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Strichartz estimates for Schrödinger equations

with variable coefficients and potentials at most linear

at spatial infinity

By Haruya Mizutani
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Abstract. In the present paper we consider Schrödinger equations with
variable coefficients and potentials, where the principal part is a long-range
perturbation of the flat Laplacian and potentials have at most linear growth
at spatial infinity. We then prove local-in-time Strichartz estimates, outside a
large compact set centered at origin, without loss of derivatives. Moreover we
also prove global-in-space Strichartz estimates under the non-trapping condi-
tion on the Hamilton flow generated by the kinetic energy.

1. Introduction.

In this paper we study the so called (local-in-time) Strichartz estimates for
the solutions to d-dimensional time-dependent Schrödinger equations

i∂tu(t) = Hu(t), t ∈ R; u|t=0 = u0 ∈ L2(Rd), (1.1)

where d ≥ 1 and H is a Schrödinger operator with variable coefficients:

H = −1
2

d∑

j,k=1

∂xj
ajk(x)∂xk

+ V (x).

Throughout the paper we assume that ajk(x) and V (x) are real-valued and smooth
on Rd, and (ajk(x)) is a symmetric matrix satisfying (ajk(x)) ≥ C Id, x ∈ Rd, with
some C > 0. We also assume

Assumption 1. There exist constants µ, ν ≥ 0 such that, for any α ∈ Zd
+,

∣∣∂α
x (ajk(x)− δjk)

∣∣ ≤ Cα〈x〉−µ−|α|
,

∣∣∂α
x V (x)

∣∣ ≤ Cα〈x〉2−ν−|α|
, x ∈ Rd,
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with some Cα > 0.

We may assume µ < 1 and ν < 2 without loss of generality. It is well known
that H is essentially self-adjoint on C∞0 (Rd) under Assumption 1, and we denote
the unique self-adjoint extension on L2(Rd) by the same symbol H. By the Stone
theorem, the solution to (1.1) is given by u(t) = e−itHu0, where e−itH is a unique
unitary group on L2(Rd) generated by H and called the propagator.

Let us recall the (global-in-time) Strichartz estimates for the free Schrödinger
equation which state that

∥∥eit∆/2u0

∥∥
Lp(R;Lq(Rd))

≤ C
∥∥u0

∥∥
L2(Rd)

, (1.2)

where (p, q) satisfies the following admissible condition

2 ≤ p, q ≤ ∞,
2
p

+
d

q
=

d

2
, (d, p, q) 6= (2, 2,∞). (1.3)

For d ≥ 3, (p, q) = (2, 2d/(d−2)) is called the endpoint. It is well known that these
estimates are fundamental to study the local well-posedness of Cauchy problem
of nonlinear Schrödinger equations (see, e.g., [6]). The estimates (1.2) were first
proved by Strichartz [23] for a restricted pair of (p, q) with p = q = 2(d+2)/d, and
have been extensively generalized for (p, q) satisfying (1.3) by [12], [15]. Moreover,
in the flat case (ajk ≡ δjk), local-in-time Strichartz estimates

∥∥eitHu0

∥∥
Lp([−T,T ];Lq(Rd))

≤ CT

∥∥u0

∥∥
L2(Rd)

, (1.4)

have been extended to the case with potentials decaying at infinity [25] or in-
creasing at most quadratically at infinity [26]. In particular, if V (x) has at most
quadratic growth at spatial infinity, i.e.,

V ∈ C∞(Rd;R), |∂α
x V (x)| ≤ Cα for |α| ≥ 2,

then it was shown by Fujiwara [11] that the fundamental solution E(t, x, y) of the
propagator e−itH satisfies |E(t, x, y)| . |t|−d/2 for all x, y ∈ Rd and t 6= 0 small
enough. The estimates (1.4) are immediate consequences of this estimate and
the TT ∗-argument due to Ginibre-Velo [12] (see Keel-Tao [15] for the endpoint
estimate). For the case with magnetic fields or singular potentials, we refer to
Yajima [26], [27] and references therein.

On the other hand, local-in-time Strichartz estimates on manifolds have re-
cently been proved by many authors under several conditions on the geometry.
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Staffilani-Tataru [22], Robbiano-Zuily [18] and Bouclet-Tzvetkov [2] studied the
case on the Euclidean space with the asymptotically flat metric under several set-
tings. In particular, Bouclet-Tzvetkov [2] proved local-in-time Strichartz estimates
without loss of derivatives under Assumption 1 with µ > 0 and ν > 2 and the non-
trapping condition. Burq-Gérard-Tzvetkov [4] proved Strichartz estimates with a
loss of derivative 1/p on any compact manifolds without boundaries. They also
proved that the loss 1/p is optimal in the case of M = Sd. Hassell-Tao-Wunsch [13]
and the author [17] considered the case of non-trapping asymptotically conic man-
ifolds which are non-compact Riemannian manifolds with an asymptotically conic
structure at infinity. Bouclet [1] studied the case of an asymptotically hyperbolic
manifold. Burq-Guillarmou-Hassell [5] recently studied the case of asymptotically
conic manifolds with hyperbolic trapped trajectories of sufficiently small fractal
dimension. For global-in-time Strichartz estimates, we refer to [10], [8] and the
references therein in the case with electromagnetic potentials, and to [3], [24], [16]
in the case of Euclidean space with an asymptotically flat metric.

The main purpose of the paper is to handle a mixed case of above two situ-
ations. More precisely, we show that local-in-time Strichartz estimates for long-
range perturbations still hold (without loss of derivatives) if we add unbounded
potentials which have at most linear growth at spatial infinity (i.e., ν ≥ 1), at
least excluding the endpoint (p, q) = (2, 2d/(d − 2)). To the best knowledge of
the author, our result may be a first example on the case where both of variable
coefficients and unbounded potentials in the spatial variable x are present.

To state the result, we recall the non-trapping condition. We denote by

H0 = H − V = −1
2

d∑

j,k=1

∂xj
ajk(x)∂xk

, k(x, ξ) =
1
2

d∑

j,k=1

ajk(x)ξjξk,

the principal part of H and the kinetic energy, respectively, and also denote by
(y0(t, x, ξ), η0(t, x, ξ)) the Hamilton flow generated by k(x, ξ):

ẏ0(t) = ∂ξk(y0(t), η0(t)), η̇0(t) = −∂xk(y0(t), η0(t)); (y0(0), η0(0)) = (x, ξ).

Note that the Hamiltonian vector field Hk, generated by k, is complete on R2d

since (ajk) satisfies the uniform elliptic condition. Hence, (y0(t, x, ξ), η0(t, x, ξ))
exists for all t ∈ R. We consider the following non-trapping condition:

For any (x, ξ) ∈ T ∗Rd with ξ 6= 0, |y0(t, x, ξ)| → +∞ as t → ±∞. (1.5)

We now state our main result.
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Theorem 1.1. (i) Suppose that H satisfies Assumption 1 with µ > 0 and
ν ≥ 1. Then, there exist R0 > 0 large enough and χ0 ∈ C∞0 (Rd) with χ0(x) = 1
for |x| < R0 such that, for any T > 0 and (p, q) satisfying (1.3) and p 6= 2, there
exists CT > 0 such that

∥∥(1− χ0)e−itHu0

∥∥
Lp([−T,T ];Lq(Rd))

≤ CT

∥∥u0

∥∥
L2(Rd)

. (1.6)

(ii) Suppose that H satisfies Assumption 1 with µ, ν ≥ 0 and k(x, ξ) satisfies
the non-trapping condition (1.5). Then, for any χ ∈ C∞0 (Rd), T > 0 and (p, q)
satisfying (1.3) and p 6= 2, we have

∥∥χe−itHu0

∥∥
Lp([−T,T ];Lq(Rd))

≤ CT

∥∥u0

∥∥
L2(Rd)

. (1.7)

Moreover, combining with (1.6), we obtain global-in-space estimates

∥∥e−itHu0

∥∥
Lp([−T,T ];Lq(Rd))

≤ CT

∥∥u0

∥∥
L2(Rd)

,

provided that µ > 0 and ν ≥ 1.

We here display the outline of the paper and explain the idea of the proof
of Theorem 1.1. By the virtue of the Littlewood-Paley theory in terms of H0,
the proof of (1.6) can be reduced to that of following semi-classical Strichartz
estimates:

∥∥(1− χ0)ψ(h2H0)e−itHu0

∥∥
Lp([−T,T ];Lq(Rd))

≤ CT

∥∥u0

∥∥
L2(Rd)

, 0 < h ¿ 1,

where ψ ∈ C∞0 (R) with suppψ b (0,∞) and CT > 0 is independent of h. More-
over, there exists a smooth function a ∈ C∞(R2d) supported in a neighborhood of
the support of (1−χ0)ψ◦k such that (1−χ0)ϕ(h2H0) can be replaced with the semi-
classical pseudodifferential operator a(x, hD). In Section 2, we collect some known
results on the semi-classical pseudo-differential calculus and prove such a reduction
to semi-classical estimates. Rescaling t 7→ th, we want to show dispersive estimates
for eithH on a time scale of order h−1 to prove semi-classical Strichartz estimates.
To prove dispersive estimates, we construct two kinds of parametrices, namely the
Isozaki-Kitada and the WKB parametrices. Let a± ∈ S(1, dx2/〈x〉2 + dξ2/〈ξ〉2)
be symbols supported in the following outgoing and incoming regions:

{
(x, ξ); |x| > R0, |ξ|2 ∈ J, ±x · ξ > −(1/2)|x||ξ|},
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respectively, where J b (0,∞) is an open interval so that πξ(suppψ◦k) b J and πξ

is the projection onto the ξ-space. If H is a long-range perturbation of −(1/2)∆,

then the outgoing (resp. incoming) Isozaki-Kitada parametrix of e−itHa+(x, hD)
for 0 ≤ t ≤ h−1 (resp. e−itHa−(x, hD) for −h−1 ≤ t ≤ 0) has been constructed
by Robert [20] (see, also [2]). However, because of the unboundedness of V with
respect to x, it is difficult to construct such parametrices of e−ithHa±(x, hD). To
overcome this difficulty, we use a method due to Yajima-Zhang [29] as follows. We
approximate e−ithH by e−ithHh , where Hh = H − V + Vh and Vh vanishes in the
region {x; |x| À h−1}. Suppose that a+ (resp. a−) is supported in the intersection
of the outgoing (resp. incoming) region and {x; |x| < h−1}. In Section 3, we
construct the Isozaki-Kitada parametrix of e−ithHha±(x, hD) for 0 ≤ ±t ≤ h−1

and prove the following justification of the approximation: for any N > 0,

sup
0≤±t≤h−1

∥∥(e−ithH − e−ithHh)a±(x, hD)f
∥∥

L2 ≤ CNhN
∥∥f

∥∥
L2 , 0 < h ¿ 1.

