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Abstract. Let M™ be an m-dimensional submanifold without umbilical
points in the m + 1-dimensional unit sphere §™*1. Three basic invariants of
M™ under the Mé&bius transformation group of S™+1! are a 1-form @ called
Mobius form, a symmetric (0,2) tensor A called Blaschke tensor and a positive
definite (0,2) tensor g called Mobius metric. We call the Blaschke tensor is
isotropic if there exists a function A such that A = Ag. One of the basic
questions in Mobius geometry is to classify the hypersurfaces with isotropic
Blaschke tensor. When A is constant, the classification was given by Changping
Wang and others. When X is not constant, all hypersurfaces with dimensional
m > 3 and isotropic Blaschke tensor are explicitly expressed in this paper.
Therefore, for the dimensional m > 3, the above basic question is completely
answered.

1. Introduction.

Let x : M™ — S™*! be an m-dimensional hypersurface without umbilical
pints in the (m+1)-dimensional unit sphere S™*1 and {e;} be a local orthonormal
tangent frame field of = for the standard metric I = dz - dz with dual frame field
{0:}. Let II = 3, . hi;0;0; be the second fundamental form and H the mean
curvature of z. Define p? = m/(m — 1)|II — HI|?, then positive definite 2-form
g = p?I is invariant under Mdbius group of S™*! and is called Mobius metric of
x. Two basic Mébius invariants of =, Mobius form ® = ). pC;0;, Blaschke tensor
A= p*Ai;0:0;, are defined by (cf. [Wal)

C

—p~? (ei(H) + Z(hzj — Hdij)e;(log P))a (1.1)

A= —p_Q(Hessij(log p) — ei(log p)e;(log p) — Hh;j)

1 _
=50 2(IViogpl* = 1+ H*)dyj, (1.2)
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where (Hess;;) and V are the Hessian-matrix and the gradient operator with re-
spect to the induced metric I = dx-dx. We call the Blaschke tensor A is isotropic
if there exists a function A on M™, such that

A = )\g. (1.3)

Huili Liu, Changping Wang and Guosong Zhao defined a Mobius isotropic
submanifold as a submanifold satisfying two conditions: A = A\g and ® = 0. They
showed that the conformal Gauss map of a Mobius isotropic submanifolds is har-
monic, and proved that a Mobius isotropic submanifold is conformally equivalent
to a minimal submanifold with constant scalar in S™ (if A > 0), or in Euclidean
space R™ (if A = 0), or in hyperbolic space H™ (if A < 0) (cf. [LWZ]). This
result give the unified M6bius characterization of the minimal submanifolds with
constant scalar in the three space forms by two conditions: Blaschke tensor A is
isotropic and ® vanishes. In the fact, ® = 0 implies that X is constant. From
then, people want to know the hypersurface whose Blaschke tensor is isotropic
and corresponding A is non-constant. In this paper, we will give all hypersurfaces
with isotropic Blaschke tensor and non-constant A.

For the purpose to make our main result intuitional, we use the following
notations: R;’H'S denotes Lorentz space with the inner product (-, -) given by

(Y, Z) = —yozo + Y121+ + Ymt22m+2,
where YV = (y07y17 s 7ym+2)’ Z = (207 RBly-ees Zm+2) € Rm+3' CZH_Q and Qm+l
denote the positive light cone and the quadric in real projection space RP™12,
which are defined as follows:
Crt? ={X e R} : (X, X) =0,z0 > 0},
Q"M ={[Y]e RP™?: (YY) =0}.
We use map

T C7T? - Qmt! (1.4)

to denote the nature projection. For a hypersurface z : M™ — S™*1 we have
map

X :=x(l,2): M™ — Q™ (1.5)
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which is determined by the immersion x and is called the natural map of x. It is
known from a classical theorem that two hypersurfaces z,% : M™ — S™*! are
Mobius equivalent if and only if whose natural maps X, X : M™ — Q™! are
equivalent under the action of Lorentz group O(m +2,1). We use o to denote the
inverse stereographic projection from R™*! U {oo} to §™T!. As o is a conformal
homeomorphism, two hypersurfaces 7, 7 : M™ — R™T1 U {oo} are Mobius equiv-
alent if and only if t = o0 o7, =007 : M™ — S™+! are Mobius equivalent.
Now we state the main theorem as follows:

THEOREM 1.1.  Letx : M™ — S™F! be an m(> 3)-dimensional hypersurface
without umbilical points in the (m + 1)-dimensional unit sphere S™ L. If A = \g
and function X is non-constant, then for a connected open set U of M, with V) #
0, the function X is a single variate function and is the implicit function determined
by function equation:

me™ )\

/\/aeQmAQ)\ %
m

where s € 1, | is an interval in R' and a is a constant. Moreover, x is one of the

3 (1.6)

=S

following cases:
(i) for a =0, up to the Mébius transformations of S™*+!,

z(U) =0 x R™Y), T;C R? (1.7)

where I'y is a curve with arc-length parameter s in R? and its position vector & in

R? is given by
w2
E(u) = (2/exp ( -—+ bu—l—c> cos udu,
2m

2
2/exp ( 2u— + bu + c> sinudu)7 (1.8)
m

where b is a constant, c = —(m/2)(b* + (1/m?)), u = [ e ™ )ds;
(ii) for a <0, up to the transformations in O(m + 2,1),

