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Hypersurfaces with isotropic Blaschke tensor
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Abstract. Let Mm be an m-dimensional submanifold without umbilical
points in the m + 1-dimensional unit sphere Sm+1. Three basic invariants of
Mm under the Möbius transformation group of Sm+1 are a 1-form Φ called
Möbius form, a symmetric (0,2) tensor A called Blaschke tensor and a positive
definite (0,2) tensor g called Möbius metric. We call the Blaschke tensor is
isotropic if there exists a function λ such that A = λg. One of the basic
questions in Möbius geometry is to classify the hypersurfaces with isotropic
Blaschke tensor. When λ is constant, the classification was given by Changping
Wang and others. When λ is not constant, all hypersurfaces with dimensional
m ≥ 3 and isotropic Blaschke tensor are explicitly expressed in this paper.
Therefore, for the dimensional m ≥ 3, the above basic question is completely
answered.

1. Introduction.

Let x : Mm → Sm+1 be an m-dimensional hypersurface without umbilical
pints in the (m+1)-dimensional unit sphere Sm+1 and {ei} be a local orthonormal
tangent frame field of x for the standard metric I = dx · dx with dual frame field
{θi}. Let II =

∑
i,j hijθiθj be the second fundamental form and H the mean

curvature of x. Define ρ2 = m/(m− 1)|II − HI|2, then positive definite 2-form
g = ρ2I is invariant under Möbius group of Sm+1 and is called Möbius metric of
x. Two basic Möbius invariants of x, Möbius form Φ =

∑
i ρCiθi, Blaschke tensor

A =
∑

ij ρ2Aijθiθj , are defined by (cf. [Wa])

Ci = −ρ−2

(
ei(H) +

∑

j

(hij −Hδij)ej(log ρ)
)

, (1.1)

Aij = −ρ−2(Hessij(log ρ)− ei(log ρ)ej(log ρ)−Hhij)

− 1
2
ρ−2(‖∇ log ρ‖2 − 1 + H2)δij , (1.2)
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where (Hessij) and ∇ are the Hessian-matrix and the gradient operator with re-
spect to the induced metric I = dx ·dx. We call the Blaschke tensor A is isotropic
if there exists a function λ on Mm, such that

A = λg. (1.3)

Huili Liu, Changping Wang and Guosong Zhao defined a Möbius isotropic
submanifold as a submanifold satisfying two conditions: A = λg and Φ = 0. They
showed that the conformal Gauss map of a Möbius isotropic submanifolds is har-
monic, and proved that a Möbius isotropic submanifold is conformally equivalent
to a minimal submanifold with constant scalar in Sn (if λ > 0), or in Euclidean
space Rn (if λ = 0), or in hyperbolic space Hn (if λ < 0) (cf. [LWZ]). This
result give the unified Möbius characterization of the minimal submanifolds with
constant scalar in the three space forms by two conditions: Blaschke tensor A is
isotropic and Φ vanishes. In the fact, Φ = 0 implies that λ is constant. From
then, people want to know the hypersurface whose Blaschke tensor is isotropic
and corresponding λ is non-constant. In this paper, we will give all hypersurfaces
with isotropic Blaschke tensor and non-constant λ.

For the purpose to make our main result intuitional, we use the following
notations: Rm+3

1 denotes Lorentz space with the inner product 〈·, ·〉 given by

〈Y, Z〉 = −y0z0 + y1z1 + · · ·+ ym+2zm+2,

where Y = (y0, y1, . . . , ym+2), Z = (z0, z1, . . . , zm+2) ∈ Rm+3. Cm+2
+ and Qm+1

denote the positive light cone and the quadric in real projection space RPm+2,
which are defined as follows:

Cm+2
+ =

{
X ∈ Rm+3

1 : 〈X, X〉 = 0, x0 > 0
}
,

Qm+1 =
{
[Y ] ∈ RPm+2 : 〈Y, Y 〉 = 0

}
.

We use map

π : Cm+2
+ → Qm+1 (1.4)

to denote the nature projection. For a hypersurface x : Mm → Sm+1, we have
map

X := π(1, x) : Mm → Qm+1, (1.5)
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which is determined by the immersion x and is called the natural map of x. It is
known from a classical theorem that two hypersurfaces x, x̃ : Mm → Sm+1 are
Möbius equivalent if and only if whose natural maps X, X̃ : Mm → Qm+1 are
equivalent under the action of Lorentz group O(m + 2, 1). We use σ to denote the
inverse stereographic projection from Rm+1 ∪ {∞} to Sm+1. As σ is a conformal
homeomorphism, two hypersurfaces τ, τ̃ : Mm → Rm+1 ∪{∞} are Möbius equiv-
alent if and only if x = σ ◦ τ, x̃ = σ ◦ τ̃ : Mm → Sm+1 are Möbius equivalent.
Now we state the main theorem as follows:

Theorem 1.1. Let x : Mm → Sm+1 be an m(≥ 3)-dimensional hypersurface
without umbilical points in the (m + 1)-dimensional unit sphere Sm+1. If A = λg

and function λ is non-constant, then for a connected open set U of M , with ∇λ 6=
0, the function λ is a single variate function and is the implicit function determined
by function equation:

∫
memλdλ√

ae2mλ − 2λ− 1
m2

= s, (1.6)

where s ∈ l, l is an interval in R1 and a is a constant. Moreover, x is one of the
following cases:
(i) for a = 0, up to the Möbius transformations of Sm+1,

x(U) = σ(Γ1 ×Rm−1), Γ1 ⊂ R2, (1.7)

where Γ1 is a curve with arc-length parameter s in R2 and its position vector ξ in
R2 is given by

ξ(u) =
(

2
∫

exp
(
− u2

2m
+ bu + c

)
cos udu,

2
∫

exp
(
− u2

2m
+ bu + c

)
sinudu

)
, (1.8)

where b is a constant, c = −(m/2)(b2 + (1/m2)), u =
∫

e−mλ(s)ds;
(ii) for a < 0, up to the transformations in O(m + 2, 1),

X(U) = π

(
Hm−1

(
1√−a

)
× Γ2

)
, Γ2 ⊂ S2

(
1√−a

)
, (1.9)

where Γ2 is a curve with arc-length parameter s in S2(1/
√−a) and its position
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vector ξ(s) in R3 is a solution of the following equation (1.11);
(iii) for a > 0, up to the transformations in O(m + 2, 1),

X(U) = π

(
Γ3 × Sm−1

(
1√
a

))
, Γ3 ⊂ H2

(
1√
a

)
, (1.10)

where Γ3 is a curve with arc-length parameter s in H2(1/
√

a) and its position
vector ξ(s) in R3

1 is a solution of the following equation (1.11) :

d

ds

(
emλ

(
d2ξ

ds2
− aξ

))
= −e−mλ dξ

ds
. (1.11)

For the purpose of making the procedure of the proof of Theorem 1.1 clear,
we organize the main content of the paper as four parts. In Section 2 we give the
structure equations, the Möbius invariants of general m-dimensional hypersurfaces
in Sm+1. In Section 3 we concentrate on getting the local expression of the basic
Möbius invariants of the hypersurfaces with isotropic Blaschke tensor. The main
result is Theorem 3.1 in this part. In Section 4 we obtain the differential equations
characterizing the hypersurfaces with isotropic Blaschke tensor. The main result
is Theorem 4.1 in this part. In Section 5 we treat the differential equations given
in Section 4 and classify the hypersurfaces with isotropic Blaschke tensor.

