structure

φ : Z/NZ× Z/NZ ∼→ E[N ] (= the kernel of multiplication by N)

of determinant ζ over S. Let M(R, N, 2) be the space of modular forms (not
necessarily holomorphic at cusps) associated with this moduli problem, i.e. its
element is a rule that assigns to each pair as above a section of ω⊗2

E/S over S

compatibly with cartesian squares (cf. [Kat1, 1.2]). We let γ ∈ SL2(Z/NZ) act
on Z/NZ×Z/NZ by (m,n) 7→ (m,n)tγ, and for F ∈ M(R, N, 2) set γF (E, φ) :=
F (E, φ ◦ tγ). This defines a left action of SL2(Z/NZ) on M(R, N, 2).

We also consider an element of M2(Γ1(N);R) as a similar rule as above,
replacing (E, φ) by (E, α) as in (1.1.1). For (E, φ) as above, let αφ : µµµN ↪→ E[N ]
be the composite of µµµN

∼= Z/NZ ↪→ Z/NZ×Z/NZ, the right mapping being given
by m 7→ (m, 0), and φ. We have a natural injection M2(Γ1(N);R) ↪→ M(R, N, 2)
by setting h(E, φ) := h(E, αφ) for h ∈ M2(Γ1(N);R), whose image is invariant
under the subgroup

{[
1 ∗
0 1

]}
of SL2(Z/NZ).

Let Tate(q) = “Gm/qZ” be the Tate curve over R((q1/N )). It carries a canon-
ical level N structure

φcan : Z/NZ× Z/NZ ∼= µµµN × Z/NZ ∼→ Tate(q)[N ]

which has determinant ζ, and a canonical invariant differential ωcan (cf. [DR,
VII, 1.16], [Kat2, 2.2]). We recall that the q-expansion F (q) ∈ R((q1/N )) of
F ∈ M(R, N, 2) (at ∞) is given by F (Tate(q), φcan) = F (q)ω⊗2

can.
For h ∈ M2(Γ1(N);R), we define wζh by wζh(E, α) := ϕ∗h(E′, α′), where

wζ(E, α) = (E′, α′) and ϕ : E → E′ is the quotient morphism. We have wζh =
Nh|wζ by [G, (6.8)], and wζ(wζh) = N2h. We claim that

([
0 1
−1 0

]
wζh

)
(q) = h(q1/N )

the right hand side being the power series obtained by substituting q1/N for q in
h(q) ∈ R[[q]]. Indeed, we have

([
0 1
−1 0

]
wζh

)
(q)ω⊗2

can = wζh

(
Tate(q), φcan ◦

[
0 −1
1 0

])
= wζh(Tate(q), α′′).

Here, α′′ : µµµN ↪→ Tate(q) sends ζ to φcan(0,−1). We then see that wζ(Tate(q),
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α′′) = (Tate(q1/N ), α′′′) with α′′′ : µµµN ↪→ Tate(q1/N ) the natural inclusion corre-
sponding to µµµN ↪→ Gm (cf. [Kat2, 2.3.3]). Our claim follows from this.

Now consider f ∈ M2(Γ1(N);R) in the proposition. Our hypothesis and
the above relation show that

([
0 1
−1 0

]
wζf

)
(q) is a power series in q. It follows

that
[

1 ∗
0 1

][
0 1
−1 0

]
wζf has the same q-expansion as

[
0 1
−1 0

]
wζf (cf. [DR, VII,

(3.8.1)]). This implies that
[

0 1
−1 0

]
wζf is invariant under the subgroup

{[
1 ∗
0 1

]}
of SL2(Z/NZ) by the q-expansion principle (cf. [Kat1, Theorem 1.6.1]; note that
our Y (N)/Z[1/N,ζ] is connected). Consequently, wζf is invariant under the sub-
group

{[
1 0
∗ 1

]}
. Since wζf is a priori invariant under

{[
1 ∗
0 1

]}
, it is invariant under

the whole group SL2(Z/NZ). Therefore there is a modular form g of level 1 and
weight 2 over R (necessarily holomorphic at the cusp) such that wζf = g, i.e.

f = N−2wζg = N−1g | wζ .

It is easy to check that this g has the q-expansion ξ(q).
We next prove (2). We may assume that k is an algebra over Z[1/N, ζ]. Let

g be the modular form as in (1) for f , and assume that g 6= 0. By [Ma, II,
Proposition (4.10)] g is not a cusp form. ([Ma, II, Proposition (5.6)] actually
implies that p = 2 or 3, and the q-expansion of g is a nonzero constant.) It follows
from the relation above that f does not vanish at (0-)cusps, and hence cannot
belong to M∞

2 (Γ1(N); k). ¤

Proof of Proposition 1.3.3. Standard argument shows that the pairing

M∞
2 (Γ1(N);Q)×H∞

2 (Γ1(N);Q)
( , )−→ Q

is perfect, and that the mapping

M∞
2 (Γ1(N);Z[1/N ]) → HomZ[1/N ](H∞

2 (Γ1(N);Z[1/N ]),Z[1/N ])

induced from the pairing is injective. We want to show that this is surjective.
Let ϕ be an element of the right hand side. By the first remark, there is an

f ∈ M∞
2 (Γ1(N);Q) such that

ϕ(t) = (f, t) for all t ∈ H∞
2 (Γ1(N);Z[1/N ]).

By (1.3.1), we have a(n; f) ∈ Z[1/N ] for all n ≥ 1. If f does not belong to
M∞

2 (Γ1(N);Z[1/N ]), there is a prime number p 6= N and a positive integer c

such that the q-expansion of pcf reduced modulo p is a nonzero constant. This
contradicts the previous lemma. ¤
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We now list some consequences of the duality given in Proposition 1.3.3.

Corollary 1.3.5. For any Z[1/N ]-algebra R, the canonical homomorphism

H∞
2 (Γ1(N);Z[1/N ])⊗Z[1/N ] R → H∞

2 (Γ1(N);R)

is an isomorphism.

Proof. Since H∞
2 (Γ1(N);Z[1/N ])⊗Z[1/N ] R acts on

M∞
2 (Γ1(N);Z[1/N ])⊗Z[1/N ] R ∼=

(1.1.8)
M∞

2 (Γ1(N);R)

we have the above homomorphism, which is clearly surjective. But the pairing in
Proposition 1.3.3 tensored with R remains perfect, and hence the above action is
faithful, which shows the injectivity of the homomorphism. ¤

Corollary 1.3.6. For any Z[1/N ]-algebra R, the pairing

M∞
2 (Γ1(N);R)×H∞

2 (Γ1(N);R)
( , )−→ R

defined by the formula (f, t) := a(1; f |t) is perfect.

Proof. This follows from Proposition 1.1.8, Proposition 1.3.3 and Corol-
lary 1.3.5. ¤

Corollary 1.3.7. For any Z[1/N ]-algebra R, H∞
2 (Γ1(N);R) is generated

over R by all T (n) with n not divisible by N .

Proof. Denote by H
∞(N)
2 (Γ1(N);R) the R-subalgebra generated by T (n)

with N - n.
It is enough to prove our assertion when R = Z[1/N ]. If the assertion is false

in this case, there is a prime number p 6= N such that

H
∞(N)
2 (Γ1(N);Z/pZ) ( H∞

2 (Γ1(N);Z/pZ)

by Corollary 1.3.5. Then there is a non-zero f ∈ M∞
2 (Γ1(N);Z/pZ) which anni-

hilates H
∞(N)
2 (Γ1(N);Z/pZ) under the pairing in Corollary 1.3.6 for R = Z/pZ.

By (1.3.1), the q-expansion of f is a power series in qN . This contradicts Lemma
1.3.4. ¤

Remark 1.3.8. The same argument as above shows that the assertions in
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Corollaries 1.3.5 through 1.3.7 also hold for cusp forms and the associated Hecke
algebras. Precisely, we have

(1) h2(Γ1(N);Z)⊗Z R → h2(Γ1(N);R) is an isomorphism, and

(2) S2(Γ1(N);R)× h2(Γ1(N);R)
( , )−→ R is perfect for any ring R; and

(3) h2(Γ1(N);R) is generated over R by T (n) with N - n for any Z[1/N ]-algebra
R. (But we do not know whether this assertion remains true for general R or
not.)

