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Abstract. We shall show that any complex minimal surface of general
type with c21 = 2χ − 1 having non-trivial 2-torsion divisors, where c21 and χ
are the first Chern number of a surface and the Euler characteristic of the
structure sheaf respectively, has the Euler characteristic χ not exceeding 4.
Moreover, we shall give a complete description for the surfaces of the case
χ = 4, and prove that the coarse moduli space for surfaces of this case is a
unirational variety of dimension 29. Using the description, we shall also prove
that our surfaces of the case χ = 4 have non-birational bicanonical maps and
no pencil of curves of genus 2, hence being of so called non-standard case for
the non-birationality of the bicanonical maps.

1. Introduction.

In classification of regular surfaces of general type, the torsion parts of the
Picard groups (the torsion groups for short) sometimes play an important role.
One of the reasons for this lies in variety of topological types under single values
of numerical invariants, which is common especially in cases of small geometric
genus; the torsion group of a regular surface, isomorphic to the first homology
group with integral coefficients, carries information that the numerical invariants
c2
1 and χ do not.

Studies on surfaces of general type done using the torsion groups are well-
known for cases of vanishing geometric genus (see, e.g., Barth-Peters-Van de Ven
[3, p. 237]). In those studies, they tried to determine the structures of surfaces
with given isomorphism classes of the torsion groups. There are, however, some
other cases of numerical invariants for which similar studies have been successfully
developed. Consider the case c2

1 = 2χ−2. In this case, by Ciliberto-Mendes Lopes
[7], the orders of the torsion groups do not exceed 2, and the Euler characteristics
χ’s for the cases of non-trivial torsion do not exceed 5. Complete descriptions for
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the surfaces with non-trivial torsion with χ = 2, 3, 4, and 5 are given in Catanese-
Debarre [5], Ciliberto-Mendes Lopes [7], Bartalesi-Catanese [2], and Ciliberto-
Mendes Lopes [7] respectively. We remark that even in cases of vanishing geometric
genus, complete descriptions are known only for a small number of classes.

In the present paper, we study minimal surfaces with c2
1 = 2χ−1 having non-

trivial 2-torsion divisors. Note that if X is a minimal surface with c2
1 = 2χ − 1,

then X has vanishing irregularity, hence geometric genus pg = χ − 1. We shall
prove the bound χ ≤ 4 for the Euler characteristics χ’s (Theorem 1), describe the
surfaces of the case χ = 4 (Theorem 2, Remark 2), and study the moduli space
for surfaces of this case (Theorem 3). By the main theorem of [17], the order of
the torsion group of a minimal surface with c2

1 = 2χ− 1 is at most 3 if χ = 2, and
at most 2 if χ ≥ 3. Thus for our surfaces with χ ≥ 2, two conditions Z/2 ⊂ Tors
and Tors ' Z/2 are equivalent, where Tors denotes the torsion group. The case
χ = 1 on this line is that of the numerical Godeaux surfaces (i.e., minimal surfaces
of general type with c2

1 = 1 and pg = 0).
Surfaces with c2

1 = 2χ − 1, χ = 4, and Tors ' Z/2 are known to exist and
can be found in [8]. In [8], Ciliberto and Mendes Lopes completely classified
regular surfaces with pg = 3 having non-birational bicanonical maps and without
genus 2 pencils, i.e., regular surfaces with pg = 3 and of non-standard case for the
non-birationality of the bicanonical maps. Among their results, they showed that
any regular surface of non-standard case with c2

1 = 7 and pg = 3 is obtained by
performing a certain operation on what is known as Du Val’s ancestor with c2

1 = 8
and pg = 4. Since these surfaces have non-trivial 2-torsion divisors, as has been
shown in [8], these are examples of our surfaces for the case χ = 4. In fact, our
structure theorem for surfaces with c2

1 = 2χ − 1, χ = 4, and Tors ' Z/2 shows
that although we start from the different assumption, the resulting surfaces are
exactly those seen in the paper [8].

Our complete description for the surfaces with χ = 4 asserts that any such
surface X is obtained roughly as a free quotient by Z/2 of a double cover of
the Hirzebruch surface Σd = P(OP1 ⊕OP1(d)) (d = 0 or 2). We shall describe the
branch divisor of the double cover, and determine the free action by Z/2 (Theorem
2, Remark 1). The branch divisor of the double cover turns out to be a member
of the quadruple anticanonical system having exactly two [3, 3]-points. The action
by Z/2 turns out to be a lifting of that on the Hirzebruch surface Σd.

This description induces another description of our surfaces of the case χ = 4
(Proposition 14), which is almost the same as a description appearing in Ciliberto-
Mendes Lopes [8]. Using our descriptions, we shall show that our surfaces of the
case χ = 4 has non-birational bicanonical maps and no pencil of curves of genus
2 (Proposition 15), hence completely coinciding with those seen in [8] (see also
Remark 6).
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The coincidence of the resulting surfaces certainly implies possibility of an-
other proof of our complete description, i.e., of a proof, like one for the case
c2
1 = 2χ − 2 in Ciliberto-Mendes Lopes [7], by showing that our surfaces with

χ = 4 are of non-standard case for the non-birationality of the bicanonical maps.
We however do not choose this way. We remark that our method has an advan-
tage in the sense that we can show the irreducibility of the moduli space in a very
explicit and elementary way.

The present paper is organized as follows. In order to show our main theorem,
we follow Miyaoka [14] and Reid [19], and take the unramified double cover Y → X

corresponding to a torsion divisor. We study its canonical map ΦKY
using the

action by the Galois group of Y over X. In Section 2, we state our main results
and show, on the assumption χ ≥ 4, that we have deg ΦKY

= 1 or 2, and that
deg ΦKY

= 1 implies χ = 4. Note here that to obtain our main theorem, we only
need to study the case χ ≥ 4. In Section 3, we study the case deg ΦKY

= 2.
We divide this case into three according to the degree of the canonical image
Z = ΦKY

(Y ) ⊂ Pn: the case deg Z = n + 1, the case deg Z = n, and the case
deg Z = n − 1. We shall classify non-degenerate surfaces in Pn of degree n + 1
of which minimal desingularizations have vanishing irregularities (Proposition 3),
and use this classification to study the case deg Z = n + 1. In Section 4, we study
the case deg ΦKY

= 1 and χ = 4, and then prove Theorems 1 and 2. In the case
deg ΦKY

= 1 and χ = 4, the surface Y has the first Chern number 14, geometric
genus 7, and irregularity 0. Hence the surface Y in this case is a canonical surface
whose invariant lies on the Castelnuovo line. We use results given in Ashikaga-
Konno [1] to exclude this case. Finally in Section 5, we study the coarse moduli
space for the surfaces of the case χ = 4, and prove Theorem 3. To prove the
unirationality of the moduli space and the uniqueness of the deformation type,
we describe our surfaces of the case χ = 4 as double planes, which is almost
the same as the description in Ciliberto-Mendes Lopes [8] for the surfaces of the
non-standard case (see also Ciliberto-Francia-Mendes Lopes [6]). Using the two
descriptions of our surfaces, we show that our surfaces of the case χ = 4 in fact
are of the non-standard case for the non-birationality of bicanonical maps.
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Notation and Terminology. Let S be a compact complex manifold of dimen-
sion 2. We denote by c1(S), pg(S), and q(S) the first Chern class, the geometric
genus, and the irregularity of S respectively. The torsion group of S, denoted by
Tors(S), is the torsion part of the Picard group of S. If V is a complex manifold,
KV is a canonical divisor of V . For a coherent sheaf F on V , we denote by Hi(F),
hi(F), and χ(F) the i-th cohomology group, its dimension dimCHi(F), and the
Euler characteristic

∑
(−1)ihi(F) respectively. Let f : V → W be a morphism to

a complex manifold W , and D, a divisor on W . Then f∗(D) and f−1
∗ (D) denote

the total transform and the strict transform respectively of D. The symbol ∼
means the linear equivalence of divisors. We denote by Σd → P1 the Hirzebruch
surface of degree d. The divisors ∆0 and Γ are its minimal section and its fiber
respectively. Let C be a curve on S. We denote by multx C the multiplicity of C

at a point x ∈ S. Let x be a triple point of a reduced curve C on S, and S′ → S,
the blowing-up at x. Assume that the strict transform C ′ of C has an infinitely
near triple point x′. Then the point x is called a [3, 3]-point of C, if the strict
transform C ′′ to S′′, where S′′ → S′ is the blowing-up at x′, has at most negligible
singularities on the exceptional locus of S′′ → S.

2. Statement of the main theorem.

In [17], we obtained a bound for the orders of the torsion groups of minimal
surfaces with c2

1 = 2χ − 1 and χ ≥ 2. In the present paper, we study the case of
2-torsion divisors, and sharpen the bound. Our goals are a bound for the Euler
characteristic χ, a complete description for the surfaces of the case of maximal χ,
and the unirationality of the moduli space for surfaces of this case. The following
three are the main theorems:

Theorem 1. Let X be a minimal surface of general type with c2
1 = 2χ − 1

and torsion group Tors(X) ' Z/2. Then the Euler characteristic χ of the structure
sheaf does not exceed 4.

Theorem 2. Let X be a minimal surface with c2
1 = 2χ − 1, χ = 4, and

torsion group Tors(X) ' Z/2. Then the unramified double cover Y of X admits a
generically two-to-one morphism f onto the Hirzebruch surface Σd of degree d = 0
or 2 satisfying the following conditions:
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i) the action by the Galois group G = Gal(Y/X) ' Z/2 of Y over X induces
one on Σd, of which fixed locus is a set of four points on Σd;

ii) the branch divisor B of f is a member of the linear system | − 4KΣd
| passing

no fixed point of the action by G;
iii) the branch divisor B ∈ | − 4KΣd

| has exactly two [3, 3]-points, and all other
singularities, if any, are negligible ones.

Theorem 3. Any two minimal surfaces with c2
1 = 2χ − 1, χ = 4, and

Tors ' Z/2 are equivalent under deformation of complex structures. The coarse
moduli space for minimal surfaces with these invariants is a unirational variety of
dimension 29.

Theorem 1 sharpens the bound given in [17] into the following:

Theorem 4. Let X be a minimal algebraic surface with c2
1 = 2χ− 1. Then

the following hold :

i) if χ = 2, then ]Tors(X) ≤ 3;
ii) if χ ≥ 3, then ]Tors(X) ≤ 2;
iii) if χ ≥ 5, then ]Tors(X) = 1.

Remark 1. In Theorem 2, we can describe the action by G on Σd more
concretely: if an involution of the Hirzebruch surface Σd has exactly four fixed
points (d: even), then there exists an open cover {Ui}i=0,1 of Σd satisfying Ui =
{(ui, (ti : 1))} = C × P1, u0 = 1/u1, and t0 = ud

1t1, such that this involution is
given by

(u0, t0) 7→ (−u0,−t0). (1)

Remark 2. Theorem 2 asserts that any minimal surface X with c2
1 = 2χ−1,

χ = 4, and Tors(X) ' Z/2 is obtained by the following procedure: 1) set d = 0 or
2; the involution (1) defines an action by G = Z/2 on the Hirzebruch surface Σd;
2) take a reduced member B ∈ | − 4KΣd

| stable under this action that satisfies
the conditions ii) and iii) in Theorem 2; 3) take the double cover of Σd branched
along B, and denote by Y its minimal desingulraization; there exists a unique free
lifting to Y of the action by G on Σd; 4) take the quotient of Y by this free action.

It is not difficult to check that this procedure in fact gives surfaces of the case
χ = 4 for sufficiently general B.

Remark 3. Let Σd be the Hirzebruch surface which appears in Theorem
2. It is obvious from Remarks 1 and 2 that the fibration Σd → P1 induces a
hyperelliptic fibration Y → P1 of genus 3 and that the divisor class of a fiber of
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this fibration is stable under the action by the Galois group G = Gal(Y/X). So
we obtain a hyperelliptic fibration X = Y/G → P1/G of genus 3 with two multiple
fibers 2A1 and 2A2 corresponding to the fixed points of the action by G on P1. As
is explained also in [8, p. 85], the difference A1 − A2 gives a non-trivial 2-torsion
divisor of our surface X.

In what follows, X is a minimal surface with c2
1 = 2χ − 1, χ = λ ≥ 4,

and Tors(X) ' Z/2. We denote by π : Y → X the unramified double cover
corresponding to the torsion group Tors(X). Note that we have assumed λ ≥ 4.
The following lemma follows from the unbranched covering trick.

Lemma 2.1. K2
Y = 2(2λ− 1), pg(Y ) = 2λ− 1, and q(Y ) = 0.

In order to show Theorems 1 and 2, we study the canonical map ΦKY
: Y → Pn

of Y , where n = 2λ − 2. We denote by Z = ΦKY
(Y ) the canonical image of the

surface Y .

Proposition 1. The canonical image Z is a surface. The equality
deg ΦKY

= 1 or 2 holds. Moreover, if deg ΦKY
= 1, then λ = 4.

Proof. Since we have assumed λ ≥ 4, we have

K2
Y − 3pg(Y ) = −(2λ− 1) ≤ −7.

By this together with q(Y ) = 0 and [11, Theorem 1.1], we see that |KY | is not
composite with a pencil. Thus we have

deg ΦKY
≤ K2

Y

deg Z
≤ 2(n + 1)

n− 1
= 2 +

4
n− 1

≤ 2 +
4
5
,

hence deg ΦKY
≤ 2. The second assertion follows from Castelnuovo’s inequality.

¤

If λ = 4, then the Chern invariant of Y is on the Castelnuovo line. Thus we
can use results given in [1] to study the case deg ΦKY

= 1.

3. The case deg ΦKY
= 2.

In this section, we study the case deg ΦKY
= 2. We begin with the study

of the base locus of the canonical system |KY |. Let |M | and F be the variable
part and the fixed part of the linear system |KY |. We take the shortest composite
p : Ỹ → Y of quadric transformations such that the variable part |L| of p∗|M | is
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free from base points, and denote by E the fixed part of p∗|M |. Then we have
p∗|KY | = |L|+ E + p∗F and

K2
Y = L2 + LE + MF + KY F, (2)

where each term of the right hand is a non-negative integer. Note that the eigen-
vectors of the natural action by G = Gal(Y/X) span the space of global section
H0(OY (KY )). This implies that the linear systems |KY |, |M |, and F are spanned
by the pull-backs of divisors on X. Hence, for example, we have MF ≡ 0mod 2,
since π : Y → X is of mapping degree 2. In the same way, we obtain

L2 ≡ LE = −E2 ≡ MF ≡ KY F ≡ 0 mod 2 (3)

(for the detail, see [16, Section 3]).

Proposition 2. Let M , F , L, and E be divisors as above. Then one of the
following holds:

1) |KY | = |L| : the canonical system |KY | is free from base points;
2) L2 = K2

Y − 2, F = 0, and LE = 2;
3-1) L2 = K2

Y − 4, F = 0, and LE = 4;
3-2) L2 = K2

Y − 4, |L| = |M |, KY F = 0, and F 2 = −4.

Proof. First, note that we have L2 = K2
Y , K2

Y −2, or K2
Y −4. This follows

from (3) and [9, Lemma 2]. Second, note that

MF ≡ 0 mod 4. (4)

This follows from the Riemann-Roch theorem, since we have MF = M(M +KY )−
2M2 = M(M +π∗KX)−2M2, deg π = 2, and M ∼ π∗M ′ for a certain divisor M ′

on X. Then the assertion follows from (2), (4), (3), and Hodge’s index theorem.
¤

In case 3-1), the number of the base points of |M | cannot be 1, since the
action by G on Y has no fixed point. Thus in this case, the morphism p : Ỹ → Y

is a composite of four quadric transformations. In the same way, we see that, in
case 2), the morphism p : Ỹ → Y is a blowing-up of Y at two distinct points.
In case 3-2), the divisor F is a sum of two fundamental cycles of rational double
points.

We denote by ΦL : Ỹ → Z ⊂ Pn the morphism associated with the linear
system |L|. The action by G on Y induces one on Ỹ . We study the morphism ΦL

using this action.



58 M. Murakami

3.1. The case |KY | = |L|.
Let us first exclude case 1) in Proposition 2. In what follows, we assume

|KY | = |L|. Thus we have deg Z = n+1. We shall prove the following proposition
in Appendix.

Proposition 3. Let n ≥ 4 be an integer, Z, a non-degenerate surface in
Pn of degree n + 1, and Z ′ → Z, its minimal desingularization. Assume that the
morphism Z ′ → Z is given by a complete linear system |D′| and that q(Z ′) = 0
holds. Then n does not exceed 11. Further, there exist an integer 0 ≤ d ≤ 3 and
a blowing-up r : Z ′ → Σd at (possibly infinitely near) 11 − n points such that
the equivalence D′ ∼ −KZ′ + r∗Γ holds. Here, the divisor Γ is a fiber of the
Hirzebruch surface Σd → P1.

In our case, we have n = 2λ − 2, λ ≥ 4, and q(Y ) = 0. Moreover Z is the
canonical image of Y . Thus our surface Z = ΦKY

(Y ) satisfies all the conditions
in the proposition above. It follows that there exist an integer 0 ≤ d ≤ 3 and a
blowing-up r : Z ′ → Σd at 11 − n points such that the morphism ΦD′ : Z ′ → Z,
where ΦD′ is a morphism corresponding to the complete linear system |D′| =
| −KZ′ + r∗Γ |, gives the minimal desingularization of Z.

Proposition 4. The canonical map ΦKY
: Y → Z lifts to a morphism

f ′ : Y → Z ′. The branch divisor B′ of f ′ is a member of the linear system
|2(2D′ − r∗Γ )| having at most negligible singularities.

Proof. Let us first show the liftability of the canonical map ΦKY
. Let

p′ : Y ′ → Y be the shortest composite of quadric transformations such that the
morphism ΦKY

◦ p′ factors through ΦD′ : Z ′ → Z. We denote by f ′ : Y ′ → Z ′ the
unique morphism satisfying ΦKY

◦p′ = ΦD′◦f ′. Then we have KY ′ ∼ p′∗KY +η for
a certain effective divisor η on Y ′. If f ′∗η = 0, then p′ : Y ′ → Y is an isomorphism.
Thus we only need to show f ′∗η = 0.