2. Möbius invariants for a hypersurface in Sm+1.

In this section we define Möbius invariants and recall the structure equations
for hypersurfaces in Sm+1. For the detail we refer to [Wa].

Let Rm+3
1 be the Lorentz space with inner product 〈·, ·〉 defined in Section 1,

x : Mm → Sm+1 ⊂ Rm+2 be a hypersurface without umbilical points in Sm+1.
We define the Möbius position vector Y : Mm → Rm+3

1 of x by

Y = ρ(1, x) : Mm → Rm+3
1 , ρ2 =

m

m− 1
(‖II‖2 −mH2) > 0.

Theorem 2.1 ([Wa]). Two hypersurfaces x, x̃ : Mm → Sm+1 are Möbius
equivalent if and only if there exists T in the Lorentz group O(m + 2, 1) acting on
Rm+3

1 , such that Y = Ỹ T .

Since the Möbius group in Sm+1 is isomorphic to the subgroup O+(m + 2, 1)
of O(m + 2, 1), which preserves the positive part of the light cone in Rm+3

1 , from
Theorem 2.1 we know that 2-form
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g = 〈dY, dY 〉 = ρ2dx · dx (2.1)

is a Möbius invariant (cf. [Bl], [Ch], [Wi], [PW], [Wa] and [GLW2]). We call
g the Möbius metric or the Möbius first fundamental form induced by x. Let ∆
denote the Laplacian of g, then we have

〈∆Y,∆Y 〉 = 1 + m2R,

where R is the normalized scalar curvature of g (cf. [Wa]). By defining

N = − 1
m

∆Y − 1
2m2

(1 + m2R)Y, (2.2)

we have

〈Y, Y 〉 = 〈N, N〉 = 0, 〈Y, N〉 = 1. (2.3)

Moreover, if we take a local orthonormal basis {Ei} with respect to g with dual
basis {ωi}. Denoting Ei(Y ) by Yi, we have

〈Yi, Yj〉 = δij , 〈Yi, Y 〉 = 〈Yi, N〉 = 0, 1 ≤ i, j ≤ m. (2.4)

Let V be the orthogonal complement of span{Y, N, Yi} in Rm+3
1 . Then we

have the orthogonal decomposition

Rm+3
1 = span{Y, N} ⊕ span{Y1, . . . Ym} ⊕ V. (2.5)

Let E be an unit vector field of V . Then

{Y, N, Y1, . . . , Ym, E} (2.6)

forms a moving frame in Rm+3
1 along M . We make use of the following convention

on the ranges of indices: 1 ≤ i, j, k, . . . ≤ m; and we shall agree that repeated
indices are summed over respective ranges. Then the structure equations are
given by

dY = ωiYi, (2.7)

dN = AijωjYi + CiωiE, (2.8)

dYi = −AijωjY − ωiN + ωijYj + BijωjE, (2.9)
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dE = −CiωiY −BijωjYi, (2.10)

where ωij is the connection form of the Möbius metric g, and Aij and Bij are
symmetric with respect to (ij). It is clear that

A = Aijωi ⊗ ωj , B = Bijωi ⊗ ωj , Φ = Ciωi (2.11)

are Möbius invariants and called the Blaschke tensor, the Möbius second funda-
mental form and the Möbius form, respectively.

Remark 2.1. The relations among A,B,Φ and Euclidean invariants of x

are given by (1.1), (1.2) and

Bij = ρ−1(hij −Hδij). (2.12)

Define covariant derivative of Aij , Bij and Ci by

∑

k

Aij,kωk = dAij +
∑

k

Aikωkj +
∑

k

Akjωki, (2.13)

∑

k

Bij,kωk = dBij +
∑

k

Bikωkj +
∑

k

Bkjωki, (2.14)

∑

k

Ci,kωk = dCi +
∑

k

Ckωki. (2.15)

By exterior differentiation of structure equations, we can get the integrability
conditions for structure equations as follows (cf. [Wa]):

Aij,k −Aik,j = BikCj −BijCk; (2.16)

Ci,j − Cj,i =
∑

k

(
BikAkj −BjkAki

)
; (2.17)

Bij,k −Bik,j = δijCk − δikCj ; (2.18)

Rijkl = BikBjl −BilBjk + δikAjl + δjlAik − δilAjk − δjkAil; (2.19)

Rij = −
∑

k

BikBkj + tr(A)δij + (m− 2)Aij ; (2.20)

tr(A) =
1

2m
(1 + m2R);

∑

i

Bii = 0;
∑

i,j

(Bij)2 =
m− 1

m
, (2.21)
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where Rijkl and Rij denote the curvature tensor and Ricci curvature tensor of g,
respectively. R = 1/(m(m − 1))

∑
i,j Rijij is the normalized scalar curvature.

From (2.18) and (2.21) we have

∑

i

Bij,i = −(m− 1)Cj . (2.22)

We define Möbius shape operator B by using

g(BX,Y ) = B(X, Y ), X, Y ∈ Tp(M), (2.23)

at each point p ∈ M .

Remark 2.2. Some recent results about the Möbius geometry of subman-
ifolds can be found in [AG1], [AG2], [GLW1], [HL1], [HL2], [LLWZ], [LW1],
[LW2] and [LWW].

3. The Möbius invariants of the hypersurfaces with isotropic
Blaschke tensor in Sm+1.

Let x : Mm → Sm+1 be an m(≥ 3)-dimensional hypersurface with isotropic
Blaschke tensor and without umbilical point in unit sphere Sm+1. On the following
we assume that λ is not constant. Let U be a connected open set on which we
have ∇λ 6= 0. We prove first the following proposition.

Proposition 3.1. Möbius shape operator B has two distinct principal cur-
vatures (m− 1)/m and −1/m of multiplicities 1 and m− 1 on U .