We also remark that the pairing in Corollary 1.3.6 is not perfect unless we
assume that N is invertible in R.

Finally, we add the following

Proposition 1.3.9. The involution of End(Jµ(N)/Q(ζ)+) defined by t 7→
w−1

ζ ◦ t ◦ wζ induces an involution of h2(Γ1(N);R) for any Z[1/N ]-algebra R.

Proof. This follows from the third assertion above and the formula (1.2.7).
¤

2. Eisenstein ideals.

2.1. Eisenstein series and Eisenstein ideals.
As in Section 1, we fix a prime number N ≥ 5, and recall that we have set

G = (Z/NZ)×/{±1}. We denote by Ĝ the character group of G (with values in
Q×), and write 111 for its unit element. We also set

Ĝ0 := Ĝ− {111}. (2.1.1)

As usual, we identify an element χ ∈ Ĝ with an even Dirichlet character defined
modulo N , so that we have χ(n) = 0 for an integer n divisible by N when χ 6= 111.

As is well-known, M2(Γ1(N);C) contains three kinds of Eisenstein series E2,
E2,χ and E′

2,χ which have the following q-expansions:

E2(q) =
N − 1

24
+

∞∑
n=1

( ∑

0<t|n
N -t

t

)
qn, (2.1.2)

E2,χ(q) = −B2,χ

4
+

∞∑
n=1

( ∑

0<t|n
χ(t)t

)
qn for χ ∈ Ĝ0, (2.1.3)

E′
2,χ(q) =

∞∑
n=1

( ∑

0<t|n
χ(

n

t
)t

)
qn for χ ∈ Ĝ0 (2.1.4)
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where B2,χ is the second generalized Bernoulli number, which is explicitly given
by

B2,χ =
1
N

N∑
a=1

χ(a)a2 (2.1.5)

(cf. Washington [Wa, Exercise 4.2]). These N − 2 Eisenstein series are linearly
independent over C, and generate the orthogonal complement of S2(Γ1(N);C)
with respect to the Petersson metric.

It is also well-known that these Eisenstein series are Hecke eigenforms: The
series E2 belongs to M2(Γ0(N);C), while E2,χ and E′

2,χ have the (Nebentypus)
character χ, and





E2 | T (n) =
(∑

0<t|n
N -t

t
)
E2,

E2,χ | T (n) =
( ∑

0<t|n χ(t)t
)
E2,χ,

E′
2,χ | T (n) =

( ∑
0<t|n χ(n

t )t
)
E′

2,χ.

(2.1.6)

E2,χ belongs to M∞
2 (Γ1(N);C), but E2 and E′

2,χ do not (cf. [Oh1, (2.5.5)]
for the explicit calculation of the constant terms of the Fourier expansions of E2,χ

and E′
2,χ at various cusps). Since dimCM∞

2 (Γ1(N);C) − dimC S2(Γ1(N);C) =
#(∞-cusps)− 1 = (N − 3)/2 by the Riemann-Roch theorem, we see that

M∞
2 (Γ1(N);C) = S2(Γ1(N);C)⊕

∑

χ∈ bG0

CE2,χ. (2.1.7)

More generally, when K is a field of characteristic zero, we have the unique
direct sum decomposition as a module over H∞

2 (Γ1(N);K):

M∞
2 (Γ1(N);K) = S2(Γ1(N);K)⊕ Eis∞2 (K) (2.1.8)

where we have set

Eis∞2 (K) := Ker
( ∏

χ∈ bG0

(T (l)− (1 + χ(l)l)) acting on M∞
2 (Γ1(N);K)

)
(2.1.9)

for any prime l ≥ 7 different from N . When K contains all values of χ ∈ Ĝ, we of
course have Eis∞2 (K) =

∑
χ∈ bG0KE2,χ.
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Now set

η(l) := T (l)− (1 + l〈l〉) for each prime number l 6= N, (2.1.10)

τ :=
∑

a∈G

〈a〉 (2.1.11)

in either of H∞
2 (Γ1(N);R) or h2(Γ1(N);R). We denote by the same symbol τ the

element
∑

a∈G a of R[G].

Definition 2.1.12. For any ring R, we denote by I∞,R (resp. I∞,R) the
ideal of H∞

2 (Γ1(N);R) (resp. h2(Γ1(N);R)) generated by all η(l) (with prime
numbers l 6= N), T (N)− 1 and τ . I∞,R (resp. I∞,R) is called the Eisenstein ideal
of H∞

2 (Γ1(N);R) (resp. h2(Γ1(N);R) relative to the inclusion S2(Γ1(N);R) ⊆
M∞

2 (Γ1(N);R)).

I∞,R is thus the image of I∞,R under the canonical surjective homomorphism
H∞

2 (Γ1(N);R) ³ h2(Γ1(N);R). The following proposition may justify the above
terminology.

Proposition 2.1.13. Let R be an integral domain of characteristic zero,
and K its quotient field. Then I∞,R is the annihilator ideal of Eis∞2 (K) in
H∞

2 (Γ1(N);R), and H∞
2 (Γ1(N);R)/I∞,R is isomorphic to R[G]/(τ) as an R[G]-

algebra.

Proof. Let K ′ be an extension of K containing all values of χ ∈ Ĝ. Then
the R-algebra homomorphism

R[G]/(τ) → ⊕χ∈ bG0K
′ (direct sum indexed by χ ∈ Ĝ0)

sending a ∈ G to (χ(a))χ∈ bG0 is injective, and we may identify R[G]/(τ) with its
image.

The action of H∞
2 (Γ1(N);R) on ⊕χ∈ bG0K

′E2,χ gives a homomorphism of
H∞

2 (Γ1(N);R) to ⊕χ∈ bG0K
′ whose kernel J is the annihilator ideal of Eis∞2 (K).

By (2.1.6), this homomorphism factors through R[G]/(τ), and J contains I∞,R.
On the other hand, by the definition of I∞,R, there is a canonical surjective

homomorphism R[G]/(τ) → H∞
2 (Γ1(N);R)/I∞,R. We thus have a sequence of

R[G]-algebra homomorphisms

R[G]/(τ) ³ H∞
2 (Γ1(N);R)/I∞,R ³ H∞

2 (Γ1(N);R)/J ³ R[G]/(τ)

whose composite is the identity. Our conclusion follows from this. ¤
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It follows that I∞,R is always a proper ideal of H∞
2 (Γ1(N);R), but we remark

that I∞,R is not necessarily a proper ideal of h2(Γ1(N);R).

Corollary 2.1.14. Let R be a Z[1/N ]-algebra. Then the ideal I∞,R of
H∞

2 (Γ1(N);R) is generated by all η(l) and τ (i.e. without T (N)− 1), and conse-
quently the same holds for I∞,R.

Proof. In Corollary 1.3.7, we have shown that H∞
2 (Γ1(N);R) coincides

with its R-subalgebra H
∞(N)
2 (Γ1(N);R) generated by T (n) with N - n. Let I(N)

∞,R

be the ideal generated by all η(l) and τ . We again obtain a sequence of R[G]-
algebra homomorphisms whose composite is the identity

R[G]/(τ) ³ H
∞(N)
2 (Γ1(N);R)/I(N)

∞,R ³ H∞
2 (Γ1(N);R)/I∞,R

∼→ R[G]/(τ).

We thus conclude that I(N)
∞,R = I∞,R. ¤

The purpose of the rest of this section is to compute the (finite) index
|h2(Γ1(N);Zp) : I∞,Zp

| for prime numbers p 6= 2, N ; cf. Theorem 2.4.2 below.
To do this, we need the following two preliminary subsections.

2.2. Residue mapping for M∞
2 (Γ1(N);R).

Recall that C∞/R ⊂ Xµ(N)/R is a disjoint sum of (N−1)/2 copies of Spec(R)
for any Z[1/N ]-algebra R, and that C∞/Q(Q) consists of (N − 1)/2 elements

[
a
0

]
(a ∈ G), in the notation of 1.1 and 1.2.