In Section 4, we discuss the WKB parametrix construction of e−ithHa(x, hD) on a
time scale of order h−1, where a is supported in {(x, ξ); |x| > h−1, |ξ|2 ∈ I}. Such
a parametrix construction is basically known for the potential perturbation case
(see, e.g., [28]) and has been proved by the author for the case on asymptotically
conic manifolds [17]. Combining these results studied in Sections 2, 3 and 4 with
the Keel-Tao theorem [15], we prove semi-classical Strichartz estimates in Section
5. Section 5 is also devoted to the proof of (1.7). The proof of (1.7) heavily depends
on local smoothing effects due to Doi [9] and the Christ-Kiselev lemma [7] and
the method of the proof is similar as that in Robbiano-Zuily [18]. Appendix A
is devoted to prove some technical inequalities on the Hamilton flow needed for
constructing the WKB parametrix.

Throughout the paper we use the following notations. For A,B ≥ 0, A . B

means that there exists some universal constant C > 0 such that A ≤ CB. We
denote the set of multi-indices by Zd

+. For Banach spaces X and Y , L(X, Y )
denotes the Banach space of bounded operators from X to Y , and we write
L(X) := L(X, X).

Acknowledgements. The author would like to thank Professor Shu Naka-
mura for valuable discussions and comments. He also thanks the referee for careful
reading the manuscript and for giving useful comments.

2. Reduction to semi-classical estimates.

In this section we show that the estimate (1.6) follows from semi-classical
Strichartz estimates. We first record known results on the pseudo-differential
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calculus and the Lp-functional calculus. For a ∈ C∞(R2d) and h ∈ (0, 1], we denote
the semi-classical pseudo-differential operator (h-PDO for short) by a(x, hDx):

a(x, hDx)u(x) = (2πh)−d

∫
ei(x−y)·ξ/ha(x, ξ)u(y)dydξ, u ∈ S(Rd),

where S(Rd) is the Schwartz class. For the metric g = dx2/〈x〉2+dξ2/〈ξ〉2 on T ∗Rd,
we consider Hörmander’s symbol class S(m, g) with a weighted function m, namely
we write a ∈ S(m, g) if a ∈ C∞(R2d) and

∣∣∂α
x ∂β

ξ a(x, ξ)
∣∣ ≤ Cαβm(x, ξ)〈x〉−|α|〈ξ〉−|β|, x, ξ ∈ Rd.

Let a ∈ S(m1, g), b ∈ S(m2, g). For any N = 0, 1, 2, . . . , the symbol of the
composition a(x, hD)b(x, hD), denoted by a]b, has an asymptotic expansion

a]b(x, ξ) =
N∑

|α|≤N

h|α|

i|α|α!
∂α

ξ a(x, ξ) · ∂α
x b(x, ξ) + hN+1rN (x, ξ) (2.1)

with some rN ∈ S(〈x〉−N−1〈ξ〉−N−1
m1m2, g). For a ∈ S(1, g), a(x, hDx) is ex-

tended to a bounded operator on L2(Rd). Moreover, if a ∈ S(〈ξ〉−N
, g) for some

N > d, then a(x, hD) satisfies

∥∥a(x, hD)
∥∥
L(Lq(Rd),Lr(Rd))

≤ Cqrh
−d(1/q−1/r), 1 ≤ q ≤ r ≤ ∞, h ∈ (0, 1], (2.2)

where Cqr > 0 is independent of h. We follow the argument in [2]. We denote by
Ah(x, y) the distribution kernel of a(x, hD):

Ah(x, y) = (2πh)−d

∫
e(x−y)·ξ/ha(x, ξ)dξ.

Since |a(x, ξ)| ≤ C〈ξ〉−N with N > d, this integral is absolutely convergent and we
can write Ah(x, y) = (2π)−d/2h−dâ(x, (y−x)/h), where â is the Fourier transform
of a with respect to the second variable. In particular, we have

sup
x,y

|Ah(x, y)| ≤ Ch−d

which implies (2.2) for (q, r) = (1,∞). Since |â(x, η)| ≤ Cd〈η〉−d−1 with Cd > 0
independent of x, a direct calculation yields
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sup
x

∫
|Ah(x, y)|dy + sup

y

∫
|Ah(x, y)|dx ≤ C

for some C > 0 independent of h. The Schur lemma then implies (2.2) for q = r.
Finally, for arbitrarily fixed 1 ≤ q ≤ r ≤ ∞, we have the L(L1, Lr/q) bound by an
interpolation between the L(L1) and L(L1, L∞) bounds. Interpolating between
the L(L1, Lr/q) and L(L∞) bounds, we obtain the L(Lq, Lr) bound.

We next consider the Lp-functional calculus. The following lemma, which was
proved by [2, Proposition 2.5], tells us that, for any ϕ ∈ C∞0 (R) with suppϕ b
(0,∞), ϕ(h2H0) can be approximated in terms of the h-PDO.

Lemma 2.1. Let ϕ ∈ C∞0 (R), suppϕ b (0,∞) and N ≥ 0 a non-negative
integer. Then there exist symbols aj ∈ S(1, g), j = 0, 1, . . . , N , such that

( i ) a0(x, ξ) = ϕ(k(x, ξ)) and aj(x, ξ) are supported in the support of ϕ(k(x, ξ)).
( ii ) For every 1 ≤ q ≤ r ≤ ∞ there exists Cqr > 0 such that

∥∥aj(x, hDx)
∥∥
L(Lq(Rd),Lr(Rd))

≤ Cqrh
−d(1/q−1/r),

uniformly with respect to h ∈ (0, 1].
(iii) There exists a constant N0 ≥ 0 such that, for all 1 ≤ q ≤ r ≤ ∞,

∥∥ϕ(h2H0)− a(x, hDx)
∥∥
L(Lq(Rd),Lr(Rd))

≤ CNqrh
N−N0−d(1/q−1/r)

uniformly with respect to h ∈ (0, 1], where a =
∑N

j=0 hjaj.

Remark 2.2. We note that Assumption 1 implies a stronger bounds on aj :

∣∣∂α
x ∂β

ξ aj(x, ξ)
∣∣ ≤ Cαβ〈x〉−j−|α|〈ξ〉−|β|,

though we do not use this estimate in the following argument.

We next recall the Littlewood-Paley decomposition in terms of ϕ(h2H0). Con-
sider a 4-adic partition of unity with respect to [1,∞):

∞∑

j=0

ϕ(2−2jλ) = 1, λ ∈ [1,∞),

where ϕ ∈ C∞0 (R) with suppϕ ⊂ [1/4, 4] and 0 ≤ ϕ ≤ 1.
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Lemma 2.3. Let χ ∈ C∞0 (Rd). Then, for q ∈ [2,∞) with 0 ≤ d(1/2 − 1/q)
≤ 1,

∥∥(1− χ)f
∥∥

Lq(Rd)
.

∥∥f
∥∥

L2(Rd)
+

( ∞∑

j=0

∥∥(1− χ)ϕ(2−2jH0)f
∥∥2

Lq(Rd)

)1/2

.

This lemma can be proved similarly to the case of the Laplace-Beltrami oper-
ator on compact manifolds without boundaries (see [4, Corollary 2.3]). By using
this lemma, we have the following:

Proposition 2.4. Let χ0 be as that in Theorem 1.1. Suppose that there exist
h0, δ > 0 small enough such that, for any ψ ∈ C∞0 ((0,∞)) and any admissible pair
(p, q) with p > 2,

∥∥(1− χ0)ψ(h2H0)e−itHu0

∥∥
Lp([−δ,δ];Lq(Rd))

≤ C
∥∥u0

∥∥
L2(Rd)

, (2.3)

uniformly with respect to h ∈ (0, h0]. Then, the statement of Theorem 1.1 (i) holds.

Proof. By Lemma 2.3 with f = e−itHu0, the Minkowski inequality and
the unitarity of e−itH on L2(Rd), we have

∥∥(1− χ0)e−itHu0

∥∥
Lp([−δ,δ];Lq(Rd))

.
∥∥u0

∥∥
L2(Rd)

+
( ∞∑

j=0

∥∥(1− χ0)ϕ(2−2jH0)e−itHu0

∥∥2

Lp([−δ,δ];Lq(Rd))

)1/2

.

For 0 ≤ j ≤ [− log h0] + 1, we have the bound

[− log h0]+1∑

j=0

∥∥(1− χ0)ϕ(2−2jH0)e−itHu0

∥∥2

Lp([−δ,δ];Lq(Rd))

.
[− log h0]+1∑

j=0

∥∥ϕ(2−2jH0)
∥∥
L(L2(Rd),Lq(Rd))

∥∥e−itHu0

∥∥
L∞([−δ,δ];L2(Rd))

. ([− log h0] + 1)2([− log h0]+1)d(1/2−1/q)
∥∥u0

∥∥
L2(Rd)

.

