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Abstract. We study the Oseen problem with rotational effect in exterior

three-dimensional domains. Using a variational approach we prove existence and

uniqueness theorems in anisotropically weighted Sobolev spaces in the whole

three-dimensional space. As the main tool we derive and apply an inequality of

the Friedrichs-Poincaré type and the theory of Calderon-Zygmund kernels in

weighted spaces. For the extension of results to the case of exterior domains we

use a localization procedure.

1. Introduction.

1.1. Formulation of the problem.

In a three-dimensional exterior domain � � R3, the classical Oseen problem

[30] describes the velocity vector v and the associated pressure � by a linearized

version of the incompressible Navier-Stokes equations as a perturbation of v1 the

velocity at infinity; v1 is generally assumed to be constant in a fixed direction,

say the first axis, v1 ¼ jv1je1. In the next we denote jv1j by k, and we will write

the Oseen operator k @1v. On the other hand it is known that for various flows past

a rotating obstacle, the Oseen operator appears with some concrete non-constant

coefficient functions, e.g. aðxÞ ¼ !� x, where ! is a given vector, see [17], [29]; in

view of industrial applications aðxÞ can also play the role of an ‘‘experimental’’

known velocity field, see [20].

This paper is devoted to the study of the following problem in � for (non-

solenoidal) vector function u ¼ uðxÞ and scalar function p ¼ pðxÞ:

���u þ k@1u � !� xð Þ � ru þ !� u þrp ¼ f in � ð1.1Þ
divu ¼ g in � ð1.2Þ

u ! 0 as xj j ! 1 ð1.3Þ
u ¼ !� xð Þ � ke1 on @�; ð1.4Þ
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where ! ¼ ðe!; 0; 0Þ is a constant vector, �, k and e! are some positive constants,

and f ¼ f ðxÞ a given vector function, g ¼ gðxÞ a given scalar function.

We restrict ourselves to the assumption of compact support of g when � is an

exterior domain. The system arises from the Navier-Stokes system modelling

viscous fluid around a rotating body which is moving with a given non-zero

velocity in the direction of its axis of rotation. An appropriate coordinate

transform and a linearization yield in the stationary case equations (1.1) and

(1.2), for details see [3], [17]. The third term together with the fourth one (the

Coriolis force !� u) in (1.1) arise from the influence of rotation of the body.

Let us begin with some comments and relevant process of analysis of the

problem (1.1)–(1.4).

. The governing equations of fluid motion are stationary and linear, but in

unbounded domains the convective operators, k @1 and ð!� xÞ � r, cannot

be treated as perturbations of lower order of the Laplacian.

. The fundamental tensor (similarly as the fundamental tensor to the Oseen

problem) exhibits the anisotropic behavior in the three-dimensional space.

To reflect the decay properties near the infinity we introduce the following

weight functions:

��� xð Þ ¼ ��;��;" xð Þ ¼ 1þ �rð Þ� 1þ "sð Þ�;

with r ¼ rðxÞ ¼ jxj ¼ ð
P3

i¼1 x
2
i Þ

1=2, s ¼ sðxÞ ¼ r� x1, x 2 R3, "; � > 0,

�; � 2 R. Discussing the range of the exponents � and �, the corresponding

weighted spaces LqðR3; ��� Þ give the appropriate framework to test the

solutions to (1.1)–(1.3). This paper is concerned with q ¼ 2. Let us mention

also that ��� belongs to the Muckenhoupt class A2 of weights in R3 if

�1 < � < 1 and �3 < �þ � < 3.

. In this paper we will prefer the variational approach. To avoid the

difficulties with the pressure part of the solution p we solve firstly the

problem in R3. Using the theory of Calderon-Zygmund integrals in

corresponding weighted spaces, we determine the pressure p of the problem

in R3 to be from the same space as the right-hand side of (1.1). This first

step cannot be done directly in an exterior domain. Then we apply the

variational approach for the velocity part of the solution.

. For the extension of the results to the case of exterior domains we use the

localization procedure, see [22].
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1.2. Short bibliographical remarks.