Definition 2.2.1. We write [a]∞ for
[

a
0

]
. For any ring R, we denote by

R[C∞] the free R-module on the set {[a]∞ | a ∈ G}. Its degree zero part R[C∞]0

is defined as the kernel of the homomorphism R[C∞] → R sending
∑

a∈G ca[a]∞
to

∑
a∈G ca. We consider R[C∞] and R[C∞]0 as modules over R[G] by the second

formula in (1.2.9): G 3 a sends [b]∞ to 〈a〉[b]∞ = [a−1b]∞.

For f ∈ M∞
2 (Γ1(N);Q), denote by Res[a]∞ωf ∈ Q the residue of the corre-

sponding differential at [a]∞. It is clear from the definition (1.2.4) that

Res〈a〉[b]∞ωf = Res[b]∞ωf |〈a〉. (2.2.2)

Consider the mapping

Res : M∞
2 (Γ1(N);Q) → Q[C∞]0 defined by f 7→

∑

a∈G

Res[a]∞ωf · [a]∞. (2.2.3)
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Then comparing the dimensions, we have an exact sequence

0 → S2(Γ1(N);Q) → M∞
2 (Γ1(N);Q) Res−→ Q[C∞]0 → 0. (2.2.4)

If f ∈ M∞
2 (Γ1(N);Q) has the q-expansion f(q) =

∑∞
n=0 a(n; f)qn, then

Res[1]∞ωf = a(0; f). It follows from (2.2.2) that we have

Res(f) =
∑

a∈G

a(0; f | 〈a−1〉)[a]∞. (2.2.5)

Proposition 2.2.6. The exact sequence (2.2.4) induces the following exact
sequence

0 → S2(Γ1(N);Z[1/N ]) → M∞
2 (Γ1(N);Z[1/N ]) Res−→ Z[1/N ][C∞]0 → 0.

Proof. It is clear from the description (2.2.5) that Res(f) ∈ Z[1/N ][C∞]0

whenever f ∈ M∞
2 (Γ1(N);Z[1/N ]), and we obtain the exact sequence

0 → S2(Γ1(N);Z[1/N ]) → M∞
2 (Γ1(N);Z[1/N ]) Res−→ Z[1/N ][C∞]0.

Let p be a prime number different from N . By tensoring Z/pZ over Z[1/N ],
the above sequence yields the sequence

0 → S2(Γ1(N);Z/pZ) → M∞
2 (Γ1(N);Z/pZ) Res−→ Z/pZ[C∞]0

by Proposition 1.1.8. Here, the mapping Res is given by the formula (2.2.5). We
then see that this sequence is exact, and hence, again comparing the dimensions,
Res above is surjective.

Consequently, we have

Coker
(
M∞

2 (Γ1(N);Z[1/N ]) Res−→ Z[1/N ][C∞]0
)⊗Z[1/N ] Z/pZ = {0}

for all primes p 6= N , which completes the proof. ¤

Corollary 2.2.7. We have the exact sequence

0 → S2(Γ1(N);R) → M∞
2 (Γ1(N);R) Res−→ R[C∞]0 → 0

for any Z[1/N ]-algebra R, where the mapping Res is given by the formula (2.2.5).
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Proof. This follows from the proposition above and Proposition 1.1.8. ¤

In our computation of the congruence module in 2.4 below, we will also need
the following fact.

Proposition 2.2.8. Let K be a field of characteristic zero containing the
values of χ ∈ Ĝ0, and consider E2,χ as an element of M∞

2 (Γ1(N);K). Then we
have

Res(E2,χ) =
∑

a∈G

χ(a)(−B2,χ/4)[a−1]∞ ∈ K[C∞].

Proof. By (2.1.3), we have Res[1]∞ωE2,χ = a(0;E2,χ) = −B2,χ/4. Since
E2,χ|〈a〉 = χ(a)E2,χ, our conclusion follows from (2.2.5). ¤

2.3. Congruence modules and duality.
We first recall the notion of congruence modules (cf. [Oh1, 1.1]). Let R be an

integral domain and K its quotient field. Suppose we are given an exact sequence
of flat R-modules together with its splitting over K:





0 → A
i→ B

π→ C → 0 (exact),

0 ← A⊗R K
t← B ⊗R K

s← C ⊗R K ← 0 (exact).
(2.3.1)

Namely, if we denote by iK (resp. πK) the base extension of i (resp. π) to K, t◦ iK
and πK ◦ s are the identity mappings. We then have the following commutative
square of canonical isomorphisms

B/(i(A) + B ∩ s(C)) π
∼ //

t o
²²

C/π(B ∩ s(C))

o
²²

t(B)/A ∼ // (t(B)⊕ C)/B.

(2.3.2)

We identify these four modules, and call any one of them the congruence module
attached to the situation (2.3.1). The formation of congruence modules commutes
with flat base extensions of integral domains.

Now assume that A, B and C are free R-modules of finite rank. Indicating
by “∨” the R- or K-dual, we obtain from (2.3.1) the following exact sequence with
its splitting over K:
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



0 → C∨ π∨−→ B∨ i∨−→ A∨ → 0 (exact),

0 ← C∨ ⊗R K
s∨←− B∨ ⊗R K

t∨←− A∨ ⊗R K ← 0 (exact).
(2.3.3)

Proposition 2.3.4. Let the notation and the assumption be as above, and
denote by C (resp. C∨) the congruence module attached to (2.3.1) (resp. (2.3.3)).
If R is a principal ideal domain, then C and C∨ are isomorphic.

Proof. There is a nonzero element c ∈ R such that cs sends C to B. By
the theory of elementary divisors, there are bases {f1, . . . , fk} and {e1, . . . , en} of
C and B such that (cs)(fi) = aiei (1 ≤ i ≤ k) with ai ∈ R.

Thus, from the beginning, we may assume that A = Rm, B = Rn, C = Rk

(the set of column vectors), and that s is given by the n× k matrix

S =




α1 0
. . .

αk

0




, (αi ∈ K,αi 6= 0).

If P is the k × n matrix giving π : Rn ³ Rk, then since πK ◦ s is the identity, we
see that P is of the form:

P =




p1 0
. . . *

0 pk


 , (pi ∈ R)

with αipi = 1, i.e. αi = 1/pi.
We therefore see that

π(Rn ∩ s(Rk)) =








p1x1

...
pkxk




∣∣∣∣∣ x1, . . . , xk ∈ R





and hence

C = Rk/π(Rn ∩ s(Rk)) ∼= ⊕k
i=1R/(pi).

On the other hand, we may identify Rr∨ (resp. Kr∨) with Rr (resp. Kr) via
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the standard inner product. Then s∨ : Kn → Kk is given by the transposed
matrix tS. Thus we have

C∨ = s∨(Rn)/Rk ∼= ⊕k
i=1

1
pi

R/R. ¤

We now apply the above consideration to the setting of the previous subsec-
tion. Let o be the ring of integers of a finite extension of Qp with p 6= N , and F

its quotient field. We have the exact sequence obtained in Corollary 2.2.7:

0 → S2(Γ1(N); o) i→ M∞
2 (Γ1(N); o) π→ o[C∞]0 → 0 (2.3.5)

where π = Res. Recall that M∞
2 (Γ1(N);F ) is a direct sum of S2(Γ1(N);F ) and

Eis∞2 (F ) by (2.1.8). The mapping π = Res induces an isomorphism Eis∞2 (F )
∼→ F [C∞]0, and we take s : F [C∞]0 → M∞

2 (Γ1(N);F ) to be the inverse of this
isomorphism. Also, let t : M∞

2 (Γ1(N);F ) → S2(Γ1(N);F ) be the projection with
respect to the above direct sum decomposition. These s and t give a splitting of
the exact sequence

0 → S2(Γ1(N);F ) iF−→ M∞
2 (Γ1(N);F ) πF−→ F [C∞]0 → 0

which is the unique splitting as H∞
2 (Γ1(N);F )-modules provided that we endow

F [C∞]0 with the quotient module structure of M∞
2 (Γ1(N);F ) (which is different

from the action described in (1.2.9)).
Let Cmod

o be the associated congruence module.

Proposition 2.3.6. Let the notation be as above. Then we have an isomor-
phism of o-modules

h2(Γ1(N); o)/I∞,o
∼= Cmod

o .

Proof. We show that the congruence module attached to the situation
dual to the above is isomorphic to h2(Γ1(N); o)/I∞,o. Our conclusion then follows
from the previous proposition.

