
c©2011 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 63, No. 1 (2011) pp. 79–136
doi: 10.2969/jmsj/06310079

The geometry of symmetric triad and orbit spaces

of Hermann actions

By Osamu Ikawa

(Received Oct. 19, 2009)

Abstract. We introduce the notion of symmetric triad, which is a gen-
eralization of the notion of irreducible root system, and study its fundamental
properties. Applying these results, we study the orbit spaces of Hermann
actions on compact symmetric spaces.

1. Introduction.

Let (G,K1,K2) be a compact symmetric triad. The isometric action of K2 on
a compact Riemannian symmetric space M1 = G/K1 is called a Hermann action
(see Section 4.1 for the detail). When K1 = K2, then the Hermann action is
nothing but the isotropy action on M1. In this paper, we describe the orbit spaces
of Hermann actions using the fact that a Hermann action is hyperpolar. Here
an isometric action of a compact Lie group on a Riemannian manifold is called
hyperpolar if there exists a connected closed flat submanifold, called a section,
that meets all orbits orthogonally. A section is automatically totally geodesic.
We mainly deal with (G,K1,K2) in the case where G is simple, and θ1 and θ2

commute each other, where θi is an involutive automorphism of G which defines
Ki for i = 1, 2.

In order to describe the orbit space of such a Hermann action, we introduce
the notion of a symmetric triad (Σ̃,Σ,W ) of a finite dimensional vector space a

with an inner product, which is a generalization of the notion of irreducible root
system (Definition 2.2). For a given symmetric triad, we can define a point in
a to be a regular point or a totally geodesic point (Definitions 2.5 and 2.8)．A
connected component of the set of regular points is called a cell. We can define an
Affine Weyl group and see that the Affine Weyl group acts transitively on the set
of cells (Definition 2.9 and Proposition 2.10). The closure of a cell is a simplex.
A totally geodesic point is a vertex of a simplex, but the converse is not true in
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general. We will define a symmetric triad with multiplicities (Definition 2.13)．
For a given symmetric triad with multiplicities we can define a point in a to be an
austere point or a minimal point (Definitions 2.15 and 2.16)．A totally geodesic
point is an austere point for any given multiplicities, and an austere point is a
minimal point (Proposition 2.17)．We can stratify a cell and see that each strata
has a unique minimal point (Theorem 2.24)．We classify the set of all symmetric
triads (Theorem 2.19) and determine which point is totally geodesic or austere
(Corollaries 2.22 and 2.23)．

We construct a symmetric triad with multiplicities from a compact symmetric
triad mentioned above and can identify the orbit space with the closure of its
cell. Under the identification, regular, minimal, austere and totally geodesic point
correspond to regular, minimal, austere and totally geodesic orbit, respectively.
In particular each strata of the orbit space has a unique minimal orbit. When
K1 = K2, this is a result of D. Hirohashi, H. Tasaki, H. Song and R. Takagi ([8]).

The notion of austere submanifold was introduced by Harvey-Lawson [5],
which is a minimal submanifold whose second fundamental form has a certain
symmetry (Definition 4.8). A totally geodesic submanifold is austere. The am-
bient spaces of known explicit austere submanifolds, except totally geodesic sub-
manifolds and complex submanifolds, are only Euclidean spaces and spheres. In
fact Harvey-Lawson constructed some austere submanifolds in spheres. Bryant [2]
solved the local problem of describing the austere submanifolds of three dimen-
sion in Euclidean space in all dimension. Recently we determined austere orbits
in the hypersphere of the tangent space among the orbits of s-representations. If
an isotropy orbit in a compact Riemannian symmetric space is austere, then it is
totally geodesic (Theorem 4.31). On the other hand, many austere orbits which
are not totally geodesic can be constructed when we consider Hermann actions
which are not isotropy actions.

The author would like to express his sincere gratitude to Professor Toshihiko
Matsuki, who suggested the author Lemma 4.38, Proposition 4.39 and their proofs.
The author would also like to express his sincere gratitude to Professor Hiroshi
Tamaru, who suggested the proof of Lemma 4.32.

2. The geometry of symmetric triad.

We begin with recalling the definition of root system. Let a be a finite
dimensional vector space over R with an inner product 〈 , 〉.

Definition 2.1. A finite subset Σ ⊂ a − {0} is a root system of a, if it
satisfies the following three conditions:

(1) a = span(Σ).
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(2) If α, β ∈ Σ, then sαβ ∈ Σ, where we define an orthogonal transformation sα

of a by

sαβ = β − 2
〈α, β〉
‖α‖2 α.

(3) If α, β ∈ Σ, then 2(〈α, β〉/‖α‖2) ∈ Z.

A root system Σ of a is called irreducible if it cannot be decomposed into two
disjoint nonempty orthogonal subsets.

We will define a symmetric triad.

Definition 2.2. A triple (Σ̃,Σ,W ) is a symmetric triad of a, if it satisfies
the following six conditions:

(1) Σ̃ is an irreducible root system of a.
(2) Σ is a root system of a.
(3) W is a nonempty subset of a, which is invariant under the multiplication by

−1, and Σ̃ = Σ ∪W .
(4) If we put l = max{‖α‖ | α ∈ Σ ∩W}, then Σ ∩W = {α ∈ Σ̃ | ‖α‖ ≤ l}.
(5) For α ∈ W,λ ∈ Σ−W ,

2
〈α, λ〉
‖α‖2 is odd if and only if sαλ ∈ W − Σ.

(6) For α ∈ W,λ ∈ W − Σ,

2
〈α, λ〉
‖α‖2 is odd if and only if sαλ ∈ Σ−W.

When (Σ̃,Σ,W ) is a symmetric triad of a, then Σ ∩W is a root system of a

by (4) of Definition 2.2．When Σ̃ is an irreducible root system of a, then the triple
(Σ̃, Σ̃, Σ̃) is a symmetric triad of a. Hence the definition of a symmetric triad is a
generalization of the notion of an irreducible root system.

Lemma 2.3. Let (Σ̃,Σ,W ) be a symmetric triad of a. For any λ ∈ (Σ −
W ) ∪ (W − Σ), there exist α, β ∈ Σ ∩W such that λ = α + β．

Proof. Any root which is not shortest in an irreducible root system is a
sum of two roots which are shortest. Hence the assertion follows from the condition
(4) of Definition 2.2． ¤
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For a symmetric triad (Σ̃,Σ,W ) of a, we denote by Π̃ a fundamental system
of Σ̃. We denote by Σ̃+ the set of positive roots in Σ̃ with respect to Π̃. Set
Σ+ = Σ ∩ Σ̃+ and W+ = W ∩ Σ̃+. Denote by Π the set of simple roots of Σ．

Lemma 2.4. Any element of Σ̃ can be expressed as a linear combination of
elements in Π, whose coefficients are integers.

Proof. By the condition (3) of Definition 2.2, Σ̃ = (W − Σ) ∪ Σ. Hence
the assertion follows from Lemma 2.3. ¤

For a symmetric triad (Σ̃,Σ,W ) of a, put

Γ =
{

X ∈ a | 〈λ,X〉 ∈ π

2
Z (λ ∈ Σ̃)

}
,

ΓΣ∩W =
{

X ∈ a | 〈α, X〉 ∈ π

2
Z (α ∈ Σ ∩W )

}
.

We have Γ = ΓΣ∩W by Lemma 2.3．

Definition 2.5. A point in Γ is called a totally geodesic point.

Definition 2.6. Let (Σ̃,Σ,W ) and (Σ̃′,Σ′,W ′) be symmetric triads of a

and a′, respectively. Then (Σ̃,Σ,W ) and (Σ̃′,Σ′,W ′) are equivalent, if there exist
a linear isometric isomorphism f : a → a′ and Y ∈ Γ such that f(Σ̃) = Σ̃′ and





Σ′ −W ′ = {f(α) | α ∈ Σ−W, 〈α, 2Y 〉 ∈ 2πZ}
∪{f(α) | α ∈ W − Σ, 〈α, 2Y 〉 ∈ π + 2πZ},

W ′ − Σ′ = {f(α) | α ∈ W − Σ, 〈α, 2Y 〉 ∈ 2πZ}
∪{f(α) | α ∈ Σ−W, 〈α, 2Y 〉 ∈ π + 2πZ}.

(2.1)

We write (Σ̃,Σ,W ) ∼ (Σ̃′,Σ′,W ′) if (Σ̃,Σ,W ) and (Σ̃′,Σ′,W ′) are equivalent.
In this case f(Σ ∩W ) = Σ′ ∩W ′ holds. The relation ∼ is an equivalent relation.

Proposition 2.7. W is invariant under the action of the Weyl group W (Σ)
of Σ.

Proof. By the condition (4) of Definition 2.2, W ∩ Σ is invariant under
W (Σ). Hence (W − Σ) ∪ (Σ−W ) is also invariant under W (Σ). Since Σ−W =
{α ∈ Σ | ‖α‖ > l}, the two subset Σ−W and W − Σ are invariant under W (Σ).
The assertion follows from W = (W ∩ Σ) ∪ (W − Σ). ¤
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Definition 2.8. We define an open subset ar in a by

ar =
⋂

λ∈Σ,α∈W

{
H ∈ a | 〈λ,H〉 6∈ πZ, 〈α, H〉 6∈ π

2
+ πZ

}
.

A point in ar is called a regular point, and a point in a − ar a singular point. A
connected component of ar is called a cell.

Definition 2.9. An Affine Weyl group W̃ (Σ̃,Σ,W ) of a symmetric triad
(Σ̃,Σ,W ) is a subgroup of the semidirect product O(a) n a whose generator set
is given by {(sλ, (2nπ/‖λ‖2)λ) | λ ∈ Σ, n ∈ Z} ∪ {(sα, ((2n + 1)π/‖α‖2)α) | α ∈
W,n ∈ Z}.

The action of (sλ, (2nπ/‖λ‖2)λ) to a is a reflection with respect to the hyper-
plane 〈λ,H〉 = nπ, and the action of (sα, ((2n + 1)π/‖α‖2)α) is a reflection with
respect to the hyperplane 〈α, H〉 = ((2n + 1)/2)π.

Proposition 2.10. The Affine Weyl group W̃ (Σ̃,Σ,W ) acts transitively on
the set of cells.

Proof. First we will prove that W̃ (Σ̃,Σ,W ) maps any regular point to
a regular point. Let H ∈ a be a regular point. For λ ∈ Σ, n ∈ Z, set H1 =
(sλ, (2nπ/‖λ‖2)λ) ·H ∈ a. We will prove that H1 is a regular point. For µ ∈ Σ we
have

〈µ,H1〉 = 〈sλµ,H〉+
2nπ

‖λ‖2 〈λ, µ〉, 2nπ

‖λ‖2 〈λ, µ〉 ∈ πZ.

Since H is regular, 〈sλµ,H〉 6∈ πZ. Hence we get 〈µ,H1〉 6∈ πZ. For α ∈ W , we
have

〈α, H1〉 = 〈sλα, H〉+
2nπ

‖λ‖2 〈λ, α〉, 2nπ

‖λ‖2 〈λ, α〉 ∈ πZ.

Since sλα ∈ W by Proposition 2.7 and H is regular, we have 〈sλα, H〉 6∈ π/2+πZ.
Hence 〈α, H〉 6∈ π/2 + πZ, which implies that H1 is regular.

For α ∈ W,n ∈ Z, set H2 = (sα, ((2n + 1)π/‖α‖2)α) ·H ∈ a. We will prove
that H2 is regular. Let λ ∈ Σ, then

〈λ,H2〉 = 〈sαλ,H〉+
2n + 1

2
2〈α, λ〉
‖α‖2 π,

2n + 1
2

2〈α, λ〉
‖α‖2 π ∈ π

2
Z.
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When λ ∈ Σ ∩ W , we have sαλ ∈ Σ ∩ W by (4) of Definition 2.2. Since H is
regular, 〈sαλ,H〉 6∈ (π/2)Z. Hence 〈λ,H2〉 6∈ (π/2)Z. Consider the case where
λ ∈ Σ −W . If 2〈α, λ〉/‖α‖2 is even, then ((2n + 1)/2)(2〈α, λ〉/‖α‖2)π ∈ πZ. In
this case sαλ ∈ Σ−W by (5) of Definition 2.2. Since H is regular, 〈sαλ,H〉 6∈ πZ.
Hence 〈λ,H2〉 6∈ πZ. If 2〈α, λ〉/‖α‖2 is odd, then ((2n + 1)/2)(2〈α, λ〉/‖α‖2)π ∈
π/2 + πZ. In this case sαλ ∈ W − Σ by (5) of Definition 2.2. Since H is regular,
〈sαλ,H〉 6∈ π/2 + πZ. If β ∈ W , then

〈β, H2〉 = 〈sαβ, H〉+
2n + 1

2
2〈α, β〉
‖α‖2 π,

2n + 1
2

2〈α, β〉
‖α‖2 π ∈ π

2
Z.

We may assume that β ∈ W − Σ. If 2〈α, β〉/‖α‖2 is even, then ((2n + 1)/2)
(2〈α, β〉/‖α‖2) ∈ πZ. In this case sαβ ∈ W −Σ by (6) of Definition 2.2. Since H

is regular, 〈sαβ, H〉 6∈ π/2 + πZ. Hence 〈β, H2〉 6∈ π/2 + πZ. If 2〈α, β〉/‖α‖2 is
odd, then ((2n+1)/2)(2〈α, β〉/‖α‖2) ∈ π/2+πZ. In this case sαβ ∈ Σ−W by (6)
of Definition 2.2. Since H is regular, 〈sαβ, H〉 6∈ πZ. Hence 〈β, H2〉 6∈ π/2 + πZ.

From the above argument, we see that the Affine Weyl group maps any regular
point to a regular point.

Since the action of W̃ (Σ̃,Σ,W ) is a homeomorphism, W̃ (Σ̃,Σ,W ) maps any
cell to a cell.

Let P1, P2 be two cells and select Hi ∈ Pi (i = 1, 2). If the segment H1H2

intersects a hyperplane 〈λ,H〉 = nπ (λ ∈ Σ, n ∈ Z), then

‖H2 −H1‖ >

∥∥∥∥H2 −
(

sλ,
2nπ

‖λ‖2 λ

)
·H1

∥∥∥∥.

If H1H2 intersects a hyperplane 〈α, H〉 = ((2n + 1)/2)π (α ∈ W,n ∈ Z), then

‖H2 −H1‖ >

∥∥∥∥H2 −
(

sα,
(2n + 1)π
‖α‖2 α

)
·H1

∥∥∥∥.

Take s0 ∈ W̃ (Σ̃,Σ,W ) such that

‖H2 − s0H1‖ = min
{‖H2 − sH1‖ | s ∈ W̃ (Σ̃,Σ,W )

}
,

then the segment from s0H1 to H2 intersects no hyperplane of the form mentioned
above. Hence s0P1 = P2. ¤

Corollary 2.11. a =
⋃

s∈W̃ (Σ̃,Σ,W ) sP0 for any fixed cell P0.
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For a symmetric triad (Σ̃,Σ,W ) of a, set

P0 =





H ∈ a

∣∣∣∣∣∣∣∣∣∣

0 < 〈λ,H〉 (λ ∈ Π),

〈λ,H〉 < π
2 (λ ∈ Σ+ ∩W+),

〈λ,H〉 < π (λ ∈ Σ+ −W+),

−π
2 < 〈α, H〉 < π

2 (α ∈ W+ − Σ+)





, (2.2)

then P0 is a cell. Put

W0 = {α ∈ W+ | α + λ 6∈ W (λ ∈ Π)}, (2.3)

then clearly we have W0 6= ∅.

Lemma 2.12. P0 = {H ∈ a | 0 < 〈λ,H〉 (λ ∈ Π), 〈α, H〉 < π/2 (α ∈ W0)}.

Proof. By Lemma 2.3 we have

P0 =





H ∈ a

∣∣∣∣∣∣∣

0 < 〈λ,H〉 (λ ∈ Π),

〈λ,H〉 < π
2 (λ ∈ Σ+ ∩W+),

−π
2 < 〈α, H〉 < π

2 (α ∈ W+ − Σ+)





.