Choosing ψ ∈ C∞0 (R) with ψ ≡ 1 on suppϕ, the Duhamel formula implies
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ϕ(h2H0)e−itH

= ψ(h2H0)e−itHϕ(h2H0) + ψ(h2H0)i
∫ t

0

e−i(t−s)H [V, ϕ(h2H0)]e−isHds

=: ψ(h2H0)e−itHϕ(h2H0) + R(t, h).

Since [H, ϕ(h2H0)] = [V, ϕ(h2H0)] = O(h) on L2(Rd), R(t, h) satisfies

sup
0≤t≤1

∥∥R(t, h)
∥∥
L(L2(Rd),Lq(Rd))

.
∥∥ψ(h2H0)

∥∥
L(L2(Rd),Lq(Rd))

∥∥[V, ϕ(h2H0)]
∥∥
L(L2(Rd))

. h−d(1/2−1/q)+1.

(2.4)

We here note that γ := −d(1/2− 1/q) + 1 = −2/p + 1 > 0 since p > 2. By (2.3),
(2.4) with h = 2−j and the almost orthogonality of suppϕ(2−2j ·), we obtain

∞∑

j=[− log h0]

∥∥(1− χ0)ϕ(2−2jH0)e−itHu0

∥∥2

Lp([−δ,δ];Lq(Rd))

.
∞∑

j=[− log h0]

(∥∥ϕ(2−2jH0)u0

∥∥2

L2(Rd)
+ 2−2γj

∥∥u0

∥∥2

L2(Rd)

)
.

∥∥u0

∥∥2

L2(Rd)
.

Combining with the bound for 0 ≤ j ≤ [− log h0] + 1, we have

∥∥(1− χ0)e−itHu0

∥∥
Lp([−δ,δ];Lq(Rd))

.
∥∥u0

∥∥
L2(Rd)

.

Splitting the time interval [−T, T ] into ([T/δ]+1) intervals with size 2δ, we obtain

∥∥(1− χ0)ψ(h2H0)e−itHu0

∥∥
Lp([−T,T ];Lq(Rd))

≤
[T/δ]+1∑

k=−[T/δ]

∥∥(1− χ0)ψ(h2H0)e−itHe−i(k+1)Hu0

∥∥
Lp([−δ,δ];Lq(Rd))

≤ CT

∥∥u0

∥∥
L2(Rd)

.

In the last inequality, we used the unitarity of e−i(k+1)H on L2(Rd). ¤
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3. Isozaki-Kitada parametrix.

In this section we assume Assumption 1 with 0 < µ = ν < 1/2 without loss of
generality, and construct the Isozaki-Kitada parametrix. Since the potential V can
grow at infinity, it is difficult to construct directly the Isozaki-Kitada parametrix
for e−itH even though we restrict it in an outgoing or incoming region. To overcome
this difficulty, we approximate e−itH as follows. Let ρ ∈ C∞0 (Rd) be a cut-off
function such that ρ(x) = 1 if |x| ≤ 1 and ρ(x) = 0 if |x| ≥ 2. For a small constant
ε > 0 and h ∈ (0, 1], we define Hh by

Hh = H0 + Vh, Vh = V (x)ρ(εhx).

We note that, for any fixed ε > 0,

h2
∣∣∂α

x Vh(x)
∣∣ ≤ Cαh2〈x〉2−µ−|α| ≤ Cε,α〈x〉−µ−|α|

, x ∈ Rd,

where Cε,α may be taken uniformly with respect to h ∈ (0, 1]. Such a type mod-
ification has been used to prove Strichartz estimates and local smoothing effects
for Schrödinger equations with super-quadratic potentials (see, Yajima-Zhang [29,
Section 4]).

For R > 0, an open interval J b (0,∞) and −1 < σ < 1, we define the
outgoing and incoming regions by

Γ±(R, J, σ) :=
{

(x, ξ) ∈ R2d; |x| > R, |ξ| ∈ J, ± x · ξ
|x||ξ| > −σ

}
,

respectively. Since H0 + h2Vh is a long-range perturbation of −∆/2, we have the
following theorem due to Robert [20] and Bouclet-Tzvetkov [2].

Theorem 3.1. Let J, J0, J1 and J2 be relatively compact open intervals,
σ, σ0, σ1 and σ2 real numbers so that J b J0 b J1 b J2 b (0,∞) and −1 < σ <

σ0 < σ1 < σ2 < 1. Fix arbitrarily ε > 0. Then there exist R0 > 0 large enough
and h0 > 0 small enough such that the followings hold.

( i ) There exist two families of smooth functions

{
S+

h ;h ∈ (0, h0], R ≥ R0

}
,

{
S−h ;h ∈ (0, h0], R ≥ R0

} ⊂ C∞(R2d;R)

satisfying the Eikonal equation associated to k + h2Vh:
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k
(
x, ∂xS±h (x, ξ)

)
+h2Vh(x) =

1
2
|ξ|2, (x, ξ) ∈ Γ±(R1/4, J2, σ2), h ∈ (0, h0],

respectively, such that

∣∣∂α
x ∂β

ξ (S±h (x, ξ)− x · ξ)∣∣ ≤ Cαβ〈x〉1−µ−|α|
, α, β ∈ Zd

+, x, ξ ∈ Rd, (3.1)

where Cαβ > 0 may be taken uniformly with respect to R and h.
( ii ) For every R ≥ R0, h ∈ (0, h0] and N = 0, 1, . . . , we can find

b±h =
N∑

j=0

hjb±h,j with b±h,j ∈ S(1, g), supp b±h,j ⊂ Γ±(R1/3, J1, σ1),

such that, for every a± ∈ S(1, g) with supp a± ⊂ Γ±(R, J, σ), there exist

c±h =
N∑

j=0

hjc±h,j with c±h,j ∈ S(1, g), supp c±h,j ⊂ Γ±(R1/2, J0, σ0),

such that, for all ±t ≥ 0,

e−ithHha±(x, hD) = U(S±h , b±h )eith∆/2U(S±h , c±h )∗ + Q±IK(t, h, N),

respectively, where U(S±h , w) are Fourier integral operators, with the phases
S±h and the amplitude w, defined by

U(S±h , w)f(x) =
1

(2πh)d

∫
ei(S±h (x,ξ)−y·ξ)/hw(x, ξ)f(y)dydξ,

respectively. Moreover, for any s = 0, 1, 2, . . . , there exists CN,s > 0 such
that

∥∥(h2Hh + L)sQ±IK(t, h, N)
∥∥
L(L2(Rd))

≤ CN,sh
N−1 (3.2)

uniformly with respect to h ∈ (0, h0] and 0 ≤ ±t ≤ h−1, where L > 1,
independent of h, t and x, is a large constant so that h2Vh + L ≥ 1.

(iii) The distribution kernels K±
IK(t, h, x, y) of U(S±h , b±h )e−ith∆/2U(S±h , c±h )∗ sat-

isfy dispersive estimates:

∣∣K±
IK(t, h, x, y)

∣∣ ≤ C|th|−d/2, 0 ≤ ±t ≤ h−1, (3.3)
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respectively, where C > 0 is independent of h ∈ (0, h0], 0 ≤ ±t ≤ h−1 and
x, ξ ∈ Rd.

Proof. This theorem is basically known, and we only check (3.2) for the
outgoing case. For the detail of the proof, we refer to [20, Section 4] and [2,
Section 3]. We also refer to the original paper by Isozaki-Kitada [14].

The remainder Q+
IK(t, h, N) consists of the following three parts:

− hN+1e−ithHhq1(h, x, hD),

− ihN

∫ t

0

e−i(t−τ)hHhU+(S+
h , q2(h))eiτh∆/2U+(S+

h , c+
h )∗dτ,

− (i/h)
∫ t

0

e−i(t−τ)hHhQ̃(τ, h)dτ,

where {q1(h, ·, ·), q2(h, ·, ·);h ∈ (0, h0]} ⊂
⋂∞

M=1 S(〈x〉−N 〈ξ〉−M
, g) is a bounded

set, and Q̃(s, h) is an integral operator with a kernel q̃(s, h, x, y) satisfying

∣∣∂α
x ∂β

ξ q̃(τ, h, x, y)
∣∣ ≤ CαβhM−|α+β|(1 + |τ |+ |x|+ |y|)−M+|α+β|, τ ≥ 0,

for any M ≥ 0. A standard L2-boundedness of h-PDO and FIO then imply

∥∥(h2H0 + 1)s(q1(h, x, hD) + U+(S+
h , q2(h)))

∥∥
L(L2(Rd))

≤ Cs,

and a direct computation yields

∥∥(h2H0 + 1)sQ̃(τ, h)
∥∥
L(L2(Rd))

≤ CMhM .

On the other hand, we choose a constant L > 0 so large that h2Vh + L ≥ 1. Since
h2Vh + L . 1 by the definition of Vh, we have

∥∥(h2Hh + L)s(h2H0 + 1)−s
∥∥
L(L2(Rd))

≤ Cs, s = 1, 2, . . . .

Then (3.2) follows from the above three estimates since (h2Hh + L)s commutes
with e−ithHh . ¤

The following key lemma tells us that one can still construct the Isozaki-
Kitada parametrix of the original propagator e−ithH if we restrict the support of
initial data in the region {x; |x| < h−1}.
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Lemma 3.2. Suppose that {a±h }h∈(0,1] are bounded sets in S(1, g) and satisfy

supp a±h ⊂ Γ±(R, J, σ) ∩ {x; |x| < h−1},

respectively. Then for any M ≥ 0, h ∈ (0, h0] and 0 ≤ ±t ≤ h−1, we have

∥∥(e−ithH − e−ithHh)a±h (x, hD)
∥∥
L(L2(Rd))

≤ CMhM ,

where CM > 0 is independent of h and t.

Proof. We prove the lemma for the outgoing case only, and the proof of
incoming case is completely analogous. We set A = a+

h (x, hD) and Wh = V − Vh.
The Duhamel formula yields

(
e−ithH − e−ithHh

)
A

= −ih

∫ t

0

e−i(t−s)hHWhe−ishHhAds

= −ih

∫ t

0

e−i(t−s)hHe−ishHhWhAds

− h2

∫ t

0

e−i(t−s)hH

∫ s

0

e−i(s−τ)hHh [H0,Wh]e−iτhHhAdτds.