We obtain from the duality in Corollary 1.3.6 (cf. also Remark 1.3.8) the
following isomorpisms

{
M∞

2 (Γ1(N); o)∨ ∼= H∞
2 (Γ1(N); o),

S2(Γ1(N); o)∨ ∼= h2(Γ1(N); o).
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Identifying the both sides of these isomorphisms, we see that

i∨ : H∞
2 (Γ1(N); o) → h2(Γ1(N); o)

is the canonical homomorphism sending T (n) to T (n).
On the other hand, we see that

H∞
2 (Γ1(N); o) ∩ t∨(h2(Γ1(N); o)) = H∞

2 (Γ1(N); o) ∩ t∨(h2(Γ1(N);F )) =: X

(cf. [Oh1, (1.1.5)]), and T ∈ H∞
2 (Γ1(N); o) belongs to X if and only if (f, T ) =

a(1; f |T ) = 0 for all f ∈ Eis∞2 (F ). This latter condition is equivalent to that
a(1; f |T (n)T ) = a(n; f |T ) = 0 for all f ∈ Eis∞2 (F ) and arbitrary n ≥ 1. Conse-
quently, X is the annihilator ideal of Eis∞2 (F ) in H∞

2 (Γ1(N); o), that is, X = I∞,o

by Proposition 2.1.13.
Combining these, we conclude that the congruence module in question is

isomorphic to h2(Γ1(N); o)/i∨(I∞,o) = h2(Γ1(N); o)/I∞,o. ¤

2.4. Index of the Eisenstein ideal.
Recall that we put

c(N) := N
∏

χ∈ bG0

B2,χ

4
(∈ Z) (2.4.1)

in the introduction, and note that this is the product of the constant terms of
E2,χ(q) (χ ∈ Ĝ0) multiplied by N , up to sign. The following theorem is the main
result of this section.

Theorem 2.4.2. Let p be a prime number different from 2 and N , and o

the ring of integers of a finite extension F of Qp. Then, under the terminology of
the previous subsection, we have

|h2(Γ1(N); o) : I∞,o| = |Cmod
o | = |o : c(N)o|.

Since the formation of congruence modules commutes with flat extensions of
base domains, we may assume that o is sufficiently large, to prove the theorem.
We thus assume that o contains the values of all χ ∈ Ĝ0, and proceed to compute
|Cmod

o |.
Now we look at the exact sequence (2.3.5), whose canonical splitting over F

is given by s and t described in the previous subsection. Consider the following
o-lattices in Eis∞2 (F )
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



L1 := M∞
2 (Γ1(N); o) ∩ s(o[C∞]0) = M∞

2 (Γ1(N); o) ∩ s(F [C∞]0)

= M∞
2 (Γ1(N); o) ∩ Eis∞2 (F ),

L2 :=
∑

χ∈ bG0 oE2,χ.

(2.4.3)

Here, each E2,χ belongs to M∞
2 (Γ1(N); o) by (2.1.3) and (2.1.5), and hence we

have L1 ⊇ L2. We are going to compute the indices |L1 : L2| = |π(L1) : π(L2)|
and |o[C∞]0 : π(L2)|. To do this, we set

r :=
N − 3

2
(2.4.4)

and fix a generator g (resp. χ0) of the cyclic group G (resp. Ĝ) so that

{
G = {1, g, . . . , gr},
Ĝ = {1, χ0, . . . , χ

r
0}.

(2.4.5)

Lemma 2.4.6. Under the same assumption as in Theorem 2.4.2, let F r →
Eis∞2 (F ) be the isomorphism defined by




x1

...
xr


 7→

r∑

i=1

xiE2,χi
0
.

Then the inverse image of L1 under this mapping is

L′1 =








x1

...
xr


 ∈ F r

∣∣∣
r∑

i=1

xiχ
i
0(a) ∈ o for all a ∈ G





.

Proof. An element
[ x1...

xr

]
∈ F r is mapped to L1 if and only if

( i )
∑r

i=1 xi(B2,χi
0
/4) ∈ o, and

( ii )
∑r

i=1 xi(
∑

0<t|n χi
0(t)t) ∈ o for all n ≥ 1.

Subtracting the relation (ii) for n = N from that for n = l, a prime different from
N and p, we obtain

∑r
i=1 xiχ

i
0(l) ∈ o. By this and the well-known theorem of

Dirichlet, we see that the condition (ii) implies the condition
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(iii)
∑r

i=1 xiχ
i
0(a) ∈ o for all a ∈ G

in our statement.
Conversely, if we assume (iii), we have

r∑

i=1

xi

( ∑

0<t|n
χi

0(t)t
)

=
∑

0<t|n

( r∑

i=1

xiχ
i
0(t)

)
t ∈ o

and thus (ii) follows from (iii). Similar argument, using (2.1.5), shows that (iii)
also implies (i), since p 6= 2. ¤

Under the notation (2.4.5), set ξ = χ0(g) and let

A := [χj
0(g

i)]1≤i≤r
1≤j≤r

= [ξij ]1≤i≤r
1≤j≤r

(2.4.7)

be the r×r symmetric matrix whose (i, j)-th entry is ξij . It is clear that det A 6= 0.

Lemma 2.4.8. Under the same notation as above, we have

|L1 : L2| = |π(L1) : π(L2)| = |o : det A · o|.

Proof. Since π gives an isomorphism Eis∞2 (F ) ∼→ F [C∞]0, the first equal-
ity is obvious.

On the other hand, we have |L1 : L2| = |L′1 : or|. Since
∑

a∈G χi
0(a) = 0

for 1 ≤ i ≤ r, we see that the condition (iii) above holds if we require the same
condition only for a 6= 1. Thus the previous lemma shows that L′1 = A−1or, from
which our conclusion follows. ¤

We next turn to the computation of |o[C∞]0 : π(L2)|.

Lemma 2.4.9. Let the notation be as above. We have

|o[C∞]0 : π(L2)| = |o : c(N) det A · o|.

Proof. We can take

{[g−i]∞ − [1]∞ | 1 ≤ i ≤ r}

as an o-basis of o[C∞]0.
By Proposition 2.2.8, we have
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π(E2,χi
0
) =

(−B2,χi
0
/4

) ∑

a∈G

χi
0(a)([a−1]∞ − [1]∞)

for 1 ≤ i ≤ r. Therefore, if we denote by B the r × r diagonal matrix whose i-th
diagonal entry is −B2,χi

0
/4, we see that

(
π(E2,χ0), . . . , π(E2,χr

0
)
)

=
(
[g−1]∞ − [1]∞, . . . , [g−r]∞ − [1]∞

)
AB

which shows that |o[C∞]0 : π(L2)| = |o : det(AB) · o|. Since p 6= N , our claim
follows. ¤

We can now complete the proof of Theorem 2.4.2. By the definition (2.3.2)
of the congruence module, we have Cmod

o = o[C∞]0/π(L1). Therefore we have

|Cmod
o | = |o[C∞]0 : π(L2)|

|π(L1) : π(L2)| =
|o : c(N) det A · o|
|o : det A · o| = |o : c(N)o|

by the previous two lemmas.

3. Rational torsion subgroups of modular Jacobians.

3.1. Annihilators of J1(N)(Q)tors.
So far we worked with Xµ(N)/R. We now turn our attention to another model

of the modular curve attached to Γ1(N). (We will come back to Xµ(N)/R and
Jµ(N) in the final subsection 3.4.)

As before, we fix a prime number N ≥ 5. Let R be a Z[1/N ]-algebra. In the
following, we denote by X1(N)/R the moduli scheme classifying the pairs (E, β)
as in (1.1.1), replacing α there by β : Z/NZ ↪→ Ereg. One can define the diamond
operators 〈a〉 and the Hecke correspondences on X1(N)/R exactly in the same
manner as in 1.2, again replacing α by β. Over the ring Z[1/N, ζN ], there is an
isomorphism of group schemes µµµN

∼= Z/NZ, and if we fix such an isomorphism, it
gives an isomorphism Xµ(N)/R

∼= X1(N)/R for each Z[1/N, ζN ]-algebra R. The
diamond operators and the Hecke correspondences on both sides may be identified
through this isomorphism.