For each point p ∈ U we can choose a field of tangent orthonormal frames
E1, . . . , Em of (M, g) on a neighborhood of p such that

Bij = Biiδij , 1 ≤ i, j ≤ m, (3.1)

at the point p. Let fi = Ei(f) for a function f on M . Then, at the point p, we
can write equation (2.16) as

λkδij − λjδik = BiiδikCj −BiiδijCk, 1 ≤ i, j, k ≤ m. (3.2)

By taking i, j, k such that i = j 6= k in (3.2), we have

λk = −BiiCk, i 6= k. (3.3)
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By taking j such that j = i, making summation for i from 1 to m and using (2.21)
we have

(m− 1)λk = BkkCk, 1 ≤ k ≤ m. (3.4)

(3.3) and (3.4) imply

[Bkk + (m− 1)Bii]λk = 0, i 6= k. (3.5)

The assumption ∇λ 6= 0 implies that at least one of λi’s is not zero at p. Without
losing generality, we assume λ1 6= 0 at point p. Then from (3.5) and the last
identity of (2.21) we see that

B11 =
m− 1

m
, Bii = − 1

m
, 2 ≤ i ≤ m. (3.6)

Since p is arbitrary, we complete the proof of Proposition 3.1. ¤

From Proposition 3.1 we know that multiplicity of each principal curvature is
constant and so we can define two distributions V1 and V2 as follows:

V1 =
⋃

p∈U

V1(p), V2 =
⋃

p∈U

V2(p), (3.7)

where V1(p) and V2(p) are the eigenspaces corresponding to (m−1)/m and −1/m,
with dim(V1(p)) = 1 and dim(V2(p)) = m− 1. Thus we have decomposition

T (U) = V1 ⊕ V2. (3.8)

We can choose a fields of orthonormal tangent frame E1, . . . , Em of T (U) in
a neighborhood of an point p ∈ U , such that E1 is a basis of V1 and E2, . . . , Em is
a basis of V2. For convenience, we make the following convention on the ranges of
indices:

1 ≤ i, j, k, l ≤ m, 2 ≤ α, β, γ ≤ m. (3.9)

Then under the basis {E1, Eα} we have

B1j =
m− 1

m
δ1j , Bαj = − 1

m
δαj . (3.10)
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Therefore, (3.2), (3.3) and (3.4) hold in the neighborhood of p. From (3.3) and
(3.4) we have

λ1 =
1
m

C1, λα = −m− 1
m

Cα, (m− 1)λα = − 1
m

Cα, (3.11)

which implies

Cα = 0, C1 = mλ1, (3.12)

and

Eα(λ) = 0, E1 =
∇λ

|∇λ| , 2 ≤ α ≤ m. (3.13)

Let {ωij} be the connection forms of g with respect to {ωi}. We have

m∑

k=1

B1j,kωk = dB1j +
∑

k

Bkjωk1 +
∑

k

B1kωkj =
(

Bjj − m− 1
m

)
ωj1,

1 ≤ j ≤ m, (3.14)

which shows

B11,k = 0,
∑

k

B1α,kωk = ω1α. (3.15)

Thus, from (2.18) we have

B1α,1 = B11,α + δ1αC1 − δ11Cα = 0,

and from (3.15) we have

ω1α =
m∑

β=2

B1αβωβ . (3.16)

Since Bαβ = −(1/m)δαβ , we have

m∑

k=1

Bαβ,kωk = dBαβ +
∑

k

Bkβωkα +
∑

k

Bαkωkβ = 0,
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and so we have Bαβ,1 = 0. Thus from (2.28) we have

B1,αβ = Bα1,β = Bαβ,1 + δα1Cβ − δαβC1 = −δαβC1. (3.17)

From (3.16), (3.17) and (3.12) we get

ω1α = −mλ1ωα, α ≥ 2. (3.18)

From (2.7) and (2.9), we see that the connection forms ωij is defined by the
following equation:

dω1 =
m∑

α=2

ωα ∧ ωα1; dωα = ω1 ∧ ω1α +
m∑

β=2

ωβ ∧ ωβα. (3.19)

Thus the equation (3.18) and (3.19) imply

dω1 = 0. (3.20)

According to Frobenius theorem, (3.20) implies distribution V2 = span{E2, . . . ,

Em} is locally integrable. Let V be the integral manifold of the distribution.
Locally, Mm is diffeomorphic equivalent to product manifold l×V , where interval
l ⊂ R1. From (3.12) we see that, restricted on {t} × V , λ is constant. From the
Gauss equation (2.19), we have

Rαβαβ =
1

m2
+ 2λ, 2 ≤ α, β ≤ m, α 6= β. (3.21)

Since λ is constant on V , and (3.21) shows that the Möbius metric g has con-
stant sectional curvature on {t} × V for each fixed t ∈ l, we can choose the local
coordinates (u, v2, . . . , vm) of M such that

g = du2 + e2p(u,v2,...,vm)
(
dv2

2 + · · ·+ dv2
m

)
, (3.22)

where e(·) denotes exponential function exp, p is a smooth function on l × V .

From (3.22), (3.18) and (3.12) we have

ω1 = du, ωα = epdvα, ω1α = −mλuepdvα,
∂λ

∂vα
= 0. (3.23)
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Lemma 3.1. The function p in (3.22) satisfies

p(u, v2, . . . , vm) = −mλ(u) + f(v2, . . . , vm), (3.24)

and connection forms with respect to g, except ω1α, can be written as

ωαβ =
∂f

∂vα
dvβ − ∂f

∂vβ
dvα, (3.25)

where f is a smooth function on V .

Proof. One hand, we have

dωα = epdp ∧ dvα.

On the other hand, from (3.19) and (3.23) we have

dωα = −mλuepdu ∧ dvα + ep
m∑

β=2

dvβ ∧ ωβα.

Thus we have equation

(dp + mλudu) ∧ dvα =
m∑

γ=2

ωαγ ∧ dvγ . (3.26)

Noting that

(dp + mλudu) ∧ dvα

(
∂

∂u
,

∂

∂vβ

)
= (pu + mλu)δαβ ,

and

m∑
γ=2

ωαγ ∧ dvγ

(
∂

∂u
,

∂

∂vβ

)
= ωαβ

(
∂

∂u

)
,

we have

(pu + mλu)δαβ = ωαβ

(
∂

∂u

)
,
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which yields

pu + mλu = 0, ωαβ

(
∂

∂u

)
= 0. (3.27)

From the first equation of (3.27) we have (3.24). From the second equation of
(3.27) we see that ωαβ can be expressed as

ωαβ =
m∑

γ=2

aαβγdvγ , aαβγ = −aβαγ . (3.28)

By putting (3.27) and (3.28) into (3.26) we have

(
∂p

∂vγ
δαβ + aαγβ

)
dvγ ∧ dvβ = 0.