By the definition of W0, for any α ∈ W+ there exist λ1, . . . , λk ∈ Π such that
α + λ1 + · · ·+ λk ∈ W0 (k may be equal to 0). Denote by P1 the right-hand side
of the equation in Lemma 2.12, then

P0 =
{

H ∈ P1

∣∣∣∣−
π

2
< 〈λ,H〉 (λ ∈ W+ − Σ+)

}
⊂ P1.

Take H ∈ P1 arbitrarily. For λ ∈ W+ − Σ+, there exist α, β ∈ Σ ∩W such that
λ = α + β by Lemma 2.3. We may assume that β > 0 since one of α and β is
positive. Then 〈λ,H〉 > 〈α, H〉. If α > 0, then 〈λ,H〉 > 〈α, H〉 > 0. If α < 0,
then 〈λ,H〉 > −〈−α, H〉 > −π/2. Hence P0 = P1. ¤

Definition 2.13. Let (Σ̃,Σ,W ) be a symmetric triad of a. Put R≥0 =
{x ∈ R | x ≥ 0}. Consider two mappings m,n : Σ̃ → R≥0 which satisfy the
following four conditions:

(1) m(λ) = m(−λ), n(α) = n(−α) and

m(λ) > 0 ⇔ λ ∈ Σ, n(α) > 0 ⇔ α ∈ W.



86 O. Ikawa

(2) When λ ∈ Σ, α ∈ W , s ∈ W (Σ) then m(λ) = m(sλ), n(α) = n(sα).
(3) When σ ∈ W (Σ̃), the Weyl group of Σ̃, and λ ∈ Σ̃ then n(λ) + m(λ) =

n(σλ) + m(σλ).
(4) Let λ ∈ Σ ∩W and α ∈ W .

If 2〈α, λ〉/‖α‖2 is even then m(λ) = m(sαλ).
If 2〈α, λ〉/‖α‖2 is odd then m(λ) = n(sαλ).

We call m(λ) and n(α) the multiplicities of λ and α, respectively. If multi-
plicities are given, we call (Σ̃,Σ,W ) the symmetric triad with multiplicities. For
H ∈ a, set

mH = −
∑

λ∈Σ+
〈λ,H〉6∈(π/2)Z

m(λ) cot(〈λ,H〉)λ +
∑

α∈W+
〈α,H〉6∈(π/2)Z

n(α) tan(〈α, H〉)α.

We call mH the mean curvature vector of H. Set

F (H) = −
∑

λ∈Σ+
〈λ,H〉6∈(π/2)Z

m(λ) log | sin(〈λ,H〉)| −
∑

α∈W+
〈α,H〉6∈(π/2)Z

n(α) log | cos(〈α, H〉)|,

and Vol(H) = exp(−F (H))(> 0). We call Vol(H) the volume of H.

Remark. Let (Σ̃,Σ,W ) be a symmetric triad with multiplicities. When
λ ∈ Σ ∩W,α ∈ W , then we have the following by (3) and (4) of Definition 2.13:

If 2〈α, λ〉/‖α‖2 is even, then n(λ) = n(sαλ).
If 2〈α, λ〉/‖α‖2 is odd, then n(λ) = m(sαλ).

When σ ∈ W (Σ̃), then we have the following by (3) of Definition 2.13:
If λ, σλ ∈ Σ−W , then m(λ) = m(σλ).
If λ, σλ ∈ W − Σ, then n(λ) = n(σλ).
If λ ∈ Σ−W,σλ ∈ W − Σ, then m(λ) = n(σλ).

Proposition 2.14. Let (Σ̃,Σ,W ) be a symmetric triad of a with multiplic-
ities. For H ∈ a and σ = (s,X) ∈ W̃ (Σ̃,Σ,W ) set H ′ = σH ∈ a, then

Vol(H ′) = Vol(H), mH′ = smH .

Proof. For µ ∈ Σ, n ∈ Z,H ∈ a set H1 = (sµ, (2nπ/‖µ‖2)µ) ·H ∈ a. We
will prove that mH1 = sµmH . Since

〈λ,H1〉 = 〈sµλ,H〉+
2〈µ, λ〉
‖µ‖2 nπ
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for λ ∈ Σ̃, we have

| sin(〈λ,H1〉)| = | sin(〈sµλ,H〉)|, | cos(〈λ,H1〉)| = | cos(〈sµλ,H〉)|.

Since 2〈µ, λ〉/‖µ‖2 ∈ Z, we get

〈λ,H1〉 6∈ π

2
Z ⇔ 〈sµλ,H〉 6∈ π

2
Z.

By Proposition 2.7 and Definition 2.13, we have

2mH1 = −
∑
λ∈Σ

〈sµλ,H〉6∈(π/2)Z

m(λ) cot(〈sµH〉)λ +
∑
α∈W

〈sµα,H〉6∈(π/2)Z

n(α) tan(〈sµα, H〉)α

= 2sµmH .

Similarly we have Vol(H1) = Vol(H).
For β ∈ W,n ∈ Z,H ∈ a set H2 = (sβ , ((2n + 1)π/‖β‖2)β) ·H ∈ a. We will

prove that mH2 = sβmH . Since

〈λ,H2〉 = 〈sβλ,H〉+
(2n + 1)π

2
2〈β, λ〉
‖β‖2 ,

(2n + 1)π
2

2〈β, λ〉
‖β‖2 ∈ π

2
Z

for λ ∈ Σ̃, we have

〈λ,H2〉 6∈ π

2
Z ⇔ 〈sβ ,H〉 6∈ π

2
Z.

When 2〈β, λ〉/‖β‖2 is even, then

| sin(〈λ,H2〉)| = | sin(〈sβλ,H〉)|, | cos(〈λ,H2〉)| = | cos(〈sβλ,H〉)|,
tan(〈λ,H2〉) = tan(〈sβλ,H〉).

When 2〈β, λ〉/‖β‖2 is odd, then

| sin(〈λ,H2〉)| = | cos(〈sβλ,H〉)|, | cos(〈λ,H2〉)| = | sin(〈sβλ,H〉)|,
tan(〈λ,H2〉) = − cot(〈sβλ,H〉).

By the definition of mean curvature vector, we have
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2mH2 = −
∑

λ∈Σ−W,〈λ,H2〉6∈(π/2)Z

(2〈β,λ〉)/‖β‖2:even

m(λ) cot(〈λ,H2〉)λ

−
∑

λ∈Σ−W,〈λ,H2〉6∈(π/2)Z

(2〈β,λ〉)/‖β‖2:odd

m(λ) cot(〈λ,H2〉)λ

+
∑

α∈W−Σ,〈α,H2〉6∈(π/2)Z

(2〈β,α〉)/‖β‖2:even

n(α) tan(〈α, H2〉)α

+
∑

α∈W−Σ,〈α,H2〉6∈(π/2)Z

(2〈β,α〉)/‖β‖2:odd

n(α) tan(〈α, H2〉)α

+
∑

λ∈Σ∩W,〈λ,H2〉6∈(π/2)Z

(2〈β,λ〉)/‖β‖2:even

(
n(λ) tan(〈λ,H2〉)λ−m(λ) cot(〈λ,H2〉)λ

)

+
∑

λ∈Σ∩W,〈λ,H2〉6∈(π/2)Z

(2〈β,λ〉)/‖β‖2:odd

(
n(λ) tan(〈λ,H2〉)λ−m(λ) cot(〈λ,H2〉)λ

)
.

By the definition of multiplicities, we have

2mH2 = −
∑

λ∈Σ−W,〈sβλ,H〉6∈(π/2)Z

(2〈β,λ〉)/‖β‖2:even

m(sβλ) cot(〈sβλ,H〉)λ

+
∑

λ∈Σ−W,〈sβλ,H〉6∈(π/2)Z

(2〈β,λ〉)/‖β‖2:odd

n(sβλ) tan(〈sβλ,H〉)λ

+
∑

α∈W−Σ,〈sβα,H〉6∈(π/2)Z

(2〈β,α〉)/‖β‖2:even

n(sβα) tan(〈sβα, H〉)α

−
∑

α∈W−Σ,〈sβα,H〉6∈(π/2)Z

(2〈β,α〉)/‖β‖2:odd

m(sβα) cot(〈sβα, H〉)α

+
∑

λ∈Σ∩W,〈sβλ,H〉6∈(π/2)Z

(2〈β,λ〉)/‖β‖2:even

(
n(sβλ) tan(〈sβλ,H〉)λ−m(sβλ) cot(〈sβλ,H〉)λ)

+
∑

λ∈Σ∩W,〈sβλ,H〉6∈(π/2)Z

(2〈β,λ〉)/‖β‖2:odd

(−m(sβλ) cot(〈sβλ,H〉)λ + n(sβλ) tan(〈sβλ,H〉)λ)

= 2sβmH .

Similarly we have Vol(H2) = Vol(H). ¤
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Definition 2.15. Let (Σ̃,Σ,W ) be a symmetric triad of a with multiplici-
ties. Then H ∈ a is a minimal point if mH = 0.

Definition 2.16. Let (Σ̃,Σ,W ) be a symmetric triad of a with multiplic-
ities. Then H ∈ a is an austere point if the finite subset of a with multiplicities
defined by

{
− λ cot(〈λ,H〉) (multiplicity = m(λ)) | λ ∈ Σ+, 〈λ,H〉 6∈ π

2
Z

}

∪
{

α tan(〈α, H〉) (multiplicity = n(α)) | α ∈ W+, 〈α, H〉 6∈ π

2
Z

}
(2.4)

is invariant with multiplicities under the multiplication by −1.

The following proposition is clear.

Proposition 2.17.

(1) Any totally geodesic point is austere for any given multiplicities.
(2) Any austere point is minimal.

Theorem 2.18. A point H ∈ a is austere if and only if the following three
conditions hold :

(1) 〈λ,H〉 ∈ (π/2)Z for any λ ∈ (Σ−W ) ∪ (W − Σ).
(2) 2H ∈ ΓΣ∩W．
(3) m(λ) = n(λ) for any λ ∈ Σ ∩W with 〈λ,H〉 ∈ π/4 + (π/2)Z.

Proof. Assume that H satisfies the above conditions (1), (2) and (3). By
the conditions (1) and (2), the set defined by (2.4) is given by

{
− λ cot(〈λ,H〉) (multiplicity = m(λ)) | λ ∈ Σ+ ∩W+, 〈λ,H〉 ∈ π

4
+

π

2
Z

}

∪
{

λ tan(〈λ,H〉) (multiplicity = n(λ)) | λ ∈ Σ+ ∩W+, 〈λ,H〉 ∈ π

4
+

π

2
Z

}
.

By (3), the set above is invariant under the multiplication by−1 with multiplicities.
Conversely assume that H is austere. We shall show that the conditions (1),

(2) and (3) hold.
First consider in the case where Σ̃ 6= BC. Since H is austere, 〈λ,H〉 ∈ (π/2)Z

for any λ ∈ (Σ−W ) ∪ (W −Σ), and m(α) = n(α) and cot(〈α, H〉) = tan(〈α, H〉)
for any α ∈ Σ+∩W+ with 〈α, H〉 6∈ (π/2)Z. Hence H satisfies the conditions (1),
(2) and (3).
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Second consider when Σ̃ = BC, Σ ∩W = {ei}. 〈ei ± ej ,H〉 ∈ (π/2)Z since
ei±ej ∈ (Σ−W )∪ (W −Σ). Hence 〈2ei,H〉 ∈ (π/2)Z. Set m = m(ei), n = n(ei).
Since H is austere, the set

{
− ei cot(〈ei,H〉) (multiplicity = m) | 〈ei,H〉 ∈ π

4
+

π

2
Z

}

∪
{

ei tan(〈ei,H〉) (multiplicity = n) | 〈ei,H〉 ∈ π

4
+

π

2
Z

}

is invariant under multiplication by −1 with multiplicities. Hence m = n. H

satisfies the conditions (1), (2) and (3).
Last consider the case where Σ̃ = BC, Σ ∩W ⊃ {ei, ei ± ej}. 〈ei + ej ,H〉 ∈

(π/4)Z since 〈ei + ej ,H〉 ∈ (π/2)Z or cot(〈ei + ej ,H〉) = tan(〈ei + ej ,H〉). Simi-
larly 〈ei − ej ,H〉 ∈ (π/4)Z. Hence 〈2ei,H〉 ∈ (π/4)Z. If there existed i such that
〈ei,H〉 ∈ π/8 + (π/4)Z, by Definition 2.16, the following equation would hold:

−ei tan(〈ei,H〉) = 2ei tan(2〈ei,H〉), −ei cot(〈ei,H〉), or − 2ei cot(〈2〈ei,H〉).

Hence one of the following three equations would hold:

tan(〈ei,H〉) =





−2 tan(2〈ei,H〉) = ±2,

2 cot(2〈ei,H〉) = ±2,

cot(〈ei,H〉).

Since 〈ei,H〉 ∈ π/8 + (π/4)Z, we would have tan(〈ei,H〉) 6= cot(〈ei,H〉), which
would imply tan(〈ei,H〉) = ±2．Since tan((2n + 1)π/8) = ±(

√
2 ± 1) for n ∈ Z,

this would be a contradiction. Hence we can reduce when Σ̃ = B, the point H

satisfies the above conditions (1), (2) and (3)． ¤

In order to state the theorem below, we shall follow the notations of irreducible
root systems and the set of positive roots in [1]. For instance,

A+
r = {ei − ej | 1 ≤ i < j ≤ r + 1},

B+
r = {ei | 1 ≤ i ≤ r} ∪ {ei ± ej | 1 ≤ i < j ≤ r},

C+
r = {2ei | 1 ≤ i ≤ r} ∪ {ei ± ej | 1 ≤ i < j ≤ r},

BC+
r = {ei, 2ei | 1 ≤ i ≤ r} ∪ {ei ± ej | 1 ≤ i < j ≤ r},

D+
r = {ei ± ej | 1 ≤ i < j ≤ r}.
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For the sets of positive roots above, the sets of simple roots are given as follows:

Π(A+
r ) = {α1 = e1 − e2, . . . , αr = er − er+1},

Π(B+
r ) = Π(BC+

r ) = {α1 = e1 − e2, . . . , αr−1 = er−1 − er, αr = er},
Π(C+

r ) = {α1 = e1 − e2, . . . , αr−1 = er−1 − er, αr = 2er},
Π(D+

r ) = {α1 = e1 − e2, . . . , αr−1 = er−1 − er, αr = er−1 + er}.

Theorem 2.19. Each symmetric triad (Σ̃,Σ,W ) of a is one of the forms
mentioned below. The set W0 defined by (2.3) consists of only one element α̃. We
list (Σ̃,Σ,W ) and α̃ in the table below.

(I) In the case where Σ ⊃ W, Σ 6= W :

type Σ+ W+ α̃

(I-Br) B+
r {ei | 1 ≤ i ≤ r} e1

(I-Cr) C+
r D+

r e1 + e2

(I-BCr-Ar
1) BC+

r {ei | 1 ≤ i ≤ r} e1

(I-BCr-Br) BC+
r B+

r e1 + e2

(I-F4) F+
4 {short roots in F+

4 } ∼= D+
4 e1

(II) In the case where Σ ⊂ W, Σ 6= W :

type Σ+ W+ α̃

(II-BCr) (r ≥ 1) B+
r BC+

r 2e1

(I’-Cr) D+
r C+

r 2e1

(I’) In the case where Σ 6= W except for (I) and (II):
Type (I’-F4):

Σ+ =
{
short roots of F+

4

} ∪ {e1 ± e2, e3 ± e4} ∼= C4,

W+ =
{
short roots of F+

4

} ∪ {e1 ± e3, e1 ± e4, e2 ± e3, e2 ± e4},
α̃ = e1 + e3.

Type (I’-Br) (r ≥ 3):

Σ+ = B+
s ∪B+

r−s, W+ = (B+
r − Σ) ∪ {ei}, α̃ = e1 + es+1.
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Type (I’-BCr-Ar
1):

Σ+ = BC+
s ∪BC+

r−s, W+ = (BC+
r − Σ) ∪ {ei}, α̃ = e1 + es+1.