The weighted estimates of the solution to the stationary classical Oseen

problem were firstly obtained by Finn in 1959, see [9]. The variational approach to

the model equation ���uþ k@1u ¼ f in an exterior domain in anisotropically

weighted L2-spaces was applied by Farwig, see [1]. The same variational

viewpoint has been also applied in [27], [28] by Kračmar and Penel to solve the

generic scalar model equation ���uþ k@1u� a � ru ¼ f with a given non-

constant and, in general, non-solenoidal vector function a in an exterior domain.

Both model equations are assumed with boundary conditions u ¼ 0 on @� and

u! 0 as jxj ! 1.

Another common approach to study the asymptotic properties of the

solutions to the Dirichlet problem of the classical steady Oseen flow is the use of

the potential theory, i.e. convolutions with Oseen fundamental tensor and its first

and second gradients for the velocity (or with the fundamental solution of Laplace

equation for the pressure): the L2-estimates in anisotropically weighted Sobolev

spaces in R3 were derived by Farwig [2], the Lq-estimates in these spaces were

proved in R3 and Rn by Kračmar, Novotný and Pokorný in [25] and [26],

respectively. Different approach was used by Kobayashi and Shibata [21].

The fundamental solution to rotating Oseen problem in the time dependent

case is known due to Guenther and Thomann, see [32], but, unfortunately, the

respective stationary kernel does not seem to be of Calderon-Zygmund type. The

Littlewood-Paley decomposition technique offers another approach for an Lq-anal-

ysis: Thus, Lq-estimates in non-weighted spaces were derived for the rotating

Stokes problem by Hishida [17], by Farwig, Hishida, and Müller [5], and for the

rotating Oseen problem in R3 by Farwig [3], [4]. Lq-estimates of the pressure and

the gradient of the velocity for the exterior Stokes flow around a rotating body

without translation were derived in [19]. Lq-setting with non-integrable right-

hand side in non-homogeneous case was investigated by Kračmar, Nečasová and

Penel in [24]. The Littlewood-Paley decomposition technique for Lq-weighted

estimates with anisotropic weight functions was used by Farwig, Krbec and

Nečasová [7], [8].

Another approach based on the use of the non-stationary equations in both

the linear and also non-linear cases is proposed by Galdi and Silvestre in [11],

[12], [13], [14]. The last paper showed the existence of the wake region for the

Navier-Stokes flow for small data.

We would like also to mention that the problem was solved by the semigroup

theory in L2-setting in particular by Hishida [18], and then the respective results

were extended to Lq case by Geissert, Heck and Hieber [15].
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1.3. Basic notations and elementary properties.

Let us outline our notations. Let S 0 be the space of the moderate

distributions in R3. Let � be an exterior domain with a boundary of the class

C 2, and

bWm;qð�Þ ¼ fu 2 L1
locð�Þ : Dlu 2 Lqð�Þ; jlj ¼ mg

with the seminorm jujm;q ¼ ð
P

jlj¼m
R
� jujqÞ1=q. It is known that bWm;qð�Þ is a

Banach space (and if q ¼ 2 the space bHmð�Þ ¼ bWm;2ð�Þ a Hilbert space), provided

we identify two functions u1, u2 whenever ju1 � u2jm;q ¼ 0, i.e. u1, u2 differ (at

most) on a polynomial of the degree m� 1. As usual, we denote by bWm;q
0 ð�Þ the

closure of C1
0 ð�Þ in bWm;qð�Þ.