Since supp a+
h (·, ξ) ⊂ {x; |x| < h−1}, we learn suppWh ∩ a+

h (·, ξ) = ∅ if ε < 1.
Combining with the asymptotic formula (2.1), we see that this support property
implies

∥∥WhA
∥∥
L(L2(Rd))

≤ CMhM

for any M ≥ 0. A direct computation yields that [H0,Wh] is of the form

∑

|α|=0,1

aα(x)∂α
x , supp aα ⊂ suppWh,

∣∣∂β
xaα(x)

∣∣ ≤ Cαβ〈x〉−µ+|α|−|β|
.

The support properties of Wh and a+
h again imply

∥∥[H0,Wh]A
∥∥
L(L2(Rd))

≤ CMhM for any M ≥ 0.



700 H. Mizutani

We next consider [Hh, [K, Wh]] which has the form

∑

|α|=1,2

bα(x)∂α
x + W1(x),

where bα and W1 are supported in suppWh and satisfy

∣∣∂β
x bα(x)

∣∣ ≤ Cαβ〈x〉−2−µ+|α|−|β|
,

∣∣∂β
xW1(x)

∣∣ ≤ Cαβ〈x〉2−2µ
.

Setting I1 =
∑
|α|=1,2 bα(x)∂α

x and Nµ := [1/µ] + 1, we iterate this procedure Nµ

times with Wh replaced by W1. (e−ithH − e−ithHh)A then can be brought to a
linear combination of the following forms (modulo O(hM ) on L2(Rd)):

∫

t≥s1≥···≥sj≥0

e−i(t−s1)hHe−i(s1−sj)hHhIj/2e
−isjhHhAdsj · · · ds1

for j = 2m, m = 1, 2, . . . , Nµ, and

∫

t≥s1≥···≥sNµ≥0

e−i(t−s1)hHe−i(s1−sNµ )hHhWNµe−isNµ hHhAds2Nµ · · · ds1,

where Ik are second order differential operators with smooth and bounded coeffi-
cients, and WNµ

is a bounded function since 2 − 2µNµ < 0. Moreover, they are
supported in {x; |x| > (εh)−1}. Therefore, it is sufficient to show that, for any
h ∈ (0, h0], 0 ≤ τ ≤ h−1, α ∈ Zd

+ and M ≥ 0,

∥∥(1− ρ(εhx))∂α
x e−iτhHhA

∥∥
L(L2(Rd))

≤ CM,αhM−|α|. (3.4)

We now apply Theorem 3.1 to e−iτhHhA and obtain

e−iτhHhA = U(S+
h , b+

h )eiτh∆/2U(S+
h , c+

h )∗ + Q+
IK(t, h, N).

Recall that the elliptic nature of H0 implies, for every s ≥ 0,

∥∥〈D〉s(h2H0 + 1)−s/2f
∥∥

L2(Rd)
≤ Ch−s

∥∥f
∥∥

L2(Rd)
,

∥∥(h2H0 + 1)s/2(h2Hh + L)−s/2f
∥∥

L2(Rd)
≤ C

∥∥f
∥∥

L2(Rd)
,

if L > 0 so large that h2Hh + L ≥ 1. Combining these estimates with (3.2), the
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remainder satisfies

∥∥〈D〉sQ+
IK(t, h, N)f

∥∥
L2(Rd)

≤ CN,sh
N−1−s

∥∥f
∥∥

L2(Rd)
, s ≥ 0.

The main term can be handled in terms of the non-stationary phase method
as follows. The distribution kernel of the main term is given by

(2πh)−d(1− ρ(εhx))∂α
x

∫
eiΦ+

h (τ,x,y,ξ)/hb+
h (x, ξ)c+

h (y, ξ)dξ, (3.5)

where Φ+
h (τ, x, y, ξ) = S+

h (x, ξ)− (1/2)τ |ξ|2 − S+
h (y, ξ). We here claim that

supp c+
h ⊂ {

(x, ξ) ∈ R2d; a+
h (x, ∂ξS

+
h (x, ξ)) 6= 0

}
. (3.6)

This property follows from the construction of c+
h =

∑N
j=0 hjc+

h,j . We set

S̃+
h (x, y, ξ) =

∫ 1

0

∂xS+
h (y + θ(x− y), ξ)dθ.

Let ξ 7→ [S̃+
h ]−1(x, y, ξ) be the inverse map of ξ 7→ S̃+

h (x, y, ξ), and we denote their
Jacobians by A1 = |det ∂ξS̃

+
h (x, y, ξ)| and A2 = |det ∂ξ[S̃+

h ]−1(x, y, ξ)|. c+
h,j then

satisfy the following triangular system:

c+
h,j(x, ξ) = b+

h,0(x, ξ)−1
(
r+
h,j

(
x, S̃+

h (x, y, ξ)
)
A1

)∣∣∣
y=x

, j = 0, 1, . . . , N,

where r+
h,0 = a+

h (x, S̃+
h (x, y, ξ)) and, for each j ≥ 1, r+

h,j is a linear combination of

1
i|α|α!

(
∂α

ξ ∂α
y b+

h,k0

(
x, [S̃+

h ]−1(x, y, ξ)
)
c+
h,k1

(
y, [S̃+

h ]−1(x, y, ξ)
)
A2

)∣∣∣
y=x

,

where α ∈ Zd
+ and k0, k1 = 0, 1, . . . , j so that 0 ≤ |α| ≤ j, k0 + k1 = j − |α| and

k1 ≤ j − 1. Therefore, we inductively obtain

supp c+
h,0 ⊂ supp r+

0 |y=x, supp c+
h,j ⊂ supp c+

h,j−1(h), j = 1, 2, . . . , N,

and (3.6) follows. In particular, c+
h vanishes in the region {x; |x| ≥ h−1}. By using

(3.1), we have
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∂ξΦ+
h (τ, x, y, ξ) = (x− y)(Id+O(R−µ/3))− τξ,

which implies

∣∣∂ξΦ+
h (τ, x, y, ξ)

∣∣ ≥ |x|
2
− |y| − |τξ|

as long as R ≥ 1 large enough. We now set ε = (2
√

supJ2 + 2)−1. Since |x| >

(εh)−1, |y| < h−1 and |ξ|2 ∈ J2 on the support of the amplitude, we have

∣∣∂ξΦ+
h (τ, x, y, ξ)

∣∣ & (|x|+ h−1) > c(1 + |x|+ |y|+ |τ |), 0 ≤ τ ≤ h−1,

for some c > 0 independent of h. Therefore, integrating by parts (3.5) with respect
to −ih

∣∣∂ξΦ+
h

∣∣−2
(∂ξΦ+

h ) · ∂ξ, we obtain

∣∣∣∣(2πh)−d(1− ρ(εhx))∂α
x ∂β

y

∫
eiΦ+

h (τ,x,y,ξ)/hb+
h (x, ξ)c+

h (y, ξ)dξ

∣∣∣∣

≤ CαβMhM−d−|α+β|(1 + |x|+ |y|+ τ)−M ,

for all M ≥ 0, 0 ≤ τ ≤ h−1 and α, β ∈ Zd
+. (3.4) follows from this inequality and

the L2-boundedness of FIOs. ¤

4. WKB parametrix.

In the previous section we proved that e−ithH is well approximated in terms
of an Isozaki-Kitada parametrix on a time scale of order h−1 if we localize the
initial data in regions Γ±(R, J, σ) ∩ {x;R < |x| < h−1}. Therefore, it remains
to control e−ithH on a region {x; |x| & h−1}. In this section we construct the
WKB parametrix for e−ithHa(x, hD), where a ∈ S(1, g) with supp a ⊂ {(x, ξ) ∈
R2d; |x| & h−1, |ξ|2 ∈ J}. In what follows we assume that H satisfies Assumption
1 with µ ≥ 0 and ν = 1.

We first consider the phase function of the WKB parametrix, that is a solution
to the time-dependent Hamilton-Jacobi equation generated by ph(x, ξ) = k(x, ξ)+
h2V (x). For R > 0 and an open interval J b (0,∞), we set

Ω(R, J) := {(x, ξ) ∈ R2d; |x| > R/2, |ξ|2 ∈ J}.

We note that Ω(R1, J1) ⊂ Ω(R2, J2) if R1 > R2 and J1 ⊂ J2.
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Proposition 4.1. Choose arbitrarily an open interval J b (0,∞). Then,
there exist δ0 > 0 and h0 > 0 small enough such that, for all h ∈ (0, h0], 0 < R ≤
h−1 and 0 < δ ≤ δ0, we can construct a family of smooth functions

{Ψh(t, x, ξ)}h∈(0,h0] ⊂ C∞((−δR, δR)× R2d)

such that Ψh(t, x, ξ) satisfies the Hamilton-Jacobi equation associated to ph:

{
∂tΨh(t, x, ξ) = −ph(x, ∂xΨh(t, x, ξ)), 0 < |t| < δR, (x, ξ) ∈ Ω(R, J),

Ψh(0, x, ξ) = x · ξ, (x, ξ) ∈ Ω(R, J).
(4.1)

Moreover, for all |t| ≤ δR and α, β ∈ Zd
+, Ψh(t, x, ξ) satisfies

∣∣∂α
x ∂β

ξ (Ψh(t, x, ξ)− x · ξ)∣∣ ≤ CδR1−|α|, x, ξ ∈ Rd, |α + β| ≥ 2, (4.2)
∣∣∂α

x ∂β
ξ (Ψh(t, x, ξ)− x · ξ + tph(x, ξ))

∣∣ ≤ CαβδR−|α||t|, x, ξ ∈ Rd. (4.3)

Proof. We give the proof in Appendix A. ¤

We next define the corresponding FIO. Let 0 < R ≤ h−1, J b J1 b (0,∞)
open intervals and Ψh defined by the previous proposition with R, J replaced by
R/4, J1, respectively. We suppose that {ah(t, ·, ·)}h∈(0,h0],0≤t≤δR is bounded in
S(1, g) and supported in Ω(R, J), and consider the time-dependent FIO with the
phase Ψh(t) and amplitude ah(t), namely

U(Ψh(t), ah(t))u(x) =
1

(2πh)d

∫
ei(Ψh(t,x,ξ)−y·ξ)/hah(t, x, ξ)u(y)dydξ.