Let J1(N)/Q = J1(N) be the Jacobian variety of X1(N)/Q defined over Q.
We denote by J1(N)/A its Néron model over A when A is the ring of integers
of a finite extension of Q or Qp, or a localization of the former. We use similar
notation for the Jacobian J0(N)/Q = J0(N) of X0(N)/Q. It is well-known that
J1(N)/Z[1/N ] and J0(N)/Z[1/N ] are abelian schemes. The diamond operators and
the Hecke correspondences act (covariantly, as before) on J1(N)/Q and hence on
J1(N)/A, for which we use the same symbols 〈a〉 and T (l) as in 1.2. We thus
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obtain an embedding

h2(Γ1(N);Z) ↪→ EndQ(J1(N)) = EndZ(J1(N)/Z). (3.1.1)

The purpose of this subsection is to prove the following

Theorem 3.1.2. Let p be a prime number different from 2 and N . Then
the Eisenstein ideal I∞,Zp

of h2(Γ1(N);Zp) (cf. Definition 2.1.12) annihilates
J1(N)(Q)[p∞].

Here, as before, “[M ]” indicates the kernel of multiplication by M , and “[p∞]”
means the union of the kernels of multiplication by pn for all n ≥ 1, for abelian
groups, commutative group schemes, and p-divisible groups. Also, for any ideal
a of a commutative subring of the endomorphism algebra of such objects, we use
the symbol “[a]” to denote the kernel of a.

We already know that I∞,Zp
is generated by η(l) for prime numbers l 6= N

and τ (cf. (2.1.10) and (2.1.11)), by Corollary 2.1.14. Thus, to prove the theorem
above, it is enough to show that these elements annihilate J1(N)(Q)[p∞]. As for
the first ones, this is a rather well-known fact which we review below. Let Z(l) be
the localization of Z at (l), and Fl = Z/lZ its residue field.

Lemma 3.1.3. Let p be as above. For any prime number l 6= N , η(l) anni-
hilates J1(N)(Q)[p∞].

Proof. The Eichler-Shimura congruence relation asserts that

T (l) = Frobl + 〈l〉Verl

on J1(N)/Fl
= J1(N)/Z(l)

⊗Z(l) Fl, where Frobl (resp. Verl) denotes the Frobenius
endomorphism (resp. the Verschiebung).

On the other hand, the schematic closure of J1(N)(Q)[p∞] (considered as a
finite constant subgroup scheme of J1(N)/Q) in J1(N)/Z(l)

is an (étale) constant
group scheme. This is well-known for l 6= p, and for l = p this follows from
Raynaud [Ra, Théorème 3.3.3] because p > 2.

It then follows that T (l) = 1 + 〈l〉l on J1(N)(Q)[p∞]. ¤

Remark 3.1.4. The same argument shows that η(l) also annihilates
J1(N)(Q)[2∞] for l odd. The only (but serious) obstacle for p = 2 here lies in
our ignorance of the annihilation by η(2) of this group.

In contrast to this, the following argument will show that τ annihilates the
whole J1(N)(Q)tors. Let α : J1(N) → J0(N) and π : J0(N) → J1(N) be the
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natural (i.e. Albanese and Picard) morphisms.

Lemma 3.1.5. α annihilates J1(N)(Q)tors :

J1(N)(Q)tors ⊆ Ker(α)(Q).

Proof. For the proof, we make use of two deep results, one due to Conrad,
Edixhoven and Stein, and the other due to Mazur.

First, the main result (Theorem 1.1.1) of [CES] asserts that J1(N)/Z =
J1(N)0/Z, where the superscript “0” means the “identity component” in the usual
sense. Thus α induces homomorphisms

{
J1(N)/Z → J0(N)0/Z,

J1(N)(Q) = J1(N)/Z(Z) → J0(N)0/Z(Z).

On the other hand, Mazur has constructed a retraction ρ of M := J0(N)(Q)
to the cuspidal group C of J0(N), and also a direct product decomposition

M = M0 × C

where M0 = Ker(ρ) = J0(N)0/Z(Z) ([Ma, II, (11.4)]). Then in the course of the
proof of [Ma, III, Theorem (1.2)], Mazur proved that M0

tors = {0}. ¤

Lemma 3.1.6. Ker(α) ⊆ Ker(τ).

Proof. Set J ′0 := Ker(〈g〉 − 1)0 ⊆ J1(N), where g is a generator of the
group G, and let i : J ′0 → J1(N) be the inclusion morphism. We are going to
construct the following commutative diagram:

J ′0 -i
J1(N) -τ

J ′0

?
α1

J1(N)/Ker(α)0

@
@R
α′′

¡
¡µγ

?
J0(N)

α2

A
A
A
A
A
A
AU ¢

¢
¢
¢
¢
¢
¢̧

α′ β

Here, α1 is the quotient morphism, and α2 is the unique isogeny such that α =
α2 ◦ α1. Since J ′0 is the maximal abelian subvariety of J1(N) on which G acts
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trivially, α′ := α ◦ i and α′′ := α1 ◦ i are isogenies.
It is clear that (〈g〉 − 1) ◦ τ = 0, and hence the endomorphism τ of J1(N)

factors through J ′0
i

↪→ J1(N). Let us denote by the same symbol τ the induced
homomorphism J1(N) → J ′0. Then we see that α′ ◦ τ = ((N − 1)/2) ◦ α. Since α′

is an isogeny, we have

Ker(τ)0 = Ker(α′ ◦ τ)0 = Ker(((N − 1)/2) ◦ α)0 = Ker(α)0.

It follow that τ factors as τ = γ ◦α1 with a homomorphism γ : J1(N)/Ker(α)0 →
J ′0.

We have that α ◦ π = (N − 1)/2, multiplication by the degree of the covering
X1(N)/Q → X0(N)/Q, and that π factors through an isogeny J0(N) → J ′0 ⊆
J1(N). Thus if x ∈ Ker(α′)(Q), there is an element y ∈ J0(N)(Q) such that x =
π(y). Then the relation α′(x) = α′◦π(y) = 0 implies that y ∈ J0(N)[(N−1)/2](Q),
and hence x = π(y) ∈ J ′0[(N −1)/2](Q). Consequently, we have τ(x) = 0, showing
that Ker(α′) ⊆ Ker(τ).

Thus, there is an isogeny β : J0(N) → J ′0 such that β ◦ α′ = τ ◦ i, i.e. β ◦
α2 ◦ α′′ = γ ◦ α′′. Since α′′ is an isogeny, we conclude that β ◦ α2 = γ. Therefore
the above diagram commutes, and we have τ = β ◦ α, from which our assertion
follows. ¤

We have shown that τ annihilates J1(N)(Q)tors. This, together with Lemma
3.1.3, completes the proof of Theorem 3.1.2.

3.2. 0-cuspidal group and the Eisenstein ideal.
As in 3.1, we fix a prime number p different from 2 and N . The Néron model

J1(N)/Zp
is an abelian scheme over Zp, and hence we can consider the associated

p-divisible group over Zp, which we denote by Γ/Zp
. Let Γ/Fp

be its closed fibre.
We have the usual “connected-étale exact sequence”

0 → Γ 0
/Zp

→ Γ/Zp
→ Γ ét

/Zp
→ 0 (3.2.1)

and its canonical splitting over Fp

Γ/Fp
= Γ 0

/Fp
× Γ ét

/Fp
. (3.2.2)

The p-adic Hecke algebra h2(Γ1(N);Zp) and Zp[G] act on these p-divisible groups.
On the other hand, in our model X1(N)/Q, the 0-cusps are rational over Q,

and the classes of divisors of degree zero supported at such cusps form a finite
subgroup of J1(N)(Q). We denote this group by C0. Its order is given by Kubert
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and Lang [KL, Chapter 6, Theorem 3.4], which seems originally due to Klimek:

|C0| = c(N). (3.2.3)

We may consider C0 as a constant subgroup scheme of J1(N), and we denote
by C0/Zp

(resp. C0/Fp
) its schematic closure in J1(N)/Zp

(resp. the closed fibre of
C0/Zp

). It is clear from (1.2.9) that all these group schemes are annihilated by
I∞,Zp

.
Our present aim is to prove the following theorem, which is an analogue of

[Wi, Theorem 7.2].