Let ðL2ð�; wÞÞ3 be the set of measurable vector functions f ¼ ðf1; f2; f3Þ in �

such that

fk k22;�;w¼
Z
�

fj j2wdx <1:

We will use the notation L2
�;�ð�Þ instead of ðL2ð�; ��� ÞÞ

3 and k � k2;�;� instead of

k � kðL2ð�; ��
�
ÞÞ3 . Let us define the weighted Sobolev space H 1ð�; ��0

�0
; ��1

�1
Þ as the set

of functions u 2 L2
�0;�0

ð�Þ with the weak derivatives @iu 2 L2
�1;�1

ð�Þ. The norm of

u 2 H 1ð�; ��0

�0
; ��1

�1
Þ is given by

uk k
H 1 �; ��0

�0
;��1
�1

� �¼ Z
�

uj j2��0

�0
dx þ

Z
�

ruj j2��1

�1
dx

� �1=2

:

As usual, H
�

1ð�; ��0

�0
; ��1

�1
Þ, will be the closure of C1

0 ð�Þ in H 1ð�; ��0

�0
; ��1

�1
Þ, where

C1
0 ð�Þ is ðC1

0 ð�ÞÞ3, and H
�

1ð�; ��0

�0
; ��1

�1
Þ will be the closure of C1

0 ð�Þ in

H 1ð�; ��0

�0
; ��1

�1
Þ.

For simplicity, we shall use the following abbreviations:

L2
�;� �ð Þ instead of L2 �; ���

� �� �3
�k k2;�;�; � instead of �k kðL2ð�; ��

�
ÞÞ3

H
�

1
�; � �ð Þ instead of H

�
1ð�; ���1

��1 ; �
�
� Þ

V�;� �ð Þ instead of H
�

1ð�; ���1
� ; ��� Þ

V�;� �
� �

instead of H
�

1ð�; ���1
� ; ��� Þ:
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We shall use these last two Hilbert spaces for � � 0, � > 0, �þ � < 3. If no

confusion can occur, we omit the domain in the notation of the norm k � k2;�;�; �.
The notation H 1ð�Þ and H

�
1ð�Þ mean, as usual, the non-weighted spaces

ðH1ð�; 1; 1ÞÞ3 and ðH
�
1ð�; 1; 1ÞÞ3, respectively. As usual, omitting the domain �

in the notation of spaces will indicate that � ¼ R3, so e.g. H 1 ¼ H 1ðR3Þ.
Concerning the weight functions ��� , we will use two notations ��� ðxÞ and

��;��;"ðxÞ taking the advantages of the following remark:

REMARK 1.1. Let us note that for ��;��;" and for any �1; �2; "1; "2 > 0 one has

cmin � ��;�2�;"2
� ��;�1�;"1

� cmax � ��;�2�;"2
;

cmin ¼ minð1; ð�1=�2Þ�Þ�minð1; ð"1="2Þ�Þ, cmax ¼ maxð1; ð�1=�2Þ�Þ�maxð1; ð"1="2Þ�Þ.
The parameters � and " are useful to re-scale separately the isotropic and

anisotropic parts of the weight function ��� .

We also use the notation of sets BR ¼ fx 2 R3; jxj � Rg, BR ¼
fx 2 R3; jxj � Rg, �R ¼ BR \ �, �R ¼ BR \ �, BR1

R2
¼ BR1 \BR2

, �R1

R2
¼ BR1

R2
\ �,

for positive numbers R, R1, R2.

1.4. Main results.

In the first part of the paper (chapters 2–4) we study the problem in R3. Let

us assume for a moment that pressure p is known. In solving the problem (1.1)–

(1.3) with respect to u and p by means of a pure variational approach, we shall

deal with the following equation:

�

Z
R3

ruj j2wdx þ �

Z
R3

u � rð Þu � rwdx �
k

2

Z
R3

uj j2@1wdx

�
1

2

Z
R3

uj j2div w !� x½ �ð Þdx ¼
Z
R3

f � uwdx �
Z
R3

rp � uwdx ð1.5Þ

as we get integrating formally the product of (1.1) by wu with w an appropriate

weight function. First, let us note that divð��� ½!� x�Þ equals zero for w ¼ ��� . The

left hand side can be estimated from below by:

�

2

Z
R3

ruj j2wdx þ
1

2

Z
R3

uj j2 ��jrwj2=w� k@1w
� �

dx: ð1.6Þ

Because the term ��jrwj2=w� k@1w is known explicitly, we have the possibility

to evaluate it from below by a small negative quantity in the form �C ���1
��1

without any constraint in sð�Þ (see Lemma 2.5).
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An improved weighted Friedrichs-Poincaré type inequality in H
�

1
�; � is

necessary. The obtained inequality allows us to compensate by the viscous

Dirichlet integral the ‘‘small’’ negative contribution in the second integral of (1.6).