Lemma 4.2. Let Ψh(t) and ah(t) be as above. U(Ψh(t), a(t)) then is bounded
on L2(Rd) uniformly with respect to R, h and t:

sup
h∈(0,h0],0≤t≤δR

∥∥U(Ψh(t), a(t))
∥∥
L(L2(Rd))

≤ C.

Proof. For |t| ≤ δR, we define the map Ξ̃(t, x, y, ξ) on R3d by

Ξ̃(t, x, y, ξ) =
∫ 1

0

(∂xΨh)(t, y + λ(x− y), ξ)dλ.

By (4.2), Ξ̃(t, x, y, ξ) satisfies
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∣∣∂α
x ∂β

y ∂γ
ξ (Ξ̃(t, x, y, ξ)− ξ)

∣∣ ≤ CαβγδR−|α+β|, |t| ≤ δR, x, y ∈ Rd,

and the map ξ 7→ Ξ̃(t, x, ξ, y) hence is a diffeomorphism from Rd onto itself for
all |t| ≤ δR and x, y ∈ Rd, provided that δ > 0 is small enough. Let ξ 7→
[Ξ̃]−1(t, x, y, ξ) be the corresponding inverse. [Ξ̃]−1 satisfies the same estimate as
that for Ξ̃:

∣∣∂α
x ∂β

y ∂γ
ξ ([Ξ̃]−1(t, x, y, ξ)− ξ)

∣∣ ≤ CαβγδR−|α+β| on [−δR, δR]× R3d.

Using the change of variables ξ 7→ [Ξ̃]−1, U(Ψh(t), a(t))U(Ψh(t), a(t))∗ can be
regarded as a semi-classical PDO with a smooth and bounded amplitude

ah

(
t, x, [Ξ̃]−1(t, x, y, ξ)

)
ah(t, y, [Ξ̃]−1(t, x, y, ξ))

∣∣ det ∂ξ[Ξ̃]−1(t, x, y, ξ)
∣∣.

Therefore, the L2-boundedness follows from the Calderón-Vaillancourt theorem.
¤

We now state the main result in this section.

Theorem 4.3. Let J b J0 b J1 b (0,∞) be open intervals. Then there exist
δ0, h0 > 0 small enough such that, for all h ∈ (0, h0], 0 < R ≤ h−1, 0 < δ ≤ δ0,
N ≥ 0 and all symbol a ∈ S(1, g) with supp a ∈ Ω(R, J), we can find a semi-
classical symbol bh(t, x, ξ) =

∑N
j=0 hjbh,j(t, x, ξ) with

{
bh,j(t, ·, ·);h ∈ (0, h0], 0 < R ≤ h−1, |t| ≤ δR

} ⊂ S(1, g)

and supp bh,j(t, ·, ·) ⊂ Ω(R/2, J0) uniformly with respect to h ∈ (0, h0] and |t| ≤
δR, such that e−ithHa(x, hDx) can be brought to the form

e−ithHa(x, hDx) = U(Ψh(t), bh(t)) + QWKB(t, h, N),

where U(Ψh(t), bh(t)) is the Fourier integral operator with the phase function
Ψh(t, x, ξ), defined in Proposition 4.1 with R, J replaced by R/4, J1, respectively,
and its distribution kernel satisfies the following bounds:

|KWKB(t, h, x, y)| ≤ C|th|−d/2, h ∈ (0, h0], 0 < |t| ≤ δR, x, ξ ∈ Rd. (4.4)

Moreover the remainder QWKB(t, h, N) satisfies
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∥∥QWKB(t, h, N)
∥∥
L(L2(Rd))

≤ CNhN |t|, h ∈ (0, h0], |t| ≤ δR.

Here the constants C, CN > 0 can be taken uniformly with respect to h, t and R.

Remark 4.4. The essential point of Theorem 4.3 is to construct the
parametrix on the time interval |t| ≤ δR. When |t| > 0 is small and indepen-
dent of R, such a parametrix construction is basically well known (see, e.g., [19]).

Proof of Theorem 4.3. We consider the case when t ≥ 0 and the proof
for t < 0 is similar.

Construction of the amplitude. The Duhamel formula yields

e−ithHU(Ψh(0), bh(0))

= U(Ψh(t), bh(t)) +
i

h

∫ t

0

e−i(t−s)hH(hDs + h2H)U(Ψh(s), bh(s))ds.

Therefore, it suffices to show that there exist bh,j with bh,0|t=0 = a and bh,j |t=0 = 0
for j ≥ 1 such that

∥∥(hDs + h2H)U(Ψh(s), bh(s))
∥∥
L(L2)

≤ CNhN+1, 0 ≤ s ≤ δR. (4.5)

Let k +k1 be the full symbol of H0: H0 = k(x,D)+k1(x,D), and define a smooth
vector field Xh(t) and a function Yh(t) by

Xh(t, x, ξ) := (∂ξk)(x, ∂xΨh(t, x, ξ)), Yh(t, x, ξ) := −(H0Ψh)(t, x, ξ).

Symbols {bh,j} can be constructed in terms of the method of characteristics as
follows. For all 0 ≤ s, t ≤ δR, we consider the flow zh(t, s, x, ξ) generated by
Xh(t), that is the solution to the following ODE:

∂tzh(t, s, x, ξ) = Xh(zh(t, s, x, ξ), ξ); zh(s, s) = x.

Choose R′, R′′ and two intervals J ′0, J
′′
0 so that

R/2 > R′ > R′′ > R/4, J0 b J ′0 b J ′′0 b (0,∞).

(4.3) and the same argument as that in the proof of Lemmas A.1 and A.2 imply
that there exists δ0, h0 > 0 small enough such that, for all 0 < δ ≤ δ0, h ∈ (0, h0]
0 < R ≤ h−1 and 0 ≤ s, t ≤ δR, zh(t, s) is well defined on Ω(R′′, J ′′0 ) and satisfies
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∣∣∂α
x ∂β

ξ (zh(t, s, x, ξ)− x)
∣∣ ≤ CαβδR1−|α|. (4.6)

In particular, (zh(t, s, x, ξ), ξ) ∈ Ω(R′, J ′) for 0 ≤ s, t ≤ δR if δ > 0, depending
only on J ′′, is small enough. We now define {bh,j(t, x, ξ)}0≤j≤N inductively by

bh,0(t, x, ξ) = a(zh(0, t), ξ) exp
( ∫ t

0

Yh(s, zh(s, t, x, ξ), ξ)ds

)
,

bh,j(t, x, ξ) = −
∫ t

0

(iH0bh,j−1)(s, zh(s, t), ξ) exp
( ∫ t

u

Yh(u, zh(u, t, x, ξ), ξ)du

)
ds.

Since supp a ∈ Ω(R, J) and zh(t, s, Ω(R, J)) ⊂ {x; |x| > R/2} for all 0 ≤ s, t ≤ δR,
bh,j(t) are supported in Ω(R/2, J0). Thus, if we extend bh,j on R2d so that

bh,j(t, x, ξ) = 0, (x, ξ) /∈ Ω(R/2, J0),

then bh,j is still smooth in (x, ξ). By (4.3) and (4.6), we learn

∣∣∂α
x ∂β

ξ Yh(s, zh(s, t, x, ξ), ξ)
∣∣ ≤ CδR−1−|α|, 0 ≤ s, t ≤ δR.

{bh,j(t, ·, ·);h ∈ (0, h0], 0 < R ≤ h−1, t ∈ [0, δR], 0 ≤ j ≤ N} thus is a bounded
set in S(1, g) and supp bh,j(t, ·, ·) ⊂ Ω(R/2, J0) uniformly with respect to h ∈
(0, h0] and 0 ≤ t ≤ δR. A standard Hamilton-Jacobi theory shows that bh,j(t)
satisfy the following transport equations:

{
∂tbh,0(t) + Xh(t) · ∂xbh,0(t) + Yh(t)bh,0(t) = 0,

∂tbh,j(t) + Xh(t) · ∂xbh,j(t) + Yh(t)bh,j(t) = −iH0bh,j−1(t), j ≥ 1,
(4.7)

with the initial condition bh,0(0) = a, bh,j(0) = 0, j = 1, 2, . . . , N . A direct
computation then yields

e−iΨh(s,x,ξ)/h(hDs + h2H)
(

eiΨh(s,x,ξ)/h
N∑

j=0

hjbh,j

)
= O(hN+1) in S(1, g)

which, combined with Lemma 4.2, implies (4.5).

Dispersive estimates. The distribution kernel of U(Ψh(t), bh(t)) is given
by
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KWKB(t, h, x, y) =
1

(2πh)d

∫
e(i/h)(Ψh(t,x,ξ)−y·ξ)bh(t, x, ξ)dξ.

Since bh(t, x, ξ) has a compact support with respect to ξ,

|KWKB(t, h, x, y)| ≤ Ch−d ≤ C|th|−d/2 for 0 < t ≤ h.

We hence assume h < t without loss of generality. Choose χ ∈ S(1, g) so that
0 ≤ χ ≤ 1, χ ≡ 1 on Ω(R/2, J0) and suppχ ⊂ Ω(R/4, J1), and set

ψh(t, x, y, ξ) =
(x− y)

t
· ξ − ph(x, ξ) + χ(x, ξ)

(
Ψh(t, x, ξ)− x · ξ

t
+ ph(x, ξ)

)
.