(III) In the case where Σ̃ = Σ = W , α̃ is a highest root of the irreducible root
system Σ̃.

The following equivalent relation holds:

(I-F4) ∼ (I’-F4), (I-BCr-Ar
1) ∼ (I’-BCr-Ar

1),

(I-Cr) ∼ (I’-Cr), (I-Br) ∼ (I’-Br).

Proof. It is clear that the (Σ̃,Σ,W )’s in the above list are symmetric
triads. The assertion is clear when (Σ̃,Σ,W ) is of type (I), (II) and (III). Hence
we assume that (Σ̃,Σ,W ) is a symmetric triad of type (I’), that is, Σ 6= W , Σ 6⊂ W

and W 6⊂ Σ.
When Σ̃ = F4, then by (4) of Definition 2.2 we have

Σ ∩W = {short roots of F4} ∼= D4.

Since the only root system Σ between D4(∼= Σ∩W ) and F4 is C4, we have Σ ∼= C4.
Hence (Σ̃,Σ,W ) is of type (I’-F4).

Remark that root systems G2 and Cr have the following property: If α is
a long root, then {long roots} = {sβα | β is a short root}, which implies that
Σ̃ 6= G2, Cr by Proposition 2.7. Hence Σ̃ = Br or BCr.

When Σ̃ = Br, then Σ+ ∩W+ = {ei} by (4) of Definition 2.2. Since Σ is a
root system and sej

(ei + ej) = ei − ej , we have

ei − ej ∈ Σ ⇔ ei + ej ∈ Σ.

Hence

ei − ej ∈ W ⇔ ei + ej ∈ W.

If i, j and k are mutually distinct, then

2〈ei − ej , ej − ek〉
‖ei − ej‖2 = 1, sei−ej

(ej − ek) = ei − ek.

Hence by (5) of Definition 2.2, we get
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ei − ej ∈ W, ej − ek ∈ Σ ⇒ ei − ek ∈ W.

By (6) of Definition 2.2, we get

ei − ej , ej − ek ∈ W ⇒ ei − ek ∈ Σ.

If ei − ej , ej − ek were in Σ and ek − ei were in W , then ej − ei = (ej − ek) +
(ek − ei) would be in W , which would be a contradiction. Thus, ei − ek ∈ Σ
when ei − ej , ej − ek ∈ Σ. Hence Σ = Br1 ∪ · · · ∪ Brk

. If k were greater than
or equal to 3, then we could take ea ∈ Br1 , eb ∈ Br2 and ec ∈ Br3 . Then we
would have ea − eb, eb − ec, ea − ec ∈ W − Σ. On the other hand, we would have
ea − ec = (ea − eb) + (eb − ec) ∈ Σ−W by the above argument, which would be a
contradiction. Hence k = 2 and

Σ+ = B+
s ∪B+

r−s, W+ =
(
B+

r − Σ
) ∪ {ei}.

If r were equal to 2, then we would have Σ ⊂ W . Hence r ≥ 3．
When Σ̃ = BCr, then Σ+∩W+ = {ei} since sei±ej

(2ei) = ±2ej . When i 6= j,
then sei

(ei + ej) = −ei + ej . Thus by Proposition 2.7

ei − ej ∈ Σ ⇔ ei + ej ∈ Σ, ei − ej ∈ W ⇔ ei + ej ∈ W.

Assume that i, j and k are mutually distinct. If ei−ej , ej−ek ∈ Σ then ei−ek ∈ Σ
by a similar argument to the above. Thus

Σ+ = B+
r1
∪ · · · ∪B+

rk
∪ {2ei | 2ei ∈ Σ}.

We get k ≤ 2 by a similar argument to the above. If k were equal to 1, we would
have Σ = Br,W

+ = {ei, 2ei} since sei+ej
(2ei) = −2ej . Moreover if r were greater

than or equal to 2, then for α = 2e1 ∈ W −Σ and λ = e1 + e2 ∈ Σ−W we would
have 2〈α, λ〉/‖α‖2 = 1. Since sαλ = −e1 + e2 ∈ Σ −W , this would contradict to
(5) of Definition 2.2. Thus we would have r = 1. Hence (Σ̃,Σ,W ) would be of
type (II-BC1). Thus k = 2 and

Σ+ = {ei} ∪D+
s ∪D+

r−s ∪ {2ei | 2ei ∈ Σ}.

Since sei+ej
(2ei) = −2ej ,

Σ = BCs ∪BCr−s, Bs ∪BCr−s, or Bs ∪Br−s.
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If Σ were equal to Bs ∪ BCr−s or Bs ∪ Br−s, we would have 2〈α, β〉/‖α‖2 = 1
for α = 2e1 ∈ W and β = e1 + es+1 ∈ W − Σ. This would contradict to (6)
of Definition 2.2 since sαβ = −e1 + es+1 ∈ W − Σ. Hence (Σ̃,Σ,W ) is of type
(I’-BCr-Ar

1)．
It is clear that W0 consists of only one element α̃.
To show (I-F4) ∼ (I’-F4), let (Σ̃,Σ,W ) and (Σ̃′,Σ′,W ′) be of types (I-F4) and

(I’-F4), respectively. Set Y = (π/2‖e1‖2)(e1 + e2), then Y ∈ Γ. By the identity
mapping of a and Y , (Σ̃,Σ,W ) maps to (Σ̃′,Σ′,W ′). Hence (I-F4)∼ (I’-F4).

To show (I-BCr-Ar
1) ∼ (I’-BCr-Ar

1), let (Σ̃,Σ,W ) and (Σ̃′,Σ′,W ′) be of type
(I-BCr-Ar

1) and type (I’-BCr-Ar
1), respectively. Set Y = (π/2‖e1‖2)

∑s
i=1 ei for

1 ≤ s ≤ r, then Y ∈ Γ. By the identity mapping of a and Y , (Σ̃,Σ,W ) maps to
(Σ̃′,Σ′,W ′).

To show (I-Cr) ∼ (I’-Cr), let (Σ̃,Σ,W ) and (Σ̃′,Σ′,W ′) be of type (I’-Cr)
and type (I’-Cr), respectively. Set Y = (π/4‖e1‖2)

∑r
i=1 ei ∈ Γ, then (Σ̃,Σ,W )

maps to (Σ̃′,Σ′,W ′) by the identity mapping of a and Y .
To show (I-Br) ∼ (I’-Br), let (Σ̃,Σ,W ) and (Σ̃′,Σ′,W ′) be of types (I’-Br)

and (I-Br), respectively. Set Y = (π/2‖e1‖2)
∑s

i=1 ei ∈ Γ for 1 ≤ s ≤ r, then
(Σ̃,Σ,W ) maps to (Σ̃′,Σ′,W ′) by the identity mapping of a and Y .

Hence the assertion is proved. ¤

For α =
∑

λ∈Π nλλ ∈ W+, set h(α) =
∑

λ∈Π nλ then h(α) ∈ Z by Lemma
2.4. Put h = max{h(α) | α ∈ W+}.

Lemma 2.20. Let (Σ̃,Σ,W ) be a symmetric triad of a, then

{α̃} = {α ∈ W+ | h(α) = h}.

Proof. By the definition of W0 and Theorem 2.19, we have

{α̃} = W0 ⊃ {α ∈ W+ | h(α) = h} 6= ∅,

which implies the assertion. ¤

The following corollary immediately follows from Lemma 2.12 and Theorem
2.19.

Corollary 2.21. Let (Σ̃,Σ,W ) be a symmetric triad of a, then

P0 =
{

H ∈ a | 〈α̃, H〉 <
π

2
, 0 < 〈λ,H〉 (λ ∈ Π)

}
.
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Set Π = {α1, . . . , αr}, then there exist integers mi ∈ Z such that α̃ =
∑

miαi

by Lemma 2.4. We have mi ≥ 1 by Theorem 2.19. Hence for any i with 1 ≤ i ≤ r,
the set {α1, . . . , αi−1, αi+1, . . . , αr, α̃} is linearly independent. We can define Hi ∈
a by the following equations:

〈Hi, α̃〉 =
π

2
, 〈Hi, αj〉 = 0 (j 6= i).

Then

P0 =
{ r∑

i=1

tiHi

∣∣∣∣0 < ti,
r∑

i=1

ti < 1
}

.

The following corollary immediately follows from Corollary 2.21.

Corollary 2.22. A point H ∈ P0 is totally geodesic if and only if H = 0
or H = Hi with mi = 1.

Proof. Since π/2 = 〈Hi, α̃〉 = mi〈Hi, αi〉, we have 〈Hi, αi〉 = π/2mi.
Express H as H =

∑r
i=1 tiHi, then 0 ≤ ti ≤ 1,

∑r
i=1 ti ≤ 1. Hence

H ∈ Γ ⇔ 〈H, αi〉 ∈ π

2
Z ⇔ ti

mi
∈ Z ⇔ H = 0 or H = Hi with mi = 1. ¤

Corollary 2.23. Let (Σ̃,Σ,W ) be a symmetric triad of a with multiplici-
ties. Then H ∈ P0 is austere if and only if the following four conditions hold :

(1) 〈λ,H〉 = 0, π/2, π for λ ∈ Σ+ −W+.
(2) 〈α, H〉 = 0, ±π/2 for α ∈ W+ − Σ+.
(3) 〈α, H〉 = 0, π/4, π/2 for α ∈ Σ+ ∩W+.
(4) m(α) = n(α) for α ∈ Σ+ ∩W+ with 〈α, H〉 = π/4.

Let H ∈ P0 be an austere point which is not totally geodesic, then H can be
expressed as one of the following forms.

H =





Hi (mi = 2),
1
2Hi (mi = 1),

1
2 (Hi + Hj) (mi = mj = 1)

Proof. Let H be in P0 then 0 ≤ 〈λ,H〉 ≤ π for any λ ∈ Σ+ and −π/2 ≤
〈α, H〉 ≤ π/2 for any α ∈ W+. Hence the first part of the assertion follows from
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Theorem 2.18.
We shall prove the second part. Let H ∈ P0 be an austere point which is not

totally geodesic. Express H as H =
∑

tiHi, then for any αi ∈ Π, we have

〈αi,H〉 = ti〈αi,Hi〉 = ti
π

2mi
≤ π

2mi
≤ π

2
.

By the first part, 〈αi,H〉 = 0, π/4, π/2 for each αi ∈ Π. If there were to exist i

such that 〈αi,H〉 = π/2, then we would have mi = ti = 1 and H = Hi. Hence
H would be totally geodesic by Corollary 2.22, which would be a contradiction.
Thus 〈αi,H〉 = 0, π/4 for each αi ∈ Π. For i with 〈αi,H〉 = π/4, we have

ti =
mi

2
=

{
1
2 (mi = 1),

1 (mi = 2)

Hence we get the second part. ¤

For a subset ∆ ⊂ Π ∪ {α̃}, set

P∆
0 =





H ∈ P0

∣∣∣∣∣∣∣∣∣∣∣

〈λ,H〉 > 0 (λ ∈ ∆ ∩Π),

〈λ,H〉 = 0 (λ ∈ Π−∆),

〈α̃, H〉
{

< π
2 (if α̃ ∈ ∆),

= π
2 (if α̃ 6∈ ∆)





,

then

P0 =
⋃

∆⊂Π∪{α̃}
P∆

0 (disjoint union).

∆1 ⊂ ∆2 if and only if P∆1
0 ⊂ P∆2

0 for ∆1,∆2 ⊂ Π ∪ {α̃}.

Theorem 2.24. For any subset ∆ ⊂ Π∪{α̃}, there exists a unique minimal
point H ∈ P∆

0 .

The proof of Theorem 2.24 is divided into some steps.
For a subset ∆ ⊂ Π ∪ {α̃}, we define subsets Σ+

∆ ⊂ Σ+ and W+
∆ ⊂ W+ as

follows: When α̃ ∈ ∆, then set

Σ+
∆ = Σ+ ∩ (Π−∆)Z , W+

∆ = ∅.
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When α̃ 6∈ ∆, then set

Σ+
∆ = Σ+ ∩ (Π−∆)Z ∪

{
2α̃−

∑

λ∈Π−∆

nλλ ∈ Σ+ −W+ | nλ ≥ 0
}

,

W+
∆ =

{
α̃−

∑

λ∈Π−∆

mλλ ∈ W+ | mλ ≥ 0
}

∪
{
− α̃ +

∑

λ∈Π−∆

mλλ ∈ W+ − Σ+ | mλ ≥ 0
}

.

Lemma 2.25. Let H be in P∆
0 .

(1) Σ+
∆ = {λ ∈ Σ+ | 〈λ,H〉 ∈ πZ}. In particular, the right hand side of the above

equation does not depend on H ∈ P∆
0 , but only on ∆. The value 〈λ,H〉 does

not depend on H ∈ P∆
0 , but only on λ ∈ Σ+

∆.
(2) W+

∆ = {α ∈ W+ | 〈α, H〉 ∈ π/2 + πZ}. In particular, the right hand side of
the above equation does not depend on H ∈ P∆

0 , but only on ∆. The value
〈α, H〉 does not depend on H ∈ P∆

0 but only on α ∈ W+
∆ .

Proof.

(1) Since H ∈ P∆
0 ⊂ P0, we have

{λ ∈ Σ+ | 〈λ,H〉 ∈ πZ} = {λ ∈ Σ+ | 〈λ,H〉 = 0} ∪ {λ ∈ Σ+ | 〈λ,H〉 = π}
= (Σ+ ∩ (Π−∆)Z) ∪ {λ ∈ Σ+ −W+ | 〈λ,H〉 = π}.

When α̃ ∈ ∆, then 〈α̃, H〉 < π/2 for H ∈ P∆
0 . For λ ∈ Σ+−W+, there exist α, β ∈

W+ ∩Σ+ such that λ = ±α± β by Lemma 2.3. Then 〈λ,H〉 = ±〈α, H〉 ± 〈β, H〉,
which implies that

〈λ,H〉 ≤ |〈λ,H〉| ≤ |〈α, H〉|+ |〈β, H〉| ≤ 2〈α̃, H〉 < π.

Hence {λ ∈ Σ+ −W+ | 〈λ,H〉 = π} = ∅.
When α̃ 6∈ ∆ then, for any λ ∈ Σ+ − W+ with 〈λ,H〉 = π, there exist

α, β ∈ W+ ∩ Σ+ such that

λ = α + β, 〈α, H〉 = 〈β, H〉 =
π

2
.

By Lemma 2.20, λ is expressed as
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λ = α + β = 2α̃−
∑

µ∈Π−∆

nµµ (0 ≤ nµ ∈ Z).

Hence

{λ ∈ Σ+ −W+ | 〈λ,H〉 = π} =
{

2α̃−
∑

µ∈Π−∆

nµµ ∈ Σ+ −W+ | nµ ≥ 0
}

,

which implies the assertion.
(2) Since H ∈ P∆

0 ⊂ P0, we have

{
α ∈ W+ | 〈α, H〉 ∈ π

2
+ πZ

}

=
{

α ∈ W+ − Σ+ | 〈α, H〉 = −π

2

}
∪

{
α ∈ W+ | 〈α, H〉 =

π

2

}
.

When α̃ ∈ ∆, then 〈α̃, H〉 < π/2 for H ∈ P∆
0 . By Lemma 2.20, we have

{
α ∈ W+ | 〈α, H〉 =

π

2

}
= ∅.

For α ∈ W+ − Σ+, there exist λ, µ ∈ Σ ∩W such that α = λ + µ by Lemma 2.3.
We may assume that µ > 0 since one of λ and µ is positive. Then 〈α, H〉 ≥ 〈λ,H〉.
If λ > 0, then 〈α, H〉 ≥ 〈λ,H〉 ≥ 0. If −λ > 0, then

〈α, H〉 ≥ −〈−λ,H〉 ≥ −〈α̃, H〉 >
π

2
.

Hence

{
α ∈ W+ − Σ+ | 〈α, H〉 = −π

2

}
= ∅.