We finally prove the existence of a weak solution (1.1)–(1.3) in V�;� by the Lax-

Milgram theorem.

The main results of the first part of the paper can be summarized in the

following theorems (parameters �, �, �, " are specified in Section 1.3):

THEOREM 1.2. Let � > 0. There are positive constants R0, c0, c1 depending

on �, �, �, " (explicit expressions of these constants are given by Lemma 2.3,

essentially c0 ¼ Oð"�2 þ ��2Þ and c1 ¼ Oð"�1��1Þ for � and " tending to zero) such

that for all v 2 H
�

1
�; �

vk k22;��1;��1� c0

Z
BR0

rvj j2��� dx þ c1

Z
BR0

rvj j2��� dx: ð1.7Þ

THEOREM 1.3 (Existence and uniqueness). Let 0 < � � 1, 0 � � < y1�,

f 2 L2
�þ1;�, g 2 H1

loc such that �rg� kg e1 þ gð!� xÞ 2 L2
�þ1;�; y1 will be given in

Lemma 4.3. Then there exists a unique weak solution fu; pg of the problem (1.1)–

(1.3) such that u 2 V�;�, p 2 L2
�;��1, rp 2 L2

�þ1;� and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C kfk2;�þ1;� þ k�rg� kg e1 þ g !� xð Þk2;�þ1;�

� �
:

In the second part of the paper (chapters 5, 6) we extend the results of the

first part onto exterior domains.

THEOREM 1.4. Let � � R3 be an exterior domain and 0 < � � 1,

0 � � < y1 � �; y1 is given in Lemma 4.3, f 2 L2
�þ1;�ð�Þ, g 2 H

�
1ð�Þ with supp g ¼

K �� � and
R
� g dx ¼ 0. Then there exists a weak solution fu; pg of the problem

(1.1)–(1.4) such that u 2 V�;�ð�Þ; p 2 L2
�;��1ð�Þ, rp 2 L2

�þ1;�ð�Þ and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C kfk2;�þ1;� þ kgk1;2 þ !2 þ !þ k2 þ k
� �

:

REMARK 1.5. Concerning @1u and ru, our analysis did not catch any

difference in the dependence of the parameters � and �. The reason appears inside

the proofs of the Theorems 1.3 and 1.4 when we ask for the coercivity of the
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bilinear form eQð�; �Þ, testing equation (4.20) by u��� . On the other hand, we have

no heuristic argument for not expecting better decay behavior of @1u like rp as in
Farwig’s result, see [2].

REMARK 1.6. The important feature of the Friedrichs-Poincaré type

inequality is that we are able to evaluate its coefficients, precisely expressed in

Lemma 2.3 separately near the obstacle and far from the obstacle.

REMARK 1.7. For � > 0, using these coefficients, negative values of the

function F�;�ð�; �Þ defined by the formula (2.13) can be compensated by the viscous

Dirichlet integral; this analysis was not required in [2] because F�;�ð�; �Þ is positive
when � < 0.

REMARK 1.8. The previous compensation cannot be associated with a large

interval of positive values for �: So, we receive the technical condition �=� < y1.

Using other type of weight functions characterized by some parameters, one can

get another technical condition on these parameters.

REMARK 1.9. We can improve the result from Theorem 1.4 removing the

assumptions on g relative to its compact support and to its zero mean value: This

will be the partial subject of a forthcoming paper. In the present paper, we have

decided to use simply the approach by Girault-Raviart (see Subsection 6.1) and

the standard Bogovski’s lemma in bounded domains, to get finally Corollary 6.7.

2. Friedrichs-Poincaré inequality.

In this section we derive an inequality of the Friedrichs-Poincaré type in

weighted Sobolev spaces. We also recall some necessary technical assertions, for

more details see Kračmar and Penel [27].