X(U) = W(Hm—1<\/1_7) X rg), Iy C SQ(\/l_TJ, (1.9)

where Ty is a curve with arc-length parameter s in S*(1/\/—a) and its position
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vector £(s) in R® is a solution of the following equation (1.11);
(iii) for a >0, up to the transformations in O(m + 2,1),

X(U) = w<r3 x §m~1 (\}a» I3 C H2(\}&>, (1.10)

where T3 is a curve with arc-length parameter s in H?(1/\/a) and its position
vector £(s) in RS is a solution of the following equation (1.11) :

d( .. d?¢ o aadg
(e (G- ae)) = (111)

For the purpose of making the procedure of the proof of Theorem 1.1 clear,
we organize the main content of the paper as four parts. In Section 2 we give the
structure equations, the Mobius invariants of general m-dimensional hypersurfaces
in §™*1. In Section 3 we concentrate on getting the local expression of the basic
Mobius invariants of the hypersurfaces with isotropic Blaschke tensor. The main
result is Theorem 3.1 in this part. In Section 4 we obtain the differential equations
characterizing the hypersurfaces with isotropic Blaschke tensor. The main result
is Theorem 4.1 in this part. In Section 5 we treat the differential equations given
in Section 4 and classify the hypersurfaces with isotropic Blaschke tensor.

2. Mboébius invariants for a hypersurface in S™+1.

In this section we define Mobius invariants and recall the structure equations
for hypersurfaces in S+, For the detail we refer to [Wa).

Let R71n+3 be the Lorentz space with inner product (-, -) defined in Section 1,
x: M™ — 8™+l c R™*2 be a hypersurface without umbilical points in §™*1.
We define the Mobius position vector Y : M™ — R;”Jrg of = by

m m m
Y =p(lz): M™ — R"™, p® = m(”””z —mH?) > 0.

THEOREM 2.1 ([Wa]). Two hypersurfaces x,& : M™ — S™T1 are Mobius

equivalent if and only if there exists T in the Lorentz group O(m +2,1) acting on
RT3, such that Y = YT.

Since the Mébius group in §™*! is isomorphic to the subgroup O (m +2,1)
of O(m + 2,1), which preserves the positive part of the light cone in R, from
Theorem 2.1 we know that 2-form
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g = (dY,dY) = p*dx - dx (2.1)

is a Mobius invariant (cf. [Bl], [Ch], [Wi], [PW], [Wa] and [GLW2]). We call

g the Mobius metric or the Mobius first fundamental form induced by z. Let A
denote the Laplacian of g, then we have

(AY,AY) =1+ m?R,

where R is the normalized scalar curvature of g (cf. [Wa]). By defining

1 1
N=—-=AY - —(1 2R)Y. 2.2
—AY — o (L m’R)Y, (2.2)
we have
{Y,)Y)=(N,N)=0, (Y,N)=1. (2.3)

Moreover, if we take a local orthonormal basis {F;} with respect to g with dual
basis {w;}. Denoting E;(Y) by Y;, we have

Let V be the orthogonal complement of span{Y, N,Y;} in R"""3. Then we
have the orthogonal decomposition

R = span{Y, N} @ span{Yi,... Y, } @ V. (2.5)
Let E be an unit vector field of V. Then

{Y7N’Y1,"',YmaE} (26)

forms a moving frame in R?H'g along M. We make use of the following convention
on the ranges of indices: 1 < 4,5, k,... < m; and we shall agree that repeated
indices are summed over respective ranges. Then the structure equations are
given by
dY = w;Y;, (2.7)
dN = Aijiji + Ciw; E, (28)
dY; = —Aijij — wiN + winj + Bijij7 (29)
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dE = —Ciin - BijijL (210)

where w;; is the connection form of the Mdobius metric g, and A;; and B;; are
symmetric with respect to (ij). It is clear that

A= Aijwi ® Wy, B = Bz-jwl- ® Wy, P = Cl-wl- (211)

are Mobius invariants and called the Blaschke tensor, the Mobius second funda-
mental form and the Mobius form, respectively.

REMARK 2.1. The relations among A, B, ® and Euclidean invariants of x
are given by (1.1), (1.2) and
Bij = p~t(hij — Hdyy). (2.12)

Define covariant derivative of A;;, B;; and C; by

K

Z Aij);gwk = dAij + Z Aikwkj + Z Akjw;“‘, (2.13)
k k k

Z Bij pwi = dBij + Z Biwi; + Z Bijwii, (2.14)
k k k

Z Ci,kwk =dC; + Z Crwii. (2.15)
k k

By exterior differentiation of structure equations, we can get the integrability
conditions for structure equations as follows (cf. [Wal]):

Aijk — Airj = BiCj — BijCh; (2.16)
Cij—Cji=>_ (BixAr; — BjrAri); (2.17)

k
Bijk = Bikj = 0i;Ck — 0 Cj; (2.18)

Rijri = BixBji — By Bji + 0itAji + 81 Aik — 6uAjr — 0 Au;  (2.19)

Rij = — Z BikBkj + tI‘(A)(SZ'j + (m — 2)142']'; (220)
k
1 9 5 m—1
tr(A) = (1 +m’R); > Bi=0; Y (By)= — ()
i i\
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where R;ji; and R;; denote the curvature tensor and Ricci curvature tensor of g,
respectively. R = 1/(m(m — 1)), ; Riji; is the normalized scalar curvature.
From (2.18) and (2.21) we have

We define Mobius shape operator B by using
g(BX,Y) = B(X,Y), X,Y €T,(M), (2.23)

at each point p € M.