So we prove the equality above. Let R′ be the ramification divisor of f ′, and
B′ = f ′∗R

′, its direct image. Then from R′ ∼ KY ′ − f ′∗KZ′ ∼ f ′∗(2D′− r∗Γ )+ η,
we infer

B′ ∼ 2(2D′ − r∗Γ + α), (5)

where α is a divisor satisfying 2α ∼ f ′∗η. We denote by Y ′′ → Z ′ the double cover
branched along B′, and by Y ] → Y ′′ its canonical resolution. To show the equality
f ′∗η = 0, we compute the Euler characteristic χ(OY ]) in two ways and compare
them. Note that dim(ΦKY

◦ p′)(η) = 0, and that any general member of |r∗Γ | is a
0-curve. It follows D′α = D′f ′∗η/2 = 0 and D′(r∗Γ ) = −KZ′(r∗Γ ) = 2. Thus by
(5) and [9, Lemma 6], we obtain
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χ(OY]
) = 2 +

1
2
(2D′ − r∗Γ + α)((2D′ − r∗Γ + α) + KZ′)− β

= 2 +
1
2
(2D′ − r∗Γ + α)(D′ + α)− β

= D′2 + 1− 1
4
(r∗Γ )(f ′∗η) +

1
8
(f ′∗η)2 − β, (6)

where β is a term coming from essential singularities of the branch divisor B′.
Here, we have three inequalities

−1
4
(r∗Γ )(f ′∗η) ≤ 0,

1
8
(f ′∗η)2 ≤ 0, and − β ≤ 0. (7)

The first one follows from the absence of base points of |r∗Γ |, the second one from
D′2 > 0 and D′f ′∗η = 0, and the last one from the definition of β. Meanwhile
we have χ(OY ]) = χ(OY ) = n + 2 = D′2 + 1. Thus by (6) and (7), we obtain
(f ′∗η)2 = 0, from which together with Hodge’s index theorem, we infer f ′∗η = 0.
Hence the canonical map ΦKY

lifts.
The remaining assertion easily follows from the proof above. ¤

Note that the action by G = Gal(Y/X) on Y induces one on Z ′. We can
verify it as follows. Since Z is the canonical image of our surface Y , the action on
Y induces one on Z. Meanwhile the surface Z ′ is the minimal desingularization of
our surface Z. Thus this action on Z induces one on Z ′.

Lemma 3.1. The induced action by G on Z ′ is non-trivial. The fixed locus
of this action has a one-dimensional irreducible component C ′0 satisfying C ′0

2 ≡
1mod 2.

Proof. The first assertion is trivial, since the action on Y has no fixed
point. Let us show the second assertion. Let {z1, . . . , zb} be the set of isolated
fixed points of the action on Z ′, and r′′ : Z ′′ → Z ′ the blowing-up at these b

points. We denote by C ′′i the (−1)-curve lying over zi. Let {C ′1, . . . , C ′a} be the
set of 1-dimensional irreducible components of the fixed locus of the action on Z ′.
We use the same symbol C ′i for the total transform to Z ′′ of the divisor C ′i. Note
that the divisor

∑a
i=1 C ′i +

∑b
i=1 C ′′i has no singularity, since we have G ' Z/2. It

follows that the quotient Z ′′/G is smooth, where the action by G is the lifting of
that on Z ′. We denote by C̄ ′i and C̄ ′′i the image to Z ′′/G of the divisor C ′i and that
of the divisor C ′′i , respectively. Then since the branch divisor

∑a
i=1 C̄ ′i +

∑b
i=1 C̄ ′′i

is linearly equivalent to twice a divisor on Z ′′/G, we have
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a∑

i=1

C ′i
2 − b =

( a∑

i=1

C ′i +
b∑

i=1

C ′′i

)2

=
( a∑

i=1

C̄ ′i +
b∑

i=1

C̄ ′′i

)2/
2 ≡ 0 mod 2.

Meanwhile, since KZ′′ is linearly equivalent to a pull-back of a divisor on Z ′′/G,
we have K2

Z′′ = K2
Z′ − b = n− 3− b ≡ 0mod 2, hence b ≡ 1mod 2. Thus we infer∑a

i=1 C ′i
2 ≡ 1mod 2, which implies the second assertion. ¤

Lemma 3.2. Let C ′0 be an irreducible curve as in Lemma 3.1. Then B′C ′0 6= 0
holds.

Proof. We derive a contradiction by assuming B′C ′0 = 0. Assume that
B′C ′0 = 0 holds. Then by Proposition 4, we have

(2D′ − r∗Γ )C ′0 = (−2KZ′ + r∗Γ )C ′0 = 0.

If (r∗Γ )C ′0 = 0, then by the equality above, we obtain KZ′C
′
0 = 0, which contra-

dicts C ′0
2 ≡ 1mod 2. Thus we have (r∗Γ )C ′0 > 0, hence −2KZ′C

′
0 = −(r∗Γ )C ′0 <

0. It follows C ′0 is a fixed component of the anti-canonical system | −KZ′ |. Then
since −KΣd

∼ 2∆0+(2+d)Γ , we obtain (r∗Γ )C ′0 ≤ 2, hence (r∗Γ )C ′0 = 2KZ′C
′
0 =

2. Thus r∗C ′0 ∼ 2∆0 + cΓ holds for a certain integer c ≥ 1. Meanwhile since
0 ≤ d ≤ 3, we have h0(OZ′(−KZ′)) ≥ h0(OΣd

(−KΣd
))− (11− n) = n− 2. Thus

we obtain

n− 2 ≤ h0(OZ′(−KZ′)) = h0(OZ′(−KZ′ − C ′0))

≤ h0(OΣd
(−KΣd

− r∗C ′0)) = 3 + d− c,

hence c− d ≤ 5− n < 0. It follows (r∗C ′0)∆0 = (c− d)− d < 0, which contradicts
the irreducibility of C ′0. Hence B′C ′0 6= 0 holds. ¤

Now let us exclude case 1) in Proposition 2.

Proposition 5. Case 1) in Proposition 2 does not occur.

Take an irreducible curve C ′0 as in Lemma 3.1. Then by Lemma 3.2, we have
B′∩C ′0 6= ∅. So let us take a point x ∈ B′∩C ′0. Then the preimage f ′−1(x) ⊂ Y is
stable under the action by G on Y . By Proposition 4, however, the set f ′−1(x) is
either a point or a base space of the fundamental cycle of a rational double point.
This implies that the action by G on f ′−1(x) has a fixed point, which contradicts
the definition of π : Y → X. Thus we have the assertion. ¤
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3.2. The case L2 = K2
Y − 4.

Next we exclude cases 3-1) and 3-2) in Proposition 2. In these two cases, we
have L2 = 2(n−1); hence the canonical image Z is a non-degenerate surface in Pn

of minimal degree n − 1. Thus from the well-known classification, it follows that
our Z is a image of the Hirzebruch surface Z ′ = Σd by the morphism associated
with the complete linear system |D′| = |∆0 +(n−1+d)/2Γ |, where 0 ≤ d ≤ n−1
and d ≡ n− 1mod 2 (see [18] or [10, Lemma 1.2]). Let us denote this morphism
by ΦD′ : Z ′ → Z ⊂ Pn. Then ΦD′ is an embedding if d < n − 1, and is the
contraction of ∆0 if d = n− 1. Note that in the later case, our Z is a cone over a
rational curve embedded in Pn−1 by OP1(n− 1).

For the case d < n − 1, the lemma below is trivial. For the case d = n − 1,
we can give a proof by the same method as in [10, Lemma 1.5].

Lemma 3.3. The morphism ΦL : Ỹ → Z lifts to a morphism f ′ : Ỹ → Z ′.

By the same argument as in the exclusion of case 1), we see that the action
by G on Y induces one on Z ′.

Let us recall the morphism p : Ỹ → Y and the base locus of |KY |. In case
3-1) in Proposition 2, the morphism p is the blowing-up at (possibly infinitely
near) four points, which we shall call y1, . . . , y4. Let Ei denote the total transform
to Ỹ of the (−1)-curve corresponding to yi. Then we have E =

∑4
i=1 Ei and

LEi = 1 (1 ≤ i ≤ 4). Since the action by G on the set of base points of |M | has no
fixed point, we have only two cases: i) the case where y1, . . . , y4 are four distinct
points on Ỹ , and ii) the case where y1 and y2 are distinct points on Ỹ , and yi+2

is infinitely near to yi for i = 1, 2. In the later case, the divisor E′
i = Ei −Ei+2 is

a (−2)-curve satisfying LE′
i = 0.

Meanwhile in case 3-2), the morphism p : Ỹ → Y is an isomorphism. Hence
we may assume Ỹ = Y . We have |M | = |L| and F =

∑
i=1,2 Fi, where Fi is a

fundamental cycle of a rational double point. Since the action on Y has no fixed
point, we have F1 ∩ F2 = ∅; hence the generator of G maps F1 onto F2. It follows
LF1 = LF2 = 2.

In what follows, we put T = 2E for case 3-1), and T = F for case 3-2). Then
we have

KỸ ∼ L + T.

Lemma 3.4. Let T be the divisor above. Then Γ (f ′∗T ) ≡ 2mod 4 holds.

Proof. Since d ≡ n − 1 ≡ 1mod 2, we have d 6= 0. Thus the action by G

on Z ′ = Σd induces one on P1 via the natural fibration Σd → P1 of the Hirzebruch
surface. It follows there exists a member Γ0 ∈ |Γ | stable under the action by G.
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Let us take a blowing-up X̃ → X such that Ỹ = X̃ ×X Y holds. The base change
π̃ : Ỹ → X̃ is an unramified double cover satisfying Gal(Ỹ /X̃) ' Gal(Y/X). Then
since f ′∗Γ0 is stable under the action by G on Ỹ , the divisor f ′∗Γ0 is a pull-back
by π̃ of a certain divisor on X̃. Thus from π̃∗KX̃ ∼ KỸ and the Riemann-Roch
theorem, we infer

(f ′∗Γ0)2 + (f ′∗Γ0)KỸ = (f ′∗Γ0)(L + T ) = 2 + (f ′∗Γ0)T ≡ 0 mod 4.

Hence we have the assertion. ¤

Lemma 3.5. The morphism f ′ : Ỹ → Z ′ contracts no (−1)-curve on Ỹ .
Further, the following hold :

i) if C is a (−1)-curve on Ỹ satisfying LC = 1, then f ′∗C ∼ Γ ;
ii) if C is a (−2)-curve on Ỹ satisfying LC = 0, then f ′ contracts C.

Proof. The first assertion trivially follows from the definition of p : Ỹ → Y .
In order to prove i) and ii), we put f ′∗C ∼ a∆0+bΓ . We denote by θ the involution
of Ỹ over Z ′. This involution exists, since f ′ contracts no (−1)-curve.

First, let us prove the assertion i). Assume that C is a (−1)-curve on Ỹ

satisfying LC = 1. Then since L ∼ f ′∗D′, we have

(∆0 + dΓ )f ′∗C +
n− 1− d

2
Γf ′∗C = 1, (8)

where each term of the left hand is a non-negative integer. Thus we obtain (∆0 +
dΓ )f ′∗C = 0 or 1. Assume that (∆0 + dΓ )f ′∗C = 1. Then we have f ′∗C ∼ a∆0 + Γ

and ((n− 1− d)/2)a = 0. Thus, in this case, we only have to show a = 0, which is
trivial if n− 1− d 6= 0. If n− 1− d = 0, then by the irreducibility of C, we have
∆0f

′
∗C = 1 − a(n − 1) ≥ 0, hence a = 0. Assume next that (∆0 + dΓ )f ′∗C = 0.

Then by (8), we obtain f ′∗C = ∆0 and d = n− 3. We exclude this case as follows.
We have f ′∗∆0 = C + θ(C) + ξ for a certain effective divisor ξ exceptional with
respect to f ′. It follows

(f ′∗∆0)2 = (C + θ(C) + ξ)(C + θ(C)) ≥ C2 + θ(C)2 + 2Cθ(C) ≥ −4,

hence −2(n− 3) ≥ −4. This contradicts λ ≥ 4. Thus we have (∆0 + dΓ )f ′∗C 6= 0,
which completes the proof of the assertion i).

Next, let us prove the assertion ii). Assume that f ′(C) is a curve. Then since
ΦD′ contracts f ′(C), we have d = n − 1 and f ′(C) = ∆0. Note that we have
f ′∗C = ∆0 or 2∆0, since deg f ′ = 2. Assume that f ′∗C = ∆0. Then we have
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f ′∗∆0 = C + θ(C) + ξ for a certain effective divisor ξ exceptional with respect
to f ′. Then by the same method as in the proof of i), we obtain −2(n − 1) =
(f ′∗∆0)2 ≥ −8, which contradicts λ ≥ 4. Assume next that f ′∗C = 2∆0. Then we
have f ′∗∆0 = C + ξ for a certain effective divisor ξ exceptional with respect to f ′.
Then again by the same method, we obtain −2(n − 1) ≥ −2, which contradicts
λ ≥ 4. Thus we have the assertion ii). ¤

If our Y is of case 3-1) in Proposition 2, then by the lemma above we have
f ′∗T = 2f ′∗E ∼ 8Γ , which contradicts Lemma 3.4. Thus we have the following:

Proposition 6. Case 3-1) in Proposition 2 does not occur.

So in what follows, we assume that our Y is of case 3-2) in Proposition 2.

Lemma 3.6. Let C be an irreducible component of F1 satisfying D′f ′∗C > 0.
Then one of the following holds:

i) D′f ′∗C = 1 and f ′∗C ∼ Γ ;
ii) D′f ′∗C = 2 and f ′∗C ∼ 2Γ ;
iii) D′f ′∗C = 2, f ′∗C = ∆0, and d = n− 5 = 1.

Proof. First, note that if f ′(C) = ∆0, then we have C 6= θ(C), where θ

is the involution of Ỹ = Y over Z ′. We can verify this as follows. Let ι be the
generator of the Galois group G, and ι|Z′ , the corresponding automorphism of Z ′.
Then since d 6= 0, we have f ′(ι(C)) = ι|Z′(f ′(C)) = ∆0 = f ′(C). This means
C 6= θ(C) = ι(C), since we have ι(C) ⊂ F2 and F1 ∩ F2 = ∅. Next, note that
C is a (−2) curve satisfying 0 < D′f ′∗C ≤ D′f ′∗F1 = 2. Then we can prove the
assertion by the same method as in the proof of Lemma 3.5. ¤

By D′f ′∗F1 = 2 together with Lemmas 3.5 and 3.6, we see that either of the
following holds:

a) f ′∗F1 = f ′∗(ι(F2)) ∼ 2Γ ;
b) f ′∗F1 = f ′∗(ι(F2)) = ∆0, and d = n− 5 = 1,

where ι is the generator of the Galois group of G. Case a) above, however, con-
tradicts the assertion in Lemma 3.4. Thus we have the following:

Lemma 3.7. f ′∗F1 = f ′∗F2 = ∆0 and d = n− 5 = 1.

Now let us study the morphism f ′ : Ỹ = Y → Z ′ = Σ1. Let R′ be the
ramification divisor of f ′, and B′ = f ′∗R

′, the branch divisor. Then by the lemma
above we obtain
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R′ ∼ f ′∗(3∆0 + 6Γ ) +
∑

i=1,2

Fi and B′ ∼ 2(4∆0 + 6Γ ). (9)

We take the double cover of Z ′ with branch divisor B′, and denote by Y ] its
canonical resolution. Let us recall how to obtain the canonical resolution. Set
Z ′0 = Z ′ and B′

0 = B′. We define Z ′i and B′
i inductively as follows. Choose a

singularity zi, if any, of B′
i−1, and take the blowing-up q′i : Z ′i → Z ′i−1 at this point.

We denote by εi the (−1)-curve corresponding to zi. Let mi be the multiplicity of
B′

i−1 at zi, and [mi/2], the largest integer not exceeding mi/2. Then we define B′
i

by B′
i = q′i

∗
B′

i−1 − 2[mi/2]εi. For a certain s ≥ 0, the divisor B′
s is non-singular.

So take the double cover f ] : Ỹs → Z] = Z ′s with branch divisor B] = B′
s. Then

this Ỹs is our canonical resolution Y ]. Put q′ = (q′1 ◦ q′2 ◦ · · · ◦ q′s) : Z] → Z ′. There
exists a natural birational morphism p] : Y ] → Ỹ satisfying q′ ◦ f ] = f ′ ◦ p]. We
use the same symbol εi for the total transform to Z] of the (−1)-curve εi ⊂ Z ′i.
Note, for our case, the action by the Galois group G = Gal(Y/X) on Ỹ induces
one on Z] and one on Y ]. This action on Y ] is free.

By the same method as in [9, Section 2], we obtain the following:

Proposition 7. There exist i1 and i2 (i1 < i2) satisfying [mi1/2] =
[mi2/2] = 2. For any i 6= i1, i2, the equality [mi/2] = 1 holds. The morphism
p] : Y ] → Ỹ = Y is a composite of two quadric transformations.

Thus the branch divisor B′ has an essential singularity. By the proposition
above, we obtain

KY ] ∼ f ]∗(q′∗(2∆0 + 3Γ )− εi1 − εi2). (10)

Lemma 3.8. Every essential singularity of B′ lies on ∆0.

Proof. Since f ′ contracts no (−1)-curve, f ′∗B′ − 2R′ = 2ζ ′ holds for a
certain effective divisor ζ ′ on Ỹ . This ζ ′ satisfies

2ζ ′ ∼ 2
(

f ′∗(∆0)−
∑

i=1,2

Fi

)
, (11)

since we have (9). Let ζ ′ =
∑

ζ ′i be the decomposition into connected components.
Note that f ′ maps each ζ ′i to a point on Z ′. Then, for any i satisfying f ′(ζ ′i) /∈ ∆0,
we infer from (11) that ζ ′i

2 = ζ ′iζ
′ = 0, hence ζ ′i = 0, which implies the assertion.