PROPOSITION 2.1. For arbitrary �; � � 0 and x 2 R3, x 6¼ 0:

���� xð Þ � 2�min 1; �ð Þ" � ���1
��1 xð Þ:

PROOF. We introduce �	 ¼ minð�; 1Þ in an explicit expression of ���� :

���� ¼
�

�2�2
1þ "s

1þ �r
� ��2

1þ "s

1þ �r

� �
þ 2���"

s

r

þ 2� � � 1ð Þ
"

r
1þ �rð Þ "s

1þ "s

þ 2� �2 1þ "sð Þ
1

�r
þ 1� �	 þ �	ð Þ2�

"

r
1þ �rð Þ

�
���1
��1 ;
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for r > 0. We denote the five terms in f g by T1, T2; . . . ; T5, and overwrite the

previous relation as ���� ¼ f½T1 þ T4� þ T2 þ ½T3 þ ð1� �	ÞT5� þ �	T5g ���1
��1 . Ob-

serving that T5 � 2�"�, the proposition is trivial. �

PROPOSITION 2.2. Let � � 0, � � 0, � > 0, " > 0 and � > 1. Then for

x 2 R3, jxj � j��1 � ð2"Þ�1jð�� 1Þ�1:

r��� xð Þ
			 			2� 2� � " �þ �ð Þ2 �

��1=2
��1=2 xð Þ

� �2
: ð2.8Þ

Let � � 0, � � 0, � > 0, " > 0 and ð� � �Þð2"� �Þ � 0. Then for x 2 R3,

x 6¼ 0:

r��� xð Þ
			 			2� �� þ 2�"ð Þ2 �

��1=2
��1=2 xð Þ

� �2
: ð2.9Þ

PROOF. If � ¼ 0 and � ¼ 0 then both inequalities (2.8) and (2.9) are valid.

Let us concentrate on the nontrivial cases:

For r > 0, s 2 ½0; 2r�, we have that @g=@s > 0, where g is a function defined by

relations:

r��� xð Þ
			 			2 ¼ gðs xð Þ; r xð ÞÞ �

��1=2
��1=2 xð Þ

� �2
;

gðs; rÞ 
 �2�2
1þ "s

1þ �r

� �
þ 2���"

s

r
þ 2�2"2

1þ �r

1þ "s

� �
s

r
:

So, gðs; rÞ is increasing as a function of s and

G rð Þ 
 max
s2½0;2r�

gðs; rÞ ¼ g 2r; rð Þ

¼ �2�2
1þ 2"r

1þ �r
þ 4���"þ 4�2"2

1þ �r

1þ 2"r
� 2� �þ �ð Þ2�" ð2.10Þ

for � > 1 and r � j��1 � ð2"Þ�1jð�� 1Þ�1. So, inequality (2.8) is proved.

To justify the second inequality (2.9), we observe that for the given values of

�, �, �, " and for r > 0, GðrÞ � Gð0Þ. �

Next we derive an inequality of the Friedrichs-Poincaré type in the space

H
�

1
�;�. It is necessary for our aim to get expressions of constants in this inequality.

It follows from Proposition 2.1.
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LEMMA 2.3. Let � � 0, � > 0, �þ � < 3, � > 1. Let � and " be arbitrary

positive constants, such that ð� � �Þð2"� �Þ � 0. Then for all u 2 H
�

1
�;�

uk k22;��1;��1 � c0 rujBR0
k k22;�;� þ c1 rujBR0



 

2
2;�;�

; ð2.11Þ

where c0 ¼ ½ð�� þ 2�"Þ=ð��	�"Þ�2, c1 ¼ ½ð2�Þ=ð�"Þ� � ½ð�þ �Þ=ð��	Þ�2 and R0 �
j��1 � ð2"Þ�1jð�� 1Þ�1.

REMARK 2.4. Let us observe that if additionally � < 2" and 1 < � �
2"=� þ �=ð2"Þ � 1 then c0 � c1.