Theorem 3.2.4. Let the notation and the assumption be as above. Then we
have

C0/Fp
[p∞] = Γ ét

/Fp
[I∞,Zp

].

To prove this theorem, we first note that, by Theorem 2.4.2 and (3.2.3), both
group schemes in the theorem are trivial when p - c(N). We thus assume that
p | c(N), or equivalently, that I∞,Zp is a proper ideal of h2(Γ1(N);Zp), until we
finish the proof.

Then since we have a surjective homomorphism

Zp[G] ³ h2(Γ1(N);Zp)/I∞,Zp

a maximal ideal P of h2(Γ1(N);Zp) containing I∞,Zp
is generated by I∞,Zp

and the
image of a maximal ideal of Zp[G]. The I∞,Zp

-adic completion of h2(Γ1(N);Zp) is
a direct sum of the completions (or equivalently, the localizations) at such maximal
ideals

h2(Γ1(N);Zp)I∞,Zp = ⊕
P: as above

h2(Γ1(N);Zp)P. (3.2.5)

Applying the idempotent 1P of h2(Γ1(N);Zp) corresponding to its direct fac-
tor h2(Γ1(N);Zp)P, we obtain the “P-divisible group” ΓP/Zp

:= 1P · Γ/Zp
, its

connected part Γ 0
P/Zp

, the étale quotient Γ ét
P/Zp

over Zp, and their closed fibers
ΓP/Fp

, Γ 0
P/Fp

and Γ ét
P/Fp

. (3.2.1) and (3.2.2) hold with “Γ” replaced by “ΓP”.
The algebra h2(Γ1(N);Zp)P acts on these P-divisible groups.

We now follow the argument of Mazur and Wiles [MW1, pp. 308–309] to
prove Theorem 3.2.4. For this, we first have the following

Lemma 3.2.6. Put κ(P) := h2(Γ1(N);Zp)/P. Then the dimension of the
κ(P)-vector space Γ ét

P/Fp
(Fp)[P] is at most one.
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Proof. We have the well-known isomorphism of Cartier and Serre ([Se,
Proposition 10])

J1(N)/Fp
[p](Fp)

∼→ H0
(
X1(N)/Fp

,Ω1
/Fp

)C

where C is the Cartier operator. This gives

J1(N)/Fp
[p](Fp)⊗Fp

Fp
∼→ H0

(
X1(N)/Fp

,Ω1
/Fp

)C
⊗Fp

Fp

↪→ H0
(
X1(N)/Fp

,Ω1
/Fp

)
= S2

(
Γ1(N);Fp

)

(cf. [Ma, II, Proposition (14.7)]; we have fixed an isomorphism Z/NZ ∼= µµµN at the
last equality). The (covariant) action of t ∈ h2(Γ1(N);Zp) on the left commutes
with the covariant action of t, which coincides with the contravariant action (1.2.4)
of w−1

ζ ◦ t ◦ wζ on the right (cf. [Wi, Section 6]).
Thus, further composing this with the automorphism wζ of S2(Γ1(N);Fp),

we obtain an injective h2(Γ1(N);Zp)-module homomorphism, which in turn gives
an injection

Γ ét
P/Fp

(Fp)[P]⊗Fp
Fp = J1(N)/Fp

(Fp)[P]⊗Fp
Fp ↪→ S2

(
Γ1(N);Fp

)
[P]

of κ(P)⊗Fp
Fp-modules. It is therefore enough to show that the last space, namely

S2(Γ1(N);Fp)[P]⊗Fp
Fp is a free module of rank one over κ(P)⊗Fp

Fp.
But from the duality in Remark 1.3.8, (2) for R = Fp, we obtain a perfect

pairing

S2(Γ1(N);Fp)[P]× h2(Γ1(N);Fp)/P → Fp.

We conclude that S2(Γ1(N);Fp)[P] is isomorphic to HomFp
(κ(P),Fp) as a vector

space over κ(P) which is clearly of dimension one, and our claim follows. ¤

Proof of Theorem 3.2.4. By Raynaud’s theorem, C0/Zp
[p∞] and

C0/Fp
[p∞] are constant group schemes, and hence the latter is contained in

Γ ét
/Fp

[I∞,Zp
]. To prove the theorem, we need to show that the inclusion

C0/Fp
[p∞](Fp) ⊆ Γ ét

/Fp
[I∞,Zp ](Fp)

is an equality. These groups are modules over h2(Γ1(N);Zp)I∞,Zp . According to
the direct sum decomposition (3.2.5), we have the decomposition
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Γ ét
/Fp

[I∞,Zp
](Fp) = ⊕

P
Γ ét

P/Fp
[I∞,Zp

](Fp).

Now let us indicate by “̂” the Pontrjagin dual. Then we have

Γ ét
P/Fp

(Fp)[P]̂ ∼= Γ ét
P/Fp

(Fp)̂/P · Γ ét
P/Fp

(Fp)̂.

By the previous lemma, this is a κ(P)-vector space of dimension at most one.
Nakayama’s lemma implies that (Γ ét

P/Fp
(Fp))̂ is a cyclic module over h2(Γ1(N);

Zp)P. It follows that

Γ ét
P/Fp

(Fp)[I∞,Zp ]̂ ∼= Γ ét
P/Fp

(Fp)̂/I∞,Zp · Γ ét
P/Fp

(Fp)̂

is also a cyclic h2(Γ1(N);Zp)P-module whose order is less than or equal to
|h2(Γ1(N);Zp)P : I∞,Zp

h2(Γ1(N);Zp)P|. Since this holds for all P figuring in
(3.2.5), we conclude that

∣∣Γ ét
/Fp

[I∞,Zp
](Fp)

∣∣ ≤ ∣∣h2(Γ1(N);Zp) : I∞,Zp

∣∣.

This, the main result Theorem 2.4.2 of the previous section, and (3.2.3) show that

∣∣Γ ét
/Fp

[I∞,Zp ](Fp)
∣∣ ≤

∣∣C0/Fp
[p∞](Fp)

∣∣.

This completes the proof of Theorem 3.2.4. ¤

It is now an easy matter to prove Theorem I in the introduction for the
p-primary part of J1(N)(Q)tors (p 6= 2, N). Indeed, the schematic closure of
J1(N)(Q)[p∞] in J1(N)/Zp

is constant, and it is annihilated by I∞,Zp by The-
orem 3.1.2. We therefore have

J1(N)(Q)[p∞] ↪→ Γ ét
/Fp

[I∞,Zp ](Fp) = C0/Fp
[p∞](Fp)

by Theorem 3.2.4, whence the equality

J1(N)(Q)[p∞] = C0[p∞].

We close this subsection with another application of Theorem 2.4.2.

Proposition 3.2.7. I∞,Zp
is the annihilator ideal of C0[p∞] in h2(Γ1(N);

Zp).



Rational torsion subgroups of modular Jacobian varieties 765

Proof. First note that C0 is a cyclic module over h2(Γ1(N);Z). In fact,
the degree zero part of the free abelian group on the set of 0-cusps, of which C0 is
a quotient, is a cyclic module over Z[G] (cf. (1.2.9)).

Thus fixing a generator, we have a surjective homomorphism of h2(Γ1(N);Zp)-
modules

h2(Γ1(N);Zp)/I∞,Zp
³ C0[p∞].