¤

Lemma 3.9. Let η] ∼ KY ] −p]∗KỸ be the exceptional divisor corresponding
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to p] : Y ] → Ỹ . Then the fixed part of |KY ] | is given by
∑

i=1,2 p]∗Fi+η]. Further,
the linear equivalence

∑
i=1,2 p]∗Fi + η] ∼ f ]∗(q′∗∆0 − εi1 − εi2) holds, where i1

and i2 are integers given in Proposition 7.

Proof. The first assertion follows from |KY ] | = |KỸ | + η], since |L| has
no base point. The second assertion follows from (10) and

∑
p]∗Fi + η] ∼ KY ] −

p]∗L ∼ KY ] − p]∗f ′∗D′. ¤

Lemma 3.10. There exists a member Γ1 ∈ |Γ | contained in the fixed locus
of the action by G on Z ′ = Σ1.

Proof. The action by G on Z ′ = Σ1 induces one on P1 via the natural
fibration Z ′ = Σ1 → P1 of the Hirzebruch surface. Let us show that this induced
action on P1 is non-trivial. There exists a member ∆1 ∈ |∆0 + Γ | stable under
the action by G satisfying ∆1 ∩ ∆0 = ∅. Assume that the induced action on P1

is trivial. Then this ∆1 is contained in the fixed locus of the action by G on
Z ′. From this together with B′∆1 = 12 and Lemma 3.8, it follows that B′ has
a smooth point or a negligible singularity that is stable under the action by G.
This, however, leads us to a contradiction by the same argument as in the proof of
Proposition 5. Thus the induced action on P1 is non-trivial. Now take two fibers
of Z ′ → P1 that lie over the fixed points of the action on P1. Since Z ′ = Σ1, one
of these two fibers are contained in the fixed locus of the action by G. ¤

Let us exclude case 3-2) in Proposition 2.

Proposition 8. Case 3-2) in Proposition 2 does not occur.

Proof. Let Γ1 ∈ |Γ | be the member as in Lemma 3.10. By (9), we have
B′Γ1 = 8, hence B′ ∩ Γ1 6= ∅. If a smooth point or a negligible singularity of B′

lies on B′∩Γ1, we can derive a contradiction by the same argument as in the proof
of Proposition 5. Thus by Lemma 3.8, we see that B′ ∩ Γ1 = ∆0 ∩ Γ1 and that
this point is an essential singularity of B′. So we put ∆0 ∩ Γ1 = {z1}, where the
point z1 is the center of the first blowing-up q′1 : Z ′1 → Z ′0 = Z ′ in the procedure to
obtain the canonical resolution Y ]. Then, by Proposition 7, we have 3 ≤ m1 ≤ 5.
If m1 is odd, then the strict transform ε]

1 ' P1 ⊂ Z] of the exceptional curve
ε1 ⊂ Z ′1 is a component of B] stable under the action by G. This, however, leads
us to a contradiction, since the action by G on Y ] is free. It follows m1 ≡ 0mod 2,
hence m1 = 4. Thus we have B′

1 = q′1
∗
B′ − 4ε1 and B′

1q
′
1
−1
∗ (Γ1) = 4, where the

divisor q′1
−1
∗ (Γ1) is the strict transform of Γ1 by q′1 : Z ′1 → Z ′. Note that the

action by G on Z ′ induces one on Z ′1, and that the strict transform q′1
−1
∗ (Γ1) is

contained in the fixed locus of this induced action. By the same argument as that
on Γ1 above, we see that the point B′

1 ∩ q′1
−1
∗ (Γ1) = ε1 ∩ q′1

−1
∗ (Γ1) is an essential
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singularity of B′
1, that we can set ε1 ∩ q′1

−1
∗ (Γ1) = {z2}, where the point z2 is the

center of the second blowing-up q′2 : Z ′2 → Z ′1, and that m2 = 4, where m2 is the
multiplicity of B′

1 at z2. Thus we have i1 = 1 and i2 = 2, where i1 and i2 are the
integers given in Proposition 7.

Now we derive a contradiction. Let Γ ]
1 be the strict transform to Z] of the

divisor Γ1. Note that we have z1 ∈ Γ1 and z2 ∈ q′1
−1
∗ (Γ1). Thus by Lemma 3.9,

we obtain

f ]
∗

( ∑
p]∗Fi + η]

)
Γ ]

1 = 2
(
∆0Γ + ε1

2 + ε2
2
)

= −2 < 0.

From this together with Lemma 3.7, we infer that the divisor Γ ]
1 is the image by f ]

of an irreducible component of η], which contradicts the equality dim(q′◦f ])(η]) =
dim(f ′ ◦ p])(η]) = 0. Hence we have the assertion. ¤

3.3. The case L2 = K2
Y − 2.

Finally, we study case 2) in Proposition 2. It will turn out that λ = 4 in this
case, and that the surfaces of this case have the structure as in the statement of
Theorem 2. In what follows, we assume that our Y is of case 2) in Proposition
2, hence deg Z = L2/2 = n. Note that in this case, the morphism p : Ỹ → Y

is a blowing-up at two distinct points on Y . Let E1 and E2 denote the (−1)-
curves corresponding to the centers of this blowing-up. Then we have p∗|KY | =
|L| + ∑

i=1,2 Ei and LE1 = LE2 = 1. The Galois group G = Gal(Y/X) acts
transitively on the set {E1, E2}. We denote by Z ′ the minimal desingularization
of Z.

Lemma 3.11. There exists a blowing-up r : Z ′ → P2 at (possibly infinitely
near) 9−n points such that the anticanonical morphism Z ′ → Z ⊂ Pn of Z ′ gives
the minimal desingularization of Z.

Proof. Note that our Z = ΦKY
(Y ) is a non-degenerate surface in Pn of

degree n. Hence our Z is one of the following (see [18] or [12, Section 3]):

i) a projection of a surface of degree n in Pn+1 from a point outside the surface;
ii) the Veronese embedding into P8 of a quadric in P3 (n = 8);
iii) the anticanonical image of P2 blown up at 9− n points;
iv) a cone over an elliptic curve in Pn−1 of degree n.

Since Z ′ → Z is given by a complete linear system, case i) above is impossible
for our case. Since q(Y ) = 0, case iv) also is impossible. Thus it suffices to exclude
case ii). In case ii), however, the divisor L is linearly equivalent to twice a divisor
on Ỹ , which contradicts the equality LEi = 1. Hence we have the assertion. ¤
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In what follows, we put D′ = −KZ′ and denote by ΦD′ : Z ′ → Z ⊂ Pn the
anticanonical map of Z ′. Note that the action by G = Gal(Y/X) on Ỹ induces
one on Z ′.

Lemma 3.12. If the surface Z ′ has no (−2)-curve, or if every (−2)-curve
on Z ′ is stable under the action by G on Z ′, then ΦL : Ỹ → Z ⊂ Pn lifts to a
morphism f ′ : Ỹ → Z ′.

Proof. Take the shortest composite p′ : Y ′ → Ỹ of quadric transformations
such that Y ′ admits a morphism f ′ : Y ′ → Z ′ satisfying ΦL ◦ p′ = ΦD′ ◦ f ′. Then
the action by G on Ỹ induces one on Y ′. Note that f ′ contracts no (−1)-curve.
This follows from LEi = 1 and the definition of p′, since the surface Y is of
general type. To obtain the assertion, we only need to show that p′ : Y ′ → Ỹ is an
isomorphism. Assume that p′ : Y ′ → Ỹ is not an isomorphism. Then there exists
a (−1)-curve C on Y ′ exceptional with respect to p′. Since the anticanonical map
ΦD′ : Z ′ → Z ⊂ Pn contracts f ′(C) to a point, the curve f ′(C) is a (−2)-curve on
Z ′, hence, by the assumption in the statement, stable under the action by G on
Z ′. Meanwhile by the same method as in Lemma 3.5, we see that f ′∗C = f ′(C)
or 2f ′(C), and that if f ′∗C = f ′(C), then C is a component of the ramification
divisor of f ′. It follows that C ' P1 is stable under the action by G on Y ′, which
implies the existence of fixed points of this action. This, however, contradicts the
definition of π : Y → X. Thus we have the assertion. ¤

Lemma 3.13. Assume that ΦL : Ỹ → Z lifts to a morphism f ′ : Ỹ → Z ′.
Then f ′(E1) and f ′(E2) are (−1)-curves on Z ′. Further, the following hold :

i) f ′∗Ei = f ′(Ei) for i = 1, 2;
ii) the ramification divisor R′ of f ′ satisfies R′ ∼ f ′∗(−2KZ′) + 2

∑
i=1,2 Ei;

iii) the branch divisor B′ of f ′ satisfies B′ ∼ −4KZ′ + 2
∑

i=1,2 f ′(Ei);
iv) f ′(E1) and f ′(E2) are distinct components of the branch divisor B′.

Proof. The first assertion and the assertion i) follow from EiL =
Eif

′∗D′ = 1, which implies ΦL(Ei) is a line in Pn. The assertions ii) and iii)
follow from D′ ∼ −KZ′ and the assertion i). So it suffices to prove the asser-
tion iv). Let us prove the assertion iv). Let θ be the involution of Ỹ over Z ′.
Since Y is of general type, the divisors E1 and E2 are the only (−1)-curves on
Ỹ . It follows that if f ′(E1) 6= f ′(E2), then θ(Ei) = Ei holds for i = 1, 2. Thus
we only need to show f ′(E1) 6= f ′(E2). Assume that f ′(E1) = f ′(E2). Then
f ′∗(f ′(E1)) = f ′∗(f ′(E2)) = E1 + E2 + ξ holds for a certain effective divisor ξ

exceptional with respect to f ′. Since we have E1 ∩ E2 = ∅, we see, by the same
method as in the proof of Lemma 3.5, that ξ2 = −(E1 +E2)ξ = 0, hence ξ = 0. It
follows f ′∗(f ′(E1)) = f ′∗(f ′(E2)) = E1 + E2. From this together with the asser-



68 M. Murakami

tions ii) and iii), we infer f ′∗B′ − 2R′ = 0, which implies that the branch divisor
B′ has at most negligible singularities. Thus by [9, Lemma 6], we obtain

χ(OỸ ) = 2χ(O′Z) +
1
2

(
− 2KZ′ +

∑
f ′(Ei)

)(
−KZ′ +

∑
f ′(Ei)

)
= n + 3,

which contradicts χ(OY ) = n+2. Thus we have f ′(E1) 6= f ′(E2), which completes
the proof of the assertion iv). ¤

Lemma 3.14. If the surface Y is of case 2) in Proposition 2, then λ = 4.

Proof. By Lemma 3.11, we have n = 2λ − 2 ≤ 9, hence λ ≤ 5. Thus
we only need to exclude the case λ = 5. Assume λ = 5. Then r : Z ′ → P2 is
a blowing-up at one pint, hence Z ′ = Σ1. Thus by Lemmas 3.12 and 3.13, we
see that ΦL : Ỹ → Z lifts to a morphism f ′ : Ỹ → Z ′, and that f ′(Ei)’s are
(−1)-curves. The minimal section ∆0, however, is the unique (−1)-curve on the
Hirzebruch surface Σ1. Thus we have f ′(E1) = f ′(E2) = ∆0, which contradicts
Lemma 3.13. Hence we have the assertion. ¤

Thus we only need to study the case λ = 4. In what follows we assume λ = 4,
hence n = 6. In this case, the morphism r : Z ′ → P2 is a blowing-up at three
points.

Lemma 3.15. Assume that ΦL : Ỹ → Z lifts to a morphism f ′ : Ỹ → Z ′, and
that f ′(E1) ∩ f ′(E2) = ∅ holds. Let r′ : Z ′ → W denote the blowing-down of the
two (−1)-curves f ′(E1) and f ′(E2). Then the branch divisor B of the morphism
r′ ◦ f ′ : Ỹ → W is a member of the linear system | − 4KW | having [3, 3]-points
at r′(f ′(E1)) and r′(f ′(E2)). Except for these two [3, 3]-points, the branch divisor
B has at most negligible singularities. Further, the surface Y gives the minimal
desingularization of the double cover (of the surface W ) with branch divisor B.

Proof. Note that f ′ contracts no (−1)-curve. Thus the divisor f ′∗B′ −
2R′, linearly equivalent to 2(

∑
f ′∗(f ′(Ei)) − 2

∑
Ei) by Lemma 3.13, is twice a

certain effective divisor ζ on Ỹ . We have ζEj = (
∑

f ′∗(f ′(Ei))− 2
∑

Ei)Ej = 1,
hence ](ζ ∩ Ej) = 1 for j = 1, 2. So we put {zj} = f ′(ζ ∩ Ej). Then the
point zj ∈ f ′(Ej), where 1 ≤ j ≤ 2, is an essential singularity of the branch
divisor B′. Meanwhile, by Lemma 3.13, we see that the divisor B′ −∑

f ′(Ei) is
effective, and that (B′ − ∑

f ′(Ei))f ′(Ej) = 3 for each j = 1, 2, from which we
infer multzj

(B′−∑
f ′(Ei)) ≤ 3. If, moreover, we have multzj

(B′−∑
f ′(Ei)) ≤ 2,

then zj is a negligible singularity of the branch divisor B′; the singularity zj of B′

decomposes into a sum of points of multiplicity at most 2 by the blowing-up at zj .
Thus we obtain multzj (B

′−∑
f ′(Ei)) = 3, hence (B′−∑

f ′(Ei))∩f ′(Ej) = {zj}
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and multzj
B′ = 4. Let q1 ◦ q2 : Z ′2 → Z ′ be the blowing-up at z1 and z2, and

εj = (q1◦q2)−1(zj), the (−1)-curve corresponding to zj . Then by the same method
as in [9, Section 2], we infer that the divisor B′

2 = (q1 ◦ q2)∗B′ − 4
∑

i=1,2 εi

has at most negligible singularities, and that the surface Ỹ gives the canonical
resolution of the double cover with branch divisor B′. It follows that B = r′∗B

′

has [3, 3]-points at r′(f ′(E1)) and r′(f ′(E2)), that the divisor B has no essential
singularity except for these two [3, 3]-points, and that the surface Y gives the
minimal desingularization of the double cover with branch divisor B. Now all we
have left is the linear equivalence B ∼ −4KW , which, however, is trivial by iii) in
Lemma 3.13. ¤

Lemma 3.16. Let r′ : Z ′ → W be the blowing-down given in Lemma 3.15.
Then the surface W is the Hirzebruch surface Σd of degree d = 0 or 2. The action
by G = Gal(Y/X) on Z ′ induces one on W , of which fixed locus is a set of four
isolated points. Further, none of these four fixed points lies on the branch divisor
B.

Proof. The action by G on Z ′ induces one on W , since the divisor f ′(E1)+
f ′(E2) is stable under the action by G. Note that the anticanonical system |−KZ′ |
has no fixed component. From this together with K2

W = K2
Z + 2 = 8, we see that

W = Σd for a certain integer 0 ≤ d ≤ 2.
Let us show that the class of Γ , a fiber of the Hirzebruch surface W = Σd →

P1, is stable under the action by G on W . If the class of Γ is not stable, then
we see that d = 0 and that the generator of G maps Γ to a member of the linear
system |∆0|. It follows that there exists an irreducible member ∆ ∈ |∆0 + Γ |
contained in the fixed locus of the action by G on W . We have ∆ ∩ B 6= ∅,
since ∆ is a 2-curve. Meanwhile since the Galois group G acts transitively on the
set {r′(f ′(E1)), r′(f ′(E2))}, neither r′(f ′(E1)) nor r′(f ′(E2)) lies on ∆. Thus by
Lemma 3.15, every point in ∆ ∩ B is at most a negligible singularity of B. Then
the same argument as in the proof of Proposition 5 leads us to a contradiction.
Hence the class of Γ is stable.

Now let us show the assertions. The argument above shows that the action
by G on W induces one on P1 via the natural fibration of the Hirzebruch surface
W = Σd → P1. Note that if this induced action on P1 is trivial, then there exists
an irreducible member ∆1 ∈ |∆0 + dΓ | contained in the fixed locus of the action
by G on W , which, together with the same argument as in the case of ∆ above,
leads us to a contradiction. Thus the induced action on P1 is non-trivial. It follows
that |Γ | has exactly two members stable under the action on W , which we shall
call Γ1 and Γ2. The same argument as in the case of ∆ above shows that the
induced action on Γi is non-trivial for each i = 1, 2. Thus we see that d 6= 1, and
that if d = 0 or 2, then the fixed locus of the induced action on W is a set of four
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isolated points. The absence of the fixed points lying on B follows from the same
argument as in the case of ∆ above. ¤

By Lemmas 3.15 and 3.16, we see that if ΦL lifts to f ′ : Ỹ → Z ′, and if
f ′(E1) ∩ f ′(E2) = ∅, then our surface X has the structure as in Theorem 2. Let
us check that these two conditions are in fact satisfied. To do this, we study the
arrangement of (−1)-curves and (−2)-curves on Z ′, and use Lemmas 3.12 and
3.13.

Let ri : Z ′i → Z ′i−1, where −2 ≤ i ≤ 0, be the blowing-up such that r =
(r−2 ◦ r−1 ◦ r0) : Z ′0 = Z ′ → Z ′−3 = P2 holds. We denote by zi ∈ Z ′i−1 and
εi = r−1

i (zi) the center of the blowing-up ri and its corresponding (−1)-curve,
respectively. For each −2 ≤ i ≤ 0, we denote by ε′i the strict transform to Z ′

of the exceptional curve εi. For the total transform to Z ′ of εi, we use the same
symbol εi.

Lemma 3.17. Let m ≤ 2 be a non-negative integer, and C, a (−m)-curve
on Z ′ not exceptional with respect to r : Z ′ → P2. Then C is a strict transform to
Z ′ of a line on P2 passing exactly m + 1 of the tree points zi’s (−2 ≤ i ≤ 0).