By the definition, we obtain

ψh(t, x, y, ξ) =
Ψh(t, x, ξ)− y · ξ

t
, t ∈ [h, δR], (x, ξ) ∈ Ω(R/2, J1), y ∈ Rd,

and (4.3) implies

∣∣∂α
x ∂β

ξ ψh(t, x, y, ξ)
∣∣ ≤ Cαβ on [0, δR]× R3d, |α + β| ≥ 2.

Moreover, ∂2
ξψh(t, x, y, ξ) can be brought to the form

∂2
ξψh(t, x, y, ξ) = −(ajk(x))j,k + Qh(t, x, ξ),

where the error term Qh(t, x, ξ) is a d× d-matrix satisfying

∣∣∂α
x ∂β

ξ Qh(t, x, ξ)
∣∣ ≤ Cαβδh|α| on [0, δR]× R2d.

Since (ajk(x)) is uniformly elliptic, the stationary phase theorem implies

|KWKB(t, h, x, y)| ≤ Ch−d|t/h|−d/2 = C|th|−d/2, 0 < t ≤ δR,

provided that δ > 0 is small enough. We complete the proof. ¤

5. Proof of Theorem 1.1.

In this section we complete the proof of Theorem 1.1.
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Proof of Theorem 1.1 (i). Let χ0 ∈ C∞0 (Rd) with χ0 ≡ 1 on {|x| < R0}
and ψ ∈ C∞0 ((0,∞)). A partition of unity argument and Lemma 2.1 show that
there exist a± ∈ S(1, g) with supp a± ⊂ Γ±(R0, J, 1/2) such that (1−χ0)ψ(h2H0)
is approximated in terms of a±(x, hD):

(1− χ0)ψ(h2H0) = a+(x, hD)∗ + a−(x, hD)∗ + Q0(h),

where J b (0,∞) is an open interval with πξ(suppϕ ◦ k) b J , and Q0(h) satisfies

sup
h∈(0,1]

∥∥Q0(h)
∥∥
L(L2(Rd),Lq(Rd))

≤ Cq,

for any q ≥ 2. Let b ∈ C∞0 (Rd;R) be a cut-off function such that b ≡ 1 on a
neighborhood of J . By the asymptotic formula (2.1), we can write

a±(x, hD)∗ = b(hD)a±(x, hD)∗ + Q1(h)

where Q1(h) satisfies the same L(L2, Lq)-estimate as that of Q0(h). Therefore,

∥∥(Q0(h) + Q1(h))e−itHu0

∥∥
Lp([−δ,δ];Lq(Rd))

≤ C
∥∥u0

∥∥
L2(Rd)

, h ∈ (0, 1], (5.1)

for any p, q ≥ 2. Next, we shall prove the following estimate for the main terms:

∥∥b(hD)a±(x, hD)∗e−i(t−s)Ha±(x, hD)b(hD)
∥∥
L(L1(Rd),L∞(Rd))

≤ C|t− s|−d/2 (5.2)

for 0 < |t− s| ≤ δ. We first consider the outgoing case. Let us fix N > 1 so large
that N ≥ 2d + 1. After rescaling t − s 7→ (t − s)h and choosing R0 > 1 large
enough, we apply Theorem 3.1 with R = R0, Lemma 3.2 and Theorem 4.3 with
R = h−1 to e−i(t−s)hHa+(x, hD). Then, we can write

e−i(t−s)hHa+(x, hD)

= U(S+
h , b+

h )ei(t−s)h∆/2U(S+
h , c+

h )∗ + U(Ψh(t− s), bh(t− s)) + Q+
2 (t− s, h),

where the distribution kernels of main terms satisfy dispersive estimates

∣∣K+
IK(t− s, h, x, y)

∣∣ +
∣∣KWKB(t− s, h, x, y)

∣∣ ≤ C|(t− s)h|−d/2, (5.3)
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uniformly with respect to h ∈ (0, h0], 0 < t − s ≤ δh−1 and x, y ∈ Rd. Let
A(h, x, y) and B(h, x, y) be the distribution kernels of a(x, hD)∗ and b(hD), re-
spectively. They clearly satisfy

sup
x

∫
(|A(h, x, y)|+ |B(h, x, y)|)dy + sup

y

∫
(|A(h, x, y)|+ |B(h, x, y)|)dx ≤ C

uniformly in h ∈ (0, 1]. By using this estimate and (5.3), we see that the distribu-
tion kernel of

b(hD)a+(x, hD)∗
(
e−i(t−s)hHa+(x, hD)−Q+

2 (t− s, h)
)
b(hD)

satisfies the same dispersive estimates as (5.3) for 0 < t− s ≤ δh−1. On the other
hand, Q+

2 (t− s, h) satisfy

∥∥Q+
2 (t− s, h)

∥∥
L(L2(Rd))

≤ CNhN , h ∈ (0, h0], 0 ≤ t− s ≤ δh−1.

We here recall that a+(x, hD)∗ is uniformly bounded on L2(Rd) in h ∈ (0, 1] and
b(hD) satisfies

∥∥b(hD)
∥∥
L(H−s(Rd),Hs(Rd))

≤ ∥∥〈D〉s〈hD〉−s∥∥
L(L2(Rd))

∥∥〈hD〉sb(hD)〈hD〉s∥∥L(L2(Rd))

∥∥〈hD〉−s〈D〉s∥∥L(L2(Rd))

≤ Csh
−2s.

b(hD)a+(x, hD)∗Q+
2 (t−s, h)b(hD) hence is a bounded operator in L(H−s,Hs) for

some s > d/2 and has the uniformly bounded distribution kernel Q̃+
2 (t− s, h, x, y)

with respect to h ∈ (0, h0] and 0 ≤ t− s ≤ δh−1. Therefore,

∣∣Q̃+
2 (t− s, h, x, y)

∣∣ . 1 . |(t− s)h|−d/2, h ∈ (0, h0], 0 < t− s ≤ δh−1.

The corresponding estimates for the incoming case also hold for 0 ≤ −(t − s) ≤
δh−1. Therefore, b(hD)a±(x, hD)∗e−i(t−s)hHa±(x, hD)b(hD) have distribution
kernels K±(t− s, h, x, y) satisfying

∣∣K±(t− s, h, x, y)
∣∣ ≤ C|(t− s)h|−d/2 (5.4)

uniformly with respect to h ∈ (0, h0], 0 ≤ ±(t − s) ≤ δh−1 and x, y ∈ Rd,
respectively.
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We here use a simple trick due to Bouclet-Tzvetkov [2, Lemma 4.3]. If we set
U±(t, h) = b(hD)a±(x, hD)∗e−ithHa±(x, hD)b(hD), then

U±(s− t, h) = U±(t− s, h)∗,

and hence K±(s − t, h, x, y) = K±(t− s, h, y, x). Therefore, the estimates (5.4)
also hold for 0 < ∓(t − s) ≤ δh−1 and x, y ∈ Rd. Rescaling (t − s)h 7→ t − s, we
obtain the estimate (5.2).

Finally, since the L(L2)-boundedness of a±(x, hD)∗e−itH is obvious, (5.1),
(5.2) and the Keel-Tao theorem [15] imply the desired semi-classical Strichartz
estimates:

sup
h∈(0,h0]

∥∥(1− χ0)ψ0(h2H0)e−itHu0

∥∥
Lp([−δ,δ];Lq(Rd))

≤ C
∥∥u0

∥∥
L2(Rd)

.

By the virtue of Proposition 2.4, we complete the proof. ¤

We next give the proof of (ii). Suppose that H satisfies Assumption 1 with
µ, ν ≥ 0. We first recall the local smoothing effects for Schrödinger operators
with at most quadratic potentials proved by Doi [9]. For any s ∈ R, we set
Bs := {f ∈ L2(Rd); 〈x〉sf ∈ L2(Rd), 〈D〉sf ∈ L2(Rd)}, and define a symbol es by

es(x, ξ) := (k(x, ξ) + |x|2 + L(s))s/2 ∈ S((1 + |x|+ |ξ|)s, g).

We denote by Es its Weyl quantization:

Esf(x) =
1
2π

∫
ei(x−y)·ξes

(
x + y

2
, ξ

)
f(y)dydξ.

Here L(s) > 1 is a large constant depending on s. Then, for any s ∈ R, there
exists L(s) > 0 such that Es is a homeomorphism from Br+s to Br for all r ∈ R,
and (Es)−1 is still a Weyl quantization of a symbol in S((1 + |x|+ |ξ|)−s, g).

Lemma 5.1 (The local smoothing effects [9]). Suppose that the kinetic energy
k(x, ξ) satisfies the non-trapping condition (1.5). Then, for any T > 0 and σ > 0,
there exists CT,σ > 0 such that

∥∥〈x〉−1/2−σ
E1/2u

∥∥
L2([−T,T ];L2(Rd))

≤ CT,σ

∥∥u0

∥∥
L2 , (5.5)

where u = e−itHu0.
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Remark 5.2. Let χ ∈ C∞0 (Rd). (5.5) implies a usual local smoothing effect:

∥∥〈D〉1/2
χu

∥∥
L2([−T,T ];L2(Rd))

≤ CT

∥∥u0

∥∥
L2(Rd)

. (5.6)

Indeed, let χ1 ∈ C∞0 (Rd) be such that χ1 ≡ 1 on suppχ. We split 〈D〉1/2
χ as

follows:

〈D〉1/2
χ = χ1〈D〉1/2

χ +
[〈D〉1/2

, χ1

]
χ,

χ1〈D〉1/2
χ = χ1〈D〉1/2(E1/2)−1E1/2χ

= χ1〈D〉1/2(E1/2)−1χ1E1/2χ + χ1〈D〉1/2(E1/2)−1[E1/2, χ1]χ.