When α̃ 6∈ ∆, then by Lemma 2.20 we have

{
α ∈ W+ | 〈α, H〉 =

π

2

}
=

{
α̃−

∑

λ∈Π−∆

mλλ ∈ W+ | mλ ≥ 0
}

.

For α ∈ W+−Σ+ with 〈α, H〉 = −π/2, there exist λ, µ ∈ Σ∩W such that α = λ+µ

by Lemma 2.3. We may assume that µ > 0. Then −π/2 = 〈α, H〉 ≥ 〈λ,H〉. Since
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−λ > 0, we have

−π

2
= 〈α, H〉 ≥ −〈−λ,H〉 ≥ −〈α̃, H〉 = −π

2
.

Hence 〈α, H〉 = −〈α̃, H〉 = −π/2. By Lemma 2.20, we have

{
α ∈ W+ − Σ+ | 〈α, H〉 = −π

2

}
=

{
− α̃ +

∑

λ∈Π−∆

mλλ ∈ W+ − Σ+ | mλ ≥ 0
}

,

which implies the assertion. ¤

Corollary 2.26. Let H, H ′ ∈ P∆
0 . If 〈λ,H〉 = 〈λ,H ′〉 for any λ ∈ (Σ+ −

Σ+
∆) ∪ (W+ −W+

∆ ), then H = H ′.

Proof. By Lemma 2.25, 〈α, H〉 = 〈α, H ′〉 for any α ∈ Σ+
∆ ∪W+

∆ . Hence
〈λ,H〉 = 〈λ,H ′〉 for any λ ∈ Σ̃ by the assumption. Hence H = H ′ since span(Σ̃) =
a. ¤

For ∆ ⊂ Π ∪ {α̃}, define an affine subspace a∆ of a by

a∆ =

{
H ∈ a

∣∣∣∣∣
〈λ,H〉 = 0 (λ ∈ Π−∆),

〈α̃, H〉 = π
2 (if α̃ 6∈ ∆)

}
,

then

P∆
0 =

{
H ∈ a∆

∣∣∣∣∣
〈λ,H〉 > 0 (λ ∈ ∆ ∩Π),

〈α̃, H〉 < π
2 (if α̃ ∈ ∆)

}
.

Hence P∆
0 is an open subset of a∆. Since, for H ∈ P∆

0 ,

F (H) = −
∑

λ∈Σ+−Σ+
∆

m(λ) log | sin〈λ,H〉)| −
∑

α∈W+−W+
∆

n(α) log | cos(〈α, H〉)|,

the function F is differentiable on P∆
0 . Since mH is tangent to P∆

0 for H ∈ P∆
0

by Proposition 2.14, we can regard mH as a differentiable vector field on P∆
0 . The

mean curvature vector mH can be expressed as

mH = −
∑

λ∈Σ+−Σ+
∆

m(λ) cot(〈λ,H〉)λ +
∑

α∈W+−W+
∆

n(α) tan(〈α, H〉)α.
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Lemma 2.27.

(1) (grad F )(H) = mH for any H ∈ P∆
0 .

(2) For H, H1 ∈ P∆
0 with H 6= H1, we have

d2

dt2
F

(
H + t

−−−→
HH1

)
|t=0

> 0.

Proof.

(1) Let H, H1 ∈ P∆
0 . A simple calculation implies that

d

dt
F

(
H + t

−−−→
HH1

)
|t=0

=
〈
mH ,

−−−→
HH1

〉
.

Hence (grad F )(H) = mH .
(2) A simple calculation implies that

d2

dt2
F

(
H + t

−−−→
HH1

)
|t=0

=
∑

λ∈Σ+−Σ+
∆

m(λ)〈λ,
−−−→
HH1〉2

sin2(〈λ,H〉) +
∑

α∈W+−W+
∆

n(α)〈α,
−−−→
HH1〉2

cos2(〈α, H〉) .

Since H 6= H ′ there exists λ ∈ (Σ+−Σ+
∆)∪(W+−W+

∆ ) such that 〈λ,
−−−→
HH1〉 6= 0

by Corollary 2.26. Hence (d2/dt2)F (H + t
−−−→
HH1)|t=0 > 0. ¤

Lemma 2.28. The boundary ∂P∆
0 of P∆

0 is given as follows: When α̃ ∈ ∆,
then

∂P∆
0 =

⋃

µ∈Π∩∆





H ∈ a

∣∣∣∣∣∣∣∣

〈λ,H〉 = 0 (λ ∈ Π−∆),

〈λ,H〉 ≥ 0 (λ ∈ Π ∩∆),

〈µ,H〉 = 0, 〈α̃, H〉 ≤ π
2





∪





H ∈ a

∣∣∣∣∣∣∣∣

〈λ,H〉 = 0 (λ ∈ Π−∆),

〈λ,H〉 ≥ 0 (λ ∈ Π ∩∆),

〈α̃, H〉 = π
2





.

When α̃ 6∈ ∆, then
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∂P∆
0 =

⋃

µ∈Π∩∆





H ∈ a

∣∣∣∣∣∣∣∣

〈λ,H〉 ≥ 0 (λ ∈ Π ∩∆),

〈λ,H〉 = 0 (λ ∈ Π−∆),

〈µ,H〉 = 0, 〈α̃, H〉 = π
2





.

Proof of Theorem 2.24. Take a sequence {Hn} ⊂ P∆
0 with

limn→∞Hn = H∞ ∈ ∂P∆
0 . It is sufficient to prove that limn→∞ F (Hn) = ∞

by Lemma 2.27.
When α̃ ∈ ∆, there exists λ ∈ Π∩∆ such that 〈λ,Hn〉 → +0 or 〈α̃, Hn〉 → π/2

by Lemma 2.28. Since Σ+
∆ = Σ+ ∩ (Π−∆)Z , we have

Σ+
∆ ∩ (Π ∩∆) = Π ∩∆ ∩ (Π−∆)Z = ∅,

which implies that Π∩∆ ⊂ Σ+−Σ+
∆. Hence when 〈λ,Hn〉 → +0, then F (Hn) →

∞. Since W+
∆ = ∅, α̃ is in W+−W+

∆ . Hence when 〈α̃, Hn〉 → π/2, then F (Hn) →
∞.

When α̃ 6∈ ∆, there exists λ ∈ Π∩∆ such that 〈λ,Hn〉 → +0 by Lemma 2.28.
In this case we have λ 6∈ {2α̃ −∑

µ∈Π−∆ nµµ ∈ Σ+ −W+ | nµ ≥ 0}. In fact if it
were not, then 〈λ,Hn〉 = π, which would be a contradiction. Hence λ 6∈ Σ+

∆ and
λ ∈ Σ+ − Σ+

∆. We get F (Hn) →∞.
Hence the assertion is proved. ¤

3. Totally geodesic points and austere points.

In this section we shall classify the totally geodesic points and the austere
points for each (representative of) symmetric triad with multiplicities using Corol-
laries 2.22 and 2.23.

3.1. Type (I-Br).
Since α̃ = e1 =

∑r
i=1 αi, a point H ∈ P0 is totally geodesic if and only if H

is a vertex of P0. By Definition 2.13, we have

0 < m(±ei) = const, 0 < m(±ei ± ej) = const (i 6= j), 0 < n(±ei) = const.

When m(±ei) = n(±ei), a point H ∈ P0 is austere which is not totally geodesic if
and only if H = (1/2)Hr. When m(±ei) 6= n(±ei), if H ∈ P0 is austere then it is
totally geodesic.

3.2. Type (I-Cr).
Since α̃ = e1 + e2 = α1 + 2

∑r−1
i=2 αi + αr, a point H ∈ P0 is totally geodesic

if and only if H = 0,H1,Hr．When r ≥ 3, then
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0 < m(±ei ± ej) = n(±ei ± ej) = const (i 6= j), 0 < m(2ei) = const.

When r = 2, then

0 < m(±e1 ± e2) = const, 0 < m(±2ei) = const, 0 < n(±e1 ± e2) = const.

A point H ∈ P0 is austere which is not totally geodesic if and only if

H = Hi (2 ≤ i ≤ r − 1),
1
2
H1

3.3. Type (I-BCr-Ar
1).

Since α̃ =
∑r

i=1 αi, a point H ∈ P0 is totally geodesic if and only if H is a
vertex of P0. By Definition 2.13, we have

0 < m(±ei) = const, 0 < m(±ei ± ej) = const (i 6= j),

0 < m(±2ei) = const, 0 < n(±ei) = const.

When m(±ei) = n(±ei), a point H ∈ P0 is austere which is not totally geodesic
if and only if H = (1/2)Hr. When m(±ei) 6= n(±ei), any austere point is totally
geodesic.

3.4. Type (I-BCr-Br).
Since α̃ = e1 + e2 = α1 + 2

∑r
i=2 αi, a point H ∈ P0 is totally geodesic if and

only if H = 0,H1．When r ≥ 3,

0 < m(±ei) = n(±ei) = const, 0 < m(±2ei) = const,

0 < m(±ei ± ej) = n(±ei ± ej) = const (i 6= j).

When r = 2, then 0 < m(ei) = n(ei) = const, 0 < m(2ei) = const. When r ≥ 3, a
point H ∈ P0 is austere which is not totally geodesic if and only if H = (1/2)H1,
Hi (2 ≤ i ≤ r). When r = 2, the condition H ∈ P0 to be austere which is not
totally geodesic is given as follows:

(1) If m(±e1 ± e2) = n(±e1 ± e2), then H = (1/2)H1, H2.
(2) If m(±e1 ± e2) 6= n(±e1 ± e2), then H = H2.

3.5. Type (I-F4).
Since
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Π =
{

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 =
1
2
(e1 − e2 − e3 − e4)

}
,

α̃ = e1 = α1 + 2α2 + 3α3 + 2α4,

a point H ∈ P0 is totally geodesic if and only if H = 0,H1．By Definition 2.13,
0 < m(α) = n(α) =constant for any α ∈ W and 0 < m(λ) =constant for any
λ ∈ Σ−W . A point H ∈ P0 is austere which is not totally geodesic if and only if
H = H4. The vertexes H2 and H3 are minimal which are not austere．

3.6. Type (II-BCr) (r ≥ 1).
Since α̃ = 2e1 = 2

∑r
i=1 αi, a point H ∈ P0 is totally geodesic if and only if

H = 0. By Definition 2.13, we have

0 < n(±ei) = m(±ei) = const, 0 < n(±2ei) = const,

0 < n(±ei ± ej) = m(±ei ± ej) = const (i 6= j).

Hence H ∈ P0 is austere which is not totally geodesic if and only if H = Hi

(1 ≤ i ≤ r).

3.7. Type (III-Ar).
Since α̃ = e1 − er+1 =

∑r
i=1 αi, a point H ∈ P0 is totally geodesic if and

only if H is a vertex of P0. By Definition 2.13, 0 < m(λ) = n(λ) =constant for
any λ ∈ Σ̃. A point H ∈ P0 is austere which is not totally geodesic if and only if
H = (1/2)Hi, (1/2)(Hi + Hj) (i < j).

3.8. Type (III-Br).
Since α̃ = e1 + e2 = α1 + 2

∑r
i=2 αi, a point H ∈ P0 is totally geodesic if and

only if H = 0,H1．When r ≥ 3, then

0 < m(±ei) = n(±ei) = const,

0 < m(±ei ± ej) = n(±ei ± ej) = const (i 6= j).

When r = 2, then

0 < m(ei) = n(ei) = const, 0 < m(±e1 ± e2) = const,

0 < n(±e1 ± e2) = const.

A point H ∈ P0 is austere which is not totally geodesic if and only if H = (1/2)H1,
Hi (2 ≤ i ≤ r).
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3.9. Type (III-Cr).
Since α̃ = 2e1 = 2

∑r−1
i=1 αi + αr, a point H ∈ P0 is totally geodesic if and

only if H = 0,Hr．By Definition 2.13,

0 < m(±ei ± ej) = n(±ei ± ej) = const (i 6= j),

0 < m(±2ei) = const, 0 < n(±2ei) = const.

The condition H ∈ P0 to be austere which is not totally geodesic is given as
follows:

(1) If m(±2ei) 6= n(±2ei), then H = Hi (1 ≤ i ≤ r − 1),
(2) If m(±2ei) = n(±2ei), then H = Hi (1 ≤ i ≤ r − 1), (1/2)Hr.

3.10. Type (III-BCr).
Since α̃ = 2e1 = 2

∑r
i=1 αi, a point H ∈ P0 is totally geodesic if and only if

H = 0．When r = 2, then

0 < m(±ei) = n(±ei) = const, 0 < m(±e1 ± e2) = const,

0 < n(±e1 ± e2) = const, 0 < m(±2ei) = const, 0 < n(±2ei) = const.

When r ≥ 3, then

0 < m(±ei) = n(±ei) = const, 0 < m(±ei ± ej) = n(±ei ± ej) = const,

0 < m(±2ei) = const, 0 < n(±2ei) = const.

Hence H ∈ P0 is austere which is not totally geodesic if and only if H = Hi (1 ≤
i ≤ r).

3.11. Type (III-Dr).
Since α̃ = e1 + e2 = α1 + 2

∑r−2
i=2 αi + αr−1 + αr, a point H ∈ P0 is totally

geodesic if and only if H = 0,H1,Hr−1,Hr. By Definition 2.13, 0 < m(λ) =
n(λ) =constant for any λ ∈ Σ̃. A point H ∈ P0 is austere which is not totally
geodesic if and only if

H = Hi (2 ≤ i ≤ r − 2),
1
2
H1,

1
2
Hr−1,

1
2
Hr,

1
2
(H1 + Hr−1),

1
2
(H1 + Hr),

1
2
(Hr−1 + Hr).
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3.12. Type (III-E6).
Since α̃ = α1 +2α2 +2α3 +3α4 +2α5 +α6, a point H ∈ P0 is totally geodesic

if and only if H = 0,H1,H6. By Definition 2.13, 0 < m(λ) = n(λ) =constant for
any λ ∈ Σ̃. A point H ∈ P0 is austere which is not totally geodesic if and only if

H = H2, H3, H5,
1
2
H1,

1
2
H6,

1
2
(H1 + H6).

The vertex H4 is minimal which is not austere.

3.13. Type (III-E7).
Since α̃ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7, a point H ∈ P0 is totally

geodesic if and only if H = 0,H7. By Definition 2.13, 0 < m(λ) = n(λ) =constant
for any λ ∈ Σ̃. A point H ∈ P0 is austere which is not totally geodesic if and only
if H = H1,H2,H6, (1/2)H7. The vertexes H3,H4 and H5 are minimal which are
not austere.

3.14. Type (III-E8).
Since α̃ = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8, a point H ∈

P0 is totally geodesic if and only if H = 0. By Definition 2.13, 0 < m(λ) =
n(λ) =constant for any λ ∈ Σ̃. A point H ∈ P0 is austere which is not totally
geodesic if and only if H = H1,H8. The vertexes H2,H3,H4,H5,H6 and H7 are
minimal which are not austere.

3.15. Type (III-F4).
Since

Π =
{

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 =
1
2
(e1 − e2 − e3 − e4)

}
,

α̃ = e1 + e2 = 2α1 + 3α2 + 4α3 + 2α4,

a point H ∈ P0 is totally geodesic if and only if H = 0. By Definition 2.13,

0 < m(short) = n(short) = const, 0 < m(long) = n(long) = const.

A point H ∈ P0 is austere which is not totally geodesic if and only if H = H1,H4.
The vertexes H2 and H3 are minimal which are not austere.

3.16. Type (III-G2).
Since

Π = {α1 = e1 − e2, α2 = −2e1 + e2 + e3}, α̃ = −e1 − e2 + 2e3 = 3α1 + 2α2,
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a point H ∈ P0 is totally geodesic if and only if H = 0. By Definition 2.13,

0 < m(short) = n(short) = const, 0 < m(long) = n(long) = const.

A point H ∈ P0 is austere which is not totally geodesic if and only if H = H2.
The vertex H1 is minimal which is not austere.