Proof. Let l be a line on P2. Then we have C ∼ m0r
∗(l)−∑0

i=−2 niεi for
certain integers m0 ≥ 1 and ni ≥ 0’s. Note that C2 = −m and −KZ′C = 2−m,
since C is a (−m)-curve. Thus we have

m2
0 −

0∑

i=−2

n2
i = −m, 3m0 −

0∑

i=−2

ni = −m + 2. (12)

From these equalities, we infer

5
0∑

i=−2

n2
i +

∑

−2≤i<j≤0

(ni − nj)2 +
0∑

i=−2

(ni + m− 2)2 = 9m + 4(m− 2)2 ≤ 18,

hence
∑0

i=−2 n2
i ≤ 3. Thus we have n2

i = ni for any −2 ≤ i ≤ 0. By this together
with the equalities (12), we obtain m0 = 1 and

∑0
i=−2 ni = m + 1. Thus we have

the assertion. ¤

We study the arrangement of (−1)-curves and (−2)-curves on Z ′ according
to the configuration of the centers zi’s of the blowing-up r : Z ′ → P2. First, we
study the case where no two of the centers z−2, z−1, and z0 are infinitely near.
This case is divided into two cases: case 2-1-1) and case 2-1-2).

Case 2-1-1): the case where the centers z−2, z−1, and z0 are not collinear.
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In this case, the surface Z ′ has no (−2)-curve. Thus ΦL lifts to a morphism
f ′ : Ỹ → Z ′. There exist exactly six (−1)-curves: ε−2, ε−1, ε0, r−1

∗ (l−2,−1),
r−1
∗ (l−1,0), and r−1

∗ (l−2,0), where li,j denotes the line on P2 passing zi and zj . Let
(X0 : X1 : X2) be homogeneous coordinates of P2 satisfying z−2 = (1 : 0 : 0),
z−1 = (0 : 1 : 0), and z0 = (0 : 0 : 1). For each (a, b) ∈ C× × C×, we denote
by ϕ(a,b) the automorphism of Z ′ corresponding to the projective transformation
(X0 : X1 : X2) 7→ (X0 : aX1 : bX2).

Let us study the induced action by G on Z ′. Let Aut(Z ′) be the group of
analytic automorphisms of the surface Z ′, and D6, the dihedral group of degree 6.
Then we have a short exact sequence

0 → C× × C× → Aut(Z ′) → D6 → 0,

where the morphism C× × C× → Aut(Z ′) is given by (a, b) 7→ ϕ(a,b), and the
morphism Aut(Z ′) → D6 corresponds to the transitions of six (−1)-curves on
Z ′. Let ϕσ and ϕτ be the automorphisms of Z ′ corresponding to the Cremona
transformation (X0 : X1 : X2) 7→ (X2X0 : X0X1 : X1X2) and the morphism
(X0 : X1 : X2) 7→ (X0 : X2 : X1), respectively. Then we have

(ϕσ)6 = idZ′ (ϕτ )2 = idZ′ ϕσ ◦ ϕτ ◦ ϕσ ◦ ϕτ = idZ′ .

Thus the short exact sequence above splits. We denote by σ and τ the image by
Aut(Z ′) → D6 of ϕσ and ϕτ , respectively. We have a group homomorphism G →
Aut(Z ′) corresponding to the action by G on Z ′. Composing this homomorphism
with Aut(Z ′) → D6, we obtain a group homomorphism α : G → D6. Note that
by Lemma 3.13, the morphism α is an injection of G into D6. Hence the image
α(G) is conjugate to 〈τ〉, 〈σ3τ〉, or 〈σ3〉 in D6.

Assume that the image α(G) is conjugate to 〈τ〉 in D6. Replacing the
morphism r : Z ′ → P2 if necessary, we may assume that α(G) = 〈τ〉. Then
since the Galois group G acts transitively on the set {f ′(E1), f ′(E2)}, we have
{f ′(E1), f ′(E2)} = {r−1

∗ (l−2,−1), r−1
∗ (l−2,0)} or {ε−1, ε0}, hence f ′(E1)∩f ′(E2) =

∅. It follows that the surface W , where r′ : Z ′ → W is the blowing-down of the
two (−1)-curves f ′(E1) and f ′(E2), is isomorphic to the Hirzebruch surface Σ1,
which contradicts Lemma 3.16. Thus α(G) is not conjugate to 〈τ〉.

Assume that the image α(G) is conjugate to 〈σ3τ〉 in D6. Replacing the
morphism r : Z ′ → P2 if necessary, we may assume that α(G) = 〈σ3τ〉. Then
the blowing-down of the two (−1)-curves ε−2 and r−1

∗ (l−1,0) gives a birational
morphism r′′ : Z ′ → Σ0 = P1 × P1 satisfying r′′∗ (ε0) ∼ r′′∗ (r

−1
∗ (l−2,−1)) ∼ ∆0 and

r′′∗ (ε−1) ∼ r′′∗ (r
−1
∗ (l−2,0)) ∼ Γ . Note that the action by G on Z ′ induces one on

Σ0 = P1 × P1. We take homogeneous coordinates ((ξ0 : ξ1), (η0 : η1)) of Σ0 =
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P1 × P1 in such a way that r′′(ε−2) = ((1 : 0), (1 : 0)) and r′′(r−1
∗ (l−1,0)) = ((0 :

1), (0 : 1)) hold, and that the automorphism of Σ0 corresponding to the generator
ι of G is given by ((ξ0 : ξ1), (η0 : η1)) 7→ ((η1 : η0), (ξ1 : ξ0)). Since we have
−KZ′ ∼ r′′∗(−KΣ0)−ε−2−r−1

∗ (l−1,0), the space H0(OZ′(−2KZ′)) corresponds to
a certain subspace V of H0(OΣ0(−2KΣ0)). Every element in V is a homogeneous
polynomial ψ(ξ0, ξ1, η0, η1) of bidegree (4, 4) vanishing with multiplicity at least 2
at ((1 : 0), (1 : 0)) and ((0 : 1), (0 : 1)).

Note that we have a natural inclusion V ↪→ H0(OY (2KY )), since we have
L ∼ f ′∗D′. We denote by φ the restriction to V of the natural action by G on
H0

Y (O(2KY )). Let φ′(ι) be the automorphism of V given by ψ(ξ0, ξ1, η0, η1) 7→
ψ(η1, η0, ξ1, ξ0). Then ι 7→ φ′(ι), where ι is the generator of the Galois group G,
gives another action φ′ by G on V . Note that for any g ∈ G and ψ ∈ V , the two
elements φ(g)ψ and φ′(g)ψ defines the same divisor on Σ0. From this we infer
that φ = cφ′ for a certain character c ∈ Char(G).

Now let V + be the set of all elements in V stable under the action φ′. Then by
φ = cφ′, we see that V + ⊂ H0(OX(2KX − Tc)) for a torsion divisor Tc ∈ Pic(X)
corresponding to the character c. Meanwhile, by the Riemann-Roch theorem, we
have h0(OX(2KX − Tc)) = χ + K2

X = 11. The space V +, however, has a base
consisting of twelve elements:

ξi
0ξ

4−i
1 ηj

0η
4−j
1 + ξ4−j

0 ξj
1η

4−i
0 ηi

1 (0 ≤ i, 0 ≤ j, 2 ≤ i + j ≤ 4).

This contradicts the inequality dimV + ≤ h0(OX(2KX − Tc)). Hence, the image
α(G) is not conjugate to 〈σ3τ〉 in D6.

Thus we have α(G) = 〈σ3〉. Hence, replacing r : Z ′ → P2 if necessary, we
may assume that {f ′(E1), f ′(E2)} = {ε−2, r

−1
∗ (l−1,0)}. Then the surface W as in

Lemma 3.15, obtained by blowing down the two (−1)-curves f ′(E1) and f ′(E2) of
Z ′, is isomorphic to the Hirzebruch surface Σ0. Thus by Lemmas 3.15 and 3.16,
our surface X, in case 2-1-1), has the structure as in the case d = 0 in Theorem 2.

Case 2-1-2): the case where three points z−2, z−1, and z0 are collinear. Let
l−2,−1 be the line on P2 passing the tree points zi’s above. Then the strict trans-
form r−1

∗ (l−2,−1) is the unique (−2)-curve on Z ′. Hence by Lemma 3.12, the
morphism ΦL : Ỹ → Z lifts to f ′ : Ỹ → Z ′. Meanwhile the surface Z ′ has ex-
actly three (−1)-curves: ε−2, ε−1, and ε0. Replacing r : Z ′ → P2 if necessary, we
may assume {f ′(E1), f ′(E2)} = {ε−2, ε−1} by Lemma 3.13. Let r′ : Z ′ → W be
the blowing-down as in Lemma 3.15 of the two (−1)-curves f ′(E1) and f ′(E2).
Then we have W = Σ1, r′∗(ε0) = ∆0, and r′∗(r

−1
∗ (l−2,−1)) ∼ Γ , which contradicts

Lemma 3.16. Thus case 2-1-2) does not occur.
Next, we study the case where z−2 and z−1 are distinct points on P2, and z0

is infinitely near to z−1. We denote by l−2,−1 the unique line on P2 passing z−2
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and z−1. This case is divided into two cases: case 2-2-1) and case 2-2-2).
Case 2-2-1): the case where z0 does not lie on the strict transform (r−2 ◦

r−1)−1
∗ (l−2,−1) of l−2,−1 by r−2 ◦ r−1. Let l−1,0 be the unique line on P2 whose

strict transform (r−2 ◦ r−1)−1
∗ (l−1,0) by r−2 ◦ r−1 passes z0. Then the surface Z ′

has a unique (−2)-curve ε′−1, and exactly four (−1)-curves ε−2, ε0, r−1
∗ (l−2,−1),

and r−1
∗ (l−1,0). Hence, by Lemma 3.12, the morphism ΦL : Ỹ → Z lifts to

f ′ : Ỹ → Z ′. Note that {ε0, r
−1
∗ (l−2,−1)} is the set of all (−1)-curves intersecting

the unique (−2)-curve ε′−1. Thus we have {f ′(E1), f ′(E2)} = {ε0, r
−1
∗ (l−2,−1)}

or {ε−2, r
−1
∗ (l−1,0)}, hence, in particular, f ′(E1) ∩ f ′(E2) = ∅. We denote by

r′ : Z ′ → W the blowing-down as in Lemma 3.15 of the two (−1)-curves f ′(E1)
and f ′(E2). If {f ′(E1), f ′(E2)} = {ε0, r

−1
∗ (l−2,−1)}, then we have W = Σ0,

r′∗(ε
′
−1) ∼ ∆0 and r′∗(ε−2) ∼ r′∗(r

−1
∗ (l−1,0)) ∼ Γ . If on the other hand

{f ′(E1), f ′(E2)} = {ε−2, r
−1
∗ (l−1,0)}, then we have W = Σ2, r′∗(ε

′
−1) = ∆0,

and r′∗(ε0) ∼ r′∗(r
−1
∗ (l−2,−1)) ∼ Γ . Thus by Lemmas 3.15 and 3.16, our sur-

face X, in case 2-2-1), has the structure as in the case d = 0 or the case
d = 2 in Theorem 2, according as {f ′(E1), f ′(E2)} = {ε0, r

−1
∗ (l−2,−1)} or

{f ′(E1), f ′(E2)} = {ε−2, r
−1
∗ (l−1,0)} respectively.

Case 2-2-2): the case where z0 lies on the strict transform (r−2 ◦
r−1)−1

∗ (l−2,−1). In this case, the surface Z ′ has exactly two (−2)-curves ε′−1 and
r−1
∗ (l−2,−1), and exactly two (−1)-curves ε−2 and ε0. Note that every (−2)-curve

on Z ′ is stable under the action by G on Z ′; the divisor r−1
∗ (l−2,−1) is the unique

(−2)-curve intersecting all (−1)-curves on Z ′. Thus by Lemma 3.12, the mor-
phism ΦL : Ỹ → Z lifts to f ′ : Ỹ → Z ′. Then it follows from Lemma 3.13 that
{f ′(E1), f ′(E2)} = {ε−2, ε0}. This, however, contradicts the transitivity of the
action by G on {f ′(E1), f ′(E2)}, since ε0 is the unique (−1)-curve intersecting all
(−2)-curves on Z ′. Thus case 2-2-2) does not occur.

Finally, we study the case where z−1 is infinitely near to z−2, and z0 is in-
finitely near to z−1. We denote by l−2,−1 the unique line on P2 whose strict
transform (r−2)−1

∗ (l−2,−1) passes z−1. Note that Z ′ has no (−3)-curve, since the
linear system | −KZ′ | has no fixed component. Thus the point z0 does not lie on
the strict transform (r−1)−1

∗ (ε−2). This case is divided into two cases: case 2-3-1)
and case 2-3-2).

Case 2-3-1): the case where z0 does not lie on the strict transform (r−2 ◦
r−1)−1

∗ (l−2,−1). In this case, the surface Z ′ has exactly two (−2)-curves ε′−2 and
ε′−1, and exactly two (−1)-curves ε0 and r−1

∗ (l−2,−1). Since ε′−2 is the unique (−2)-
curve intersecting no (−1)-curve on Z ′, every (−2)-curve is stable under the action
by G on Z ′. Thus by Lemma 3.12, the morphism ΦL : Ỹ → Z lifts to f ′ : Ỹ → Z ′.
Then it follows from Lemma 3.13 that {f ′(E1), f ′(E2)} = {ε0, r

−1
∗ (l−2,−1)}, hence

f ′(E1) ∩ f ′(E2) = ∅. Let r′ : Z ′ → W be the blowing-down as in Lemma 3.15 of
the two (−1)-curves f ′(E1) and f ′(E2). Then we have W = Σ2, r′∗(ε

′
−2) = ∆0,
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and r′∗(ε
′
−1) ∼ Γ . Thus by Lemmas 3.15 and 3.16, our surface X, in case 2-3-1),

has the structure as in the case d = 2 in Theorem 2.
Case 2-3-2): the case where z0 lies on the strict transform (r−2 ◦

r−1)−1
∗ (l−2,−1). In this case, the surface Z ′ has exactly three (−2)-curves ε′−2,

ε′−1, and r−1
∗ (l−2,−1), and a unique (−1)-curve ε0. Note that ε′−2 is the unique

(−2)-curve intersecting no (−1)-curve on Z ′, and that ε′−1 is the unique (−2)-curve
intersecting ε′−2. Thus every (−2)-curve on Z ′ is stable under the action by G on
Z ′. Thus by Lemma 3.12, the morphism ΦL : Ỹ → Z lifts to f ′ : Ỹ → Z ′. This,
however, contradicts Lemma 3.13, since ε0 is the unique (−1)-curve on Z ′. Hence,
case 2-3-2) does not occur.

Thus we have the following:

Proposition 9. Assume that the surface Y is of case 2) in Proposition 2.
Then λ = 4. Further, the surface X in this case has the structure as in Theorem
2.

4. The case deg ΦKY = 1.

In this section, we exclude the case deg ΦKY
= 1 and give a proof for Theorems

1 and 2. In what follows, we assume that deg ΦKY
= 1. Note that by Proposition

1, we have λ = 4, hence K2
Y = 14, pg(Y ) = 7, and q(Y ) = 0. Thus our Y is

a canonical surface whose invariant lies on the Castelnuovo line. By [1, Lemma
1.1], the canonical system |KY | is free from base points; hence the canonical map
ΦKY

: Y → Pn is a morphism, where n = 2λ − 2 = 6. In what follows, we
frequently use results given in [1].

Let Q ⊂ Pn be the intersection of all quadrics containing the canonical image
Z = ΦKY

(Y ). By [1, Section 1], we obtain the following:

Proposition 10. Let Q be the variety defined above. Then either of the
following holds:

1) Q is the image by ΦT of the variety Q′ = P(OP2 ⊕ OP2(2)), where ΦT

is the morphism associated with a tautological divisor T of the P1-bundle
prQ′ : P(OP2 ⊕OP2(2)) → P2;

2) Q is the image by ΦT of the variety Q′ = P(
⊕2

i=0OP1(ai)), where ΦT

is the morphism associated with a tautological divisor T of the P2-bundle
prQ′ : P(

⊕2
i=0OP1(ai)) → P1, and 0 ≤ a0 ≤ a1 ≤ a2 and

∑2
i=0 ai = n− 2.

First, we exclude case 1) in the proposition above.

Proposition 11. Case 1) in Proposition 10 does not occur.
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Proof. Assume that our Q is as in case 1) in Proposition 10. Then Q is a
cone over the Veronese surface. Let p0 be the vertex of Q, and Λ, the linear system
consisting of pull-backs by ΦKY

of all hyperplanes in Pn passing p0. We denote by
Λ0 and G0 its variable part and fixed part respectively. By [1, Proof of Claim I], the
linear system Λ0 is free from base points and induces ΦΛ0 : Y → Pn−1, a morphism
of mapping degree 3 onto its image. The image ΦΛ0(Y ) is the Veronese surface, i.e.,
the projective plane P2 embedded in P5 by OP2(2). Note that by the definition of
Q, the variety Q and its vertex p0 are stable under the action by G = Gal(Y/X) on
Pn. This implies that the subspace of H0(OY (KY )) corresponding to Λ is stable
under the action by G on H0(OY (KY )). Thus the action by G on Y induces one
on ΦΛ0(Y ) = P2. Now let us derive a contradiction. Since G ' Z/2, the fixed
locus of this induced action contains a line l0 on P2. Then the divisor Φ∗Λ0

(l0),
stable under the action by G, is a pull-back by π : Y → X of that on X. We
however have Φ∗Λ0

(l0)2 = deg ΦΛ0 = 3, which contradicts deg π = 2. Thus we have
the assertion. ¤

Next, we exclude case 2) in Proposition 10.

Lemma 4.1. If the variety Q is as in case 2) of Proposition 10, then a0 = 0.