By a standard symbolic calculus, [〈D〉1/2
, χ1]χ, χ1〈D〉1/2(E1/2)−1 and [E1/2, χ1]χ

are bounded on L2(Rd) since χ1 has a compact support. Therefore, Lemma 5.1
implies

∥∥〈D〉1/2
χu

∥∥
L2([−T,T ];L2(Rd))

≤ C
∥∥χ1E1/2χu

∥∥
L2([−T,T ];L2(Rd))

+ CT

∥∥u
∥∥

L2(Rd)

≤ CT

∥∥u0

∥∥
L2(Rd)

.

Proof of Theorem 1.1 (ii). We consider the case when 0 ≤ t ≤ T only,
and the proof for the negative time is similar. We mimic the argument in [18,
Section II. 2]. A direct computation yields

(i∂t + ∆)χu = ∆χu + χHu

= χ1(H + ∆)χ1χu + (χ1[χ,H] + [∆, χ1]χ)u.

We define a self-adjoint operator by H̃ := −∆ + χ1(H + ∆)χ1, and set

Ũ(t) := e−it eH , F := (χ1[χ,H] + [∆, χ1]χ)u.

We here note that if H0 satisfies the non-trapping condition then so does the
principal part of H̃. By the Duhamel formula, we can write

χu = Ũ(t)χu0 +
∫ t

0

Ũ(t− s)F (s)ds.

Since χ1(H + ∆)χ1 is a compactly supported smooth perturbation, it was proved
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by Staffilani-Tataru [22] that Ũ(t) is bounded from L2(Rd) to L2([0, T ];H1/2
loc (Rd)),

and that its adjoint

Ũ∗f =
∫ T

0

U(−s)f(s, ·)ds

is bounded from L2([0, T ];H−1/2
loc (Rd)) to L2(Rd). Moreover, Ũ(t) satisfies

Strichartz estimates (for any admissible pair (p, q)):

∥∥Ũ(t)v
∥∥

Lp([−T,T ];Lq(Rd))
≤ CT

∥∥v
∥∥

L2 .

Therefore, we have

∥∥∥∥
∫ T

0

Ũ(t− s)F (s)ds

∥∥∥∥
Lp([−T,T ];Lq(Rd))

≤ CT

∥∥Ũ∗F
∥∥

L2(Rd)

≤ CT

∥∥〈D〉−1/2
F

∥∥
L2([−T,T ];L2(Rd))

since F has a compact support with respect to x. The Christ-Kiselev lemma (see
[7], [21]) then implies

∥∥∥∥
∫ t

0

Ũ(t− s)F (s)ds

∥∥∥∥
Lp([−T,T ];Lq(Rd))

≤ CT

∥∥〈D〉−1/2
F

∥∥
L2([−T,T ];L2(Rd))

,

provided that p > 2. We split F as

F = ([χ,H]χ1 + [∆, χ1]χ)u + [χ1, [χ,H]]u =: F1 + F2.

Since [χ,H] is a first order differential operator with bounded coefficients, we
see that [χ1, [χ,H]] is bounded on L2(Rd), and

∥∥〈D〉−1/2
F2

∥∥
L2([−T,T ];L2(Rd))

is

dominated by CT

∥∥u0

∥∥
L2(Rd)

. We now use (5.6) and obtain

∥∥〈D〉−1/2
F1

∥∥
L2([−T,T ];L2(Rd))

≤ C
∥∥χ1u

∥∥
L2([−T,T ];H−1/2(Rd))

≤ C
∥∥〈D〉1/2

χ1u
∥∥

L2([−T,T ];L2(Rd))

≤ CT

∥∥u0

∥∥
L2 ,

which completes the proof. ¤
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A. Proof of Proposition 4.1.

Assume Assumption 1 with µ, ν ≥ 0. We here give the detail of the proof
of Proposition 4.1. We first study the corresponding classical mechanics. Let
h ∈ (0, 1] and consider the Hamilton flow (Xh(t),Ξh(t)) = (Xh(t, x, ξ),Ξh(t, x, ξ))
generated by the semi-classical total energy

ph(x, ξ) = k(x, ξ) + h2V (x),

i.e., (Xh(t),Ξh(t)) is the solution to the Hamilton equations





Ẋh,j(t) =
∑

k

ajk(Xh(t))Ξh,k(t),

Ξ̇h,j(t) = −1
2

∑

k,l

∂akl

∂xj
(Xh(t))Ξh,k(t)Ξh,l(t)− h2 ∂V

∂xj
(Xh(t)),

with the initial condition (Xh(0),Ξh(0)) = (x, ξ), where ḟ = ∂tf . We first prepare
an a priori bound of the flow.

Lemma A.1. For all h ∈ (0, 1], |t| . h−1 and (x, ξ) ∈ R2d,

|Xh(t)− x| . (|ξ|+ h〈x〉1−ν/2)|t|, |Ξh(t)| . |ξ|+ h〈x〉1−ν/2
.

Proof. We consider the case t ≥ 0. The proof for the case t < 0 is
analogous. Since the Hamilton flow conserves the total energy, namely

ph(x, ξ) = ph(Xh(t),Ξh(t)) for all t ∈ R,

we have

|Ξh(t)| .
√

p0(Xh(t),Ξh(t))

.
√

ph(x, ξ)− h2V (Xh(t))

. |ξ|+ h〈x〉1−ν/2 + h〈Xh(t)〉1−ν/2
.

Applying the above inequality to the Hamilton equation, we have

|Ẋh(t)| . |Ξh(t)| . |ξ|+ h〈x〉1−ν/2 + h|Xh(t)− x|.
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Integrating with respect to t and using Gronwall’s inequality, we obtain the asser-
tion since eth . |t| for |t| . h−1. ¤

Let J b (0,∞) be an open interval. For sufficiently small δ > 0 and for all
0 < R ≤ h−1, the above lemma implies

|x|/2 ≤ |Xh(t, x, ξ)| ≤ 2|x| (A.1)

uniformly with respect to h ∈ (0, 1], |t| ≤ δR and (x, ξ) ∈ Ω(R, J). By using this
inequality, we have the following:

Lemma A.2. Let J, δ be as above. Then, for h ∈ (0, 1], 0 < R ≤ h−1,
|t| ≤ δR and (x, ξ) ∈ Ω(R, J), Xh(t, x, ξ) and Ξh(t, x, ξ) satisfy

{|Xh(t)− x| ≤ C(1 + δh〈x〉1−ν)|t|,
|Ξh(t)− ξ| ≤ C(〈x〉−1 + h2〈x〉1−ν)|t|,

(A.2)

and, for |α + β| = 1,





∣∣∂α
x ∂β

ξ (Xh(t)− x)
∣∣ ≤ Cαβ

(〈x〉−|α| + h|α|〈x〉−|α|ν/2)|t|,
∣∣∂α

x ∂β
ξ (Ξh(t)− ξ)

∣∣ ≤ Cαβ

(〈x〉−1−|α| + h1+|α|〈x〉−(1+|α|)ν/2)|t|,
(A.3)

and, for |α + β| ≥ 2,

{∣∣∂α
x ∂β

ξ (Xh(t)− x)
∣∣ ≤ Cαβδh|α|〈x〉−1

R|t|,
∣∣∂α

x ∂β
ξ (Ξh(t)− ξ)

∣∣ ≤ Cαβh|α|〈x〉−1|t|.
(A.4)

Moreover C,Cαβ > 0 may be taken uniformly with respect to R, h and t.

Proof. We only prove the case when t ≥ 0, the proof for the case t ≤ 0 is
similar. Applying Lemma A.1 and (A.1) to the Hamilton equation, we have

|Ξ̇h(t)| . 〈Xh(t)〉−1|Ξh(t)|2 + h2〈Xh(t)〉1−ν

. 〈x〉−1(1 + h2〈x〉2−ν) + h2〈x〉1−ν

. 〈x〉−1 + h2〈x〉1−ν
,

|Ẋh(t)| . |Ξh(t)| . 1 + δh〈x〉1−ν
,
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and (A.2) follows.
We next prove (A.3). By differentiating the Hamilton equation with respect

to ∂α
x ∂β

ξ , |α + β| = 1, we have

d

dt


∂α

x ∂β
ξ Xh

∂α
x ∂β

ξ Ξh


 =

(
∂x∂ξph(Xh,Ξh) ∂2

ξph(Xh,Ξh)

−∂2
xph(Xh,Ξh) −∂ξ∂xph(Xh,Ξh)

)
∂α

x ∂β
ξ Xh

∂α
x ∂β

ξ Ξh


 . (A.5)

Define a weight function wh(x) = 〈x〉−1 + h〈x〉−ν/2. A direct computation and
(A.2) then imply

∣∣(∂α
x ∂β

ξ ph)(Xh(t),Ξh(t))
∣∣ ≤ Cαβwh(x)|α|, |α + β| = 2,

∣∣(∂α
x ∂β

ξ ph)(Xh(t),Ξh(t))
∣∣ ≤ Cαβ〈x〉2−|α+β|

wh(x)|α|−1, |α + β| ≥ 3,

for all |t| ≤ δR and (x, ξ) ∈ Ω(R, J), and ∂β
ξ ph ≡ 0 on R2d for |β| ≥ 3. By

integrating (A.5) with respect to t, we have

wh(x)
∣∣∂α

x ∂β
ξ (Xh(t)− x)

∣∣ +
∣∣∂α

x ∂β
ξ (Ξh(t)− ξ)

∣∣

.
∫ t

0

(
wh(x)

(
wh(x)

∣∣∂α
x ∂β

ξ (Xh(t)− x)
∣∣ +

∣∣∂α
x ∂β

ξ (Ξh(t)− ξ)
∣∣) + wh(x)1+|α|

)
dτ.