4. The orbit spaces of Hermann actions.

4.1. General case.
Let (G,K1) and (G,K2) be two compact symmetric pairs: There exist two

involutive automorphisms θ1 and θ2 on the compact connected Lie group G such
that the closed subgroup Ki of G lie between Gθi

and the identity component
(Gθi

)0 of Gi. Here we denote by Gθi
(i = 1, 2) the closed subgroup of G consisting

of all fixed points of θi in G. In this case the triple (G,K1,K2) is called a compact
symmetric triad. Take an Aut(G)-invariant Riemannian metric 〈 , 〉 on G. Then
the coset manifold Mi = G/Ki (i = 1, 2) is a compact Riemannian symmetric
space with respect to the induced G-invariant Riemannian metric, also denoted
by 〈 , 〉, from 〈 , 〉. The isometric action of K2 on M1 is called a Hermann action.
We denote by g，k1 and k2 the Lie algebras of G, K1 and K2, respectively. The
involutive automorphisms θ1 and θ2 of G induce involutive automorphisms of g,
also denoted by θ1 and θ2, respectively. We have two canonical decompositions of
g:

g = k1 ⊕m1 = k2 ⊕m2,

where we define a subspace mi of g by

mi = {X ∈ g | θi(X) = −X} (i = 1, 2).

We denote by πi the natural projection from G onto Mi. In order to consider
K2-orbit space {K2π1(g) ⊂ M1 | g ∈ G}, we define a equivalent relation ∼ on G

as follows:

g1 ∼ g2 ⇔ there exist k1 ∈ K1, k2 ∈ K2 such that g2 = k2g1k
−1
1 .

Since

g1 ∼ g2 ⇔ K2π1(g2) = K2π1(g1),

we can regard K2\G/K1 as K2-orbit space. The following mapping is a bijection:
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K2\G/K1
∼= K1\G/K2; [g] ↔ [g−1].

Define a closed subgroup G12 in G by

G12 = {g ∈ G | θ1(g) = θ2(g)}.

Consider an involutive automorphism θ = θ1 = θ2 on G12. Define a closed sub-
group K12 of the identity component (G12)0 of G12 by

K12 = {g ∈ (G12)0 | θ(g) = g}.

Then ((G12)0,K12) is a compact symmetric pair. The canonical decomposition of
the Lie algebra g12 of G12 is given by

g12 = (k1 ∩ k2)⊕ (m1 ∩m2).

Take a maximal abelian subspace a of m1 ∩ m2. Then exp a is closed in (G12)0,
hence a toral subgroup. The isometric action of K2 on M1 is hyperpolar, whose
section is π1(exp a). The cohomogeneity is equal to dim a ([4])．In oder to study
K2-orbit space, we define a group J̃ by

J̃ =
{
([s], Y ) ∈ NK2(a)/ZK1∩K2(a)n a | exp(−Y )s ∈ K1

}
.

The centralizer ZK2(a) is a normal subgroup of the normalizer NK2(a). We denote
by Wi(a) the quotient group NKi

(a)/ZKi
(a) for i = 1, 2. Denote by ϕ2 the natural

homomorphism from NK2(a)/ZK1∩K2(a) onto W2(a). The group J̃ naturally acts
on a by the following:

([s], Y )Z = Ad(ϕ2(s))Z + Y.

Based on the above, we set [s] = Ad(ϕ2(s)).

Proposition 4.1 ([16]). K2\G/K1
∼= a/J̃ .

Lemma 4.2. The Lie algebras of ZKi
(a) and NKi

(a) are given as follows:

Lie(ZKi
(a)) = Lie(NKi

(a)) = {X ∈ ki | [X, a] = {0}}.

In particular, the group Wi(a) is finite.
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Proof. Lie(NKi
(A)) is given by

Lie(NKi(A)) = {X ∈ ki | Ad(exp tX)Y ∈ a (t ∈ R, Y ∈ a)}
= {X ∈ ki | [X, a] ⊂ a}.

Let X ∈ Lie(NKi
(A)), then [H, X] ∈ a for each H ∈ a, so [H, [H, X]] = 0. Hence

‖[H, X]‖2 = −〈H, [H, [H, X]]〉 = 0,

which implies that [H, X] = 0. ¤

We denote by Σ the restricted root system of (g12, k1 ∩ k2) with respect to
a. Since the Weyl group NK1∩K2(a)/ZK1∩K2(a) of (G12,K1 ∩K2) is generated by
{sλ | λ ∈ Σ}, we denote it by W (Σ): W (Σ) = NK1∩K2(a)/ZK1∩K2(a). We can
regard W (Σ) as a subgroup of W1(a)∩W2(a). For λ ∈ Σ, we define subspaces mλ

in m1 ∩m2 and kλ in k1 ∩ k2 as follows:

mλ =
{
X ∈ m1 ∩m2 | [H, [H, X]] = −〈λ,H〉2X (H ∈ a)

}
,

kλ =
{
X ∈ k1 ∩ k2 | [H, [H, X]] = −〈λ,H〉2X (H ∈ a)

}
.

Denote by Π a fundamental system of Σ, and by Σ+ the set of positive roots with
respect to Π. Take a maximal abelian subalgebra t in g12 containing a. Denote by
R̃ the root system of g12 with respect to t. Let t → a;H 7→ H̄ be the orthogonal
projection and set R̃0 = {α ∈ R̃ | ᾱ = 0}. Define a subalgebra k0 in k1 ∩ k2 by

k0 = {X ∈ k1 ∩ k2 | [a, X] = {0}}.

Take a compatible ordering of t, then we have the following.

Lemma 4.3 ([18, p. 89, Lemma 1]).

(1) We have orthogonal direct sum decompositions:

k1 ∩ k2 = k0 ⊕
∑

λ∈Σ+

kλ, m1 ∩m2 = a⊕
∑

λ∈Σ+

mλ.

(2) For each α ∈ R̃+ − R̃0 there exist Sα ∈ k1 ∩ k2 and Tα ∈ m1 ∩m2 such that

{
Sα | α ∈ R̃+, ᾱ = λ

}
,

{
Tα | α ∈ R̃+, ᾱ = λ

}
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are respectively orthonormal bases of kλ and mλ and for H ∈ a

[H, Sα] = 〈α, H〉Tα, [H, Tα] = −〈α, H〉Sα, [Sα, Tα] = ᾱ,

Ad(expH)Sα = cos〈α, H〉Sα + sin〈α, H〉Tα,

Ad(expH)Tα = − sin〈α, H〉Sα + cos〈α, H〉Tα.

Lemma 4.4. (sλ, (2nπ/‖λ‖2)λ) ∈ J̃ for λ ∈ Σ and n ∈ Z.

Proof. By (2) of Lemma 4.3, sλ = Ad(exp(π/‖λ‖)Sα) where
exp(π/‖λ‖)Sα ∈ K1∩K2. Hence it is sufficient to prove that exp(2π/‖λ‖2)λ ∈ K1.
Select Y ∈ a such that 〈Y, λ〉 = π and set a = exp Y ∈ A. Since

a−1 exp
(
− π

‖λ‖Sα

)
a = exp

(
− π

‖λ‖Ad(exp(−Y ))Sα

)

= exp
(
− π

‖λ‖ (cos(〈α, Y 〉)Sα − sin(〈α, Y 〉)Tα)
)

= exp
(

π

‖λ‖Sα

)
∈ K1,

we get

K1 3
(

exp
π

‖λ‖Sα

)
a−1 exp

(
− π

‖λ‖Sα

)
a = exp(−sλY ) exp Y

= exp(Y − sλY )

= exp
(

2π

‖λ‖2 λ

)
. ¤

Lemma 4.5. For λ ∈ Σ, set m(λ) = dimmλ, then we have:

(1) m(λ) = m(−λ).
(2) m(sµλ) = m(λ) for µ ∈ Σ.

Proof.

(1) Since mλ = m−λ, we have m(λ) = m(−λ).
(2) Take α ∈ R̃ such that ᾱ = µ, then sµ = Ad(exp(π/‖µ‖)Sα). Hence

we can regard sµ as an inner automorphism of g. Since sµmλ = msµλ, we have
m(sµλ) = m(λ). ¤

Let g be in G. Since
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g−1
∗ Tπ1(g)(K2π1(g)) =

{
d

dt
π1(exp tAd(g−1)X)|t=0 | X ∈ k2

}

= (Ad(g−1)k2)m1 ,

we have

g−1
∗ T⊥π1(g)(K2π1(g)) = {X ∈ m1 | Ad(g)X ∈ m2},

which is a Lie triple system in m1. The isotropy subgroup at π1(g) of K2-action
is given by

(K2)π1(g) = {k ∈ K2 | g−1kg ∈ K1}.

Lemma 4.6. The slice representation of K2π1(g) at π1(g) is equivalent to the
adjoint representation of (K1)π2(g−1) to the Lie triple system {X ∈ m1 | Ad(g)X ∈
m2}.

Proof. We can identify the normal space T⊥π1(g)(K2π1(g)) with {X ∈ m1 |
Ad(g)X ∈ m2} through g∗. Then, for k ∈ (K1)π2(g−1) and X ∈ m1 with Ad(g)X ∈
m2,

k ·X = g−1
∗ k∗g∗X

=
d

dt
g−1kgπ1(exp tX)|t=0

=
d

dt
π1(exp tAd(g−1kg)X)|t=0

= Ad(g−1kg)X,

where

g−1(K2)π1(g)g = {k ∈ K1 | gkg−1 ∈ K2} = (K1)π2(g−1).

Hence we get the assertion. ¤

Denote by τx the inner automorphism of G defined by x ∈ G. Let ρ be in
Aut(G). The isometry on G defined by G → G; g 7→ ρ(g)x−1 induces an isometry
between two compact symmetric spaces G/K1 and G/τxρ(K1):

G/K1 → G/τxρ(K1); gK1 7→ ρ(g)x−1τxρ(K1).
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Denote by πx : G → G/τxρ(K1) the natural projection, then K2-orbit K2π1(g)
maps to ρ(K2)-orbit ρ(K2)πx(ρ(g)x−1) by the isometry defined above. Hence we
can identify K2\G/K1 with ρ(K2)\G/τxρ(K1). If Ki = Gθi

, then

ρ(K2) = Gρθ2ρ−1 , τxρ(K1) = Gτxρθ1ρ−1τ−1
x

.

Based on the above, Matsuki introduced the following equivalent relation.

Definition 4.7 ([17]). Let (θ1, θ2) and (θ′1, θ
′
2) be two pairs of two in-

volutive automorphisms of G. Then (θ1, θ2) ∼ (θ′1, θ
′
2) means that there exist

ρ ∈ Aut(G) and x ∈ G such that θ′1 = τxρθ1ρ
−1τ−1

x , θ′2 = ρθ2ρ
−1.

Since π1(exp a) is a section of K2-action on M1, in order to consider the orbit
K2π1(g), we may assume g = exp H for some H ∈ a. Then, since

g−1
∗ T⊥π1(g)(K2π1(g)) = {X ∈ m1 | Ad(expH)X ∈ m2},

a is a maximal abelian subspace of g−1
∗ T⊥π1(g)(K2π1(g)). Moreover

Ad((K1)π2(g−1))a = {X ∈ m1 | Ad(g)X ∈ m2}. (4.5)

Definition 4.8. Let M be a submanifold of a Riemannian manifold M̃ . We
denote the shape operator of M by A. Then M is called an austere submanifold
if for each normal vector ξ ∈ T⊥x M , the set of eigenvalues with their multiplicities
of Aξ is invariant under the multiplication by −1. It is obvious that an austere
submanifold is a minimal submanifold.

The notion of austere submanifold was first given by Harvey-Lawson [5]. By
(4.5), we have the following.

Lemma 4.9. The orbit K2π1(g) ⊂ M1 is austere if and only if the set of
eigenvalues of the shape operator Ag∗ξ with multiplicities is invariant under the
multiplication by −1 for each ξ ∈ a.

Since (k1 + k2)⊥ = m1 ∩m2, we have

g = (k1 + k2)⊕ (m1 ∩m2). (4.6)

For α ∈ a, we define a subspace g(a, α) in the complexification gC of g by

g(a, α) =
{
X ∈ gC | [H, X] =

√−1〈α, H〉X (H ∈ a)
}
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and set

Σ̃ = {α ∈ a− {0} | g(a, α) 6= {0}},

then

gC = g(a, 0)⊕
∑

α∈Σ̃

g(a, α). (4.7)

Denote by ¯ the complex conjugation of gC with respect to g. Since g(a, α) =
g(a,−α), if α ∈ Σ̃ then −α ∈ Σ̃.

Lemma 4.10 ([16]).

(1) [g(a, α), g(a, β)] ⊂ g(a, α + β).
(2) θig(a, α) = g(a,−α) for i = 1, 2.
(3) g(a, α) is invariant under θ1θ2 and θ2θ1.

The absolute value of the eigenvalues of θ1θ2 on gC is equal to 1. For ε ∈ U(1),
define a subspace g(a, α, ε) of g(a, α) by

g(a, α, ε) = {X ∈ g(a, α) | θ1θ2X = εX},

then, by (3) of Lemma 4.10, we have

g(a, α) =
∑

ε∈U(1)

g(a, α, ε).

Lemma 4.11 ([16]).

(1) θ1g(a, α, λ) = g(a,−α, λ−1).
(2) g(a, α, λ) = g(a,−α, λ−1).
(3) [g(a, α, λ), g(a, β, µ)] ⊂ g(a, α + β, λµ).

Lemma 4.12. Σ̃ is a root system of a ∩ z⊥, where z is the center of g.

Proof. It is known that Σ̃ satisfies (2) and (3) of Definition 2.1 by [16,
p. 60, Proposition 1]. We shall prove Σ̃ satisfies (1) of Definition 2.1. If H ∈ a

satisfies the condition that 〈α, H〉 = 0 for any α ∈ Σ̃. Then H is in z by (4.7).
Since the converse is true, for H ∈ a, 〈α, H〉 = 0 for any α ∈ Σ̃ if and only if
H ∈ z. Hence span(Σ̃) = a ∩ z⊥. ¤
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We will close this subsection by explaining the covariant derivatives on M1.
For X ∈ g we define a Killing vector field X+ on M1 by

(X+)q =
d

dt
exp tX · q|t=0 ∈ Tq(M1).

By a formula of Koszul ([6, p. 48, (2)]), we have the following.

Lemma 4.13. Denote by ∇̃ the Levi-Civita connection on M1.

(1) For g ∈ G and X, Y ∈ g,

g∗∇̃X+Y + = ∇̃(Ad(g)X)+(Ad(g)Y )+.

(2) For X, Y ∈ g,

(∇̃X+Y +)o =

{−[X, Y ]m1 (X ∈ m1),

0 (X ∈ k1).

(3) For p = π1(g) ∈ M1,

(∇̃X+Y +)p = −g∗
[
(Ad(g−1)X)m1 ,Ad(g−1)Y

]
m1

.

4.2. When G is semisimple and θ1θ2 = θ2θ1:
Since z = {0}, Σ̃ is a root system of a by Lemma 4.12. Since

k1 + k2 = (k1 ∩ k2)⊕ (k1 ∩m2)⊕ (m1 ∩ k2),

we have, by (4.6),

g = (k1 ∩ k2)⊕ (k1 ∩m2)⊕ (m1 ∩ k2)⊕ (m1 ∩m2).

Since a ⊂ m1 ∩m2, we have

[a, k1 ∩m2] ⊂ m1 ∩ k2, [a,m1 ∩ k2] ⊂ k1 ∩m2.

Since

∑

α∈Σ̃

g(a, α, 1) =
( ∑

λ∈Σ

kλ ⊕
∑

λ∈Σ

mλ

)C

,
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we get

Σ = {α ∈ Σ̃ | g(a, α, 1) 6= {0}}.

For λ ∈ Σ,

g(a, λ, 1)⊕ g(a,−λ, 1) = (kλ ⊕mλ)C .

Define subspaces of k1 ∩m2 and m1 ∩ k2 respectively by

V (k1 ∩m2) = {X ∈ k1 ∩m2 | [a, X] = 0},
V (m1 ∩ k2) = {X ∈ m1 ∩ k2 | [a, X] = 0}.

Since g(a, 0) is θi-invariant,

g(a, 0) = (a⊕ k0 ⊕ V (k1 ∩m2)⊕ V (m1 ∩ k2))C .