By Theorem 2.4.2 and (3.2.3), this is an isomorphism. ¤

3.3. N-torsion part.
Recall that the natural homomorphisms α : J1(N) → J0(N) and π : J0(N) →

J1(N) satisfy α ◦ π = (N − 1)/2. Set

A/Q = A := J1(N)/π(J0(N)). (3.3.1)

α and the quotient morphism induce a homomorphism λ : J1(N) → J0(N) × A,
and the above relation shows that Ker(λ) ⊆ J1(N)[(N − 1)/2]. Hence there is an
isogeny µ : J0(N) × A → J1(N) such that µ ◦ λ = (N − 1)/2. It follows that λ

induces an isomorphism

J1(N)[N∞] ∼→ J0(N)[N∞]×A[N∞]. (3.3.2)

By [Ma, III, Theorem (1.2)], J0(N)[N∞](Q) = {0}, and we have

J1(N)[N∞](Q) ∼= A[N∞](Q). (3.3.3)

On the other hand, 〈a〉 and T (l) on J1(N) induce endomorphisms of A, which
we denote by the same symbols. We let h2(Γ1(N);Z)A be the subalgebra of
EndQ(A) generated by these endomorphisms and set

h2(Γ1(N);R)A := h2(Γ1(N);Z)A ⊗Z R (3.3.4)

for any ring R. Let IA,R be the image of I∞,R under the natural homomorphism
h2(Γ1(N);R) ³ h2(Γ1(N);R)A. Since the image of τ in h2(Γ1(N);R)A is zero,
IA,R is in fact the “naive Eisenstein ideal”:

IA,R = (η(l) (for primes l 6= N), T (N)− 1) ⊆ h2(Γ1(N);R)A. (3.3.5)

We remark here that the above argument equally applies to prime numbers
not dividing (N − 1)/2, instead of N . In this sense, to treat the rational p-torsion
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subgroup of J1(N), the introduction of τ in the ideal I∞,R was necessary only for
a finite number of, but troublesome, primes p dividing (N − 1)/2.

Now the group Ĝ, if we consider it as the set of Q×N -valued characters, has a
canonical generator ω2, the square of the Teichmüller character taking values in
Z×N . According to the action of ZN [G], we have the direct sum decomposition





h2(Γ1(N);ZN ) = ⊕N−3
i=0 h2(Γ1(N);ZN )(i) ⊇ ⊕N−3

i=0 I
(i)
∞,ZN

,

h2(Γ1(N);ZN )A = ⊕N−3
i=2 h2(Γ1(N);ZN )(i) ⊇ ⊕N−3

i=2 I
(i)
∞,ZN

= IA,ZN

(3.3.6)

(the sum being over even i) of Hecke algebras and their ideals, and also the de-
composition of abelian groups

{
J1(N)[N∞](Q) = ⊕N−3

i=0 J1(N)[N∞](Q)(i),

A[N∞](Q) = ⊕N−3
i=2 A[N∞](Q)(i) = ⊕N−3

i=2 J1(N)[N∞](Q)(i).
(3.3.7)

Here, we used the superscript “(i)” to denote the eigenspace on which G acts via
the character ωi. Thus I

(i)
∞,ZN

is the ideal generated by T (l)−(1+ lωi(l)) for prime
numbers l 6= N , and T (N)− 1 for i 6≡ 0mod (N − 1).

Also, for an N -divisible group on which G = 〈g〉 acts, we use the superscript
“(i)” to mean the kernel of (the action of g)−ωi(g). We clearly have A[N∞](Q)(i) =
A[N∞](i)(Q) etc.

We have already seen that J1(N)[N∞](Q)(0) = {0}, and hence we turn our
attention to J1(N)[N∞](Q)(i) = A[N∞](Q)(i) for i 6≡ 0mod (N − 1).

Let K be the the completion of Q(ζN )+ at its unique prime above N , and o

the ring of integers of K. The Néron model A/o of A over o is an abelian scheme.
Let A/FN

be its closed fibre.

Proposition 3.3.8. For each even integer i 6≡ 0mod (N − 1), I
(i)
∞,ZN

anni-
hilates A[N∞](Q)(i).

Proof. It follows from the Eichler-Shimura congruence relation that T (l)−
(1+ lωi(l)) annihilates A[N∞](Q)(i) for prime numbers l 6= N , for the same reason
as Lemma 3.1.3. So, it remains to show that T (N)− 1 annihilates this group.†

†In [Kam2, Lemma 2.2], it is claimed that there is no element of M2(Γ1(N);FN )(i) (i 6≡
−2mod (N − 1)) whose q-expansion is a non-zero power series in qN , which will imply that

I
(i)
∞,ZN

can be generated without T (N) − 1. However, the proof given there seems incomplete.

(The reduction modulo N of Serre’s N -adic modular forms of weight (2, k+2) ∈ ZN×Z/(N−1)Z
contains many non-zero power series in qN .) We thus prove this assertion and Lemma 3.3.9
directly, and deduce Theorem 3.3.13 and Theorem I for N from these.
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Let K and o be as above. Again by Raynaud’s theorem, the schematic closure
of A[N∞](Q) in A/o is constant. The reduction modulo N mapping, i.e. the
composite of

A[N∞](Q) ↪→ A/o(o) → A/FN
(FN )

is thus injective.
Take a point P ∈ A[N∞](Q)(i), and consider it as a section of A/K over K.

For γ ∈ Gal(K/QN ), we clearly have the commutative square

A/K
[γ] // A/K

Spec(K)

P

OO

Spec(γ)
// Spec(K)

P

OO

where [γ] = id × Spec(γ). This diagram uniquely extends to a diagram over o,
replacing K and A/K by o and A/o, respectively. Then passing to the closed fibre,
we obtain the commutative square

A/FN

[γ]0 // A/FN

Spec(FN )

P0

OO

id
// Spec(FN ).

P0

OO

Here, P0 is the image of P under the reduction mapping, and [γ]0 is the “geometric
inertia group action” (which is inverse to the one in [MW2]).

We now invoke results due to Mazur and Wiles. Using the notation of [MW1,
Chapter 3, Section 2], we have an isogeny

σ : Pic0
(
Σ̃ét

1

)× Pic0
(
Σ̃µ

1

) → A/FN

where Σ̃ét
1 and Σ̃µ

1 are isomorphic to the Igusa curve of level N . We have two
commutative squares

Pic0(Σ̃ét
1 )× Pic0(Σ̃µ

1 )
σ //

×〈aγ〉−1id

²²

A/FN

[γ]0

²²

Pic0(Σ̃ét
1 )× Pic0(Σ̃µ

1 )
σ //

×VerFrob

²²

A/FN

T (N)

²²
Pic0(Σ̃ét

1 )× Pic0(Σ̃µ
1 )

σ // A/FN
, Pic0(Σ̃ét

1 )× Pic0(Σ̃µ
1 )

σ // A/FN
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([MW1, Chapter 3, Section 3, Proposition 2], [MW2, Section 3]). In the first
diagram, aγ ∈ G satisfies γ(ζN + ζ−1

N ) = ζ
aγ

N + ζ
−aγ

N , and 〈aγ〉−1 on Pic0(Σ̃µ
1 )

commutes with 〈aγ〉−1 on A/FN
through Pic0(Σ̃µ

1 ) ↪→ Pic0(Σ̃ét
1 ) × Pic0(Σ̃µ

1 ) and
σ. Moreover, σ induces an isomorphism for the associated N -divisible groups
([MW1, Chapter 3, Section 2, Proposition 4]). Therefore, if P0 corresponds to
(P1, P2) ∈ (Pic0(Σ̃ét

1 ) × Pic0(Σ̃µ
1 ))[N∞](FN ), we see from the first diagram above

that P2 = ω−i(aγ)P2, and hence P2 = 0. The second diagram then shows that
T (N)− 1 annihilates P0. This completes the proof. ¤

Lemma 3.3.9. (1) h2(Γ1(N);ZN )(−2)/I
(−2)
∞,ZN

= {0}, and

(2) h2(Γ1(N);ZN )(i)/I
(i)
∞,ZN

∼= ZN/B2,ωiZN for even i 6≡ 0,−2mod (N − 1).

Proof. This is a special(ized) case of the main result of [Oh1]. Let ΛZN

be the Iwasawa algebra over ZN , i.e. the completed group algebra over ZN of
the multiplicative group 1 + NZN . As usual, we fix a topological generator u0 of
1+NZN , and identify ΛZN

with the power series ring ZN [[T ]] via u0 ↔ 1+T . Now
replacing N and p in [Oh1] by 1 and N , and taking θ = ωi with even i 6≡ 0mod
(N − 1) and ψ = 111, we have the following objects:

• Hida’s universal ordinary N -adic Hecke algebras eH(1;ZN ) and e h(1;ZN )
attached to modular forms and cusp forms, which are finite flat ΛZN

-
algebras;

• The Eisenstein ideal I = I(ωi,111) of eH(1;ZN ) and its image I = I(ωi,111)
in e h(1;ZN );

• The Eisenstein maximal ideal M = M(ωi,111) = (I, N, T ) of eH(1;ZN ).