PROOF OF LEMMA 2.3. Due to the density of C1
0 in H

�
1
�;� it is sufficient to

prove the inequality for all u 2 C1
0 . From Proposition 2.1 it follows that for

v 2 C1
0

2��	�"

Z
R3nB�

v2���1
��1 dx �

Z
R3nB�

v2���� dx

¼ �2

Z
R3nB�

v � rð Þv � r��� dx þ
Z
@B�

v2r��� � n dS

� ��	�"

Z
R3nB�

v2���1
��1 dx þ

1

��	�"

Z
R3nB�

rvj j2 r���
			 			2���þ1

��þ1 dx

þ
Z
@B�

v2 r��� � n dS:

Hence, because the surface integral is a value of the order Oð�2Þ, we have:

��	�"

Z
R3

v2���1
��1 dx �

1

��	�"

Z
R3

rvj j2 r���
			 			2���þ1

��þ1 dx: ð2.12Þ

By means of the Cauchy-Schwarz inequality and from Proposition 2.2 with R0 �
j��1 � ð2"Þ�1j=ð�� 1Þ we finally get (2.11). �

We will need some technical lemmas. Let us define F�;�ðs; rÞ by the relation:

F�;� s; rð Þ � ���1
��1 
 �� r���

			 			2=��� � k @1 �
�
� : ð2.13Þ

The following lemma gives the evaluation of F�;�ðs; rÞ from below.

LEMMA 2.5. Let 0 � � < �, � > 1, 0 < " � ð1=ð2�ÞÞ�ðk=�Þ�ðð� � �Þ=�2Þ and
�; �, k > 0. Then
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F�;� s; rð Þ � 1� ��1
� �

k�" � � �ð Þs � ���k 1þ �k�1��
� �

ð2.14Þ

for all r > 0 and s 2 ½0; 2r�.

PROOF. Expressing the function F�;�ðs; rÞ explicitly we get:

F�;� s; rð Þ ¼ ���2�2
1þ "s

1þ �r

� �
� 2����"

s

r
� 2��2"2

1þ �r

1þ "s

� �
s

r

� k�� 1þ "sð Þ
r� s

r
þ k�" 1þ �rð Þ s

r
:

For convenient use we subtract ð1� ��1Þk�"ð� � �Þs from F�;�ðs; rÞ. We observe

(see Appendix A) that, for the given �, �, ", �, for all �, �, k > 0 and for r > 0,

F�;�ðs; rÞ � ð1� ��1Þk�"ð� � �Þs � F�;�ð0; rÞ, which immediately gives inequality

(2.14). �

3. Uniqueness in R3.

In this section, we will start with the question about the unique weak

solvability of the problem (1.1)–(1.3) in � ¼ R3. The presented approach will be

also used in the next section, in the proof of existence of a solution verifying

solenoidality of the constructed function u.

THEOREM 3.1 (Uniqueness in R3). Let fu; pg be a distributional solution of

the problem (1.1)–(1.3) with f ¼ 0, g ¼ 0 such that u 2cH 1;2
0 and p 2 L2

loc. Then

u ¼ 0 and p ¼ const.

PROOF. From the condition u 2cH 1;2
0 we get ru 2 L2, u 2 L6, u 2 S 0.

Because divðð!� xÞ � ru � !� uÞ ¼ ð!� xÞ � rdivu ¼ 0, we have 4p ¼ 0.

Hence, applying Laplacian and the Fourier transform we get

4 ���u þ k @1u � !� xð Þ � ru þ !� uð Þ ¼ 0;

	j j2 � j	j2bu þ i k 	1bu � ð!� 	Þ � r	bu þ !� bu� �
¼ 0 in S 0:

Assuming the equation in cylindrical coordinates ð	1; �; ’Þ, and denoting

T ð’Þ bv ¼ buð	1; �; ’Þ, where
T ’ð Þ ¼

1; 0; 0

0; cos ’ð Þ; � sin ’ð Þ
0; sin ’ð Þ; cos ’ð Þ

264
375;
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we get

	j j2 �@’bv þ ½ð�=e!Þj	j2 þ iðk=e!Þ	1�bvn o
¼ 0 in S 0: ð3.15Þ

We will show that from this equation it follows that supp bv � f0g, and due to the

definition of bv we will have also supp bu � f0g. This means that u is a polynomial

of x1, x2, x3. Because u 2 L6 we get u ¼ 0. Substituting into (1.1) we get rp ¼ 0

and p ¼ const.