Define subspaces of k1 ∩m2 and m1 ∩ k2 respectively by

V ⊥(k1 ∩m2) = {X ∈ k1 ∩m2 | X ⊥ V (k1 ∩m2)},
V ⊥(m1 ∩ k2) = {X ∈ m1 ∩ k2 | X ⊥ V (m1 ∩ k2)},

then we have the following orthogonal decompositions:

k1 ∩m2 = V (k1 ∩m2)⊕ V ⊥(k1 ∩m2), m1 ∩ k2 = V (m1 ∩ k2)⊕ V ⊥(m1 ∩ k2).

Lemma 4.14.

[
a, V ⊥(k1 ∩m2)

] ⊂ V ⊥(k2 ∩m1),
[
a, V ⊥(k2 ∩m1)

] ⊂ V ⊥(k1 ∩m2).

Proof. Since

[
a, V ⊥(k1 ∩m2)

] ⊂ [a, k1 ∩m2] ⊂ k2 ∩m1

and

〈
V (k2 ∩m1), [a, V ⊥(k1 ∩m2)]

〉
=

〈
[V (k2 ∩m1), a], V ⊥(k1 ∩m2)

〉
= {0},
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we have [a, V ⊥(k1 ∩ m2)] ⊂ V ⊥(k2 ∩ m1). Similarly we get [a, V ⊥(k2 ∩ m1)] ⊂
V ⊥(k1 ∩m2). ¤

Define a subspace V of g by

V = g ∩
∑

α∈Σ̃

g(a, α,−1) = V ⊥(k1 ∩m2)⊕ V ⊥(k2 ∩m1),

then V is a representation space of the torus exp a by Lemma 4.14. For α ∈ a

define a subspace V (α) of V C by

V (α) =
{
X ∈ V C | (adH)X =

√−1〈α, H〉X (H ∈ a)
}
,

then there exists a finite subset W ⊂ a− {0} such that

V C =
∑

α∈Σ̃

g(a, α,−1) =
∑

α∈W

V (α),

since any complex irreducible representation of a torus is one dimensional. Denote
by X the complex conjugation of X ∈ V C with respect to V , then V (α) = V (−α).
Hence, if α ∈ W then −α ∈ W . Since

V (α)⊕ V (−α) =
{
X ∈ V C | (adH)2X = −〈α, H〉2X (H ∈ a)

}
,

we have

(V (α)⊕ V (−α)) ∩ V = {X ∈ V | (adH)2X = −〈α, H〉2X (H ∈ a)}.

Define subspaces V ⊥
α (k1 ∩m2) and V ⊥

α (k2 ∩m1) by

V ⊥
α (k1 ∩m2) = (V (α)⊕ V (−α)) ∩ V ⊥(k1 ∩m2),

V ⊥
α (k2 ∩m1) = (V (α)⊕ V (−α)) ∩ V ⊥(k2 ∩m1),

then

V ⊥
α (k1 ∩m2) = V ⊥

−α(k1 ∩m2), V ⊥
α (k2 ∩m1) = V ⊥

−α(k2 ∩m1).

Moreover
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W =
{
α ∈ Σ̃ | g(a, α,−1) 6= {0}}, Σ̃ = Σ ∪W. (4.8)

For α ∈ W , we have

g(a, α,−1)⊕ g(a,−α,−1) =
(
V ⊥

α (k1 ∩m2)⊕ V ⊥
α (k2 ∩m1)

)C
.

Set n(α) = dimC g(a, α,−1) for α ∈ W .

Lemma 4.15. n(α) = n(−α) and n(sα) = n(α) for α ∈ W, s ∈ W (Σ)．

Proof. By Lemma 4.11, n(α) = n(−α). Since there exists k ∈ K1 ∩ K2

such that s = Ad(k) on a, we can regard s as an inner automorphism of gC . Since
s maps g(a, α,−1) onto g(a, sα,−1), we have n(sα) = n(α)． ¤

Since Σ̃ is a root system of a by Lemma 4.12, we can take a fundamental
system Π̃ of Σ̃. We denote by Σ̃+ the set of positive roots in Σ̃ with respect to Π̃.
Set Σ+ = Σ ∩ Σ̃+ and W+ = W ∩ Σ̃+. Denote by Π the set of simple roots of Σ.
Then we have

V ⊥(k1 ∩m2) =
∑

α∈W+

V ⊥
α (k1 ∩m2), V ⊥(k2 ∩m1) =

∑

α∈W+

V ⊥
α (k2 ∩m1).

Lemma 4.16.

(1) For any α ∈ W+,

[
a, V ⊥

α (k1 ∩m2)
]

= V ⊥
α (m1 ∩ k2),

[
a, V ⊥

α (m1 ∩ k2)
]

= V ⊥
α (k1 ∩m2).

(2) There exist orthonormal bases {Xα,i}1≤i≤n(α) and {Yα,i}1≤i≤n(α) of V ⊥
α (k1 ∩

m2) and V ⊥
α (m1 ∩ k2) respectively such that, for any H ∈ a,

[H, Xα,i] = 〈α, H〉Yα,i, [H, Yα,i] = −〈α, H〉Xα,i, [Xα,i, Yα,i] = α,

Ad(expH)Xα,i = cos(〈α, H〉)Xα,i + sin(〈α, H〉)Yα,i,

Ad(expH)Yα,i = − sin(〈α, H〉)Xα,i + cos(〈α, H〉)Yα,i.

(3) For H ∈ a set g = exp H, then

(Ad(g−1)k2)m1 =
∑

λ∈Σ+
〈λ,H〉6∈πZ

mλ ⊕ V (k2 ∩m1)⊕
∑

β∈W+
〈β,H〉6∈π/2+πZ

V ⊥
α (k2 ∩m1).
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(4) Put g = exp H for H ∈ a. For β ∈ Σ with 〈β, H〉 6∈ πZ,

g∗Tβ = − 1
sin(〈β, H〉)

(
S+

β

)
π1(g)

.

For α ∈ W with 〈α, H〉 6∈ π/2 + πZ,

g∗Yα,i =
1

cos(〈α, H〉) (Yα,i)+π1(g).

Y +
π1(g) = g∗Y for Y ∈ V (k2 ∩m1).

Proof.

(1) By Lemma 4.14,

[
a, V ⊥

α (k1 ∩m2)
] ⊂ [a, V ⊥(k1 ∩m2)] ⊂ V ⊥(m1 ∩ k2).

For any H, H ′ ∈ a and X ∈ V ⊥
α (k1 ∩m2),

(adH ′)2[H, X] = [H, (adH ′)2X] = −〈α, H ′〉2[H, X].

Hence [a, V ⊥
α (k1 ∩m2)] ⊂ V ⊥

α (m1 ∩ k2). Conversely, for any X ∈ V ⊥
α (m1 ∩ k2),

[
α,

[
− α

‖α‖4 , X

]]
= X.

Since [−α/‖α‖4, X] ∈ V ⊥
α (k1 ∩m2), we have

[
a, V ⊥

α (k1 ∩m2)
]

= V ⊥
α (m1 ∩ k2).

Similarly we have [a, V ⊥
α (m1 ∩ k2)] = V ⊥

α (k1 ∩m2).
(2) By polarization,

V ⊥
α (∗) =

{
X ∈ V ⊥(∗) | [H1, [H2, X]] = −〈α, H1〉〈α, H2〉X (H1,H2 ∈ a)

}
,

where ∗ = m1 ∩ k2 or ∗ = k1 ∩m2. Denote by {Xα,i}1≤i≤n(α) an orthonormal basis
of V ⊥

α (k1 ∩m2) and set

Yα,i =
1

‖α‖2 [α, Xα,i] ∈ V ⊥
α (k2 ∩m1).
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Then

〈Yα,i, Yα,j〉 = − 1
‖α‖4 〈Xα,i, [α, [α, Xα,i]]〉 = 〈Xα,i, Xα,j〉 = δij .

Hence {Yα,i}1≤i≤n(α) is an orthonormal basis of V ⊥
α (k2 ∩m1) by (1). Since

[H, Yα,i] =
1

‖α‖2 [H, [α, Xα,i]] = −〈α, H〉Xα,i.

for any H ∈ a, we have Xα,i = −(1/‖α‖2)[α, Yα,i]. Hence [H, Xα,i] = 〈α, H〉Yα,i.
Remark that

[Xα,i, Yα,i] ∈ [k1 ∩m2,m1 ∩ k2] ⊂ m1 ∩m2.

By the Jacobi identity, for any H ∈ a, we have [H, [Xα,i, Yα,i]] = 0. Hence
[Xα,i, Yα,i] ∈ a by the maximality of a. Since 〈H, [Xα,i, Yα,i]〉 = 〈α, H〉, we have
[Xα,i, Yα,i] = α.

(3) We decompose k2 as follows:

k2 = (k2 ∩ k1)⊕ (k2 ∩m1)

= k0 ⊕
∑

λ∈Σ+

kλ ⊕ V (k2 ∩m1)⊕
∑

β∈W+

V ⊥
α (k2 ∩m1).

According to the above decomposition, we decompose X ∈ k2 as follows:

X = X0 +
∑

λ∈Σ+

∑

ᾱ=λ

xαSα + X1 +
∑

β∈W+

n(β)∑

i=1

yβ,iYβ,i.

Then we have

Ad(exp(−H))X = X0 +
∑

λ∈Σ+

∑

ᾱ=λ

xα(cos(〈α, H〉)Sα − sin(〈α, H〉)Tα)

+ X1 +
∑

β∈W+

n(β)∑

i=1

yβ,i(sin(〈β, H〉)Xβ,i + cos(〈β, H〉)Yβ,i),

which implies that
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(Ad(exp(−H))X)m1

= −
∑

λ∈Σ+

sin(〈λ,H〉)
∑

ᾱ=λ

xαTα + X1 +
∑

β∈W+

n(β)∑

i=1

yβ,i cos(〈β, H〉)Yβ,i.

Hence we get the assertion.
(4) By the definition of S+

β , we have

(
S+

β

)
π1(g)

=
d

dt
exp tSβπ1(g)|t=0

= g∗
d

dt
π1(expAd(exp(−H))Sβ)|t=0

= g∗
d

dt
(Ad(exp(−H))Sβ)m1

= g∗(cos(〈β, H〉)Sβ − sin(〈β, H〉)Tβ)m1

= − sin(〈β, H〉)g∗Tβ .

Similarly we have

(Yα,i)+π1(g) = g∗(Ad(exp(−H))Yα,i)m1 = cos(〈β, H〉)g∗Yα,i.

Since [a, V (k2 ∩m1)] = 0, we have Y +
π1(g) = g∗Y . ¤

Corollary 4.17. sα ∈ W2(a) ∩W1(a) for each α ∈ Σ̃.

Proof. We already proved that sα ∈ W2(a) ∩ W1(a) for α ∈ Σ. Assume
that α ∈ W . By (2) of Lemma 4.16, for each H ∈ a,

Ad(exp tYα,i)H = H +
〈α, H〉
‖α‖2 (cos(t‖α‖)− 1)α +

〈α, H〉
‖α‖ sin(t‖α‖)Xα,i.

Select t ∈ R such that cos(t‖α‖) = −1, then Ad(exp tYα,i)H = sα(H). Hence
sα ∈ W2(a). Similarly there exists t ∈ R such that Ad(exp tXα,i)H = sα(H).
Hence sα ∈ W1(a). ¤

Corollary 4.18 follows from (3) of Lemma 4.16.

Corollary 4.18 ([3, Corollary 5.2]). Set g = exp H for H ∈ a, then
K2π1(g) is a regular orbit if and only if 〈λ,H〉 6∈ πZ for any λ ∈ Σ and 〈β, H〉 6∈
π/2 + πZ for any β ∈ W .
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Corollary 4.19 follows from Corollary 4.18.

Corollary 4.19. Let g ∈ G, K2π1(g) is regular if and only if K1π2(g−1)
is regular.

Lemma 4.20. n(λ) + m(λ) = n(σλ) + m(σλ) for λ ∈ Σ̃ and σ ∈ W (Σ̃).

Proof. Since W (Σ̃) is generated by sµ (µ ∈ Σ) and sα (α ∈ W ), we can
regard σ as an inner automorphism of gC by Corollary 4.17. Then σ maps g(a, λ)
onto g(a, σλ)．Hence

m(λ) + n(λ) = dim g(a, λ) = dim g(a, σλ) = n(σλ) + m(σλ). ¤

Define an open subset ar in a by

ar = {H ∈ a | K2π1(expH) is a regular orbit}.

Each connected component of ar is called a cell. Each cell is a bounded convex
open subset of a. The action of J̃ induces a transformation on the set of cells.

Lemma 4.21. (sα, ((2n + 1)π/‖α‖2)α) ∈ J̃ for α ∈ W and n ∈ Z.

Proof. Since sα = Ad(exp(π/‖α‖)Yα,i) where exp(π/‖α‖)Yα,i ∈ NK2(a),
it is sufficient to show that exp(−((2n + 1)π/‖α‖2)α) exp((π/‖α‖)Yα,i) ∈ K1.
Hence it is sufficient to prove that

exp
(
− (2n + 1)π

‖α‖2 α

)
exp

(
π

‖α‖Yα,i

)
= exp

(
(−1)n π

‖α‖Xα,i

)
. (4.9)

Take H ∈ a such that 2〈α, H〉 = (2n + 1)π and set a = exp H. We calculate
exp((π/‖α‖)Yα,i)a−1 exp(−(π/‖α‖)Yα,i)a in the following two ways. The first way
is

exp
(

π

‖α‖Yα,i

)
a−1 exp

(
− π

‖α‖Yα,i

)
a

= exp
(

π

‖α‖Yα,i

)
exp

(
− π

‖α‖Ad(exp(−H))Yα,i

)

= exp
(

π

‖α‖Yα,i

)
exp

(
(−1)n+1 π

‖α‖Xα,i

)
.

The second is
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exp
(

π

‖α‖Yα,i

)
a−1 exp

(
− π

‖α‖Yα,i

)
a = exp(−sαH) exp H

= exp(H − sαH)

= exp
(

(2n + 1)πα

‖α‖2
)

.

Hence we get (4.9). ¤

Denote by W̃ (Σ̃,Σ,W ) the subgroup of J̃ generated by

{(
sλ,

2nπ

‖λ‖2 λ

)
| λ ∈ Σ, n ∈ Z

}
∪

{(
sα,

(2n + 1)π
‖α‖2 α

)
| α ∈ W,n ∈ Z

}
,

then W̃ (Σ̃,Σ,W ) acts transitively on the set of cells. This is obtained in the same
way of the proof of Proposition 2.10. In the same way of the proof of Corollary 2.11,
we get the following: Select and fix any cell P0, then a =

⋃
s∈W̃ (Σ̃,Σ,W ) sP0. Hence

any K2-orbit in M1 can be expressed as K2π1(expH) for H ∈ P0. By Proposition
4.1, we can identify the orbit space K2\G/K1 with P0/{σ ∈ J̃ | σP0 = P0}.
From now on we use P0 as a substitute for the orbit space. It is known that
J̃ = W̃ (Σ̃,Σ,W ) when G is simply connected ([17, Proposition 3.1]). Set P0 as in
(2.2), then P0 is a cell ([13]). This is obtained from Corollary 4.18.

Lemma 4.22. Set g = exp H for H ∈ a. Denote by h the second fundamental
form of K2π1(g) in M1, then we have:

(1) g−1
∗ h(g∗Tα, g∗Tβ) = cot(〈β, H〉)[Tα, Sβ ]⊥ for α, β ∈ Σ with 〈α, H〉, 〈β, H〉 6∈

πZ.
(2) g−1

∗ h(g∗Yα,i, g∗Yβ,j) = − tan(〈β, H〉)[Yα,i, Xβ,j ]⊥ for α and β in W with
〈α, H〉, 〈β, H〉 6∈ π/2 + πZ.