We get equation

δαβ
∂p

∂vγ
− δαγ

∂p

∂vβ
= aαβγ − aαγβ . (3.29)

Since aαβγ = −aβαγ , from (3.29) we can get

aαβγ =
∂p

∂vα
δβγ − ∂p

∂vβ
δαγ . (3.30)

(3.30) and (3.28) imply (3.25). This proves Lemma 3.1. ¤

Lemma 3.2. The function λ(u) and f(v2, . . . , vm) satisfy the following equa-
tions:

m2(λ′)2 + 2λ +
1

m2
= ae2mλ, (3.31)

∂2f

∂v2
α

+
∂2f

∂v2
β

+
m∑

γ=2

(
∂f

∂vγ

)2

−
(

∂f

∂vα

)2

−
(

∂f

∂vβ

)2

= −ae2f , (3.32)

where a is a constant.

Proof. Since the connection forms {ω1α, ωαβ} of g are given by (3.23) and
(3.25), we have
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−1
2

m∑

i,j=1

R1αijωi ∧ ωj = dω1α −
m∑

β=2

ω1β ∧ ωβα

= −mep(λ′′ −m(λ′)2)du ∧ dvα, (3.33)

which shows that

R1α1α = m(λ′′ −m(λ′)2). (3.34)

From (3.25)we have

dωαβ =
∂2f

∂vγ∂vα
dvγ ∧ dvβ − ∂2f

∂vγ∂vβ
dvγ ∧ dvα. (3.35)

From (3.35) and (3.25) we have

dωαβ −
m∑

γ=2

ωαγ ∧ ωγβ

=
m∑

γ,ε=2

{
∂2f

∂vγ∂vα
δβε − ∂2f

∂vγ∂vβ
δαε − ∂f

∂vα

∂f

∂vγ
δβε

+
∂f

∂vβ

∂f

∂vγ
δαε +

( ∑
α

(
∂f

∂vα

)2)
δαγδβε

}
dvγ ∧ dvε. (3.36)

Since

−1
2

m∑

i,j=1

Rαβijωi ∧ ωj = dωαβ − ωα1 ∧ ω1β −
m∑

γ=2

ωαγ ∧ ωγβ ,

from (3.36) and (3.23) we have

−e2pRαβγε =
∂2f

∂vγ∂vα
δβε − ∂2f

∂vε∂vα
δβγ − ∂2f

∂vγ∂vβ
δαε +

∂2f

∂vε∂vβ
δαγ

− ∂f

∂vα

∂f

∂vγ
δβε +

∂f

∂vα

∂f

∂vε
δβγ +

∂f

∂vβ

∂f

∂vγ
δαε − ∂f

∂vβ

∂f

∂vε
δαγ

+
(

m2(λ′)2e2p +
m∑

t=2

(
∂f

∂vt

)2)
(δαγδβε − δαεδβγ), (3.37)
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which shows

e2pRαβαβ = −∂2f

∂v2
α

−∂2f

∂v2
β

−m2(λ′)2e2p−
m∑

γ=2

(
∂f

∂vγ

)2

+
(

∂f

∂vα

)2

+
(

∂f

∂vβ

)2

, (3.38)

where α 6= β.
On the other hand, from Gauss equation (2.19) we have

R1α1α = −m− 1
m2

+ 2λ. (3.39)

Thus, (3.34) and (3.39) show that function λ satisfies

λ′′ −m(λ′)2 =
2
m

λ− m− 1
m3

. (3.40)

Also from Gauss equation (2.19) we have (3.21). Thus, from (3.38) and (3.21) and
(3.24) we have

e−2mλ(u)

(
m2(λ′)2 + 2λ +

1
m2

)

= −e−2f(v)

{[
∂2f

∂v2
α

+
∂2f

∂v2
β

+
m∑

γ=2

(
∂f

∂vγ

)2]
−

(
∂f

∂vα

)2

−
(

∂f

∂vβ

)2}
, (3.41)

where v denotes the vector (v2, . . . , vm) in Rm−1. We see that the left of the
equation (3.41) is independent on v and the right of the equation is independent
on u, which implies (3.31) and (3.32). This completes the proof of Lemma 3.2. ¤

Remark 3.1. We note that the equation (3.31) is the first integral of (3.40).
The function λ(u) is decided by the following equation:

u = ±
∫

mdλ√
ae2mλ − 2λ− 1

m2

. (3.42)

We view quadratic form g̃ = e2f (dv2
2 + · · ·+ dv2

m) as a metric on manifold V .
It is easy to see that the connection forms, denoted by ω̃αβ , with respect to this
metric, are
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ω̃αβ = ωαβ =
∂f

∂vα
dvβ − ∂f

∂vβ
dvα. (3.43)

Let R̃ denote the curvature induced by ω̃αβ , which means

−1
2

∑
γε

R̃αβγεe
2fdvγ ∧ dvε = dω̃αβ −

∑
γ

ω̃αγ ∧ ω̃γβ .

From the (3.36), we see

e2f R̃αβαβ = −∂2f

∂v2
α

− ∂2f

∂v2
β

−
m∑

γ=2

(
∂f

∂vγ

)2

+
(

∂f

∂vα

)2

+
(

∂f

∂vβ

)2

, (3.44)

where α 6= β. By making use of Lemma 3.2 we get

R̃αβαβ = a. (3.45)

Now that metric g̃ on V has constant curvature a, there exist the local coordinates,
for convenience, denoted by using same symbol (v2, . . . , vm) as above, such that

g̃ =
dv2

2 + · · ·+ dv2
m(

1 +
a

4
‖v‖2

)2 , (3.46)

where ‖v‖2 =
∑m

α=2 v2
α.

By summing up above all, we come to the following conclusion:

Theorem 3.1. For an m(≥ 3)-dimensional hypersurface Mm with isotropic
Blaschke in Sm+1, there exist local coordinations (u, vα), such that

g = du2 + e−2mλ(u)

(
e2f(v)

∑
α

dv2
α

)
, (3.47)

B =
m− 1

m
du2 − 1

m
e−2mλ(u)

(
e2f(v)

∑
α

dv2
α

)
, (3.48)

Φ = mλ′du, (3.49)

where function λ(u) is given by (3.42) and function f(v) is given by
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f(v) = − log
(

1 +
a

4
‖v‖2

)
. (3.50)

Theorem 3.1 shows that the all Möbius invariants in structure equations are
determined by function λ and f in (3.42) and (3.50), and so we can get the hyper-
surface Mm by integrating the structure equations. The procedure of integrating
the structure equations is some complicated, however it is interesting, which shows
the benefit of linearizing conformal group in studying the conformal geometry of
submanifolds in space form. We will complete the procedure in the next sections.