Proof. Assume that our variety Q is as in case 2) in Proposition 10 and
that a0 > 0. Then ΦT : Q′ → Pn is an embedding. We identify Q and Q′ by
ΦT . By the same arguement as in the proof of Proposition 11, we see that the
variety Q is stable under the action by G on Pn. Let P be a fiber of the P2-bundle
prQ′ : Q = Q′ → P1. Then P and T generate the Picard group ofQ. Using this, we
see easily that if a divisor P ′ on Q satisfies P ′3 = KQP ′2 = 0 and h0(OQ(P ′)) = 2,
then P ′ ∼ P . Thus the class of P is stable under the action by G on Q. It follows
that this action induces one on P1 via the projection prQ′ : Q = Q′ → P1, and that
there exists a member P0 ∈ |P | stable under the action on Q. Now let us derive
a contradiction. Since G ' Z/2, the fixed locus of the action by G on P0 = P2

contains a line l0. Hence the action on Z has a fixed points. By [1, Theorem
1.5], however, the surface Z has at most rational double points as its singularities.
Thus, by the same arguement as in the proof of Proposition 5, we infer that the
action on Y has fixed points, which contradicts the definition of π : Y → X. ¤

Proposition 12. Case 2) in Proposition 10 does not occur.

Proof. Assume that our Q is as in case 2) in Proposition 10. Then by
Lemma 4.1 and [1, Claim II], we have a0 = 0 and a1 > 0. It follows that our Q is
a cone over the Hirzebruch surface Σa2−a1 embedded in Pn−1 by |∆0 + a2Γ |. Let
p0 be the vertex of Q, and Λ, the linear system consisting of the pull-backs by ΦKY
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of all hyperplanes in Pn passing p0. We denote by Λ0 and G0 the variable part
and the fixed part of Λ respectively. By [1, Proof of Claim II], the linear system
Λ0 is free from base points and induces ΦΛ0 : Y → Pn−1, a morphism of degree 3
onto its image. The image ΦΛ0(Y ) is the Hirzebruch surface Σa2−a1 embedded in
Pn−1 by |∆0 +a2Γ |. By the same arguement as in the proof of Proposition 11, we
see that the action by G on Y induces one on Σa2−a1 . The class of ∆0 + a2Γ and
that of −KΣa2−a1

are stable under this induced action on Σa2−a1 ; hence so are
the class of ∆0 and that of Γ . Thus there exist members ∆1 ∈ |∆0| and Γ1 ∈ |Γ |
stable under the action on Σa2−a1 . Then from Φ∗Λ0

(∆1)Φ∗Λ0
(Γ1) = deg ΦΛ0 = 3,

we derive a contradiction by the same arguement as in the proof of Proposition
11. Thus we have the assertion. ¤

Now we are ready to prove Theorems 1 and 2.

Proof of Theorems 1 and 2. By Propositions 1, 10, 11, and 12, we have
deg ΦKY

=2. Thus Theorems 1 and 2 follow from Propositions 2, 5, 6, 8, and 9. ¤

Remark 4. Let X(1) and X(2) be two minimal complex surfaces as in The-
orem 2, π(i) : Y(i) → X(i) (i = 1, 2), the unramified double cover corresponding to
the torsion group, f(i) : Y(i) → W(i) = Σd(i) , the generically two-to-one morphism
as in Theorem 2, and B(i), the branch divisor of f(i). Then if X(1) and X(2) are iso-
morphic to each other, so are the triplets (W(1), ι|W(1) , B(1)) and (W(2), ι|W(2) , B(2)),
where ι|W(i) denotes the involution of W(i) corresponding to the generator of the
Galois group of π(i). This is verified as follows. Let p(i) : Ỹ(i) → Y(i) be the shortest
composite of quadric transformations such that the variable part of p∗(i)|KY(i) | is
free from base points, and r′(i) : Z ′(i) → W(i) = Σd(i) , the blowing-up at two [3, 3]-

points of the branch divisor B(i). Then f(i) induces a morphism f̃(i) : Ỹ(i) → Z ′(i).

The projection r′(i) is the blowing-down of the image by f̃(i) of the exceptional
divisor of p(i) : Ỹ(i) → Y(i). Since Z ′(i) is the minimal desingularization of the
canonical image of Y(i), we have the assertion.

5. The moduli space for the case χ = 4.

In this section, we shall study the moduli space for surfaces as in Theorem 2,
and give a proof for Theorem 3. For this purpose, we shall first study the explicit
description of our surfaces in more detail.

Let X be a minimal algebraic surface with c2
1 = 2χ−1, χ = 4, and Tors ' Z/2.

We denote by π : Y → X the unramified double cover corresponding to the torsion
group, and by p : Ỹ → Y , the shortest composite of quadric transformations such
that the variable part of p∗|KY | is free from base points. Then there exist an
even integer 0 ≤ d ≤ 2 and a generically two-to-one morphism f : Y → W = Σd
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satisfying the three conditions given in Theorem 2. In what follows, we denote
by ι|W the involution of W corresponding to the generator of the Galois group
G = Gal(Y/X).

Let r′ : Z ′ → W be the blowing-up at two [3, 3]-points, which we shall call w1

and w2, of the branch divisor B of f . Then fW = f◦p : Ỹ → W lifts to a morphism
f ′ : Ỹ → Z ′. We denote by ei = r′−1(wi) the exceptional divisor of r′ lying over
wi. Let r̃ : Z̃ → Z ′ be the blowing-up at two quadruple points, which we shall
call w′1 ∈ e1 and w′2 ∈ e2, of the branch divisor of f ′. Then f ′ lifts to a morphism
f̃ : Ỹ → Z̃. We denote by e′i = r̃−1(w′i) the exceptional divisor of r̃ lying over w′i.
Let us use the same symbol ei for the total transform to Z̃ of the divisor ei ⊂ Z ′.
Then there exists a reduced member B̃0 ∈ |(r′ ◦ r̃)∗(−4KW ) − 3

∑
ei − 3

∑
e′i|

satisfying B̃0 ∩ r̃−1
∗ (e1) = B̃0 ∩ r̃−1

∗ (e2) = ∅ such that the branch divisor of f̃

is given by B̃0 +
∑

r̃−1
∗ (ei). Note that the divisor B̃0 has at most negligible

singularities. In what follows, ∆0 and Γ denote the minimal section and a fiber
respectively of the Hirzebruch surface W = Σd → P1.

Lemma 5.1. Let ι|Z′ be the involution of Z ′ induced by the involution ι|W
of W . Then the configuration of the four points w1, w2 = ι|W (w1), w′1, and
w′2 = ι|Z′(w′1) satisfies the following three conditions:

i) if d = 2, then w1 /∈ ∆0;
ii) if the two points w1 and w2 lie on one and the same member of the linear

system |Γ |, then for each i = 1, 2, the point w′i does not lie on the strict
transform to Z ′ of this member ;

iii) if d equals 0, and the two points w1 and w2 lie on one and the same member
of the linear system |∆0|, then for each i = 1, 2, the point w′i does not lie on
the strict transform to Z ′ of this member.

Proof. i). Assume that d = 2 and w1 ∈ ∆0. Then since ∆0 is stable
under the action by G on W , we have w2 ∈ ∆0. Thus r′−1

∗ (∆0) is a (−4)-curve on
Z ′, hence r′−1

∗ (∆0)(−KZ′) < 0. It follows that r′−1
∗ (∆0) is a fixed component of

the linear system | −KZ′ |. This is impossible, since by the proof of our complete
description the pull-back f ′∗| −KZ′ | is the variable part of |KỸ |. Thus we have
w1 /∈ ∆0 for the case d = 2.

ii). Assume that w1 and w2 lie on one and the same member Γ0 ∈ |Γ |. Then
since w2 = ι|W (w1), the member Γ0 is stable under the action by G. It follows that
Γ0 passes exactly two of the fixed points of the involution ι|W . Moreover if w′1 ∈
r′−1
∗ (Γ0), then we obtain w′2 ∈ r′−1

∗ (Γ0), (r′ ◦ r̃)−1
∗ (Γ0) ∼ (r′ ◦ r̃)∗(Γ )−∑

ei−
∑

e′i,
and B̃0((r′ ◦ r̃)−1

∗ (Γ0)) = −4 < 0. The last inequality implies that Γ0 is an
irreducible component of the branch divisor B. This however is impossible, since,
by the condition in Theorem 2, the branch divisor B cannot pass any fixed points
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of the involution ι|W . Thus we have w′1 /∈ r′−1
∗ (Γ0).

iii). By the same arguement as in the proof of ii), we can prove iii). ¤

Remark 5. As shown in the proof of Lemma above, if the two points w1

and w2 lie on one and the same member Γ0 ∈ |Γ |, then this Γ0 is stable under
the action by G on W . There exist exactly two members of |Γ | stable under the
action by G. In what follows, we denote by Γ1 and Γ2 these two members. For
each i = 1, 2, exactly two fixed points of the action by G lie on Γi.

Next let us show that if conversely the configuration of four points wi’s and
w′i’s satisfies the three conditions in Lemma 5.1, then the procedure implied by our
structure theorem in fact produces a minimal surface with the desired invariants.
Some of the results below will be used later, in our proof of the uniqueness of the
deformation type. Let W = Σd be the Hirzebruch surface of degree d = 0 or 2,
and ι|W , the involution (1) given in Remark 1. Take a point w1 ∈ W outside the
fixed locus of ι|W . We denote by r′ : Z ′ → W the blowing-up at two points w1

and w2 = ι|W (w1), and by ei = r′−1(wi), the exceptional curve lying over wi.
Let ι|Z′ be the involution of Z ′ induced by ι|W . Take a point w′1 ∈ e1 ⊂ Z ′. We
denote by r̃ : Z̃ → Z ′ the blowing-up at two points w′1 and w′2 = ι|Z′(w′1), and by
e′i = r̃−1(w′i), the exceptional curve lying over w′i. We use the same symbol ei for
the total transform to Z̃ of the divisor ei on Z ′. We assume that the configuration
of wi’s and w′i’s satisfies the three conditions i), ii), and iii) in Lemma 5.1.

Let Γ1 and Γ2 be two distinct members of |Γ | stable under the natural action
by G = 〈ι|W 〉 on W (see Remark 5). We take the minimal section ∆0 and an
irreducible member ∆∞ ∈ |∆0 + dΓ | such that both are stable under the action
by G, and ∆0 ∩ ∆∞ = ∅ holds. Let m be a positive integer. Since the divisor
m(∆0+((d+2)/2)Γ1) is stable under the action by G, we obtain a natural action on
H0(OW (m(∆0+((d+2)/2)Γ ))) by identifying this space with that of meromorphic
functions with poles at most m(∆0 + ((d + 2)/2)Γ1).

We put Λm = |m(∆0 +((d+2)/2)Γ )|, and denote by Λ+
m and Λ−m the subsys-

tems of Λm corresponding to the eigenspaces of eigenvalues +1 and −1 respectively
with respect to ι|W ∗. Moreover, for an effective divisor C on Z̃, we put

Λm(C) = {D ∈ Λm; (r′ ◦ r̃)∗(D)− C º 0} Λ̃m(C) = (r′ ◦ r̃)∗Λm(C)− C

Λ+
m(C) = {D ∈ Λ+

m; (r′ ◦ r̃)∗(D)− C º 0} Λ̃+
m(C) = (r′ ◦ r̃)∗Λ+

m(C)− C

Λ−m(C) = {D ∈ Λ−m; (r′ ◦ r̃)∗(D)− C º 0} Λ̃−m(C) = (r′ ◦ r̃)∗Λ−m(C)− C,

where the symbol º 0 means effectiveness of a divisor. We abbreviate Λ̃m(0),
Λ̃+

m(0), and Λ̃−m(0) to Λ̃m, Λ̃+
m, and Λ̃−m respectively. Note that if f̃ : Ỹ → Z̃ is
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the generically two-to-one morphism obtained as in the beginning of this section
from our structure theorem, then we have B̃0 ∈ Λ̃+

8 (3
∑

ei + 3
∑

e′i), where B̃0 +∑
r̃−1
∗ (ei) gives the branch divisor of f̃ : Ỹ → Z̃.

Lemma 5.2. 1) The linear system Λ̃+
2 has no base point.

2) The linear system Λ̃+
2 (

∑
ei +

∑
e′i) has no base point.

3) The linear system Λ̃+
8 (3

∑
ei + 3

∑
e′i) has no base point.

4) The linear systems | −KZ′ | and | −KZ̃ | have no base point.

Proof. Since we have Λ̃+
2 + 3Λ̃+

2 (
∑

ei +
∑

e′i) ⊂ Λ̃+
8 (3

∑
ei + 3

∑
e′i), the

assertion 3) follows from the assertions 1) and 2).
Assume that we have the assertions 1) and 2). Then by Λ̃+

2 (
∑

ei +
∑

e′i) ⊂
|−KZ̃ |, we see that the linear system |−KZ̃ | has no base point. Moreover, by this
together with the Riemann-Roch theorem and the vanishing theorem, we obtain
h0(OZ̃(−KZ̃)) = χ(OZ̃) + K2

Z̃
= 5. Meanwhile, since r′ : Z ′ → W is the blowing-

up at two points w′i’s, we have h0(OZ′(−KZ′)) ≥ h0(OW (−KW )) − 2 = 7. Thus
we obtain h0(OZ′(−KZ′))− h0(OZ̃(−KZ̃)) ≥ 2, which implies that neither of the
two points w′i’s is a base point of | −KZ′ |. From this, we infer that | −KZ′ | has
no base point. So the assertion 4) also follows from the assertions 1) and 2).

Thus we only need to show the assertions 1) and 2). First, let us show
the assertion 1). Let C0 be a general member of |Γ |. Then since the divisor
2∆0 + ((d + 2)/2)(C0 + ι|W (C0)) ∈ Λ2 is stable under the action by G, and the
divisor

(
2∆0 +

d + 2
2

(C0 + ι|W (C0))
)
− 2

(
∆0 +

d + 2
2

Γ1

)

has no support at ∆∞ ∩ Γ2, the divisor 2∆0 + ((d + 2)/2)(C0 + ι|W (C0)) is a
member of Λ+

2 . Thus the base locus of Λ+
2 is contained in ∆0. Using a similar

argument, we can show that 2∆∞ + ((2− d)/2)(C0 + ι|W (C0)) ∈ Λ+
2 , so that the

base locus of Λ+
2 is contained in ∆∞. Thus since ∆0 ∩∆∞ = ∅, the linear system

Λ̃+
2 has no base point. Hence we have the assertion 1).

Next, let us show the assertion 2). We shall show it by dividing our situation
into several cases. In what follows, for each i = 1, 2, we denote by Γ(i) the unique
member of |Γ | passing wi.

Case 1-1: the case where d = 0 holds, and the two points w1 and w2 lie neither
on one and the same member of |Γ | nor on that of |∆0|. In this case, for each
i = 1, 2, we denote by ∆(i) the unique member of |∆0| passing wi. This case is
divided into two subcases: case 1-1-1 and case 1-1-2.

Case 1-1-1: the subcase of case 1-1 where w′1 /∈ r′−1
∗ (Γ(1)) and w′1 /∈ r′−1

∗ (∆(1)).
In this case, take global coordinates (s′1, ξ

′
1) of W \ (Γ(2) ∪∆(2)) ' A2 such that
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Γ(1) is given by s′1 = 0, Γ(2) by s′1 = ∞, ∆(1) by ξ′1 = 0, and ∆(2) by ξ′1 = ∞.
Then the involution ι|W is given by (s′1, ξ

′
1) 7→ (1/s′1, 1/ξ′1), and the linear system

Λ+
2 is spanned by the five elements s′1

l
ξ′1

m + s′1
2−l

ξ′1
2−m (0 ≤ l ≤ 2, 0 ≤ m ≤ 2).

Thus the linear system Λ+
2 (

∑
ei +

∑
e′i) is spanned by the three elements

a0

(
s′1 + s′1ξ

′
1
2) + b0

(
ξ′1 + s′1

2
ξ′1

)
, s′1ξ

′
1, s′1

2 + ξ′1
2
,

where a0 6= 0 and b0 6= 0 are certain non-zero complex numbers. From this,
we infer that the set {w1, w2} forms the base locus of Λ+

2 (
∑

ei +
∑

e′i), and
that any general member of this linear system is smooth. By this together with∑

Γ(i)+
∑

∆(i) ∈ Λ+
2 (

∑
ei +

∑
e′i), we see that the linear system Λ̃+

2 (
∑

ei +
∑

e′i)
has no base point.

Case 1-1-2: the subcase of case 1-1 where w′1 ∈ r′−1
∗ (Γ(1)) or w′1 ∈ r′−1

∗ (∆(1)).
Since the proof is the same, we only give a proof for the case w′1 ∈ r′−1

∗ (Γ(1)).
Assume that w′1 ∈ r′−1

∗ (Γ(1)). Since we have C0 + ι|W (C0) +
∑

Γ(i) ∈ Λ+
2 (

∑
ei +∑

e′i) for any general member C0 of |∆0|, the base locus of Λ̃+
2 (

∑
ei +

∑
e′i) is

contained in
∑

(r′◦r̃)−1
∗ (Γ(i)). Meanwhile, since we have C1+ι|W (C1) ∈ Λ+

2 (
∑

ei+∑
e′i) for any general member C1 of Λ1(

∑
ei), the base locus of Λ̃+

2 (
∑

ei +
∑

e′i)
is contained in

∑
r̃−1
∗ (ei). Since we have (

∑
(r′ ◦ r̃)−1

∗ (Γ(i))) ∩ (
∑

r̃−1
∗ (ei)) = ∅,

we see that the linear system Λ̃+
2 (

∑
ei +

∑
e′i) has no base point.