REMARK 2.2.  Some recent results about the Mobius geometry of subman-
ifolds can be found in [AG1], [AG2], [GLW1], [HL1], [HL2], [LLWZ], [LW1],
[LW2] and [LWW].

3. The Mbodbius invariants of the hypersurfaces with isotropic
Blaschke tensor in S™11.

Let z : M™ — S§™*! be an m(> 3)-dimensional hypersurface with isotropic
Blaschke tensor and without umbilical point in unit sphere S™*1. On the following
we assume that A is not constant. Let U be a connected open set on which we
have V) # 0. We prove first the following proposition.

PropoOSITION 3.1.  Mobius shape operator B has two distinct principal cur-
vatures (m — 1)/m and —1/m of multiplicities 1 and m —1 on U.

For each point p € U we can choose a field of tangent orthonormal frames
Eq,...,E, of (M,g) on a neighborhood of p such that

Bij = Biidij, 1<, j<m, (3.1)

at the point p. Let f; = E;(f) for a function f on M. Then, at the point p, we
can write equation (2.16) as

Ak0ij — NjOir, = B0, Cj — B0y Cr, 1< 4,5,k < m. (3.2)
By taking i, j, k such that ¢ = j # k in (3.2), we have

Ae = —ByiCy, ik (3.3)
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By taking j such that j = i, making summation for ¢ from 1 to m and using (2.21)
we have

(m— 1A = BerCr, 1<k<m. (3.4)
(3.3) and (3.4) imply

[Brr + (m — 1)Bil A\, =0, i #k. (3.5)
The assumption VA # 0 implies that at least one of \;’s is not zero at p. Without

losing generality, we assume A; # 0 at point p. Then from (3.5) and the last
identity of (2.21) we see that

-1 1
Bll = L, Bii:—f, 2§z§m (36)
m m
Since p is arbitrary, we complete the proof of Proposition 3.1. g

From Proposition 3.1 we know that multiplicity of each principal curvature is
constant and so we can define two distributions V; and V5 as follows:

vi= Vi), V= V), (3.7)

peU peU

where V1 (p) and Vz(p) are the eigenspaces corresponding to (m—1)/m and —1/m,
with dim(V4(p)) = 1 and dim(Va2(p)) = m — 1. Thus we have decomposition

TU)=V, & V. (3.8)

We can choose a fields of orthonormal tangent frame Ey, ..., E,, of T(U) in

a neighborhood of an point p € U, such that F; is a basis of V; and FEs, ..., E,, is
a basis of Va. For convenience, we make the following convention on the ranges of

indices:

1<i,5,kl<m, 2<a,8,v<m. (3.9)

Then under the basis {E1, E,} we have

m—1 1
Blj = m (51j7 Baj = _Eéaj. (310)
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Therefore, (3.2), (3.3) and (3.4) hold in the neighborhood of p. From (3.3) and
(3.4) we have

1 -1 1
M=—C1 Aa=—2"2Ch (m—1Aa = ——Cla, (3.11)
m m m
which implies
Ca = 0, Cl = ’I”I’L)\l, (3.12)
and
VA
E = EFi=——, 2<a<m. 1
a(A) =0, Ei T ZSesm (3.13)

Let {w;;} be the connection forms of g with respect to {w;}. We have

i m—1
ZBlquwk =dBy; + ZBkjwm + ZBlkaj = (Bjj - m>wj1,
k=1 % k

1<j<m, (3.14)

which shows

Bi1x =0, Y Biaiwk =wia- (3.15)
k

Thus, from (2.18) we have
Bia,1 = Bit,a +61C1 — 61:Co = 0,
and from (3.15) we have
m
Wia = ZBlagwg. (3.16)
p=2
Since Bog = —(1/m)dqagz, we have

m

Z Bagrwi = dBag + Z Brgwia + Z Barwig =0,
k=1 % %
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and so we have Byg1 = 0. Thus from (2.28) we have
Bi,ag = Ba1,g = Bag,1 + 00103 — 003C1 = —645C1. (3.17)
From (3.16), (3.17) and (3.12) we get
Wia = —MMWa, > 2. (3.18)

From (2.7) and (2.9), we see that the connection forms w;; is defined by the
following equation:

m m
dwy =Y wa Awa1;  dwe = w1 Awia + Y ws Awsa. (3.19)
a=2 B=2

Thus the equation (3.18) and (3.19) imply
dwy = 0. (3.20)

According to Frobenius theorem, (3.20) implies distribution V5 = span{Es,...,
E,.} is locally integrable. Let V be the integral manifold of the distribution.
Locally, M™ is diffeomorphic equivalent to product manifold [ x V', where interval
I C R'. From (3.12) we see that, restricted on {t} x V, X is constant. From the
Gauss equation (2.19), we have

1
Ropap = s} +2\, 2<qo,B<m, a#p. (3.21)

Since A is constant on V, and (3.21) shows that the Mébius metric g has con-
stant sectional curvature on {t} x V for each fixed ¢t € [, we can choose the local
coordinates (u,va,...,vy) of M such that

g=du®+ e2P(w,v2,.0m) (dv% S dvfn)7 (3.22)

where e() denotes exponential function exp, p is a smooth function on [ x V.