4. The differential equations of the hypersurfaces with isotropic
Blaschke tensor in Sm+1.

In this section we derive the differential equation of the Möbius position vector
function Y .

From the structure equations (2.7)–(2.10), by using (3.23)–(3.25), (3.48) and
(3.49) we have

dY = Yudu +
∑
α

∂Y

∂vα
dvα, (4.1)

dN = (λYu + mλ′E)du + λ
∑
α

∂Y

∂vα
dvα, (4.2)

dE = −
(

mλ′Y +
m− 1

m
Yu

)
du +

1
m

∑
α

∂Y

∂vα
dvα, (4.3)

dYu = −
(

λY + N +
m− 1

m
E

)
du−mλ′

∑
α

∂Y

∂vα
dvα, (4.4)

dEα(Y ) = −ep

(
λY + N +

1
m

E −mλ′Yu + e−2p
∑

β

∂f

∂vβ

∂Y

∂vβ

)
dvα

+ e−p
∑

β

∂f

∂vα

∂Y

∂vβ
dvβ . (4.5)

Noting that Eα = e−p(∂/∂vα), from (4.1)–(4.5) we get

Yuu = −
(

λY + N − m− 1
m

E

)
; (4.6)
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Nu = λYu + mλ′E,
∂N

∂vα
= λ

∂Y

∂vα
; (4.7)

Eu = −
(

mλ′Y +
m− 1

m
Yu

)
,

∂E

∂vα
=

1
m

∂Y

∂vα
; (4.8)

∂2Y

∂u∂vα
+ mλ′

∂Y

∂vα
= 0; (4.9)

(
λY + N +

1
m

E −mλ′Yu

)
δαβ = −emλFαβ , (4.10)

where we set

Fαβ = emλ−2f

(
∂2Y

∂vβ∂vα
−

(
∂f

∂vβ

∂Y

∂vα
+

∂f

∂vα

∂Y

∂vβ

)
+

∑
γ

∂f

∂vγ

∂Y

∂vγ
δαβ

)
. (4.11)

On the following we concentrate on the solutions of the partial differential
equations (4.6)–(4.10). From (4.6) and (4.10) we have

E = Yuu + mλ′Yu − emλFαα, (4.12)

and

N = −λY + (m− 1)λ′Yu − 1
m

Yuu − m− 1
m

emλFαα. (4.13)

From (4.8), (4.9) and (4.12) we know that Y satisfies equations

Yuuu + mλ′Yuu +
(

mλ′′ +
m− 1

m

)
Yu + mλ′Y =

(
Fααemλ

)
u
, (4.14)

(
mλ′′ +

1
m

)
∂Y

∂vα
= −emλ ∂Fαα

∂vα
. (4.15)

The equation (4.9) implies (∂2/∂vα∂u)(emλY ) = 0. Thus we have

Y = e−mλ(ξ(u) + η(v)). (4.16)

Putting this into (4.15) and (4.11) we have
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e−2mλ

(
mλ′′ +

1
m

)
∂η

∂vα
= −∂Fαα

∂vα
, (4.17)

Fαβ = e−2f

(
∂2η

∂vα∂vβ
− ∂f

∂vα

∂η

∂vβ
− ∂f

∂vβ

∂η

∂vα
+

∑
γ

∂f

∂vγ

∂η

∂vγ

)
. (4.18)

Noting that (3.31) implies e−2mλ(mλ′′ + (1/m)) = a, we have

a
∂η

∂vα
= −∂Fαα

∂vα
. (4.19)

Let η = efζ, then we have

Fαβ = e−f

((
∂2f

∂vα∂vβ
− ∂f

∂vα

∂f

∂vβ
+

∑
γ

(
∂f

∂vγ

)2

δαβ

)
ζ+

∂2ζ

∂vα∂vβ
+

∑
γ

∂f

∂vγ

∂ζ

∂vγ
δαβ

)
.

(4.20)

From (4.10) we see that Fαβ satisfies

Fαα = Fββ , Fαβ = 0, α 6= β. (4.21)

Thus, from (4.20) we have

∂2ζ

∂vα∂vβ
= −

(
∂2f

∂vα∂vβ
− ∂f

∂vα

∂f

∂vβ

)
ζ, α 6= β, (4.22)

and

∂2ζ

∂v2
α

+
(

∂2f

∂v2
α

− ∂f

∂vα

∂f

∂vα

)
ζ =

∂2ζ

∂v2
β

+
(

∂2f

∂v2
β

− ∂f

∂vβ

∂f

∂vβ

)
ζ. (4.23)

Since the function f is given by (3.50), we have

∂2f

∂vα∂vβ
− ∂f

∂vα

∂f

∂vβ
= 0, α 6= β, (4.24)

and

∂2f

∂v2
α

− ∂f

∂vα

∂f

∂vα
=

∂2f

∂v2
β

− ∂f

∂vβ

∂f

∂vβ
. (4.25)
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From (4.22)–(4.25) we get

∂2ζ

∂vα∂vβ
= 0,

∂2ζ

∂v2
α

=
∂2ζ

∂v2
β

, α 6= β, (4.26)

which shows

ζ = ‖v‖2~a +
m∑

α=2

vα
~bα + ~c, (4.27)

where ~a,~bα and ~c are constant vectors. By putting (4.27) into (4.20) and using
(3.50) we have

Fαα + aη = 2~a +
a

2
~c. (4.28)

Now we consider the unknown function ξ. By substituting (4.16) into (4.14),
and using (3.31) we have

ξ′′′ − 2mλ′ξ′′ −
(

ae2mλ + 2λ− m2 + m− 1
m2

)
ξ′ −maλ′e2mλξ

= mλ′e2mλ(Fαα + aη). (4.29)

From (4.27), (4.28) and (4.29) we come to the following conclusion:

Theorem 4.1. Let Y be the Möbius position vector of the immersion x :
Mm → Sm+1 with A = λg. If λ is not constant, then

Y = e−mλ(u)(ξ(u) + η(v)),

and the function η and ξ satisfy

η(v) = ef(v)

(
‖v‖2~a +

m∑
α=2

vα
~bα + ~c

)
, (4.30)

ξ′′′ − 2mλ′ξ′′ −
(

ae2mλ + 2λ− m2 + m− 1
m2

)
ξ′ −maλ′e2mλξ

= mλ′e2mλ

(
2~a +

a

2
~c

)
, (4.31)
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where f(v) is given by (3.50) and λ(u) is given by (3.42).

In next section we give the conditions satisfied by ~a,~bα,~c.