Case 1-2: the case where d = 0 holds, and the two points w1 and w2 lie on one
and the same member of |Γ | or |∆0|. In this case, for each i = 1, 2, we denote by
∆(i) the unique member of |∆0| passing wi. By exchanging ∆0 and Γ if necessary,
we may assume that the two points w1 and w2 lie on one and the member Γ0 ∈ |Γ |.
Moreover, by Remark 5, by exchanging Γ1 and Γ2 if necessary, we may assume
that Γ0 = Γ(1) = Γ(2) = Γ1. Then this case is divided into two subcases: case
1-2-1 and case 1-2-2.

Case 1-2-1: the subcase of case 1-2 where w′1 /∈ r′−1
∗ (∆(1)). Note that we

have assumed the condition ii) of Lemma 5.1 for our configuration, so that we
have w′1, w′2 /∈ r′−1

∗ (Γ1). For any general member C0 ∈ |∆0|, we have C0 +
ι|W (C0) + 2Γ1 ∈ Λ+

2 (
∑

ei +
∑

e′i). Thus the base locus of Λ̃+
2 (

∑
ei +

∑
e′i)

is contained in 2(r′ ◦ r̃)−1
∗ (Γ1) +

∑
r̃−1
∗ (ei). Meanwhile for any general C1 (6=

∆(1) + Γ1) ∈ Λ1(e1 + e′1), we have C1 + ι|W (C1) ∈ Λ+
2 (

∑
ei +

∑
e′i) and the

irreducibility and smoothness at w1 of C1. Thus the base locus of Λ̃+
2 (

∑
ei +

∑
e′i)

is contained in (r′ ◦ r̃)−1
∗ (C1 + ι|W (C1)). Since 2(r′ ◦ r̃)−1

∗ (Γ1) +
∑

r̃−1
∗ (ei) and

(r′ ◦ r̃)−1
∗ (C1 + ι|W (C1)) do not intersect each other, we see that the linear system

Λ̃+
2 (

∑
ei +

∑
e′i) has no base point.

Case 1-2-2: the subcase of case 1-2 where w1 ∈ r′−1
∗ (∆(1)). By the same

argument as one given in the proof for case 1-2-1, we see that the base locus of
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Λ̃+
2 (

∑
ei +

∑
e′i) is contained in 2(r′ ◦ r̃)−1

∗ (Γ1) +
∑

r̃−1
∗ (ei). Meanwhile, for any

general member C1 ∈ |Γ |, we have C1 + ι|W (C1) +
∑

∆(i) ∈ Λ+
2 (

∑
ei +

∑
e′i).

Thus the base locus of Λ̃+
2 (

∑
ei +

∑
e′i) is contained in

∑
(r′ ◦ r̃)−1

∗ (∆(i)). Since
2(r′ ◦ r̃)−1

∗ (Γ1) +
∑

r̃−1
∗ (ei) and

∑
(r′ ◦ r̃)−1

∗ (∆(i)) do not intersect each other, we
see that the linear system Λ̃+

2 (
∑

ei +
∑

e′i) has no base point.
Case 2-1: the case where d = 2 holds, and the two points w1 and w2 do not

lie on one and the same member of |Γ |. Note that since we have assumed the
condition i) in Lemma 5.1, we have w1 /∈ ∆0. Note also that for this case, or more
generally for case d = 2, we have dim Λ−1 = 1, and any general member of this
linear system is an irreducible curve stable under the action by G that passes two
points ∆∞ ∩ Γ1 and ∆∞ ∩ Γ2. We denote by ∆1 the unique member of Λ−1 that
passes the two points w1 and w2. Then this case is divided into three subcases:
case 2-1-1, case 2-1-2, and case 2-1-3.

Case 2-1-1: the subcase of case 2-1 where w′1 /∈ r′−1
∗ (Γ(1)) and w′1 /∈ r′−1

∗ (∆1).
Since the divisor ∆0 + 2Γ(1) is the unique reducible member of Λ1(e1 + e′1), and
we have h0(OW (∆0 + 2Γ )) = 4, any general member of Λ1(e1 + e′1) is irreducible
and non-singular. By this together with ∆0 + 2Γ(1) ∈ Λ1(e1 + e′1), we see that
Λ̃1(e1 + e′1) has no base point, and (r′ ◦ r̃)−1

∗ (C0 + ι|W (C0)) ∈ Λ̃+
2 (

∑
ei +

∑
e′i)

for any general member C0 ∈ Λ1(e1 + e′1). Thus we see that Λ̃+
2 (

∑
ei +

∑
e′i) has

no base point.
Case 2-1-2: the subcase of case 2-1 where w′1 ∈ r′−1

∗ (Γ(1)). Since we have
2∆0 +

∑
Γ(i) +C0 + ι|W (C0) ∈ Λ+

2 (
∑

ei +
∑

e′i) for any general member C0 ∈ |Γ |,
the base locus of Λ̃+

2 (
∑

ei +
∑

e′i) is contained in 2(r′ ◦ r̃)∗(∆0)+
∑

(r′ ◦ r̃)−1
∗ (Γ(i)).

By this together with 2∆1 ∈ Λ+
2 (

∑
ei +

∑
e′i), we see that the linear system

Λ̃+
2 (

∑
ei +

∑
e′i) has no base point.

Case 2-1-3: the subcase of case 2-1 where w′1 ∈ r′−1
∗ (∆1). Since we have

C0 + ∆1 ∈ Λ+
2 (

∑
ei +

∑
e′i) for any general member C0 ∈ Λ−1 , the base locus

of Λ̃+
2 (

∑
ei +

∑
e′i) is contained in (r′ ◦ r̃)−1

∗ (∆1). By this together with 2(∆0 +∑
Γ(i)) ∈ Λ+

2 (
∑

ei +
∑

e′i), we see that the linear system Λ̃+
2 (

∑
ei +

∑
e′i) has no

base point.
Case 2-2: the case where d = 2 holds, and the two points w1 and w2 lie on one

and the same member of |Γ |. By Remark 5, we may assume w1, w2 ∈ Γ1. Note that
we have assumed the conditions i) and ii) of Lemma 5.1 for our configuration, so
that we have w1 /∈ ∆0 and w′1 /∈ r′−1

∗ (Γ1). Since we have 2∆0+2Γ1+C0+ι|W (C0) ∈
Λ+

2 (
∑

ei +
∑

e′i) for any general member C0 ∈ |Γ |, the base locus of Λ̃+
2 (

∑
ei +∑

e′i) is contained in 2(r′ ◦ r̃)∗(∆0)+2(r′ ◦ r̃)−1
∗ (Γ1)+

∑
r̃−1
∗ (ei). Meanwhile since

we have h0(OW (∆0 + 2Γ )) = 4, we have C1 + ι|W (C1) ∈ Λ+
2 (

∑
ei +

∑
e′i) for

an irreducible member C1 ∈ Λ1(e1 + e′1). Since 2(r′ ◦ r̃)∗(∆0) + 2(r′ ◦ r̃)−1
∗ (Γ1) +∑

r̃−1
∗ (ei) and (r′ ◦ r̃)−1

∗ (C1 + ι|W (C1)) do not intersect each other, we see that
the linear system Λ̃+

2 (
∑

ei +
∑

e′i) has no base point.
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Now that we have shown the absence of base points of Λ̃+
2 (

∑
ei +

∑
e′i) for

all the eight cases 1-1-1, . . . , 2-2, we have the assertion 2). ¤

Let B̃0 be a reduced member of Λ̃+
8 (3

∑
ei+3

∑
e′i) that has at most negligible

singularities, satisfies B̃0 ∩
∑

r̃−1
∗ (ei) = ∅, and passes no fixed point of the action

by G on Z̃. Existence of such B̃0 is ensured by Lemma 5.2. Let Ỹ be the canonical
resolution of the double cover of Z̃ branched along B̃0+

∑
r̃−1
∗ (ei), and f̃ : Ỹ → Z̃,

the natural projection. We have f̃∗(r̃−1
∗ (ei)) = 2Ei for a (−1)-curve Ei on Ỹ .

Let p : Ỹ → Y be the blowing-down of E1 and E2. Then we have |KỸ | =
(r̃ ◦ f̃)∗| −KZ′ |+ 2

∑
Ei. Since | −KZ′ | has no base point by Lemma 5.2, we see

that Y is a minimal surface with c2
1 = 14 and χ = 8. By [15, Lemma 3.1] and

(r′ ◦ r̃)(B̃0)Γ1 ≡ (r′ ◦ r̃)(B̃0)Γ2 ≡ (r′ ◦ r̃)(B̃0)∆0 ≡ 0 mod 4,

there exists a unique free lifting to Ỹ of the action by G on W . Let X = Y/G be
the quotient of Y by the induced free action by G on Y . Then by [17, Theorem
1] or [7, (ii) in Theorem A], the surface X is a minimal surface with c2

1 = 2χ− 1,
χ = 4, and Tors(X) ' Z/2. Thus we have the following:

Proposition 13. Let W = Σd be the Hirzebruch surface of degree d = 0
or 2. Let r′ : Z ′ → W be the blowing-up at two points w1 and w2 = ι|W (w1),
where ι|W is the involution of W given in Remark 1, and w1, a point outside
the fixed locus of ι|W . Let r̃ : Z̃ → Z ′ be the blowing-up at two points w′1 and
w′2 = ι|Z′(w′1), where ι|Z′ is the induced involution of Z ′, and w′1, a point infinitely
near to w1. Put ei = r′−1(wi) and e′i = r̃−1(w′i) for each i = 1, 2, and assume
that the configuration of wi’s and w′i’s satisfies all the three conditions in Lemma
5.1. Let B̃0 be a reduced member of Λ̃+

8 (3
∑

ei +3
∑

e′i) that has at most negligible
singularities, satisfies B̃0∩

∑
r̃−1
∗ (ei) = ∅, and passes no fixed point of the induced

action on Z̃ by G = 〈ι|W 〉. Let Ỹ be the canonical resolution of the double cover
of Z̃ branched along B̃0 +

∑
r̃−1
∗ (ei), and f̃ : Ỹ → Z̃, the natural projection.

Let p : Ỹ → Y be the blowing-down of two (−1)-curves E1 = f̃−1(r̃−1
∗ (e1)) and

E2 = f̃−1(r̃−1
∗ (e2)). Then there exists a unique free lifting to Ỹ of the action by G

on Z̃, and the quotient Y/G of Y by the induced free action is a minimal surface
with c2

1 = 2χ− 1, χ = 4, and Tors ' Z/2.

Our Theorem 2 together with Remark 1 and Lemma 5.1 says that all minimal
surfaces with c2

1 = 2χ− 1, χ = 4, and Tors ' Z/2 are obtained by the procedure
as in the proposition above. We use the following lemma in order to show the
uniqueness of the deformation type.

Lemma 5.3. Let r′ : Z ′ → W and r̃ : Z̃ → Z ′, wi ∈ W and w′i ∈ Z ′ for
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i = 1, 2, and ei = r′−1(wi) and e′i = r̃−1(w′i) for i = 1, 2 be the morphisms, points,
and divisors respectively as in Proposition 13. Then any general member B̃0 of
Λ̃+

8 (3
∑

ei + 3
∑

e′i) is non-singular and reduced. Further hi(OZ̃(B̃0)) = 0 holds
for any positive integer i > 0.

Proof. The first assertion follows from 3) in Lemma 5.2. The second as-
sertion follows from 3) and 4) in Lemma 5.2 and the vanishing theorem. ¤

Now let us show the uniqueness of the deformation type and the unirationality
of the moduli space. For this purpose, we shall give another description of our
surface X. Let r′ : Z ′ → W , r̃ : Z̃ → Z ′, wi, w′i, ei, and e′i be as in Proposition
13. Let Γ1 and Γ2 be as in Remark 5. We take the minimal section ∆0 and an
irreducible member ∆∞ ∈ |∆0 + dΓ | satisfying ∆0 ∩∆∞ = ∅ such that both are
stable under the action by G. Note that if d = 2, such ∆∞’s form a one-dimensional
family.

The fixed locus of the action by G on Z̃ is a set of four isolated points:
{(r′ ◦ r̃)−1(Γi ∩∆j)}i=1,2, j=0,∞. Let r̄ : Z̄ → Z̃ be the blowing-up at these four
points. For i = 1, 2 and j = 0, ∞, we define the divisors Jij on Z̄ as follows:

if d = 0, then Jij = (r′ ◦ r̃ ◦ r̄)−1(Γi ∩∆j) for any i = 1, 2 and j = 0, ∞;
if d = 2, then J10 = (r′ ◦ r̃ ◦ r̄)−1(Γ1 ∩∆∞), J1∞ = (r′ ◦ r̃ ◦ r̄)−1(Γ1 ∩∆0),

and J2j = (r′ ◦ r̃ ◦ r̄)−1(Γ2 ∩∆j) for any j = 0, ∞.

Moreover for i = 1, 2 and j = 0, ∞, we define the divisors Γ̄i, ∆̄j , ēi, and ē′i
on Z̄ by Γ̄i = (r′ ◦ r̃ ◦ r̄)−1

∗ (Γi), ∆̄j = (r′ ◦ r̃ ◦ r̄)−1
∗ (∆j), ēi = r̄∗(r̃−1

∗ (ei)), and
ē′i = r̄∗(e′i). The four divisors Jij ’s form the set of all irreducible exceptional curves
of r̄ : Z̄ → Z̃. The action by G on Z̃ lifts to one on Z̄. Note that

∑
Jij gives the

fixed locus of the induced action by G on Z̄.
Now let V̄ = Z̄/G be the quotient of Z̄ by the induced action by G, and

℘̄ : Z̄ → V̄ , the natural projection. Then V̄ is smooth, and
∑

Jij gives the
ramification divisor of ℘̄ : Z̄ → V̄ . For i = 1, 2 and j = 0, ∞, we define the divisors
Īij , Ḡi, and D̄j on V̄ by Īij = ℘̄(Jij), Ḡi = ℘̄(Γ̄i), and D̄j = ℘̄(∆̄j). Moreover we
define the divisors λ̄ and λ̄′ on V̄ by λ̄ = ℘̄(ē1) = ℘̄(ē2) and λ̄′ = ℘̄(ē′1) = ℘̄(ē′2).
The divisors Īij ’s are non-singular rational curves with selfintersection Ī2

ij = −2.
Note that

∑
Īij gives the branch divisor of ℘̄ : Z̄ → V̄ .

Let ν̄ : V̄ → Ṽ be the blowing-down of the (−1)-curve λ̄′. For i = 1, 2 and
j = 0, ∞, we define the divisor Ĩij on Ṽ by Ĩij = ν̄(Īij). Moreover we define
the divisor λ̃ on Ṽ by λ̃ = ν̄(λ̄). The divisors Ĩij and λ̃ are non-singular rational
curves with Ĩ2

ij = −2 and λ̃2 = −1 respectively.
Let ν̃ : Ṽ → V ′ be the blowing-down of the (−1)-curve λ̃. For i = 1, 2 and

j = 0, ∞, we define the divisors I ′ij , G′i, and D′
j on V ′ by I ′ij = (ν̃ ◦ ν̄)∗(Īij),
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G′i = (ν̃ ◦ ν̄)∗(Ḡi), and D′
j = (ν̃ ◦ ν̄)∗(D̄j). The divisors I ′ij , G′i, D′

0, and D′
∞ are

non-singular rational curves with I ′ij
2 = −2, G′i

2 = −1, D′
0
2 = −(d + 2)/2, and

D′
∞

2 = (d− 2)/2 respectively.
Let ν′ : V ′ → V ′′ be the blowing-down of the two (−1)-curves G′1 and G′2.

For i = 1, 2 and j = 0, ∞, we define the divisors I ′′ij and D′′
j on V ′′ by I ′′ij = ν′(I ′ij)

and D′′
j = ν′(D′

j). The divisors I ′′ij , D′′
0 , and D′′

∞ are non-singular rational curves
with I ′′ij

2 = −1, D′′
0

2 = −(d + 2)/2 and D′′
∞

2 = (d− 2)/2 respectively.
Let ν′′ : V ′′ → V ′′′ be the blowing-down of the two (−1)-curves I ′′1∞ and

I ′′2∞. For i = 1, 2 and j = 0, ∞, we define the divisors I ′′′i0 and D′′′
j on V ′′′ by

I ′′′i0 = ν′′(I ′′i0) and D′′′
j = ν′′(D′′

j ). The divisors I ′′′i0 , D′′′
0 , and D′′′

∞ are non-singular
rational curves with I ′′′i0

2 = 0, D′′′
0

2 = −1, and D′′′
∞

2 = 1. By K2
V ′′′ = 8, we see

easily that V ′′′ is isomorphic to the Hirzebruch surface Σ1 of degree 1, where D′′′
0

and I ′′′10 ∼ I ′′′20 give the minimal section and the fiber class respectively. We define
the point v′′′1 ∈ V ′′′ by v′′′1 = ν′′(I ′′1∞). Note that we have v′′′1 /∈ D′′′

0 if d = 0, and
v′′′1 ∈ D′′′

0 if d = 2.
We put ν = (ν′′ ◦ ν′ ◦ ν̃ ◦ ν̄) : V̄ → V ′′′ ' Σ1, and use the same symbols I ′′i∞,

G′i, and λ̃ for the total transforms to V̄ of the divisors I ′′i∞ ⊂ V ′′, G′i ⊂ V ′, and
λ̃ ⊂ Ṽ respectively. Note that the morphism ν : V̄ → V ′′′ ' Σ1 is a blowing-up
at six points some of which are infinitely near.

Proposition 14. The linear system | − 4KV̄ + λ̃ + λ̄′| = |ν∗(−4KV ′′′) −
4

∑
I ′′i∞ − 4

∑
G′i − 3λ̃ − 3λ̄′| has no base point. Let Ā0 be a reduced member of

| − 4KV̄ + λ̃ + λ̄′| that has at most negligible singularities, and satisfies Ā0 ∩ λ̄ = ∅
and Ā0 ∩

∑
Īij = ∅. Let X̄ be the canonical resolution of the double cover of V̄

branched along Ā0+ λ̄+
∑

Īij, and h̄ : X̄ → V̄ , the natural projection. Let X̄ → X

be the blowing-down of five (−1)-curves h̄−1(λ̄), h̄−1(Ī10), h̄−1(Ī20), h̄−1(Ī1∞),
and h̄−1(Ī2∞). Then X is a minimal surface with c2

1 = 2χ − 1, χ = 4, and
Tors ' Z/2. Conversely, for any minimal surface X(1) with these invariants,
there exist configuration of w1 and w′1 and a reduced member Ā0 as above such
that the surface X constructed by this procedure is isomorphic to X(1).