From (3.22), (3.18) and (3.12) we have

A
w1 =du, wo =¢€Pdv,, wia=-—mAeldv,, 887 =0. (3.23)
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LEMMA 3.1.  The function p in (3.22) satisfies
p(u, v, ..., Um) = —mA(u) + f(va, ..., Um), (3.24)
and connection forms with respect to g, except w1, can be written as

Wag = %dvﬁ - ;}‘i{dva, (3.25)

where f is a smooth function on V.

PROOF. One hand, we have
dws = €Pdp N dvg,.

On the other hand, from (3.19) and (3.23) we have

dwe = —mAePdu N dv, + €P Z dvg N wgg.

B=2
Thus we have equation
(dp + mAydu) A dv, = Z Wary A dvs. (3.26)
y=2

Noting that

o 0
(dp + mA,du) A dv,, (au, avg) = (pu + MmAy)das,
and
e o 0 0
wa/\dvy %,% = Wag % )
v=2 p
we have

0
(pu + mAu)éaﬁ = Wag <8u>’
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which yields

Putmie =0, wag (ai) = 0. (3.27)

From the first equation of (3.27) we have (3.24). From the second equation of
(3.27) we see that w,g can be expressed as

Wap = Z Aoy dVy,  Qagy = —0a~- (3.28)
y=2

By putting (3.27) and (3.28) into (3.26) we have

Ip
<81},Y5aﬁ + aa7ﬁ> d'U,Y AN d'Uﬂ = 0.
We get equation

dp op

5@6% - a’y% = QaBy — QaypB- (3.29)
Y
Since oy = —Aga~, from (3.29) we can get
dp op
Qop~y = %557 811 (S (330)
(3.30) and (3.28) imply (3.25). This proves Lemma 3.1. O

LEMMA 3.2.  The function A(u) and f(va,...,vm) satisfy the following equa-
tions:

1
m?(N)? 42X + 3= ae®™, (3.31)

0 f a2f *(of of o
w Jr 02 T 722 <61}7) <8va> (81}5) T (3:32)

where a 1s a constant.

PROOF.  Since the connection forms {w1q,was} of g are given by (3.23) and
(3.25), we have



Hypersurfaces with isotropic Blaschke tensor

1167
1 & i
—5 Z Rlaijwi Nwj = dwigq — Zwlg N Wgq
ij=1 =2
= —meP(N' —m(N)?)du A dv,, (3.33)
which shows that
Rlala = m(>\// - m()\/)Q) (334)
From (3.25)we have
2 2
dwog = ————dv, ANdvg — ———dv,, A dv,. 3.35
Wap 0v,0v, Uy s 0v,dvg Uy v ( )

From (3.35) and (3.25) we have

m
dwapg — Z Wary N whg
=2

= o*f % f of of
= § 5[35 - 5(15 - 666
= 0v,0v, Ov,0vg O0va Ovy

af of af \?
4 8711587%60‘5 + (; (5‘%) day0pe pduy A due.

—~

3.36)
Since

1

2

m m
> Rapijwi Awj = dwap — Wa1 Awip — Y Wary Awyg,
Q=1

=2
from (3.36) and (3.23) we have
0% f 0% f 0% f 0% f
_p2p — _ _
¢ Rapre 0v, 0V, pe 0v. 0V, P Ov0vg S + Ov.Ovg day
o 0f ofof.  ofof . 0f 0f
Dve Ov, °

a9 ag T o 6(1
e 0. 7 Bug Dy dvg Ov:

m 8](- 2
+ (mQ()\I)QeQP + Z <8vt> ) ((Sary(ng - 6(165ﬁ’y)7
t=2

(3.37)
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which shows

0% f O%f " ofNE L of\? [ of\?
2p _ . 20\ \2,.2p o9 v 9
e’ RoBas pw) 7811% m*(\)%e EZQ (31)7) —1—(81}@) +(3v5> , (3.38)

5
where a # f3.
On the other hand, from Gauss equation (2.19) we have
-1
Rigta = -2 (3.39)
m
Thus, (3.34) and (3.39) show that function A satisfies
2 m—1
N —m(N)? = =\ - : 3.40
0y s (3.40)

Also from Gauss equation (2.19) we have (3.21). Thus, from (3.38) and (3.21) and
(3.24) we have

1
e 2mA(u) (mQ()\')2 + 2\ + 2)
m

R RO oyt

where v denotes the vector (ve,...,v,) in R™~1. We see that the left of the
equation (3.41) is independent on v and the right of the equation is independent
on u, which implies (3.31) and (3.32). This completes the proof of Lemma 3.2. O