5. The classification theorem of the hypersurfaces with isotropic
Blaschke tensor in Sm+1.

In this section we classify the hypersurfaces with isotropic Blaschke tensor. We
first determine the constant vectors ~a,~bα,~c in (4.30). It is from (2.3), Theorem 3.1
and Theorem 4.1 that the Möbius position vector Y of the immersion x satisfies
the following conditions:

Y = e−mλ(ξ(u) + η(v)), 〈Y, Y 〉 = 0, (5.1)
〈

∂Y

∂u
,
∂Y

∂u

〉
= 1,

〈
∂Y

∂u
,

∂Y

∂vα

〉
= 0, (5.2)

〈
∂Y

∂vα
,

∂Y

∂vβ

〉
= e−2mλ+2fδαβ . (5.3)

Lemma 5.1. Let ~a,~bα,~c and ξ are the quantities given in Theorem 4.1. Then
we have following identities:

〈
ξ + ~c, ξ + ~c

〉
= 0,

〈
ξ′, ξ′

〉
= e2mλ; (5.4)

〈
ξ + ~c,~bα

〉
= 0,

〈
ξ + ~c, 2~a− a

2
~c

〉
+ 1 = 0; (5.5)

〈
~bα,~bβ

〉
= δαβ ,

〈
2~a− a

2
~c,~bα

〉
= 0,

〈
2~a− a

2
~c, 2~a− a

2
~c

〉
= a. (5.6)

Proof. (5.1) implies

〈ξ + η, ξ + η〉 = 0,

for all (u, v). In particular, if we take v = 0 then we have f(0) = 0, η(0) = ~c and
so have

〈ξ + ~c, ξ + ~c 〉 = 0,

which is the first equation of (5.4). Noting that the first equation of (5.2) implies

e−2mλ
(− 2mλ′

〈
ξ + η, ξ′

〉
+

〈
ξ′, ξ′

〉)
= 1.
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As η(0) = ~c we have

e−2mλ
(− 2mλ′

〈
ξ + ~c, ξ′

〉
+

〈
ξ′, ξ′

〉)
= 1.

Since the first equation of (5.4) implies 〈ξ + ~c, ξ′〉 = 0, we have

〈
ξ′, ξ′

〉
= e2mλ,

which is the second equation of (5.4).
From the definitions of the f and η we have

∂f

∂vα
= −a

2
vαef ,

∂η

∂vα
= −a

2
vαefη + ef

(
2vα~a +~bα

)
,

∂2η

∂v2
α

= ef

(
− a

2
η − a

2
vα

∂f

∂vα
η − a

2
vα

∂η

∂vα
− ∂f

∂vα

(
2vα~a +~bα

)
+ 2~a

)
. (5.7)

Hence we have

∂η

∂vα

∣∣∣∣
v=0

= ~bα,
∂2η

∂v2
α

∣∣∣∣
v=0

= 2~a− a

2
~c. (5.8)

We see that (5.1) and (5.7) implies

0 =
〈

Y,
∂Y

∂vα

〉
= e−2mλ

〈
ξ + η,

∂η

∂vα

〉
,

which yields

〈
ξ + η,

∂η

∂vα

〉
= 0,

〈
∂η

∂vα
,

∂η

∂vα

〉
+

〈
ξ + η,

∂2η

∂v2
α

〉
= 0. (5.9)

By putting (5.8) into (5.9) we have

〈
ξ + ~c,~bα

〉
= 0,

〈
ξ + ~c, 2~a− a

2
~c

〉
+

〈
~bα,~bα

〉
= 0. (5.10)

Noting that (5.3) implies
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δαβe−2mλ+2f =
〈

∂Y

∂vα
,

∂Y

∂vβ

〉

= e−2mλ+2f

〈
− a

2
vαη + 2vα~a +~bα,−a

2
vβη + 2vβ~a +~bβ

〉
.

We have

〈
− a

2
vαη + 2vα~a +~bα,−a

2
vβη + 2vβ~a +~bβ

〉
= δαβ . (5.11)

By taking v = 0 in (5.11) we have

〈
~bα,~bβ

〉
= δαβ ,

which is the first equation (5.6). By taking α = β and differentiating the two sides
of the equation (5.11) by ∂/vα, we have

〈
− a

2
vαη + 2vα~a +~bα, − a

2
η − a

2
vα

∂η

∂vα
+ 2~a

〉
= 0. (5.12)

By differentiating the two sides of the equation (5.12) by ∂/vα, we have

〈
− a

2
η − a

2
vα

∂η

∂vα
+ 2~a, − a

2
η − a

2
vα

∂η

∂vα
+ 2~a

〉

+
〈
− a

2
vαη + 2vα~a +~bα, − 2a

∂η

∂vα
− a

2
vα

∂2η

∂v2
α

〉
= 0. (5.13)

By taking v = 0 and putting (5.8) into (5.12) and (5.13) we get the second equation
and the third equation of (5.6). This completes the proof of Lemma 5.1. ¤

We need to discuss the cases a = 0, a < 0 and a > 0.

Case I: a = 0.

In this case, the equation (4.31) is reduced to the following equation:

ξ′′′ − 2mλ′ξ′′ −
(

2λ− m2 + m− 1
m2

)
ξ′ = mλ′e2mλ. (5.14)

We use ξ̄ to denote the solution of the homogeneous equation corresponding to
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equation (5.14):

ξ̄′′′ − 2mλ′ξ̄′′ −
(

2λ− m2 + m− 1
m2

)
ξ̄′ = 0. (5.15)

Let y denote a component of the unknown vector value function ξ in the equation
(5.14). We consider ordinary equation

y′′′ − 2mλ′y′′ −
(

2λ− m2 + m− 1
m2

)
y′ = mλ′e2mλ (5.16)

and the corresponding homogeneous equation:

y′′′ − 2mλ′y′′ −
(

2λ− m2 + m− 1
m2

)
y′ = 0. (5.17)

In this case, if we set z = y′ then the equations (5.16) and (5.17) are reduced to

z′′ − 2mλ′z′ −
(

2λ− m2 + m− 1
m2

)
z = mλ′e2mλ, (5.18)

z′′ − 2mλ′z′ −
(

2λ− m2 + m− 1
m2

)
z = 0. (5.19)

Noting λ satisfies the equation (3.31), we get two linear independent solutions of
(5.19) as follows

z1 = emλ cos u, z2 = emλ sinu, (5.20)

where c is a nonzero constant. z1 and z2 have properties:

z′1 = mλ′z1 − z2, z′2 = mλ′z2 + z1, (5.21)

z1z
′
1 + z2z

′
2 = mλ′

(
z2
1 + z2

2

)
, z2

1 + z2
2 = e2mλ. (5.22)