Proof. Since KZ̄ ∼ ℘̄∗(KV̄ ) +
∑

Jij , 2Jij = ℘̄∗(Īij), ℘̄∗(λ̄) =
∑

ēi,
℘̄∗(λ̄′) =

∑
ē′i, and λ̃ ∼ λ̄ + λ̄′, we have

℘̄∗(−4KV̄ + λ̃ + λ̄′) ∼ r̄∗
(
(r′ ◦ r̃)∗(−4KW )− 3

∑
ei − 3

∑
e′i

)
.

By this together with

∑
Īij = ν∗

( ∑
I ′′′i0

)
− 2

∑
G′i ∼ 2

(
I ′′′10 −

∑
G′i

)
, (13)
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we obtain

r̄∗Λ̃+
8

(
3

∑
ei + 3

∑
e′i

)
= ℘̄∗| − 4KV̄ + λ̃ + λ̄′|,

r̄∗Λ̃−8
(
3

∑
ei + 3

∑
e′i

)
= ℘̄∗

∣∣∣− 4KV̄ + λ̃ + λ̄′ −
(
I ′′′10 −

∑
G′i

)∣∣∣ +
∑

Jij .

Thus the absence of base points of | − 4KV̄ + λ̃ + λ̄′| follows from 3) of Lemma
5.2. Let Ā0 ∈ | − 4KV̄ + λ̃ + λ̄′|, h̄ : X̄ → V̄ , and X be a reduced member,
the induced morphism, and the obtained surface respectively as in the statement.
Then B̃0 = r̄(℘̄∗(Ā0)) satisfies all the conditions given in Proposition 13. Thus for
this B̃0, we obtain morphisms f̃ : Ỹ → Z̃ and p : Ỹ → Y as in Proposition 13 and
a minimal surface Y/G with c2

1 = 2χ − 1, χ = 4, and Tors ' Z/2. Note that the
preimage by f̃ of the set {(r′ ◦ r̃)−1(Γi ∩∆j)}i=1,2, j=0,∞ is composed of exactly
eight points. We denote by Ȳ → Ỹ the blowing-up at these eight points. Then
the morphism f̃ : Ỹ → Z̃ induces a generically two-to-one morphism f̄ : Ȳ → Z̄.
Moreover, the natural free action by G = 〈ι|W 〉 on Ỹ lifts to one on Ȳ that is
compatible with the induced action by G on Z̄. Thus f̄ : Ȳ → Z̄ induces a natural
morphism Ȳ /G → V̄ = Z̄/G. Since the branch divisor of Ȳ /G → V̄ = Z̄/G is
Ā0 + λ̄+

∑
Īij , and V̄ has no non-trivial torsion divisor, the morphism Ȳ /G → V̄

coincides with h̄ : X̄ → V̄ . Thus by Proposition 13, X ' Y/G is a minimal surface
with c2

1 = 2χ−1, χ = 4, and Tors ' Z/2. The final assertion follows from Theorem
2 and Lemma 5.1. ¤

Remark 6. The description above for our surfaces of the case χ = 4 is
almost the same as the description in Ciliberto-Mendes Lopes [8, Section 1] of
the surfaces of the non-standard case for the non-birationality of bicanonical maps
(see also [6, (b) in Theorem 3.1]). We emphasize here that in the present paper we
have put neither the assumption of the non-birationality of bicanonical maps nor
the assumption of the absence of pencils of curves of genus 2. By the description
above, it is almost clear that our surfaces coincide with those found in [8]. To be
precise, however, by showing the following proposition, we shall prove that they
in fact coincide.

Proposition 15. Any minimal surface X with c2
1 = 2χ − 1, χ = 4, and

Tors ' Z/2 has non-birational bicanonical map. Moreover, it has no pencil of
curves of genus 2.

Proof. Let X be a minimal surface with c2
1 = 2χ − 1, χ = 4, and Tors '

Z/2, and assume that X has a pencil of curves of genus 2. This pencil is rational,
since c2

1 ≥ 2. Let ϑ be a non-trivial 2-torsion divisor, and C, a general member
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of the pencil. Then by the same method as in the proof of (i), Lemma 1.2 of [7],
we see that |KX + ϑ| = |(χ− 1)C|+ D for a certain effective divisor D satisfying
KXD = 1, CD = 2, D2 = 3 − 2χ, and OC(D) 6' OC(KC). Since KXD = 1, the
divisor D contains an irreducible curve D1 satisfying KXD1 = 1, and all other
components of D are (−2)-curves. Then since −3 ≤ D2

1 + D1(D −D1) = D1D =
KXD1 − (χ − 1)CD1 = 1 − (χ − 1)CD1, we obtain 0 ≤ CD1 ≤ 1. Assume that
CD1 = 1. Then D − D1 contains a (−2)-curve D2 such that CD2 = 1, and so
−2 ≤ D2

2 + D2(D −D2) = DD2 ≤ −(χ− 1)CD2, hence a contradiction. Thus we
have CD1 = 0. In this case, if we let D = D′ + D′′ be the decomposition of D

such that D′ is the sum of all the irreducible components meeting C with positive
intersection number, and D′′ is the sum of all the irreducible components meeting
C with intersection number 0, then we have D1 ⊂ D′′ and CD′ = 2. Since D′

has at most two irreducible components and any irreducible component of D′ is
a (−2)-curve, by using exactly the same argument as in the proof of Lemma 2.1
of [7], we obtain a contradiction. Hence the surface X has no pencil of curves of
genus 2.

Thus in order to prove Proposition 15, it only remains to prove that X has non-
birational bicanonical map. For this purpose, let us use the notation in Proposition
14. We have H0(h̄∗OX̄(2KX̄)) = H0(OV̄ (2(KV̄ + %)))⊕H0(OV̄ (2KV̄ + %)) for a
certain divisor % with Ā0 + λ̄ +

∑
Īi,j ∼ 2%. We however have

2KV̄ + % ∼ ν∗(I ′′′10)−
∑

G′i + λ̃,

hence h0(OV̄ (2KV̄ + %)) = 0. This implies that the bicanonical map of X̄ factors
through the rational map of V̄ associated to the linear system |2(KV̄ + %)|. Hence
we have the assertion. ¤

To give a proof for Theorem 3, we also need the following lemma:

Lemma 5.4. Let V̄ be the smooth surface as in Proposition 14. Then for a
member Ā0 ∈ | − 4KV̄ + λ̃ + λ̄′|, the following equalities hold :

h0(OV̄ (Ā0)) = 29, h1(OV̄ (Ā0)) = 0, h2(OV̄ (Ā0)) = 0.

Proof. Since we have ℘̄∗(Ā0) ∈ r̄∗Λ̃+
8 (3

∑
ei + 3

∑
e′i), the equality

hi(OV̄ (Ā0)) = 0 for any i > 0 follows from Lemma 5.3. From this together
with the Riemann-Roch theorem, we infer h0(OV̄ (Ā0)) = 29. ¤

As the first part of our proof for Theorem 3, we shall show the following:

Lemma 5.5. Any two minimal algebraic surfaces with c2
1 = 2χ − 1, χ = 4,
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and Tors ' Z/2 are equivalent under deformation of complex structures. The
coarse moduli space M for surfaces with these invariants is irreducible.

Proof. Let M be the coarse moduli space for minimal surfaces X’s with
c2
1 = 2χ− 1, χ = 4, and Tors ' Z/2. In what follows, for a surface X with these

invariants, we denote by [X] the point in M corresponding to the isomorphism
class of X. As a reference point ofM, let us fix a surface X(1) with these invariants
for which d = 0 holds, the two points w1 and w2 lie neither on one and the same
member of |Γ | nor on that of |∆0|, and Ā0 is smooth. Below, we shall give an
irreducible component M(1) of M containing [X(1)], and show that for any X with
these invariants we have [X] ∈M(1) and X has the same deformation type as that
of the reference surface X(1). We divide our situation into several cases according
to d, the configuration of wi’s and w′i’s, and smoothness of Ā0 for our X. In what
follows, ε and ε0 will denote positive real numbers small enough. We shall replace
these numbers with smaller ones without mentioning it explicitly.

Case 1-1: the case where d = 0 holds, the two points w1 and w2 lie neither
on one and the same member of |Γ | nor on that of |∆0|. This case splits into two
subcases: case 1-1-1 and case 1-1-2.

Case 1-1-1: the subcase of case 1-1 where Ā0 is smooth. From the point of
view of description as in Proposition 14, this case corresponds to the case where
v′′′1 /∈ D′′′

0 , v′0 /∈ ∑
I ′ij +

∑
G′i +

∑
D′

j , and moreover Ā0 is smooth, where we put
v′′′1 = ν′′(I ′′1∞) and v′0 = ν̃(λ̃). Note that for all X’s of this case Ṽ ’s have one and
the same isomorphism class. Let prṼ×λ̃ : Ṽ × λ̃ → λ̃ ' P1 be the trivial family.
Let prṼ×λ̃,Ṽ : Ṽ × λ̃ → Ṽ be the first projection.

Then we can easily construct an analytic family prV̄ : V̄ → λ̃ ' P1 together
with a projection prV̄,Ṽ×λ̃ : V̄ → Ṽ × λ̃ satisfying the following condition: for each
t ∈ λ̃, the natural projection V̄t = prV̄−1(t) → Ṽ = prṼ×λ̃

−1(t) is the blowing-
up at t ∈ λ̃ ⊂ Ṽ with exceptional divisor λ̄′t. Let us denote by λ̄t and λ̃t the
strict transform and the total transform by V̄t = prV̄−1(t) → Ṽ = prṼ×λ̃

−1(t) of
the divisor λ̃, respectively. We denote by prV̄,Ṽ : V̄ → Ṽ the composite of two
projections prV̄,Ṽ×λ̃ and prṼ×λ̃,Ṽ .

Consider the divisor −4KV̄ +prV̄,Ṽ
∗(λ̃)+

⋃
t λ̄′t on V̄. The restriction to V̄t of

this divisor is linearly equivalent to−4KV̄t
+λ̃t+λ̄′t. Since we have h1(OV̄t

(−4KV̄t
+

λ̃t + λ̄′t)) = 0 and h0(OV̄t
(−4KV̄t

+ λ̃t + λ̄′t)) = 29 by Lemma 5.4, it follows that
the direct image

F0 = prV̄ ∗OV̄
(
− 4KV̄ + prV̄,Ṽ

∗(λ̃) +
⋃
t

λ̄′t
)

is a locally free sheaf on λ̃ ' P1 of rank 29. We denote by F∨0 the dual sheaf of
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F0 on λ̃.
Let prP : P = P(F∨0 ) → λ̃ be the P28-bundle over λ̃ associated with F∨0 . Then

P is the projectivised total space of vector bundle F0. We consider the Cartesian
diagram

V̄ ×λ̃ P //

²²

P

prP
²²

V̄
prV̄ // λ̃,

and denote by prV̄×λ̃P,V̄ : V̄ ×λ̃ P → V̄, prV̄×λ̃P,P : V̄ ×λ̃ P → P, and prV̄×λ̃P :
V̄ ×λ̃ P → λ̃ the first projection, the second projection, and the induced natural
projection respectively.

Let OP(1) be the tautological bundle of prP : P = P(F∨0 ) → λ̃. Then there
exists a natural non-zero global section

Ψ0 ∈ H0
(
prV̄×λ̃P,P

∗OP(1)⊗ prV̄×λ̃P,V̄
∗OV̄

(
− 4KV̄ + prV̄,Ṽ

∗(λ̃) +
⋃
t

λ̄′t
))

on V̄ ×λ̃ P satisfying the following condition: for each open set U ⊂ λ̃ such that
the restriction F0|U is trivial, the restriction Ψ0|prV̄×

λ̃
P−1(U) of Ψ0 to prV̄×λ̃P

−1(U)

is given by Ψ0|prV̄×
λ̃
P−1(U) =

∑29
i=1 aiψi, where {ψ1, . . . , ψ29} and {a1, . . . , a29} are

a base of H0(F0|U ) and its dual base respectively (note here that we have the
natural isomorphism prP∗OP(1) ' F∨0 ). We denote by ᾱ0 = (Ψ0) the divisor on
V̄ ×λ̃ P defined by the section Ψ0.

For each u ∈ P, we put t(u) = prP(u) ∈ λ̃. Then we have the natural iso-
morphism prV̄×λ̃P,P

−1(u) ' V̄t(u). Moreover, via this identification, the restriction
Ā0 u = ᾱ0|prV̄×

λ̃
P,P−1(u) ∈ |−4KV̄t(u)

+λ̃t(u)+λ̄′t(u)| is a divisor on V̄t(u) given by the

local defining function
∑29

i=1 ai(u)ψi|V̄t(u)
. Let P0 ⊂ P be the set of all u’s such that

Ā0 u is a reduced smooth divisor satisfying Ā0 u∩(λ̄t(u)+
∑

i=1,2, j=0,∞ Īij t(u)) = ∅,
where Īij t (t ∈ λ̃) is the restriction to V̄t of the divisor prV̄,Ṽ

∗(Ĩij). Then P0 is a
non-empty Zariski open subset of P = P(F∨0 ). Since P→ λ̃ is a P28-bundle over a
non-singular rational curve λ̃ ' P1, there exists a covering {U∨

µ }µ of P by a finite
number of Zariski open subsets U∨

µ ’s satisfying the following condition: for any
µ, the restriction OP(1)|U∨µ is trivial, and U∨

µ is isomorphic to the 29-dimensional
linear space A29. We fix one such cover {U∨

µ }µ, and put U0
µ = U∨

µ ∩P0 for each µ.
Let prV̄,V ′′′ : V̄ → V ′′′ and prV̄,V ′ : V̄ → V ′ be the natural projections

ν′′ ◦ ν′ ◦ ν̃ ◦ prV̄,Ṽ and ν̃ ◦ prV̄,Ṽ respectively. Then since the restriction to
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prV̄×λ̃P, P
−1(U0

µ) of prV̄×λ̃P, P
∗OP(1) is trivial, it follows from (13) that the re-

striction to prV̄×λ̃P, P
−1(U0

µ) of the divisor

ᾱ0 + prV̄×λ̃P, V̄
∗
( ⋃

t

λ̄t + prV̄,Ṽ
∗
( ∑

Ĩij

))
(14)

is linearly equivalent to twice the restriction to prV̄×λ̃P, P
−1(U0

µ) of the divisor

prV̄×λ̃P, V̄
∗
(
− 2KV̄ + prV̄,Ṽ

∗(λ̃) + prV̄,V ′′′
∗(I ′′′10)− prV̄,V ′

∗
( ∑

G′i
))

.

So let X̄ (µ) → prV̄×λ̃P, P
−1(U0

µ) be the double cover branched along the restriction
to prV̄×λ̃P, P

−1(U0
µ) of the divisor (14). Composing this morphism with the pro-

jection prV̄×λ̃P, P : V̄ ×λ̃ P → P, we obtain an analytic family prX̄ (µ) : X̄ (µ) → U0
µ.

For each u ∈ U0
µ, we put X̄

(µ)
u = prX̄ (µ)

−1(u). The inverse image by X̄ (µ) →
prV̄×λ̃P, P

−1(U0
µ) of prV̄×λ̃P, V̄

∗(
⋃

t λ̄t +prV̄,Ṽ
∗(

∑
Ĩij)) gives a family over U0

µ whose

fiber over each u ∈ U0
µ is a sum of five disjoint (−1)-curves on X̄

(µ)
u . Blowing

down this family of disjoint five (−1)-curves relatively to prX̄ (µ) : X̄ (µ) → U0
µ,

we obtain an analytic family prX (µ) : X (µ) → U0
µ. For each u ∈ U0

µ, we put

X
(µ)
u = prX (µ)

−1(u). Then by Proposition 14, for each u ∈ U0
µ, the fiber X

(µ)
u is a

minimal surface with c2
1 = 2χ− 1, χ = 4, and Tors ' Z/2.

Let U0
µ → M be the natural morphism induced from the family prX (µ) :

X (µ) → U0
µ, i.e., the morphism given by u 7→ [X(µ)

u ], where [X(µ)
u ] is a point in

M corresponding to the isomorphism class of the fiber X
(µ)
u . The two morphisms

U0
µ1
→ M and U0

µ2
→ M coincide on U0

µ1
∩ U0

µ2
. Thus gluing U0

µ → M’s, we

obtain a morphism P0 →M given locally by u 7→ [X(µ)
u ]. Since P0 is irreducible,

the image of this P0 → M lies on an irreducible component of the moduli space
M. We fix one such irreducible component and denote it by M(1).

Now let X be a minimal surface with c2
1 = 2χ − 1, χ = 4, and Tors ' Z/2

for which d = 0 holds, the two points w1 and w2 lie neither on one and the same
member of |∆0| nor on that of |Γ |, and Ā0 is smooth. Then by Proposition 14
and the construction of prX (µ) : X (µ) → U0

µ above, there exist a µ and a u ∈ U0
µ

such that X ' X
(µ)
u holds. Since P0 is connected, we infer that X has the same

deformation type as that of the reference surface X(1). Moreover, we infer that
the corresponding point [X] lies on the irreducible component M(1).