(3) h(g∗Y0, g∗Y1) = 0 for Y0, Y1 ∈ V (k2 ∩m1).
(4) h(g∗Tα, g∗Y ) = 0 for α ∈ Σ with 〈α, H〉 6∈ πZ and Y ∈ V (k2 ∩m1).
(5) h(g∗Yα,i, g∗Y ) = 0 for α ∈ W with 〈α, H〉 6∈ π/2 + πZ and Y ∈ V ⊥(k2 ∩m1).
(6) For α ∈ Σ, β ∈ W with 〈α, H〉 6∈ πZ, 〈β, H〉 6∈ π/2 + πZ,

g−1
∗ h(g∗Tα, g∗Yβ,i) = tan(〈β, H〉)[Tα, Xβ,i]⊥.

Proof. (1) By (4) of Lemma 4.16, (3) of Lemma 4.13 and (2) of Lemma
4.3，
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h(g∗Tα, g∗Tβ) =
1

sin(〈α, H〉) sin(〈β, H〉)h
(
(S+

α )π1(g), (S+
β )π1(g)

)

=
−g∗

sin(〈α, H〉) sin(〈β, H〉)
[
(Ad(g−1)Sα)m1 ,Ad(g−1)Sβ

]⊥
m1

= cot(〈β, H〉)g∗[Tα, Sβ ]⊥.

(2) By (4) of Lemma 4.16 and (3) of Lemma 4.13，we have

h(g∗Yα,i, g∗Yβ,j) =
1

cos(〈α, H〉) cos(〈β, H〉)h
(
(Yα,i)+π1(g), (Yβ,j)+π1(g)

)

=
−g∗[(Ad(g−1)Yα,i)m1 ,Ad(g−1)Yβ,j ]⊥m1

cos(〈α, H〉) cos(〈β, H〉)

=
−g∗[Yα,i, sin(〈β, H〉)Xβ,j + cos(〈β, H〉)Yβ,j ]⊥m1

cos(〈β, H〉)
= − tan(〈β, H〉)g∗[Yα,i, Xβ,j ]⊥.

(3) By (4) of Lemma 4.16 and (3) of Lemma 4.13,

h(g∗Y0, g∗Y1) = h
(
Y +

0 , Y +
1

)
π1(g)

= −g∗[Y0, Y1]⊥m1
,

where [Y0, Y1] ∈ k2 ∩ k1 since Y0, Y1 ∈ V (k2 ∩m1) ⊂ k2 ∩m1. Hence [Y0, Y1]m1 = 0.
(4) By (4) of Lemma 4.16 and (3) of Lemma 4.13，we have

h(g∗Tα, g∗Y ) = − 1
sin(〈α, H〉)h

(
S+

α , Y +
)
π1(g)

= − 1
sin(〈α, H〉)g∗

[
(Ad(g−1)Sα)m1 , Y

]⊥
m1

= −g∗[Tα, Y ]⊥m1
= 0.

(5) By (4) of Lemma 4.16 and (3) of Lemma 4.13，

h(g∗Yα,i, g∗Y ) =
1

cos(〈α, H〉)h
(
Y +

α,i, Y
+
)
π1(g)

= − 1
cos(〈α, H〉)g∗

[
(Ad(g−1)Yα,i)m1 , Y

]⊥
m1

= −g∗[Yα,i, Y ]⊥m1
= 0
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(6) By (4) of Lemma 4.16 and (3) of Lemma 4.13，we have

h(g∗Tα, g∗Yβ,i) = − 1
sin(〈α, H〉) cos(〈β, H〉)h

(
S+

α , Y +
β,i

)
π1(g)

=
g∗[(Ad(g−1)Sα)m1 ,Ad(g−1)Yβ,i]⊥m1

sin(〈α, H〉) cos(〈β, H〉)

= −g∗[Tα,− sin(〈β, H〉)Xβ,i + cos(〈β, H〉)Yβ,i]⊥m1

cos(〈β, H〉)
= tan(〈β, H〉)g∗[Tα, Xβ,i]⊥. ¤

Corollary 4.23. Set g = exp H for H in a. The mean curvature vector of
K2π1(g) in M1 is given by

g−1
∗ mπ1(g) = −

∑

λ∈Σ+
〈λ,H〉6∈πZ

m(λ) cot(〈λ,H〉)λ +
∑

α∈W+
〈α,H〉6∈(π/2)+πZ

n(α) tan(〈α, H〉)α.

Proof. By (1), (2) and (3) of Lemma 4.22, we have

g−1
∗ mπ1(g) = −

∑
cot(〈α, H〉)ᾱ−

∑

α∈W+
〈α,H〉6∈(π/2)+πZ

tan(〈α, H〉)[Yα,i, Xα,i]⊥

= −
∑

λ∈Σ+
〈λ,H〉6∈πZ

m(λ) cot(〈λ,H〉)λ−
∑

tan(〈α, H〉)[Yα,i, Xα,i]⊥

= −
∑

λ∈Σ+
〈λ,H〉6∈πZ

m(λ) cot(〈λ,H〉)λ +
∑

α∈W+
〈α,H〉6∈(π/2)+πZ

n(α) tan(〈α, H〉)α. ¤

In [10, Corollary 2.8], we showed that the mean curvature vector of K2π1(g)
in M1 is parallel with respect to the normal connection. The following corollary
is a generalization of a result in [7].

Corollary 4.24. Set g = expH for H in a. The orbit K2π1(g) in M1 is
totally geodesic if and only if 〈λ,H〉 ∈ (π/2)Z for any λ ∈ Σ̃+.

Proof. It is sufficient to prove that K2π1(g) is totally geodesic if and only
if the following conditions (1) and (2) hold:

(1) For λ ∈ Σ+ with 〈λ,H〉 6∈ πZ,
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cot(〈λ,H〉) = 0, that is, 〈λ,H〉 ∈ π

2
+ πZ.

In other words 〈λ,H〉 ∈ (π/2)Z for any λ ∈ Σ+.
(2) For α ∈ W+ with 〈α, H〉 6∈ (π/2) + πZ,

tan(〈α, H〉) = 0, that is, 〈α, H〉 ∈ πZ.

In other words 〈α, H〉 ∈ (π/2)Z for any α ∈ W+.

By Lemma 4.22, K2π1(g) is totally geodesic if and only if the following three
conditions (A), (B) and (C) hold:

(A) cot(〈β, H〉)[Tα, Sβ ]⊥ = 0 for α, β ∈ Σ with 〈α, H〉, 〈β, H〉 6∈ πZ.
(B) tan(〈β, H〉)[Yα,i, Xβ,j ]⊥ = 0 for α, β ∈ W with 〈α, H〉, 〈β, H〉 6∈ π/2 + πZ.
(C) tan(〈β, H〉)[Tα, Xβ,i]⊥ = 0 for α ∈ Σ, β ∈ W with 〈α, H〉 6∈ πZ, 〈β, H〉 6∈

π/2 + πZ.

In this case, set β = α in (A), then

0 = cot(〈α, H〉)[Tα, Sα]⊥ = − cot(〈α, H〉)ᾱ,

which implies (1). Conversely (1) implies (A). Set β = α, j = i in (B), then, by
(2) of Lemma 4.16,

0 = tan(〈α, H〉)[Yα,i, Xα,i]⊥ = − tan(〈α, H〉)α,

which implies (2). Conversely (2) implies (B) and (C). ¤

Corollary 4.25. K2π1(e) is a totally geodesic submanifiold in M1. There
exists a totally geodesic submanifold through π1(e) whose tangent space is T⊥π1(e)

(K2π1(e)).

Proof. By Corollary 4.24, K2π1(e) is a totally geodesic submanifold in M1.
Since T⊥π1(e)

(K2π1(e)) = m2 ∩m1, this is a Lie triple system in m1. Hence the last
assertion follows． ¤

We recall the definition of reflective submanifold given by Leung [15]. Let M̃

be a complete Riemannian manifold. A connected component of the fixed point
set of an involutive isometry of M̃ is called a reflective submanifold.

Remark 4.26. K2π1(e) is a reflective submanifold of M1.
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Proof. Since θ1θ2 = θ2θ1, K1 is θ2-invariant. Hence θ2 induces an involu-
tive isometry θ̃2 on M1:

θ̃2 : M1 → M1; gK1 7→ θ2(g)K1.

Then θ̃2 is identity on K2π1(e) and −1 on T⊥(π1(K2)) = m1 ∩m2． ¤

A reflective submanifold is totally geodesic ([12]). In the case where the orbit
of a Hermann action, the converse is true in the following sense.

Proposition 4.27. If K2π1(g) ⊂ M1 is totally geodesic then it is a reflective
submanifold.

Proof. We may assume that g = exp H for some H ∈ a. Define an involu-
tive automorphism θ′2 on G by

θ′2 : G → G;x 7→ exp(−2H)θ2(x) exp(2H),

then the fixed point set K ′
2 of θ′2 is given by

K ′
2 = exp(−H)K2 expH.

Hence g−1K2π1(g) = K ′
2π1(e). Since K2π(g) is totally geodesic, 〈λ, 4H〉 ∈ 2πZ

for any λ ∈ Σ̃ by Corollary 4.24. Hence Ad(exp 4H) = 1 by Lemma 4.16. Thus
exp 4H is in the center of G. Hence θ1θ

′
2 = θ′2θ1, since θ1θ2 = θ2θ1. By Remark

4.26, K2π1(g) is a reflective submanifold. ¤

Corollary 4.28 ([3, Theorem 5.3]). Set g = exp H for H in a. For ξ ∈ a,
the set of eigenvalues of the shape operator Ag∗ξ of K2π1(g) ⊂ M1 is given by

{−〈ξ, λ〉 cot(〈λ,H〉) (multiplicity = m(λ)) | λ ∈ Σ+, 〈λ,H〉 6∈ πZ}

∪
{
〈α, ξ〉 tan(〈α, H〉) (multiplicity = n(α)) | α ∈ W+, 〈α, H〉 6∈ π

2
+ πZ

}

∪ {0 (multiplicity = dim(V (k2 ∩m1)))}.

Proof. By Lemma 4.22, we have

Ag∗ξg∗Tα = −〈α, ξ〉 cot(〈α, H〉)g∗Tα,

Ag∗ξg∗Yα,i = 〈α, ξ〉 tan(〈α, H〉)g∗Yα,i,
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Ag∗ξg∗Y = 0 for Y ∈ V (k2 ∩m1),

which implies the assertion. ¤

We showed the following in [11, p. 459]. Let A be a finite subset of a finite
dimensional vector space a with an inner product 〈 , 〉. We consider a condition
that, for any ξ ∈ a, the set {〈a, ξ〉 | a ∈ A} with multiplicity is invariant under
the multiplication by −1. This condition is equivalent to a condition that A is
invariant under the multiplication by −1. By Lemma 4.9, Corollary 4.28 and the
mentioned above, we have the following.

Corollary 4.29. Set g = exp H for H ∈ a, then K2π1(g) ⊂ M1 is austere
if and only if the finite subset of a defined by

{−λ cot(〈λ,H〉) (multiplicity = m(λ)) | λ ∈ Σ+, 〈λ,H〉 6∈ πZ}

∪
{

α tan(〈α, H〉) (multiplicity = n(α)) | α ∈ W+, 〈α, H〉 6∈ π

2
+ πZ

}

is invariant under the multiplication by −1 with multiplicities.

By Corollaries 4.23, 4.24 and 4.29, we have the following.

Corollary 4.30. Let g be in G. Then K2π1(g) ⊂ M1 is minimal, austere,
and totally geodesic if and only if K1π2(g−1) ⊂ M2 is minimal, austere, and totally
geodesic, respectively.

Theorem 4.31. Let (G,K) be a compact symmetric pair. If the orbit Kp in
the compact Riemannian symmetric space M = G/K is austere, then it is totally
geodesic.

Proof. Put θ1 = θ2, then we can apply a setup prepared until now. We
may assume that p = π(expH) for some H ∈ a. Since Kp in M is austere, the
finite subset {−λ cot(〈λ,H〉) | λ ∈ Σ+, 〈λ,H〉 6∈ πZ} of a with multiplicities is
invariant under the multiplication by −1 by Corollary 4.29. Hence for any λ ∈ Σ+

with 〈λ,H〉 6∈ πZ, there exists µ ∈ Σ+ with 〈µ,H〉 6∈ πZ such that

−λ cot(〈λ,H〉) = µ cot(〈µ,H〉).

If cot(〈λ,H〉) 6= 0 or cot(〈µ,H〉) 6= 0, then Σ would be of type BC. Moreover
µ = 2λ,m(λ) = m(2λ) or λ = 2µ,m(µ) = m(2µ), which would be a contradiction,
since m(2λ) < m(λ) by Lemma 4.32. Hence cot(〈λ,H〉) = 0 for any λ ∈ Σ+ with
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〈λ,H〉 6∈ πZ. By Corollary 4.24, Kp is totally geodesic. ¤

Lemma 4.32. Let Σ be the restricted root system of a compact symmetric
pair (G,K). Assume that there exists λ ∈ Σ such that 2λ ∈ Σ, then m(λ) > m(2λ).

Proof. We extend the invariant inner product 〈 , 〉 on g to a complex
symmetric bilinear form on gC , which is also denoted by 〈 , 〉. Define a subspace
g(a, λ) of gC by

g(a, λ) =
{
X ∈ gC | [H, X] =

√−1〈α, H〉X (H ∈ a)
}
,

then dimC g(a, λ) = m(λ) since g(a, λ) ⊕ g(a,−λ) = (kλ ⊕ mλ)C . Take and fix
X ∈ g(a, λ)− {0} with θX = X̄, and define a subspace g(a, λ)′ of g(a, λ) by

g(a, λ)′ = {Y ∈ g(a, λ) | 〈Y, X̄〉 = 0}.

Then dimC g(a, λ)′ < m(λ) since X 6∈ g(a, λ)′. It is sufficient to show that the
linear mapping adX : g(a, λ)′ → g(a, 2λ) is surjective. For Z ∈ g(a, 2λ), set

Y =
−1

2‖λ‖2‖X‖2 [θX, Z] ∈ g(a, λ) where ‖X‖2 = 〈X, X̄〉.

Then Y ∈ g(a, λ)′ since 〈Y, X̄〉 = 〈Y, θX〉 = 0. By the Jacobi identity and 3λ 6∈ Σ,
we have

[X, Y ] =
−1

2‖λ‖2‖X‖2 [[X, θX], Z] = − −1
2‖λ‖2 [λ,Z] = Z.

Hence we get the assertion. ¤

The totally geodesic submanifolds mentioned in Theorem 4.31 were classified
in [7].

4.3. When G is simple and θ1θ2 = θ2θ1:
A main purpose of this subsection is to give a proof of the following theorem.

Theorem 4.33.

(1) Let (G,K1,K2) be a compact symmetric triad. Assume that G is simple,
θ1θ2 = θ2θ1 and θ1 6∼ θ2. Denote by (Σ̃,Σ,W ) the triple constructed from
(G,K1,K2) in the previous subsection, then (Σ̃,Σ,W ) is a symmetric triad of
a. For λ ∈ Σ and α ∈ W , set
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m(λ) = dim g(a, λ, 1), n(α) = dim g(a, λ,−1),

then m(λ) and n(α) satisfy the conditions (1), (2), (3) and (4) of Definition
2.13.

(2) Let (G,K1,K2) and (G,K ′
1,K

′
2) be two compact symmetric triads. Assume

that G is simple, θ1θ2 = θ2θ1, θ1 6∼ θ2, θ
′
1θ
′
2 = θ′2θ

′
1 and θ′1 6∼ θ′2. Denote by

(Σ̃,Σ,W ) and (Σ̃′,Σ′,W ′) the corresponding symmetric triads. If (θ1, θ2) ∼
(θ′1, θ

′
2), then (Σ̃,Σ,W ) ∼ (Σ̃′,Σ′,W ′).

Lemma 4.34. Σ̃ is an irreducible root system of a.

Proof. It is already proved that Σ̃ is a root system of a. If Σ̃ were to be
reducible, there would exist non empty subsets Σ̃1 and Σ̃2 such that

Σ̃ = Σ̃1 ∩ Σ̃2 (disjoint union), Σ̃1 ⊥ Σ̃2.