It is easy to check that

ψ(u) = z1

∫
z1du + z2

∫
z2du (5.23)

is a special solution of the non-homogeneous equation (5.18). The general solution
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can be expressed by

z = ψ + Az1 + Bz2. (5.24)

We use the notations y0, y1 and y2, which are defined as

y0 =
∫

ψ, y1 =
∫

z1, y2 =
∫

z2. (5.25)

Then the general solution of (5.18) can be expressed by

y = y0 + Ay1 + By2, (5.26)

where A,B are constant. Thus the general solution of the vector equation (5.14)
and (5.15) can be expressed as follows:

ξ = 2~ay0 + y1
~A + y2

~B, (5.27)

ξ̄ = y1
~A + y2

~B. (5.28)

We can get the analytic representations of z1 and z2. In fact, since a = 0,
from (3.31) or (3.42) we have

λ = − u2

2m2
+

b

m
u− 1

2

(
b2 +

1
m2

)
, (5.29)

where b is constant. We have

z1 = cos u exp
(
− u2

2m
+ bu− m

2

(
b2 +

1
m2

))
,

z2 = sin u exp
(
− u2

2m
+ bu− m

2

(
b2 +

1
m2

))
. (5.30)

We are going to determine the constant vectors ~a,~bα,~c in (4.30) and ~A, ~B in
(5.27). Since a = 0, from Lemma 5.1 we have

〈~a,~a 〉 = 0,
〈
~a,~bα

〉
= 0,

〈
~bα,~bβ

〉
= δαβ , (5.31)

〈
~bα, ~A

〉
y1 +

〈
~bα, ~B

〉
y2 +

〈
~bα,~c

〉
= 0, (5.32)
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〈
~a, ~A

〉
y1 +

〈
~a, ~B

〉
y2 + 〈~c,~a 〉 = −1

2
, (5.33)

〈
~A, ~A

〉
z2
1 +

〈
~B, ~B

〉
z2
2 + 4

〈
~a, ~A

〉
ψz1 + 4

〈
~a, ~A

〉
ψz2 + 2

〈
~A, ~B

〉
z1z2 = e2mλ, (5.34)

y2
1

〈
~A, ~A

〉
+ y2

2

〈
~B, ~B

〉
+ 4

〈
~a, ~A

〉
y0y1 + 4

〈
~a, ~A

〉
y0y2 + 2

〈
~A, ~B

〉
y1y2

+4
〈
~a,~c

〉
y0 + 2

〈
~A,~c

〉
y1 + 2

〈
~B,~c

〉
y2 +

〈
~c,~c

〉
= 0. (5.35)

Since z1, z2 are linear independent, we know that y1, y2, 1 are linear independent.
From (5.32) and (5.33) we have

〈
~bα, ~A

〉
=

〈
~bα, ~B

〉
=

〈
~bα,~c

〉
= 0,

〈
~a, ~A

〉
=

〈
~a, ~B

〉
= 0, 〈~c,~a 〉 = −1

2
. (5.36)

From (5.22), (5.34) and (5.36) we have

(〈
~A, ~A

〉− 1
)
z2
1 +

(〈
~B, ~B

〉− 1
)
z2
2 + 2

〈
~A, ~B

〉
z1z2 = 0.

Since (5.20) implies that z2
1 , z2

2 and z1z2 are linear independent, we have

〈
~A, ~A

〉
=

〈
~B, ~B

〉
= 1,

〈
~A, ~B

〉
= 0. (5.37)

From (5.35), (5.36) and (5.37) we have

y2
1 + y2

2 + 〈~c,~c 〉 = 2y0. (5.38)

Since {~a,~bα,~c, ~A, ~B, } satisfies (5.31), (5.36) and (5.37), we can take them, up to
a Lorentz transformation in Rm+3

1 , as following fixed vectors:

~a = (1,−1, 0, 0, . . . , 0), ~c = (c1, c2, 0, 0, . . . , 0),

~A = (0, 0, 1, 0, . . . , 0), ~B = (0, 0, 0, 1, . . . , 0),

~bα = (0, . . . , 0︸ ︷︷ ︸
α+2

, 1, 0, . . . , 0), 2 ≤ α ≤ m.

Noting 〈~a,~c 〉 = −1/2 (see (5.33)), we have c1 + c2 = 1/2 and so have

c1 + 〈~c,~c 〉 = c1 − c2
1 + c2

2 =
1
4
, c2 − 〈~c,~c 〉 =

1
4
. (5.39)
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From (5.38) and (5.39) we have

ξ + η =
(
2y0 + c1 + ‖v‖2, − 2y0 + c2 − ‖v‖2, y1, y2, v2, . . . , vm

)

=
(

1
4

+ y2
1 + y2

2 + ‖v‖2, 1
4
− (

y2
1 + y2

2 + ‖v‖2), y1, y2, v

)
.

Noting

ρ(1, x) = e−mλ(ξ + η),

we have

ρ = e−mλ

(
y2
1 + y2

2 + ‖v‖2 +
1
4

)
, (5.40)

and

x =
(

1− 4
(
y2
1 + y2

2 + ‖v‖2)

4
(
y2
1 + y2

2 + ‖v‖2) + 1
, 2

2(y1, y2, v)
4
(
y2
1 + y2

2 + ‖v‖2) + 1

)
, (5.41)

where

y1 =
∫

cos u exp
(
− 1

2m
u2 + bu− m

2

(
b2 +

1
m2

))
,

y2 =
∫

sinu exp
(
− 1

2m
u2 + bu− m

2

(
b2 +

1
m2

))
. (5.42)

Since ξ̄ ∈ span{ ~A, ~B} ∼= R2, we can write

ξ̄(u) = (2y1(u), 2y2(u)), u ∈ l ⊂ R1,

which is also the solution of equation (5.15). We can take U = l × Rm−1, let
Γ1 = ξ̄(l), define an m-dimensional cylinder hypersurface in Rm+1 as follows:

=(u, v) = (ξ̄(u), 2v), (u, v) ∈ U, (5.43)

and denote the inverse stereographic projection by σ which is defined in Section
1. Then, from (5.41) we have
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x(U) = σ ◦ =(U) = σ(Γ1 ×Rm−1). (5.44)

Case II: a 6= 0.
Let

ξ̄ = ξ + ~c +
1
a

(
2~a− a

2
~c

)
, (5.45)

then we can write equation (4.43) as

ξ̄′′′ − 2mλ′ξ̄′′ −
(

ae2mλ + 2λ− m2 + m− 1
m2

)
ξ̄′ −maλ′e2mλξ̄ = 0. (5.46)

From Lemma 5.1 we have

〈
ξ̄, ξ̄

〉
= −1

a
,

〈
ξ̄, 2~a− a

2
~c

〉
= 0,

〈
ξ̄,~bα

〉
= 0,

〈
ξ̄′, ξ̄′

〉
= e2mλ. (5.47)

Subcase II-1: a < 0.
In this case, (5.6) shows that 2~a− (a/2)~c is a time-like vector. We can take,

up to a transformation in O(1,m + 2), it and ~bα as follows:

2~a− a

2
~c =

(√−a, 0, . . . , 0
)
,

~bα = (0, . . . , 0︸ ︷︷ ︸
α−1

, 1, . . . , 0), 2 ≤ α ≤ m. (5.48)

Let

~A = (0, . . . , 0, 1, 0, 0), ~B = (0, . . . , 0, 0, 1, 0), ~C = (0, . . . , 0, 0, 1).