Using Gronwall’s inequality, we have (A.3) since |t| ≤ δR.
For |α+β| ≥ 2, we shall prove the estimate for ∂2

ξ1
Xh(t) only. Proofs for other

cases are similar, and for higher derivatives follow from an induction on |α + β|.
By the Hamilton equation and (A.3), we learn

∂2
ξ1

Xh = ∂x∂ξph(Xh,Ξh)∂2
ξ1

Xh + ∂2
ξph(Xh,Ξh)∂2

ξ1
Ξh + Q(h, x, ξ)

where Q(h, x, ξ) satisfies

Q(h, x, ξ) ≤ C
∑

|α+β|=3,|β|=1,2

(
∂α

x ∂β
ξ p

)
(Xh,Ξh)(∂ξ1Xh)|α|(∂ξ1Ξh)|β|

≤ C〈x〉−1
∑

|α|=1,2,3

wh(x)|α|−1|t||α|

≤ Cδ〈x〉−1
R.
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We similarly obtain

∂2
ξ1

Ξh = −∂2
xph(Xh,Ξh)∂2

ξ1
Xh − ∂ξ∂xph(Xh,Ξh)∂2

ξ1
Ξh + O(〈x〉−1),

and these estimates and Gronwall’s inequality imply

(δR)−1
∣∣∂2

ξ1
Xh(t)

∣∣ +
∣∣∂2

ξ1
Ξh(t)

∣∣

.
∫ t

0

wh(x)
(
(δR)−1

∣∣∂2
ξ1

Xh(t)
∣∣ +

∣∣∂2
ξ1

Ξh(t)
∣∣) + 〈x〉−1

dτ

. 〈x〉−1|t|

for 0 ≤ t ≤ δR. We hence have the assertion. ¤

Remark A.3. If ν ≥ 1, then Lemma A.2 implies that for any α, β ∈ Zd
+,

there exists Cαβ such that

∣∣∂α
x ∂β

ξ (Xh(t)− x)
∣∣ ≤ CαβδR1−|α|,

∣∣∂α
x ∂β

ξ (Ξh(t)− ξ)
∣∣ ≤ CαβδR−|α|, (A.6)

uniformly with respect to h ∈ (0, 1], 0 < R ≤ h−1, |t| ≤ δR and (x, ξ) ∈ Ω(R, J).

Lemma A.4. Suppose that ν = 1 and let J1 b J ′1 b (0,∞) be open intervals.
Then there exists δ > 0 small enough such that, for any fixed |t| ≤ δR, the map

gh(t) : (x, ξ) 7→ (Xh(t, x, ξ), ξ)

is a diffeomorphism from Ω(R/2, J ′1) onto its range. Moreover, we have

Ω(R, J1) ⊂ gh(t, Ω(R/2, J ′1)), |t| ≤ δR. (A.7)

Proof. We choose J ′′1 so that J ′1 b J ′′1 b (0,∞). Choosing χ ∈ S(1, g)
such that

0 ≤ χ ≤ 1, suppχ ⊂ Ω(R/3, J ′′1 ), χ ≡ 1 on Ω(R/2, J ′1),

we define Xχ
h (t, x, ξ) := (1− χ(x, ξ))x + χ(x, ξ)Xh(t, x, ξ) and set

gχ
h (t, x, ξ) = (Xχ

h (t, x, ξ), ξ).

We also define (z, ξ) 7→ g̃χ
h (t, z, ξ) by
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g̃χ
h (t, z, ξ) =

(
X̃χ

h (t, z, ξ), ξ
)

:=
(
Xχ

h (t, Rz, ξ)/R, ξ
)
.

By (A.6), there exists δ > 0 so small that, for |t| ≤ δR, (z, ξ) ∈ R2d,

∣∣∂α
z ∂β

ξ (X̃χ
h (t, z, ξ)− z)

∣∣ . δR−|α|,
∣∣∂α

z ∂β
ξ (J(g̃χ

h )(t, z, ξ)− Id)
∣∣ ≤ Cαβδ < 1/2,

where J(g̃χ
h ) is the Jacobi matrix with respect to (z, ξ). The Hadamard global

inverse mapping theorem then shows that g̃χ
h (t) is a diffeomorphism from R2d

onto itself if |t| ≤ δR. By definition, gh(t) is a diffeomorphism from Ω(R/2, J ′1)
onto its range.

We next prove (A.7). Since gh(t) = gχ
h (t) and gχ

h (t) is bijective on Ω(R/2, J ′1),
it suffices to check that

Ω(R, J1)c ⊃ gχ
h (t,Ω(R/2, J ′1)

c).

Suppose that (x, ξ) ∈ Ω(R/2, J ′1)
c. If (x, ξ) ∈ Ω(R/3, J ′′1 )c, then

gχ
h (t, x, ξ) = (x, ξ) ∈ Ω(R/3, J ′′1 )c ⊂ Ω(R, J1)c.

Suppose that (x, ξ) ∈ Ω(R/3, J ′′1 )\Ω(R/2, J ′1). By (A.2) and the support property
of χ, we have

|Xχ
h (t)| ≤ |x|+ |χ(Xh(t)− x)| ≤ R/2 + CδR

for some C > 0 independent of R and h. Choosing δ satisfying 1/2 + Cδ < 1, we
obtain gχ

h (t, x, ξ) ∈ Ω(R, J1)c. ¤

Let Ω(R, J1) 3 (x, ξ) 7→ (Yh(t, x, ξ), ξ) be the inverse of Ω(R/2, J ′1) ∈ (x, ξ) 7→
(Xh(t, x, ξ), ξ).

Lemma A.5. Let δ, J1 as above and ν = 1. Then, for all h ∈ (0, 1], 0 < R ≤
h−1, 0 < |t| ≤ δR and (x, ξ) ∈ Ω(R, J1), we have

∣∣∂α
x ∂β

ξ (Yh(t, x, ξ)− x)
∣∣ ≤ CαβδR1−|α|,

∣∣∂α
x ∂β

ξ (Ξh(t, Yh(t, x, ξ))− ξ)
∣∣ ≤ CαβδR−|α|.

Proof. We prove the inequalities for Yh only. Proofs for Ξh(t, Yh(t, x, ξ), ξ)
are similar. Since (Yh(t, x, ξ), ξ) ∈ Ω(R/2, J ′1),
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|Yh(t, x, ξ)− x| = |Xh(0, Yh(t, x, ξ), ξ)−Xh(t, Yh(t, x, ξ), ξ)|
≤ sup

(x,ξ)∈Ω(R/2,J ′1)
|Xh(t, x, ξ)− x|

. δR.

Next, let α, β ∈ Zd
+ with |α + β| = 1 and apply ∂α

x ∂β
ξ to the equality

x = Xh(t, Yh(t, x, ξ), ξ).

We then have the following equality

A(t, Zh(t))∂α
x ∂β

ξ (Yh(t, x, ξ)− x) = ∂α
y ∂β

η (y −Xh(t, y, η))|(y,η)=Zh(t), (A.8)

where Zh(t, x, ξ) = (Yh(t, x, ξ), ξ) and A(t, Z) = (∂xXh)(t, Z). By (A.2) and a
similar argument as that in the proof of Lemma A.4, we learn that A(Zh(t)) is
invertible, and that A(Zh(t)) and A(Zh(t))−1 are uniformly bounded with respect
to h ∈ (0, 1], |t| ≤ δR and (x, ξ) ∈ Ω(R, J1). Therefore,

∣∣∂α
x ∂β

ξ (Yh(t, x, ξ)− x)
∣∣ ≤ sup

(x,ξ)∈Ω(R/2,J ′1)

∣∣∂α
y ∂β

η (y −Xh(t, y, η))
∣∣

≤ CαβδR1−|α|.

The proof for higher derivatives is obtained by an induction on |α + β|, and we
omit the details. ¤

Proof of Proposition 4.1. We consider the case when t ≥ 0, and the
proof for t ≤ 0 is similar. Choosing J b J1 b (0,∞), we define the action integral
Ψ̃h(t, x, ξ) on [0, δR]× Ω(R/2, J1) by

Ψ̃h(t, x, ξ) := x · ξ +
∫ t

0

Lh

(
Xh(s, Yh(t, x, ξ), ξ),Ξh(s, Yh(t, x, ξ), ξ)

)
ds,

where Lh(x, ξ) = ξ ·∂ξph(x, ξ)−ph(x, ξ) is the Lagrangian associated to ph and Yh

is defined by the above argument with R > 0 replaced by R/2. The smoothness
property of Ψ̃h follows from corresponding properties of Xh, Ξh and Yh. By the
standard Hamilton-Jacobi theory, Ψ̃h(t, x, ξ) solves the Hamilton-Jacobi equation
(4.1) on Ω(R/2, J1) and satisfies
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∂xΨ̃h(t, x, ξ) = Ξh(t, Yh(t, x, ξ), ξ), ∂ξΨ̃h(t, x, ξ) = Yh(t, x, ξ).

In particular, we obtain the following energy conservation law:

ph(x, ∂xΨ̃h(t, x, ξ)) = ph(Yh(t, x, ξ), ξ).

This energy conservation and Lemma A.5 imply

∣∣ph(∂xΨ̃h(t, x, ξ)− ph(x, ξ)
∣∣

≤ |Yh(t, x, ξ)− x)|
∫ 1

0

|∂xph(λx + (1− λ)Yh(t, x, ξ), ξ)|dλ

≤ CδR(〈x〉−1 + h2)

≤ Cδ.

By using Lemma A.5, we also obtain

∣∣∂α
x ∂β

ξ (ph(x, ∂xΨ̃h(t, x, ξ))− ph(x, ξ))
∣∣ ≤ CαβδR−|α|, α, β ∈ Zd

+.

Therefore,

∣∣∂α
x ∂β

ξ

(
Ψ̃h(t, x, ξ)− x · ξ + tph(x, ξ)

)∣∣ ≤ CαβδR−|α||t|.

Choosing a cut-off function χ ∈ S(1, g) so that 0 ≤ χ ≤ 1, χ ≡ 1 on Ω(R, J) and
suppχ ⊂ Ω(R/2, J1), we define

Ψh(t, x, ξ) := x · ξ − tph(x, ξ) + χ(x, ξ)(Ψ̃h(t, x, ξ)− x · ξ + tph(x, ξ)).

Clearly, Ψh(t, x, ξ) satisfies the statement of Proposition 4.1. ¤
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