REMARK 3.1.  We note that the equation (3.31) is the first integral of (3.40).
The function A(u) is decided by the following equation:

u=z | UL S— (3.42)

1
\/aeQmA =2\ - —
m

We view quadratic form § = €2/ (dv2 + - - - + dv2)) as a metric on manifold V.
It is easy to see that the connection forms, denoted by @,g, with respect to this
metric, are
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L:)ag = Wap = aaf dv Vg — aaifdva (343)

Let R denote the curvature induced by Wap, which means

1 - N - .
—3 ZRag.yEledv.y Adve = dDag — Zwa’v A W3-

e Y

From the (3.36), we see

. o2 f 82f oo\ [or\?
f _ _9r oI 95
X Rogas = oz Z (av,) (8va> + (8%) : (3.44)

where a # 3. By making use of Lemma 3.2 we get
Ragag =a. (3.45)

Now that metric g on V has constant curvature a, there exist the local coordinates,
for convenience, denoted by using same symbol (va,...,v,,) as above, such that

dvs 4 -+ - 4 dv,

a 27
1 _ 2
( +4|v||)
where [[o]|> = 30, 2.

By summing up above all, we come to the following conclusion:

g= (3.46)

THEOREM 3.1.  For an m(> 3)-dimensional hypersurface M™ with isotropic
Blaschke in S™*1, there exist local coordinations (u,vs), such that

g = du? + e~ 2@ (e2f(v) Zdvi)» (3.47)
(e}
m—1 1
Bom=lo2 1 o (200§ g2 3.48
m U me € g Vo | ( )

where function A(u) is given by (3.42) and function f(v) is given by
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a 2
flw)y=—log 1+ Z”U” . (3.50)

Theorem 3.1 shows that the all Mdbius invariants in structure equations are
determined by function A and f in (3.42) and (3.50), and so we can get the hyper-
surface M™ by integrating the structure equations. The procedure of integrating
the structure equations is some complicated, however it is interesting, which shows
the benefit of linearizing conformal group in studying the conformal geometry of
submanifolds in space form. We will complete the procedure in the next sections.

4. The differential equations of the hypersurfaces with isotropic
Blaschke tensor in §™11,

In this section we derive the differential equation of the Mobius position vector
function Y.

From the structure equations (2.7)—(2.10), by using (3.23)—(3.25), (3.48) and
(3.49) we have

oY
dY = Yydu + za: o e (4.1)
AN = (\Y, +m\ E)du + )\Z dva, (4.2)
m—1
dE = — (m)\/Y + mYu>du + — Z 8U(X dvom (43)
dy, = — <>\Y +N+ mlE) du = mX O o, (4.4)
m Vg,
1 of Y
E,(Y)=—eP(\Y + N+ —FE —m)\Y, Iy
d oc( ) € (/\ + +m mA ute zﬁ:avga’l)g)dva
_ of oY
P 4.
Z@v 81}5 (5

Noting that E, = e P(9/0v,), from (4.1)—(4.5) we get

Yuuz—(/\Y+N—m—1E>; (4.6)
m
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ON )4

Ny =\, +mNE, ~—=A—; 4.
tm Ovg Ovg (4.7)
oy m—1 OE  10Y
E, = (m)\ Y + Yu), 0. = s (4.8)
Y oY
m\ — =0; 4.9
Qudv, + Ova ’ (4.9)
()\Y ANt LiE- m)\'Yu> Sap = —€™ Fop, (4.10)
m

where we set

o Y of oY | of oY of v
Fop=e™ % — .o(an
o8 = ¢ (5‘1}58% (3’05 Qg 3% 5‘v5> Z v, Ov. ) (4-11)

On the following we concentrate on the solutions of the partial differential
equations (4.6)—(4.10). From (4.6) and (4.10) we have

E =Y, +m\NY, — ™ F,,, (4.12)
and
, 1 m—1 5
N=-\Y 4 (m—-1DNY, — —Yu, — " Foa. (4.13)
m m

From (4.8), (4.9) and (4.12) we know that Y satisfies equations

-1
Vi + mA Yoy + (mX’ + m)Yu +mNY = (Fane™), , (4.14)
m
oy OF,
Y+ mA 22 4.1
( A ) 8va ¢ Ovg (4.15)

The equation (4.9) implies (9%/0v,0u)(e™Y) = 0. Thus we have

Y = e " (E(u) +n(v)). (4.16)

Putting this into (4.15) and (4.11) we have
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e—2m)\ <m)\// +
- % af on
_ —2f _ 95 on
Fap=e <6U(X81}5 Ovq Oug

Noting that (3.31) implies e~2™*(m\" +

o _

a
Ovgy

Let nn = e/, then we have

1

m
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On _ OFaa
Mg Ovy

af o iy

)

0vg Ovg dv,, v,

(1/m)) = a, we have

OF ya
Ovg

_ *f  of of af \? 8¢
_ f _Ys vs o5
Fop=e ((avaauﬁ Dva DV 7{7: (a%) ‘W) t Fondvs *27:

From (4.10) we see that F,g satisfies

Faa:Fﬂﬁ; FaB:Ov Oé?éﬂ
Thus, from (4.20) we have
O _ (5 orory. .,
Ovadvg dvaOvg  Ovg Oug )’ ’
and
PC ., (0°F _of of\._9¢ (0% Of of
o2 ME Qva Ovy ) OV vy dug dvg )
Since the function f is given by (3.50), we have
*f of of _
Goadvy  Buaduy O A7
and
of _of of _of Of of
o2 vy Ovg 31}% dug Ovg’

8f877>

(4.17)

(4.18)

(4.19)

oo, )
vy o, )
(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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From (4.22)—(4.25) we get

RC . 9% _ 9%

a’l)aa'U[j =Y, @ = (9’[1?3, « 7é ﬁa (426)
which shows
¢=vI?d+ > vaba + ¢ (4.27)
a=2

where @,b, and @ are constant vectors. By putting (4.27) into (4.20) and using
(3.50) we have

Foo +an=2a+ %E’. (4.28)

Now we consider the unknown function £. By substituting (4.16) into (4.14),
and using (3.31) we have

m24+m—1

E”’—Qm/\'é”— <&62m)\+2/\— — >£/_ma/\/e2m>\€
= mNe*NFoo + an). (4.29)

From (4.27), (4.28) and (4.29) we come to the following conclusion:

THEOREM 4.1. Let Y be the Mdébius position vector of the immersion x :
M™ — S+l with A = \g. If X is not constant, then

Y = e "M (E(u) +(v)),

and the function n and & satisfy

o) =/ (JofPa+ 3 b +2) (430)

a=2

2 -1
E"'—me\'é”— <a€2m>\+2/\_ m ‘;17;1 )f'—max\'e2m)‘£

= mX 2™ (26 + ;5) : (4.31)
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where f(v) is given by (3.50) and A(u) is given by (3.42).

In next section we give the conditions satisfied by @, by, C.

5. The classification theorem of the hypersurfaces with isotropic
Blaschke tensor in §™11,

In this section we classify the hypersurfaces with isotropic Blaschke tensor. We
first determine the constant vectors @, by, @ in (4.30). It is from (2.3), Theorem 3.1
and Theorem 4.1 that the Mobius position vector Y of the immersion z satisfies
the following conditions:

Y =e"NE(w) + (), (YY) =0, (5.1)
() (B8 o
<gz;, gz;> =e AR5 (5.3)

LEMMA 5.1.  Letd, 5a7 c and £ are the quantities given in Theorem 4.1. Then
we have following identities:

(E+EE+T)=0, (¢,&)=e" (5.4)
(£4Eba) =0, <§+12a’—38 T1=0; (5.5)
(B b3) = G, <2a—;:5a>=o, <2a—;a25—;5>_a (5.6)

PrOOF. (5.1) implies
(€+n,&+n) =0,

for all (u,v). In particular, if we take v = 0 then we have f(0) = 0, n(0) = ¢ and
so have

(E+c¢+c) =0,

which is the first equation of (5.4). Noting that the first equation of (5.2) implies

A= 2mN (€ +n,6') +(€.€)) =1
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As n(0) = ¢ we have
e P (= 2mN(E+E )+ (¢,¢) =1
Since the first equation of (5.4) implies (€ + ¢, &) = 0, we have
(¢,¢)=e*m,

which is the second equation of (5.4).
From the definitions of the f and 7 we have

0 a 0 a -
% = —§vaef, % = _ivaefn +ef (2vac'i+ ba),
« «
0%n f( a a Of
- = v

2
ov2

Hence we have

We see that (5.1) and (5.7) implies
= (1 20 g 21
which yields
<€ + 1, ;Zl> =0,
(o) (50 5 ) =

By putting (5.8) into (5.9) we have

3

E+8ba)=0, (€428~ 22)+ (ba,bs) = 0.
2

Noting that (5.3) implies

1175

(5.10)
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: ay oYy
—2mA+2f _ [/ X5 F7
6aﬁe < Ovg ’ 81@ >

= e?m)\+2f< - gvan + 2v,d + g@, *gvﬁn + 2vgc_i+ g@>
We have
a L - a R
< - 2va7]+2vaa+ba,2v5n+2v5a+b5> = 6ag- (5.11)

By taking v = 0 in (5.11) we have

- —

<ba>bﬁ> = 604,6’7

which is the first equation (5.6). By taking o = § and differentiating the two sides
of the equation (5.11) by 0/v,, we have

a R a a On S\
<—21)an—|—2’vaa+ba, —277_21)&81)(X+2a>—0 (512)

By differentiating the two sides of the equation (5.12) by 9/v,, we have

0 0
<_%_%a"+2a, _%_%a”+25>

2 2 T 0vy 2 2 " 0vy
a Lo on  a 0%

By taking v = 0 and putting (5.8) into (5.12) and (5.13) we get the second equation
and the third equation of (5.6). This completes the proof of Lemma 5.1. g

We need to discuss the cases a = 0, a < 0 and a > 0.