Then we see that {2~a−(a/2)~c, ~A, ~B, ~C,~bα} is a Lorentz orthonormal basis in Rm+3
1 .

From (5.47) and (5.48) we see that

ξ̄ ∈ S2

(
1√−a

)
⊂ span

{
~A, ~B, ~C

} ∼= R3.

Noting that f is defined by (3.50), we can write
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η − ~c = ef

(
‖v‖2~a +

∑
α

~bαvα + (1− e−f )~c
)

= ef

(
1
2

(
2~a− a

2
~c

)
‖v‖2 +

∑
α

~bαvα

)
. (5.49)

From (5.47) and (5.49) we have

ξ + η = −
1− a

4
‖v‖2

a

(
1 +

a

4
‖v‖2

)
(

2~a− a

2
~c

)
+ ξ̄ + ef

∑
α

~bαvα

=




1− a

4
‖v‖2

√−a

(
1 +

a

4
‖v‖2

) ,
v

1 +
a

4
‖v‖2

, ξ̄


 . (5.50)

The Möbius position vector Y of the immersion x is

Y = ρ(1, x) = e−mλ




1− a

4
‖v‖2

√−a

(
1 +

a

4
‖v‖2

) ,
v

1 +
a

4
‖v‖2

, ξ̄


 , (5.51)

where

ρ = e−mλ
1− a

4
‖v‖2

√−a

(
1 +

a

4
‖v‖2

) , (5.52)

and

x =




√−av

1− a

4
‖v‖2

,
1 +

a

4
‖v‖2

1− a

4
‖v‖2

√−aξ̄


 . (5.53)

We can take U = l × V , where l ⊂ R1 and V = {v : v ∈ Rm−1, ‖v‖ < 2/
√−a}.

Let map

τ : V → Hm−1

(
1√−a

)
,
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denote the inverse stereographic projection to hyperbolic space which is defined
by

τ(v) =




1− a

4
‖v‖2

√−a

(
1 +

a

4
‖v‖2

) ,
v

1 +
a

4
‖v‖2


 . (5.54)

Then (5.50) implies

(ξ + η)(U) = τ(V )× ξ̄(l) = Hm−1

(
1√−a

)
× Γ2. (5.55)

Hence we have

X(U) = π((1, x)(U)) = π((ξ + η)(U)) = π

(
Hm−1

(
1√−a

)
× Γ2

)
, (5.56)

where X and π are the maps defined in Section 1.

Subcase II-2: a > 0.
In this case, (5.6) shows that 2~a− (a/2)~c is a space-like vector. We can take,

up to a transformation in O(1,m + 2), it and ~bα as follows:

2~a− a

2
~c =

(
0, 0, 0,−√a, 0, . . . , 0

)
,

~bα = (0, . . . , 0︸ ︷︷ ︸
α+2

, 1, . . . , 0), 2 ≤ α ≤ m. (5.57)

Let

~A = (1, 0, 0, 0, . . . , 0), ~B = (0, 1, 0, 0, . . . , 0), ~C = (0, 0, 1, 0, . . . , 0).

Then we see that {2~a−(a/2)~c, ~A, ~B, ~C,~bα} is a Lorentz orthonormal basis in Rm+3
1 .

From (5.47) we see that

ξ̄ ∈ H2

(
1√
a

)
⊂ span

{
~A, ~B, ~C

} ∼= R3
1.

From (5.47), (4.30), (3.51) and (5.57) we have
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ξ + η = −
1− a

4
‖v‖2

a

(
1 +

a

4
‖v‖2

)
(

2~a− a

2
~c

)
+ α ~A + β ~B + γ ~C + ef

∑
α

~bαvα

=


ξ̄,

1− a

4
‖v‖2

√
a

(
1 +

a

4
‖v‖2

) ,
v

1 +
a

4
‖v‖2


 . (5.58)

Let map

φ : Rm−1 ∪ {∞} → Sm−1

(
1√
a

)

denote the inverse stereographic projection which is defined by

φ(v) =




1− a

4
‖v‖2

√
a

(
1 +

a

4
‖v‖2

) ,
v

1 +
a

4
‖v‖2


 .

Let V = Rm−1∪{∞}. We can take U = l×V , where l ⊂ R1. Then (5.58) implies

(ξ + η)(U) = ξ(l)× φ(V ) = Γ3 × Sm−1

(
1√
a

)
. (5.59)

Hence we have

X(U) = π((1, x)(U)) = π((ξ + η)(U)) = π

(
Γ3 × Sm−1

(
1√
a

))
. (5.60)

Finally, we will rewriting equations (5.46). From the last equation of (5.47)
we see that the arc-length parameter s is given by s =

∫
emλdu. From (3.42) and

(5.46) we know that λ and ξ̄ satisfy the equations (1.6) and (1.11). We complete
the proof of Theorem 1.1. ¤

We will show the relation between the curve ξ̄ and a principal sphere on the
following. As one of the Möbius principal curvature of x is −1/m, the curvature
sphere corresponding to this principal curvature is
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P = E − 1
m

Y : Mm → Sm+2
1 , (5.61)

where Sm+2
1 = {Z ∈ Rm+3

1 : 〈Z, Z〉 = 1}, called m + 2-dimensional de Sitter
space. The second equation of (4.8) shows

∂P

∂vα
= 0, 2 ≤ α ≤ m. (5.62)

This shows that the curvature sphere P degenerates into a curve in Sm+2
1 . From

the first equation of (4.8) we have

〈
dP

du
,
dP

du

〉
= 1. (5.63)

Hence u is the arc-length parameter of the curvature sphere P. For the case of
a 6= 0, there is a correspondence between curvature sphere P and curve ξ̄. We
give this correspondence as follows:

P = −aemλξ̄ +
(
e−mλξ̄′

)′
, (5.64)

P ′ = −e−mλξ̄′, (5.65)

ξ̄ = −1
a
e−mλ(P + P ′′). (5.66)
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