Denote by gC
1 the subalgebra of gC generated by

∑
α∈Σ̃1

g(a, α) ( 6= {0}). Since

gC
1 ⊂ g(a, 0)⊕

∑

α∈Σ̃1

g(a, α),

we would have gC
1 6= gC . Since

[
gC ,

∑

α∈Σ̃1

g(a, α)
]

=
[
g(a, 0)⊕

∑

α∈Σ̃1

g(a, α)⊕
∑

α∈Σ̃2

g(a, α),
∑

α∈Σ̃1

g(a, α)
]

⊂
∑

α∈Σ̃1

(g(a, α) + [g(a, α), g(a,−α)]) ⊂ gC
1 ,

gC
1 would be a non trivial ideal of gC . Since gC is simple, this would be a contra-

diction. Hence Σ̃ is an irreducible root system of a. ¤

Lemma 4.35. Let Σ̃ be an irreducible root system of a. Set l = max{‖α‖ |
α ∈ Σ̃}. For any β ∈ Σ̃ with ‖β‖ < l, there exists γ ∈ Σ̃ with ‖γ‖ = l such that

−2
〈β, γ〉
‖γ‖2 = 1.

Proof. First we assume that ‖β‖ < l and ‖γ‖ = l．Since the Weyl group
maps γ to the highest root, we have, by [19],
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−2
〈β, γ〉
‖γ‖2 =





0 (β ⊥ γ)

±2 (β = ∓γ)

±1 (otherwise)

(4.10)

Since span{γ ∈ Σ̃ | ‖γ‖ = l} = a, if it were not to exist such γ satisfying the above
condition, then β = 0, which would be a contradiction. ¤

It is necessary to recall the finite dimensional complex irreducible representa-
tions of su(2) and sl(2,C) = su(2)C . We choose a basis of su(2) as follows:

e1 =
1
2

(
0

√−1√−1 0

)
, e2 =

1
2

(
0 −1
1 0

)
, e3 =

1
2

(√−1 0

0 −√−1

)
.

Lemma 4.36 ([9, Lemma 5.1]). Let (ρ, V ) be a finite dimensional complex
irreducible representation of su(2), then there exists a basis {fk}0≤k≤n of V such
that

ρ(e3)fk =
√−1

2
(−n + 2k)fk,

ρ(e1)fk =
√−1

2
{√

(n− k)(k + 1)fk+1 +
√

k(n− k + 1)fk−1

}
,

ρ(e2)fk =
1
2
{−

√
(n− k)(k + 1)fk+1 +

√
k(n− k + 1)fk−1

}
.

In order to state the finite dimensional complex irreducible representations of
sl(2,C), set

X = e1 −
√−1e2 =

√−1
(

0 1
0 0

)
∈ sl(2,C)

and denote by¯the complex conjugation of sl(2,C) with respect to the compact
real form su(2), then

X̄ =
√−1

(
0 0
1 0

)
= e1 +

√−1e2.

Put

H = [X, X̄] =
(−1 0

0 1

)
= 2

√−1e3,
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then {X, X̄, H} is a basis of sl(2,C). Lemma 4.37 immediately follows from the
lemma above.

Lemma 4.37. Let (ρ, V ) be a finite dimensional complex irreducible repre-
sentation of sl(2,C), then there exists a basis {fk}0≤k≤n of V such that

ρ(X)fk =
√−1

√
(n− k)(k + 1)fk+1,

ρ(X̄)fk =
√−1

√
k(n− k + 1)fk−1,

ρ(H)fk = (n− 2k)fk

Lemma 4.38 (Matsuki). Take X ∈ g(a, α, ε) − {0} such that θ1X = X̄,
ε = ±1.

(1) l = CX ⊕CX̄ ⊕C[X, X̄] ∼= sl(2,C) as Lie algebras.
(2) When 〈α, β〉 < 0, then ‖β‖ ≥ ‖α + β‖ and the mapping

(adX)m : g(a, β) → g(a, sαβ)

is a linear isomorphism, where we set m = −2〈α, β〉/‖α‖2 ∈ N . In particular
the linear mapping adX : g(a, β) → g(a, β + α) is injective.

(3) When Σ ∩W = ∅, α, β, α + β ∈ Σ̃, then

g(a, α + β) = g(a, α + β, ε1ε2),

where we set g(a, α) = g(a, α, ε1), g(a, β) = g(a, β, ε2).

Proof. For (1), we refer to [16, p. 61].
(2) Since ‖β‖2−‖α+β‖2 = ‖α‖2(m−1) ≥ 0, we have ‖β‖ ≥ ‖α+β‖. Denote

by β + nα (p ≤ n ≤ q) the α-series containing β, then p + q = m and

〈α, β + nα〉 = −1
2
‖α‖2(p + q − 2n) (p ≤ n ≤ q).

Taking this into account, we decompose

⊕n∈Zg(a, β + nα) = ⊕q
n=pg(a, β + nα)

into l-irreducible representations. Then Lemma 4.37 implies the assertion.
(3) When 〈α, β〉 < 0, then we have, by (2),
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0 6= [X, g(a, β, ε1)] ⊂ g(a, α + β, ε1ε2).

Since Σ ∩W = ∅, we have

g(a, α + β) = g(a, α + β, ε1ε2).

When 〈α, β〉 ≥ 0, then

〈α,−(α + β)〉 = −‖α‖2 − 〈α, β〉 ≤ −‖α‖2 < 0.

Since

g(a,−(α + β)) = g(a,−(α + β), µ) (µ = ±1),

we have, by (2),

0 6= [X, g(a,−(α + β), µ)] ⊂ g(a,−β, ε1µ).

Hence

g(a,−β) = g(a,−β, ε2) = g(a,−β, ε1µ).

Thus µ = ε1ε2, which implies that

g(a, α + β) = g(a, α + β, ε1ε2). ¤

Proposition 4.39 (Matsuki). The following four conditions are equivalent.

(1) The involutive automorphisms θ1 and θ2 of g cannot transform each other by
any inner automorphism of g.

(2) Σ ∩W 6= ∅.
(3) Σ ∩W ∩ Π̃ 6= ∅.
(4) Set l = max{‖α‖ | α ∈ Σ ∩W}, then Σ ∩W = {β ∈ Σ̃ | ‖β‖ ≤ l}.

Proof. First we shall prove that the negative of (1) implies the negative
of (2). Assume that θ1 and θ2 transforms each other by an inner automorphism
of g. Since G = K1AK2, there exists a ∈ A such that θ1 = Ad(a)θ2Ad(a−1).
Then, for any x ∈ G, we have θ2θ1(x) = a−2xa2 and θ1θ2(x) = a2xa−2. Since
θ1θ2 = θ2θ1, a4 is in Z(G), the center of G. Select H ∈ a such that a = expH,
then 4〈α, H〉 ∈ 2πZ for any α ∈ Σ̃. Hence, for α ∈ Σ̃ and X ∈ g(a, α), we have



132 O. Ikawa

θ1θ2(X) = Ad(a2)X = e2adHX = e2
√−1〈α,H〉X = ±X,

which implies that Σ ∩W = ∅.
Second we shall prove that the negative of (2) implies the negative of (1).

Assume that Σ∩W = ∅, then, for α ∈ Σ̃, there exists εα = ±1 such that g(a, α) =
g(a, α, εα). Hence θ1θ2 = εα on g(a, α). Select H ∈ a as follows: For α ∈ Π̃,

2〈α, H〉 =

{
0 (εα = 1),

π (εα = −1).

Set a = expH, then for any X ∈ g(a, α) with α ∈ Π̃, we have Ad(a2)X = εαX.
Hence, by Lemma 4.38, θ1θ2 = Ad(a2) on

∑
α∈Σ̃ g(a, α). The subalgebra generated

by
∑

α∈Σ̃ g(α)(6= {0}) is an ideal of gC . Hence it coincides with gC since gC is
simple. Hence θ1θ2 = Ad(a2), which implies that θ1 = Ad(a)θ2Ad(a−1).

Hence the conditions (1) and (2) are equivalent. It is sufficient to prove that
(2) ⇒ (3) ⇒ (4) since (4) ⇒ (2) is trivial. We shall prove that (2) implies (3).
Let α be in Σ+ ∩W+. We will show that there exists β ∈ Π̃ such that 〈α, β〉 > 0
when α 6∈ Π̃. We were to assume that 〈α, β〉 ≤ 0 for any β ∈ Π̃. Express α as
α =

∑
β∈Π̃ mββ (mβ ≥ 0), then

‖α‖2 =
∑

β∈Π̃

mβ〈α, β〉 ≤ 0.

Hence we would have α = 0, which would be a contradiction. Thus when α 6∈ Π̃,
there exists β ∈ Π̃ such that 〈α, β〉 > 0. Then α − β ∈ Σ̃+. We will show that
α − β ∈ Σ+ ∩ W+. Since α ∈ Σ+ ∩ W+, we have g(a, α,±1) 6= {0}. We can
take X ∈ g(a,−β, 1) − {0} such that θ1X = X̄ by Lemma 4.11. Since adX :
g(a, α,±1) → g(a, α− β,±1) is injective by (2) of Lemma 4.38, g(a, α− β,±1) 6=
{0}. Hence α− β ∈ Σ+ ∩W+．By iteration, we have Σ+ ∩W+ ∩ Π̃ 6= ∅.

Last we will show (3) ⇒ (4). When the lengths of elements of Σ̃ are a
constant, then Σ̃ = Σ and W (Σ) acts transitively on W . Hence Σ̃ = Σ = W .
Thus Σ ∩ W = Σ̃ = {β ∈ Σ̃ | ‖β‖ ≤ l}. Hence we assume that the lengths
of elements of Σ are not a constant. Take β ∈ Σ̃ such that ‖β‖ = l. We will
show that β ∈ Σ ∩ W . By the definition of l there exists α ∈ Σ ∩ W such that
‖β‖ = ‖α‖. Since Σ̃ is an irreducible root system of a by Lemma 4.34, there exists
s ∈ W (Σ̃) such that β = sα. Since {sγ | γ ∈ Σ̃} generates W (Σ̃), it is sufficient
to prove β ∈ Σ ∩ W when β = sγα. We may assume that 〈α, γ〉 6= 0, and γ is
not proportional to α. We may assume that 〈α, γ〉 < 0 since s−γ = sγ . Take
X ∈ g(a, γ, ε)− {0} with θ1X = X̄, ε = ±1 then
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(adX)m : g(a, α) → g(a, β)

is a linear isomorphism by (2) of Lemma 4.38. Since α ∈ W ∩ Σ we have β ∈
Σ ∩W．Thus {β ∈ Σ̃ | ‖β‖ = l} ⊂ Σ ∩W . When l = min{‖α‖ | α ∈ Σ̃}, then
Σ ∩W = {β ∈ Σ̃ | ‖β‖ ≤ l}. Hence we may assume that l > min{‖α‖ | α ∈ Σ̃}.
We consider the case where Σ̃ is not of type BCr. Then l = max{‖α‖ | α ∈ Σ̃}.
Take γ in Σ̃ such that ‖γ‖ < l. We will show that γ is in Σ∩W . By Lemma 4.35
there exists β in Σ̃ with ‖β‖ = l such that −2〈β, γ〉/‖β‖2 = 1. Then β + γ is in
Σ̃. Since −2(〈−β, β + γ〉/‖ − β‖2) = 1 we have

dim g(a, γ, 1) = dim g(a, β + γ, 1) (0 6= X ∈ g(a, β, 1))

= dim g(a, γ,−1) (0 6= X ′ ∈ g(a,−β,−1)),

which implies that γ ∈ Σ∩W . When Σ̃ is of type BCr, then the assertion reduces
to the case when Σ is of type Br. ¤

Proof of (1) of Theorem 4.33. We have already proved the condition
(1) of Definition 2.2 by Lemma 4.34. We shall prove (2) of Definition 2.2. By (4)
of Proposition 4.39, we have span(Σ ∩ W ) = a. Hence span(Σ) = a and Σ is a
root system of a. We have already proved (3) of Definition 2.2. The condition
(4) of Definition 2.2 follows from (4) of Proposition 4.39. The conditions (1) and
(2) of Definition 2.13 was proved in Lemmas 4.5 and 4.15. The condition (3) of
Definition 2.13 was proved in Lemma 4.20. We shall prove (5) and (6) of Definition
2.2 and (4) of Definition 2.13. Let α ∈ W and λ ∈ Σ̃, then set m = −2〈α, λ〉/‖α‖2.
We can take X ∈ g(a, α,−1) − {0} such that θ1X = X̄．In order to prove the
assertion, we may assume that 〈α, λ〉 < 0. By Lemma 4.38,

(adX)m : g(a, λ) → g(a, sαλ)

is a linear isomorphism. Let λ be in (Σ−W ) ∪ (W − Σ). When m is even, then

(adX)m : g(a, λ, 1) → g(a, sαλ, 1) (if λ ∈ Σ−W ),

(adX)m : g(a, λ,−1) → g(a, sαλ,−1) (if λ ∈ W − Σ)

is a linear isomorphism. When m is odd, then

(adX)m : g(a, λ, 1) → g(a, sαλ,−1) (if λ ∈ Σ−W ),

(adX)m : g(a, λ,−1) → g(a, sαλ, 1) (if λ ∈ W − Σ)
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is a linear isomorphism. Hence (5) and (6) of Definition 2.2 hold. Thus (Σ̃,Σ,W )
is a symmetric triad of a. We shall show (4) of Definition 2.13. When m is even,
then

(adX)m : g(a, λ, 1) → g(a, sαλ, 1)

is a linear isomorphism. When m is odd, then

(adX)m : g(a, λ, 1) → g(a, sαλ,−1)

is a linear isomorphism. Hence we get the assertion. ¤

Proof of (2) of Theorem 4.33. Since (θ1, θ2) ∼ (θ′1, θ
′
2), there exist x ∈

G and ρ ∈ Aut(G) such that

θ′1 = τxρθ1ρ
−1τ−1

x , θ′2 = ρθ2ρ
−1.

Then

θ′1 = ρ(ρ−1τxρ)θ1(ρ−1τ−1
x ρ)ρ−1.

Since ρ−1τxρ is an inner automorphism of G, there exists y ∈ G such that ρ−1τxρ =
τy. Then θ′1 = ρτyθ1τ

−1
y ρ−1. Since θ′1 and θ′2 commute each other, τyθ1τ

−1
y and

θ2 commute each other. In order to give the proof, we may assume that ρ is the
identity transformation. Since G = K2(exp a)K1, there exist ki ∈ Ki and Y ∈ a

such that y = k2 expHk1. Since τki
θiτ

−1
ki

= θi, we have

θ′1 = τk2τexp Y θ1τ
−1
exp Y τ−1

k2
, θ′2 = τk2θ2τ

−1
k2

.

Since θ1θ2 = θ2θ1 and θ′1θ
′
2 = θ′2θ

′
1, exp 4Y is in the center of G．Thus

Ad(exp 4Y ) = 1, which implies that Y ∈ Γ．To complete the proof, we may
assume that k2 is the identity element. Define a subspace m′1 of g by

m′1 = {X ∈ g | θ′1(X) = −X},

then m′1 = Ad(expY )m1. Hence a is a maximal abelian subspace of m′1 ∩ m2.
Hence Σ̃′ = Σ̃. For any α ∈ Σ̃ and X ∈ g(a, α, ε),

θ′1θ
′
2X = Ad(exp 2Y )θ1θ2X = εe2

√−1〈α,Y 〉X(= ±εX).
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Hence (2.1) holds when we put f = 1. We have (Σ̃,Σ,W ) ∼ (Σ̃′,Σ′,W ′) and the
proof is completed. ¤

Let H ∈ a. Then K2π1(expH) is a regular orbit, totally geodesic orbit,
austere orbit, and minimal orbit if and only if H is a regular point, totally geodesic
point, austere point and minimal point, respectively. By Theorem 2.24, for any
∆ ⊂ Π ∪ {α̃}, there exists a unique element H ∈ P∆

0 such that K2π1(expH) is
a minimal orbit in M1. Using the results in Section 3, we can classify the totally
geodesic K2-orbits and the austere K2-orbits in M1.
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