Then, indicating by the subscript “M” the localization at M for any
eH(1;ZN )-module, we have shown in [Oh1, (1.5.5) and the remark after (3.2.4)]
that

e h(1;ZN )M/IM
∼=

{{0} if i ≡ −2mod (N − 1),

ΛZN
/(G(T, ωi+2)) otherwise

(cf. [Oh2, Section 1] for a simplification of the proof). Here, G(T, ωi+2) ∈ ΛZN

satisfies

G(us
0 − 1, ωi+2) = LN (−1− s, ωi+2)

the right hand side being the Kubota-Leopoldt N -adic L-function.
Let M be the maximal ideal of H2(Γ1(N);ZN )(i) generated by T (l) − (1 +

lωi(l)) (l 6= N), T (N) − 1 and N . Then, via the specialization to weight 2, we



Rational torsion subgroups of modular Jacobian varieties 769

have a canonical isomorphism e h(1;ZN )M/T · e h(1;ZN )M
∼= h2(Γ1(N);ZN )(i)M ,

and the image of IM to the ring in the right hand side is (I(i)
∞,ZN

)M . Consequently,
we have

h2(Γ1(N);ZN )(i)M /(I(i)
∞,ZN

)M
∼=

{
0 if i ≡ −2mod (N − 1),

ZN/B2,ωiZN otherwise.

If I
(i)
∞,ZN

= h2(Γ1(N);ZN )(i), our conclusion is obvious. Otherwise, the image of

M in h2(Γ1(N);ZN )(i) is the unique maximal ideal containing I
(i)
∞,ZN

, and hence

the left hand side above coincides with h2(Γ1(N);ZN )(i)/I
(i)
∞,ZN

. ¤

The following corollary is in accordance with the fact that NB2,ω−2 ∈ Z×N .

Corollary 3.3.10. A[N∞](Q)(−2) is trivial.

Proof. This follows from Proposition 3.3.8 and Lemma 3.3.9 immediately.
¤

One can also decompose C0[N∞] ⊆ J1(N)[N∞](Q) in the same manner as
(3.3.7),

C0[N∞] = ⊕N−3
i=0 C0[N∞](i). (3.3.11)

Kubert and Lang [KL, Chapter 6, Theorem 2.1] have shown that

C0[N∞](i) ∼= ZN/B2,ωiZN for i 6≡ 0,−2mod (N − 1). (3.3.12)

The quotient homomorphism J1(N) → A is injective on C0[N∞](i) for i 6≡ 0mod
(N − 1), and we use the symbol C0[N∞](i)A to denote its image. Let C0[N∞](i)A/o be

the schematic closure of C0[N∞](i)A in A/o, which is a constant group scheme. Let
C0[N∞](i)A/FN

be its closed fibre.

Theorem 3.3.13 (cf. [Wi, Theorem 7.2], [Kam2, Proposition 2.4]). We
have

C0[N∞](i)A/FN
= (A/FN

[N∞](i))ét
[
I
(i)
∞,ZN

]

for even i 6≡ 0mod (N − 1).
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Proof. For i ≡ −2mod (N − 1), this follows from Lemma 3.3.9, (1). As-
sume that i 6≡ 0, −2mod (N−1). By Lemma 3.3.9, (2) and (3.3.12), it is sufficient
to show that (A/FN

[N∞](i))ét[I(i)
∞,ZN

](FN ) is a cyclic group, or equivalently that

A/FN
[N ](FN )(i)[I(i)

∞,ZN
] is cyclic. By [MW1, Chapter 3, Section 2, Proposition

4], which we have already quoted in the proof of Proposition 3.3.8, this is in turn
equivalent to the cyclicity of (Pic0(Σ̃ét

1 ) × Pic0(Σ̃µ
1 ))[N ](FN )(i)[I(i)

∞,ZN
]. This is a

special case of [MW1, Chapter 3, Section 3, Proposition 4′]. ¤

We can now complete the proof of Theorem I in the introduction. For the
p-torsion part with p 6= 2, N , it was already done in 3.2. As for the N -torsion
part, we know that J1(N)(Q)[N∞](0) = C0[N∞](0) = {0}, and hence it remains to
show that J1(N)(Q)[N∞](i) = A[N∞](i)(Q) = C0[N∞](i) when i 6≡ 0mod (N − 1).
In this case, by Proposition 3.3.8, the reduction modulo N mapping considered in
its proof gives us an injection

A[N∞](i)(Q) ↪→ (A/FN
[N∞](i))ét

[
I
(i)
∞,ZN

]
(FN )

and hence our conclusion follows from Theorem 3.3.13.
Theorem II in the introduction is also plain from our preceding arguments.

For p 6= 2, N , it was established in Theorems 2.4.2 and 3.1.2. For p = N , the index
|h2(Γ1(N);ZN ) : I∞,ZN

| is the product of |h2(Γ1(N);ZN )(i) : I
(i)
∞,ZN

| =: Ind(i)

for even i in the range 0 ≤ i ≤ N − 3. If i = 0, the image of τ in I
(0)
∞,ZN

is
(N − 1)/2 ∈ Z×N , and hence Ind(0) = 1. If i = N − 3, we have seen in Lemma
3.3.9, (1) that Ind(N−3) = 1 = |ZN : NB2,ωN−3ZN |. For other i, we have Ind(i) =
|ZN : B2,ωiZN | by Lemma 3.3.9, (2). Combining these, we obtain the first part.
Since J1(N)(Q)[N∞](0) = {0}, the second part follows from Proposition 3.3.8.
This completes the proof of Theorem II. For the same reason as Proposition 3.2.7,
we also see that I∞,ZN

is the annihilator ideal of C0[N∞] in h2(Γ1(N);ZN ).

3.4. Related remarks.
We consider here the modular curve Xµ(N)/Q and its Jacobian variety

Jµ(N)/Q = Jµ(N) defined over Q as in Section 1. The ∞-cusps of Xµ(N)/Q are
rational over Q, and we can consider the subgroup C∞ ⊆ Jµ(N)(Q), the classes
of divisors of degree zero supported at these cusps. Its order is c(N) since the
automorphism wζ of Xµ(N)/Q(ζ) interchanges 0-cusps and ∞-cusps (cf. (1.2.9)).
The following theorem is a simple consequence of this fact and Theorem I.

Theorem 3.4.1. For any odd prime p, we have

Jµ(N)(Q)[p∞] = C∞[p∞].
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Proof. As a curve over Q, Xµ(N)/Q is isomorphic to X1(N)/Q (cf. [G,
p. 465]; the isomorphism in fact interchanges 0-cusps and ∞-cusps). Therefore
the abelian varieties Jµ(N) and J1(N) are isomorphic over Q, and their rational
torsion subgroups have the same order. ¤

We finally consider the Eisenstein ideal related to Jµ(N)(Q)tors. Recall that
the correspondence t 7→ w−1

ζ ◦ t ◦ wζ =: t∗ gives an involutive automorphism of
End(Jµ(N)/Q(ζ)+). When t ∈ h2(Γ1(N);Z), t∗ coincides with the image of t under
the Rosati involution, and is defined over Q. Let h∗2(Γ1(N);Z) and I∗∞,Z be the
images of h2(Γ1(N);Z) and I∞,Z under this involution, respectively. Thus I∗∞,Z is
the ideal generated by T (l)∗ − (1 + l〈l〉∗)(= (T (l) − (l + 〈l〉)) ◦ 〈l〉−1; cf. (1.2.7))
with prime numbers l 6= N , T (N)∗ − 1 and τ∗ = τ . Set

{
h∗2(Γ1(N);Zp) := h∗2(Γ1(N);Z)⊗Z Zp,

I∗∞,Zp
:= I∗∞,Z · h∗2(Γ1(N);Zp).

(3.4.2)

The following theorem corresponds to Theorem II.

Theorem 3.4.3. With the same notation as above, let p be an odd prime
number.

(1) |h∗2(Γ1(N);Zp) : I∗∞,Zp
| = |Zp : c(N)Zp|.

(2) I∗∞,Zp
annihilates Jµ(N)(Q)[p∞].

Proof. The first assertion follows immediately from Theorem II, (1). The
second assertion follows from Theorem 3.4.1 simply because I∗∞,Zp

annihilates
C∞[p∞]. ¤
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