Case 1-1-2: the subcase of case 1-1 where Ā0 is singular. Let X be a minimal
surface with c2

1 = 2χ− 1, χ = 4, and Tors ' Z/2 of this case. In this case, Ā0 has
at most negligible singularities, and by Proposition 14, the linear system |Ā0| has
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no base point. Thus by the same method as in [9, Proof of Theorem 4], we obtain
an analytic family prX : X → N = {u ∈ C : |u| < ε} of minimal surfaces with
c2
1 = 2χ− 1, χ = 4, and Tors ' Z/2 such that Xu = prX−1(u) is of case 1-1-1 for

each u 6= 0 ∈ N , and X0 = prX−1(0) ' X. From this together with the results for
case 1-1-1, we infer that X has the same deformation type as that of the reference
surface X(1), and that the point [X] lies on the irreducible component M(1) in the
proof for case 1-1-1.

Case 1-2: the case where d = 0 holds, and the two points w1 and w2 lie on one
and the same member of |Γ | or |∆0|. In this case, by Remark 5, we may assume
that the two points w1 and w2 lie on the member Γ1 ∈ |Γ |. Then by Lemma 5.1,
we have w′1 /∈ r′−1

∗ (Γ1). This case is divided into two subcases: case 1-2-1 and case
1-2-2.

Case 1-2-1: the subcase of case 1-2 where Ā0 is smooth. From the point
of view of description as in Proposition 14, this case corresponds to the case
where v′′′1 /∈ D′′′

0 , v′0 ∈ G′1 \ (
∑

j I ′1j), and moreover Ā0 is smooth, where we put
v′′′1 = ν′′(I ′′1∞) and v′0 = ν̃(λ̃). Let X be a minimal surface with c2

1 = 2χ − 1,
χ = 4, and Tors ' Z/2 of this case. Let ε be a positive real number small enough.
We put N = {t ∈ C : |t| < ε}, and denote by prV ′×N : V ′ × N → N the trivial
family. Let prV ′×N, V ′ : V ′ ×N → V ′ be the first projection.

Then we can easily construct analytic families prṼ : Ṽ → N , prV̄ : V̄ → N

together with projections prṼ, V ′×N : Ṽ → V ′ × N , prV̄,Ṽ : V̄ → Ṽ satisfying
the following conditions: for each t ∈ N , the projection Ṽt = prṼ

−1(t) → V ′ =
prV ′×N

−1(t) is the blowing-up at v′(t) with exceptional divisor λ̃t, where v′ : N →
V ′ ×N is a holomorphic section of the analytic family prV ′×N : V ′ ×N → N ; for
each t ∈ N , the projection V̄t = prV̄−1(t) → Ṽt = prṼ

−1(t) is the blowing-up at
ṽ(t) with exceptional divisor λ̄′t, where ṽ : N → Ṽ is a holomorphic section of the
analytic family prṼ : Ṽ → N ; v′(0) = v′0(= ν̃(λ̃)) holds, and prV ′×N, V ′(v′(t)) ∈∑

G′i +
∑

D′
j +

∑
I ′ij if and only if t = 0; ṽ(0) = ṽ0(= ν̄(λ̄′)) holds, and ṽ(t) ∈ λ̃t

for any t ∈ N . Note that from the conditions above, we have in particular Ṽ0 = Ṽ

and V̄0 = V̄ . Let us denote by λ̄t the strict transform of λ̃t by V̄t = prV̄−1(t) →
Ṽt = prṼ

−1(t).
Consider the divisor −4KV̄ + prV̄,Ṽ

∗(
⋃

t λ̃t) +
⋃

t λ̄′t on V̄. The restriction
to V̄0 = V̄ of this divisor is linearly equivalent to −4KV̄ + λ̃ + λ̄′. Since we
have h1(OV̄ (−4KV̄ + λ̃ + λ̄′)) = 0 by Lemma 5.4, there exists a non-zero global
section Ψ ∈ H0(OV̄(−4KV̄ + prV̄,Ṽ

∗(
⋃

t λ̃t) +
⋃

t λ̄′t)) on V̄ satisfying the following
conditions: the restriction (Ψ)|V̄0

to V̄0 coincides with Ā0, where (Ψ) denotes the
divisor on V̄ defined by the global section Ψ ; for any t ∈ N , the restriction (Ψ)|V̄t

to V̄t is a reduced non-singular divisor on V̄t; the divisor (Ψ) does not intersects⋃
t λ̄t+prV̄,V ′

∗(
∑

I ′ij), where prV̄,V ′ : V̄ → V ′ is the composite of three projections
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prV̄,Ṽ , prṼ, V ′×N , and prV ′×N, V ′ .
Let X̄ → V̄ be the double cover branched along (Ψ) +

⋃
t λ̄t + prV̄,V ′

∗(
∑

I ′ij).
Then composing this morphism with the projection prV̄ : V̄ → N , we obtain an
analytic family prX̄ : X̄ → N . For each t ∈ N , we put X̄t = prX̄ −1(t). The
inverse image by X̄ → V̄ of

⋃
t λ̄t + prV̄,V ′

∗(
∑

I ′ij) gives a family over N whose
fiber over each t ∈ N is a disjoint union of five (−1)-curves on X̄t. Blowing down
this family of five (−1)-curves relatively to prX̄ : X̄ → N , we obtain an analytic
family prX : X → N . Then by the construction of prX : X → N above, we have
X0 = prX−1(0) ' X, and for each t 6= 0 ∈ N , the fiber Xt = prX−1(t) is a minimal
surface with c2

1 = 2χ− 1, χ = 4, and Tors ' Z/2 of case 1-1-1. From this together
with the results for case 1-1-1, we infer that X has the same deformation type as
that of the reference surface X(1), and that the point [X] lies on the irreducible
component M(1) in the proof for case 1-1-1.

Case 1-2-2: the subcase of case 1-2 where Ā0 is singular. Let X be a minimal
surface with c2

1 = 2χ−1, χ = 4, and Tors ' Z/2 of this case. Then using the same
argument as in case 1-1-2, we infer from the results for case 1-2-1 that X has the
same deformation type as that of the reference surface X(1), and that the point
[X] lies on the irreducible component M(1) in the proof for case 1-1-1.

Case 2-1: the case where d = 2 holds, and the two points w1 and w2 do not
lie on one and the same member of |Γ |. Note that in this case we have v′0 /∈ D′

0

by Lemma 5.1, where we put v′0 = ν̃(λ̃). This case splits into two subcases: case
2-1-1 and case 2-1-2.

Case 2-1-1: the subcase of case 2-1 where Ā0 is smooth. From the point of
view of description as in Proposition 14, this case corresponds to the case where
v′′′1 ∈ D′′′

0 , v′0 /∈ D′
0 +

∑
G′i +

∑
I ′ij , and moreover Ā0 is smooth, where we put

v′′′1 = ν′′(I ′′1∞) and v′0 = ν̃(λ̃). Let X be a minimal surface with c2
1 = 2χ − 1,

χ = 4, and Z/2 of this case. Let ε be a positive real number small enough. We
put N = {t ∈ C : |t| < ε}, and denote by prV ′′′×N : V ′′′ × N → N the trivial
family. Let prV ′′′×N, V ′′′ : V ′′′ × N → V ′′′ be the first projection. Let us take
a holomorphic section v′′′(1) : N → V ′′′ × N satisfying the following conditions:
prV ′′′×N, V ′′′(v′′′(1)(0)) = v′′′1 (= ν′′(I ′′1∞)) holds; prV ′′′×N, V ′′′(v′′′(1)(t)) ∈ I ′′′10 for any
t ∈ N ; prV ′′′×N, V ′′′(v′′′(1)(t)) = v′′′1 if and only if t = 0.

Recall that the configuration corresponding to Case 1-1-1 was v′′′1 /∈ D′′′
0 ,

v′0 /∈ ∑
I ′ij +

∑
G′i +

∑
D′

j . Thus using the holomorphic section v′′′(1) : N →
V ′′′ × N above, and by the same arguement as in the proof for case 1-2-1, we
obtain an analytic family prX : X → N = {t ∈ C : |t| < ε} satisfying the following
conditions: X0 = prX−1(0) ' X; and for each t 6= 0 ∈ N , the fiber Xt = prX−1(t)
is a minimal surface with c2

1 = 2χ − 1, χ = 4, and Tors ' Z/2 of case 1-1-1.
From this together with the results for case 1-1-1, we infer that X has the same
deformation type as that of the reference surface X(1), and that the point [X] lies
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on the irreducible component M(1) in the proof for case 1-1-1.
Case 2-1-2: the subcase of case 2-1 where Ā0 is singular. Let X be a minimal

surface with c2
1 = 2χ−1, χ = 4, and Tors ' Z/2 of this case. Then using the same

argument as in case 1-1-2, we infer from the results for case 2-1-1 that X has the
same deformation type as that of the reference surface X(1), and that the point
[X] lies on the irreducible component M(1) in the proof for case 1-1-1.

Case 2-2: the case where d = 2 holds, the two points w1 and w2 lie on one
and the same member of |Γ |. Note that in this case we have v′0 /∈ D′

0 by Lemma
5.1, where we put v′0 = ν̃(λ̃). In this case, by Remark 5, we may assume that the
two points w1 and w2 lie on the member Γ1 ∈ |Γ |. Then by Lemma 5.1, we have
w′1 /∈ r′−1

∗ (Γ1). This case is divided into two subcases: case 2-2-1 and case 2-2-2.
Case 2-2-1: the subcase of case 2-2 where Ā0 is smooth. From the point

of view of description as in Proposition 14, this case corresponds to the case
where v′′′1 ∈ D′′′

0 , v′0 ∈ G′1 \ (
∑

j I ′1j), and moreover Ā0 is smooth, where we put
v′′′1 = ν′′(I ′′1∞) and v′0 = ν̃(λ̃). Note that by Lemma 5.1, we have ṽ0 /∈ ν̃−1

∗ (G′1),
where we put ṽ0 = ν̄(λ̄′). Let X be a minimal surface with c2

1 = 2χ − 1, χ = 4,
and Tors ' Z/2 of this case. Let ε be a positive real number small enough.
We put N = {t ∈ C : |t| < ε}, and denote by prV ′×N : V ′ × N → N the
trivial family. Let prV ′×N, V ′ : V ′ × N → V ′ be the first projection. Let us
take a holomorphic section v′ : N → V ′ × N satisfying the following conditions:
prV ′×N, V ′(v′(0)) = v′0(= ν̃(λ̃)) holds; prV ′×N, V ′(v′(t)) ∈ D′

0 +
∑

G′i +
∑

I ′ij if
and only if t = 0.

Recall that the configuration corresponding to case 2-1-1 was v′′′1 ∈ D′′′
0 , v′0 /∈

D′
0 +

∑
G′i +

∑
I ′ij . Thus using the holomorphic section v′ : N → V ′ ×N above,

and by the same arguement as in the proof for case 1-2-1, we obtain an analytic
family prX : X → N = {t ∈ C : |t| < ε} satisfying the following conditions:
X0 = prX−1(0) ' X; for each t 6= 0 ∈ N , the fiber Xt = prX−1(t) is a minimal
surface with c2

1 = 2χ− 1, χ = 4, and Tors ' Z/2 of case 2-1-1. From this together
with the results for case 2-1-1, we infer that X has the same deformation type as
that of the reference surface X(1), and that the point [X] lies on the irreducible
component M(1) in the proof for case 1-1-1.

Case 2-2-2: the subcase of case 2-2 where Ā0 is singular. Let X be a minimal
surface with c2

1 = 2χ−1, χ = 4, and Tors ' Z/2 of this case. Then using the same
argument as in case 1-1-2, we infer from the results for case 2-2-1 that X has the
same deformation type as that of the reference surface X(1), and that the point
[X] lies on the irreducible component M(1) in the proof for case 1-1-1.

Now that we have the results for all the eight cases 1-1-1, . . . , 2-2-2, we have
the assertion. ¤

Note that from the proof above, we see that the morphism P0 → M in the
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proof for case 1-1-1 is dominant.
Now let us prove Theorem 3.

Proof of Theorem 3. Let P0 → M be the morphism u 7→ [X(µ)
u ] given

in the proof (for case 1-1-1) of Lemma 5.5. Recall that we have X
(µ1)
u ' X

(µ2)
u if

u ∈ U0
µ1
∩ U0

µ2
. So in what follows, we abbreviate X

(µ)
u to Xu. Since P0 →M is

a dominant morphism from the 29-dimensional variety P0, we only need to show
that for each u0 ∈ P0, there exist at most eight u ∈ P0’s satisfying [Xu] = [Xu0 ].
Recall also that for all X’s of case 1-1-1 in the proof of Lemma 5.5, Ṽ ’s have one
and the same isomorphism class. In what follows, we assume that W , Z ′, Ṽ , and
the configuration of wi’s are those for X’s of case 1-1-1.

Let Aut(W ) be the group of analytic automorphisms of W ' Σ0, and ι|W ,
the involution of W as in Proposition 13. Let Aut(W, ι|W , {wi}) be the sub-
group of Aut(W ) consisting of all σ ∈ Aut(W )’s satisfying (ι|W ) ◦ σ = σ ◦ (ι|W )
and σ({wi}i=1,2) = {wi}i=1,2. Since Aut(W, ι|W , {wi}) acts naturally on the sets
{wi}i=1,2 and {∆0,∆∞, Γ1, Γ2}, we have corresponding group homomorphisms
Aut(W, ι|W , {wi}) → S2 and Aut(W, ι|W , {wi}) → D4, where S2 and D4 denote
the symmetric group of degree 2 and the dihedral group of degree 4 respectively.
It is easy to see that the product Aut(W, ι|W , {wi}) → S2 × D4 of these two
morphisms is an isomorphism.

Let Z ′/G be the quotient of the surface Z ′ by the natural action by the group
G = 〈ι|W 〉. Then the quotient Z ′/G has four nodes, and the natural morphism
Ṽ → Z ′/G gives the minimal desingularization of Z ′/G. Thus via the diagram
Ṽ → Z ′/G ← Z ′ → W , the action by Aut(W, ι|W , {wi}) on the surface W induces
one on the pair (Ṽ , λ̃). Let S2 = 〈ι|W 〉 → Aut(W, ι|W , {wi}) be the natural
inclusion. Since S2 acts trivially on Ṽ via this inclusion, we obtain a natural
action by Aut(W, ι|W , {wi})/S2 ' D4 on the pair (Ṽ , λ̃). This action on (Ṽ , λ̃)
induces one on P0. Remark 4 however implies that we have Xu1 ' Xu2 if and
only if two points u1 ∈ P0 and u2 ∈ P0 belong to the same orbit of the action by
Aut(W, ι|W , {wi})/S2 on P0. Thus by ]D4 = 8, we see that for any u0 ∈ P0 there
exist at most eight u ∈ P0’s satisfying Xu ' Xu0 . Hence we have the assertion. ¤

6. Appendix.

Proof of Proposition 3. Let us prove Proposition 3. The method we
employ here is the same as the one used in [13, Proof of Lemma 4.5], to which
we refer the readers for details of the following argument. Let Z ⊂ Pn, where
n ≥ 4, be a non-degenerate surface satisfying the assumptions in Proposition 3,
and Z ′ → Z, its minimal desingularization. Since we have deg Z < 2n − 2, and
Z ′ → Z is given by a complete linear system |D′|, the surface Z ′ is a rational
surface not isomorphic to P2. Thus, for an integer d, the surface Z ′ admits a
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birational morphism r : Z ′ → Σd = Z ′0 onto the Hirzebruch surface Σd of degree
d. Let D′

0 be a general member of the linear system r∗|D′|, and ε′i’s, the total
transforms to Z ′ of the (−1)-curves appearing at the blowings up in Z ′ → Z.
Then we have D′ ∼ r∗D′

0 −
∑s

i=1 miε
′
i, where mi’s, s ∈ Z.

Lemma 6.1. There exists an r : Z ′ → Z ′0 as above such that for any i’s, the
equality mi = 1 holds.

Proof of Lemma. Note that the general member D′ is a non-singular
irreducible curve on Z ′. If h1(OD′(D′)) > 0, then by Clifford’s theorem on special
divisors, we have D′2 ≥ 2(h0(OD′(D′)) − 1), which contradicts n ≥ 4. Thus we
have h1(OD′(D′)) = 0. From this together with the natural short exact sequence
0 → OZ′ → OZ′(D′) → OD′(D′) → 0 and the Riemann-Roch theorem, we infer

χ(OZ′(D′)) = n + 1,

D′KZ′ = D′2 + 2(1− χ(OZ′(D′))) = 1− n, and (KZ′ + D′/2)D′ = (3− n)/2 < 0.
Thus by Cone Theorem, we find that if Z ′ is not the Hirzebruch surface, then there
exists a (−1)-curve ε′ on Z ′ satisfying (KZ′+D′/2)ε′ < 0. Since Z ′ → Z contracts
no (−1)-curve, we obtain D′ε′ = 1. Let r′ : Z ′ → Z ′′ be the blowing-down of ε′.
We put D′′ = r′∗(D

′). If Z ′′ is not the Hirzebruch surface, then the same argument
as above ensures the existence of a (−1)-curve ε′′ on Z ′′ satisfying D′′ε′′ = 1 (for
the detail, see [13, Lemma 4.4]). We can repeat the same steps until we obtain
the Hirzebruch surface. ¤

In what follows, we assume our r satisfies the condition in the lemma above,
hence D′ ∼ r∗D′

0−
∑s

i=1 ε′i. We put D′
0 ∼ a∆0 + bΓ , where if d = 0, we chose ∆0

and Γ in such a way that b ≥ a. Then by χ(OZ′(D′)) = n + 1 and D′2 = n + 1,
we obtain the following three equalities:

n + 1 =
D′(D′ −KZ′)

2
+ 1 = (a + 1)

(
b− ad

2

)
+ a− s + 1,

n + 1 = 2a

(
b− ad

2

)
− s, (15)

0 = D′2 − χ(OZ′(D′)) = (a− 1)
(

b− ad

2

)
− (a + 1). (16)

Note that we have b−ad/2 ≥ a if d 6= 1, and that b−ad/2 ≥ a/2 if d = 1. Thus by
(15) and (16), we find a = 2, b = d + 3, and s = 11− n, hence D′ ∼ −KZ′ + r∗Γ .
Since |D′

0| has no fixed component, we obtain d ≤ 3. ¤
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