Case It a=0.
In this case, the equation (4.31) is reduced to the following equation:

2 m—1
£ omNg" — <2>\ - Wf) ¢ = m)\ e, (5.14)

We use € to denote the solution of the homogeneous equation corresponding to
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equation (5.14):

2 — _
g/// - 2m/\/€’// _ <2)\ _ W)g’ =0. (5.15)

m2

Let y denote a component of the unknown vector value function £ in the equation
(5.14). We consider ordinary equation

2 -1
Yy —2mNy" — (2)\ - m+ﬂ;>y’ = m\ ¥ (5.16)
m
and the corresponding homogeneous equation:
2 -1
y" —2mNy" — (2/\ - w)y' =0. (5.17)
m

In this case, if we set z =y’ then the equations (5.16) and (5.17) are reduced to

24 m—1
2" —2mNz2 — (2)\ - m—;;n)z =mN e, (5.18)
2 _
R YV B WL Uit DR 5.19
m2

Noting A satisfies the equation (3.31), we get two linear independent solutions of
(5.19) as follows

A

2 =e™ cosu, 29 =e™

sin u, (5.20)
where ¢ is a nonzero constant. z; and z5 have properties:

21 =mNz — 22, 25 =mMNz+ 21, (5.21)

212 + 202y = mN (21 + 23), 25+ 25 =¥ (5.22)

It is easy to check that

Y(u) = zl/zldu+22/22du (5.23)

is a special solution of the non-homogeneous equation (5.18). The general solution
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can be expressed by

z =1+ Az1 + Bzs. (5.24)

We use the notations yg,y; and yo, which are defined as

yo=/w, ylz/zh y2:/22. (5.25)

Then the general solution of (5.18) can be expressed by
y = yo + Ay1 + By, (5.26)

where A, B are constant. Thus the general solution of the vector equation (5.14)
and (5.15) can be expressed as follows:

€ = 2ayo + 1A+ y2 B, (5.27)

=y A+yB. (5.28)

We can get the analytic representations of z; and z5. In fact, since a = 0,
from (3.31) or (3.42) we have

2 1 1
)\z—u+bu—<b2+>, (5.2)
m m

where b is constant. We have

2
1
ZlcOSUGXP<2um+buT2n<b2+mg)>,

> 1
22:Sinuexp(—;T]l—&—bu—?(bQ—i—mQ)). (5.30)

We are going to determine the constant vectors @, I;a, € in (4.30) and /T, Bin
(5.27). Since a = 0, from Lemma 5.1 we have

(@a)=0, {(@bs)=0, {(barbs)=dus, (5.31)

<ga7A’>y1 + <gou -§>y2 + <ga7 E> = 07 (532)
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B . 1
<5:, A >y1 + <Ei, B>y2 + <5, [i> = 75, (533)
(A, )z} + (B, B)23 + 4@, A Ypzy + 4@, A)pzo + 2(A, BYz120 = €™, (5.34)
yi(A, AY) +y3(B,B) + 4@, A yyoy: + 4@, A yyoys + 2(A, B)yrya
+4(@, &)yo + 2(A,&)y1 + 2(B, &)y + (¢,) = 0. (5.35)

Since z1, zo are linear independent, we know that y;,y2, 1 are linear independent.
From (5.32) and (5.33) we have

(ba, &) = (b, B) = (b2, 7) =0,
(@, Ay =(a,B)=0, (¢a) :—%. (5.36)
From (5.22), (5.34) and (5.36) we have
((A,A) —1)z22 + ((B,B) —1)23 + 2(A, B) 212, = 0.
Since (5.20) implies that 22, 22 and 2z, are linear independent, we have
(A, Ay =(B,B)=1, (4 B)=o. (5.37)
From (5.35), (5.36) and (5.37) we have
yi +ys + (G,E) = 2. (5.38)

Since {da, 5a75’j7§7} satisfies (5.31), (5.36) and (5.37), we can take them, up to
a Lorentz transformation in R’f”?’, as following fixed vectors:

a:(la_170707"'70)’ 6:(81582a0507"'30)7

— —

A=(0,0,1,0,...,0), B=1(0,0,0,1,...,0),

-

by = (0,...,0,1,0,...,0), 2<a<m.
——
a+2
Noting (a@,¢) = —1/2 (see (5.33)), we have ¢ + c2 = 1/2 and so have

1 1
cl+<5,€>:clfcf+c§:1, 027<5,E>:1. (5.39)
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From (5.38) and (5.39) we have

€+ n= (2y0 ta+ ||U||27 - 2y0 +c2 — H’U||2a Y1,Y2,02, ... 7U7n)

1 1
= ( + 97 + 5 + |lvl? i (yi+vs+ ||v||2),y1,y2,v)-

4
Noting
p(1,z) = e ™ (E+1),
we have
—mX {2 2 o 1
p=e g2+ 3+ ol + 1), (5.40)
and
(1 =4A(yi + s+ ol?) 2(y1,y2,v)
r= gy o 9 S : (5.41)
A0y +y5 +lvl?) + 17 4(y? + 3 + [[ol?) +1
where

_ 1 5 m( o 1
yl—/cosuexp< 2mu + bu 3 (b +m2)>’
1 1
yQ/smueXp<mu2+bu7;<b2+ml2>> (542)

Since & € span{ff, E} =~ R?, we can write

E(u) = (2y1(u), 2y2(u)), uwelcC R,

which is also the solution of equation (5.15). We can take U = [ x R™" !, let
I'; = &(1), define an m-dimensional cylinder hypersurface in R™*! as follows:

S(u,v) = (E(u),2v), (u,v) € U, (5.43)

and denote the inverse stereographic projection by ¢ which is defined in Section
1. Then, from (5.41) we have
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z(U)=003(U) =c(; x R™ ). (5.44)

Case II: a #0.
Let

%, (5.45)

then we can write equation (4.43) as

m24+m—1
m2

& —2mN¢" — <a62m}‘ +2)\ — >£' — maXe?™ ¢ = 0. (5.46)

From Lemma 5.1 we have
<£3 g> = _27 <£a 2d — ;LE> = Oa <g7 l_;a> = 07 < /7 7/> = e2m>\' (547)

SUBCASE II-1: a < 0.
In this case, (5.6) shows that 2a — (a/2)c is a time-like vector. We can take,

up to a transformation in O(1,m + 2), it and b as follows:

2 — 26 = (V=a,0,....0),
boa=(0,...,0,1,...,0), 2<a<m. (5.48)
N———
a—1

Let
A=(0,...,0,1,0,0), B=(0,...,0,0,1,0), C=(0,...,0,0,1).

Then we see that {2d—(a/2)é, A, B, C, by} is a Lorentz orthonormal basis in R+,
From (5.47) and (5.48) we see that

Noting that f is defined by (3.50), we can write
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n—Cc=e <|v|25+2b Vo + l—e_f)5>

oo 3w T,

From (5.47) and (5.49) we have

1— Sl

SR L
a(l + a||v||2>
4

a
1— = 2
Flol

v

a ’ @’ 3
\/7a<1+4||11||2> L+ 2l

The Mébius position vector Y of the immersion x is

a
\ 1—- ZHUH2
Y=p(l,z)=e™
where
a
1— = 2
R e
a )
\/—a<1 + 4||11||2>
and
a
— L+ o2
. av 4

13
a 9 g 27
\ﬁ—a(1+4||v||2> 1+ 2ol

1= 2ol 1= Zlel?

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

We can take U =1 x V, where | C R* and V = {v: v € R™ !, |]v| < 2/v/—a}.

Let map

T:VHHml(

1
J—a

)
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denote the inverse stereographic projection to hyperbolic space which is defined
by

1 2ol .
T(v) = . (5.54)

a ’ @02
Fa<1+ 4||v||2> L+ 2l

Then (5.50) implies

E+n)U)=7(V)x &) = Hml( x I'a. (5.55)

1
=)
Hence we have

X () = #(La)0)) = 7((& 4+ = 7B (=) xTa). (550

where X and 7 are the maps defined in Section 1.

SUBCASE 1I-2: a > 0.
In this case, (5.6) shows that 2@ — (a/2)¢ is a space-like vector. We can take,
up to a transformation in O(1,m + 2), it and b, as follows:

26 — gaz (0,0,0,—v/a,0,...,0),
bo=(0,...,0,1,...,0), 2<a<m. (5.57)
————

Let

—

A=(1,0,0,0,...,0), B=(0,1,0,0,...,0), C =(0,0,1,0,...,0).

Then we see that {2d—(a/2)@ A, B, C, by} is a Lorentz orthonormal basis in RT3,
From (5.47) we see that

_ 1 oL
e H? (\/&) - span{A,B,C} =~ R‘;’.

From (5.47), (4.30), (3.51) and (5.57) we have
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a
1— vl L .
§+n=—4a(2&’—;E’>+aA+ﬂB+vC+ebeava
a<1+4v||2> o
a
=S .
=1¢& ) a (5.58)
Diwl2) 1+ llol?
va(1+ il i
Let map

e ()

denote the inverse stereographic projection which is defined by

a2
1= 2ol .

a ’ @2
\/a<1 + 4||11|2> 1+ 2]

$(v) =

Let V.= R™ 1 U{oo}. We can take U =[x V, where [ C R'. Then (5.58) implies

(6 +1)(U) = £() x G(V) = T x §™1 (}) (5.59)

Hence we have

X(0) = n((1,2)@) = w((e + nE) =r(rax 57 (). 560

Finally, we will rewriting equations (5.46). From the last equation of (5.47)
we see that the arc-length parameter s is given by s = [ e™ du. From (3.42) and
(5.46) we know that A and ¢ satisfy the equations (1.6) and (1.11). We complete
the proof of Theorem 1.1. O

We will show the relation between the curve £ and a principal sphere on the
following. As one of the Mobius principal curvature of x is —1/m, the curvature
sphere corresponding to this principal curvature is
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1 m m—+2
P=E—-—Y :M™— 8", (5.61)
m

where 872 = {Z € R"*3 . (Z,Z) = 1}, called m + 2-dimensional de Sitter
space. The second equation of (4.8) shows

07
This shows that the curvature sphere & degenerates into a curve in STH. From
the first equation of (4.8) we have

dP? 4P
<du,du> =1 (5.63)

Hence u is the arc-length parameter of the curvature sphere &?. For the case of
a # 0, there is a correspondence between curvature sphere &2 and curve £. We
give this correspondence as follows:

P = —ae™E + (e””)‘g)/, (5.64)

P = —e A, (5.65)

= —ée—mk(,@ + . (5.66)
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