So, we have to prove that for an arbitrary real vector function � 2
C1

0 ðR3 n f0gÞ defined for ½	1; 	2; 	3� 2 R3 we have hbv;�i ¼ 0. If for each � 2
C1

0 ðR3 n f0gÞ there is a function � 2 C1
0 ðR3 n f0gÞ such that

@’ j	j2�
� �

þ ð�=e!Þj	j2 þ i ðk=e!Þ	1h i
j	j2�
� �

¼ � ð3.16Þ

then from (3.15) it follows:

0 ¼ j	j2f�@’bv þ ½ð�=e!Þj	j2 þ i ðk=e!Þ	1�bvg; �D E
¼ bv; @’ðj	j2�Þ þ ½ð�=e!Þj	j2 þ i ðk=e!Þ	1�ðj	j2�ÞD E

¼ bv; �h i:

Hence, the proof of supp bv � f0g is reduced to the solvability of (3.16). First we

note that it is sufficient to solve the equation

@’
 þ ð�=e!Þ j	j2 þ i ðk=e!Þ 	1� �

 ¼ � ð3.17Þ

because the division on the expression j	j2 defines the one-to-one correspondence

of the space C1
0 ðR3 n f0gÞ onto C1

0 ðR3 n f0gÞ.
Let us analyze the equation (3.17) in cylindrical coordinates ½	1; �; ’�, where

� ¼ ð	22 þ 	23Þ
1=2. For an arbitrary real vector function � 2 C1

0 ðR3 n f0gÞ defined
for ½	1; 	2; 	3� 2 R3 we define fðtÞ :¼ �ð	1; � cos t; � sin tÞ, a :¼ ð�=e!Þj	j2 þ
iðk=e!Þ	1, assuming e! > 0.

Now, we will use the following technical proposition about the existence of a

solution of an ordinary differential equation in a space of periodical functions (and

later also in the proof of existence of a solution of the problem for checking

solenoidality of a constructed solution, see the proof of Theorem 4.4):

PROPOSITION 3.2. Let a 2 C , Re a > 0. Let f 2 C1ðRÞ be a 2�-periodical

complex function. Then there is unique 2�-periodical solution g 2 C1ðRÞ of the

equation
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g0 þ a g ¼ f

and the solution g can be expressed in the following form:

g ’ð Þ ¼ e2�a � 1
� ��1

Z 2�

0

eatf ’þ tð Þ dt ¼ e�a’
Z ’

�1
eatf tð Þ dt:

Proof of the proposition follows from standard computations.

Using the Proposition 3.2 we get the solution of (3.17) in the form


 	1; �; ’ð Þ ¼ exp 2�
�e! 	j j2 þ i

ke!
� �� �

� 1

� ��1

�
Z 2�

0

exp
�e! 	j j2 þ i

ke! 	1
� �

t

� �
� 	1; � cos tþ ’ð Þ; � sin tþ ’ð Þð Þ dt:

It is easy to see that function 
 as the function of ½	1; 	2; 	3� is infinitely

differentiable with respect to these variables and 
 2 C1
0 ðR3 n f0gÞ. Finally we

put � ¼ 
=j	j2. �

4. Existence of a solution in R3.

In this section we will construct a weak solution of the problem (1.1)–(1.3).

4.1. Existence of the pressure in R3.

If there exist distributions u; p satisfying

���u þ k @1u � !� xð Þ � ru þ !� u þrp ¼ f in R3

divu ¼ g in R3

then pressure p satisfies the equation

4 p ¼ divF; where F ¼ f þ �rg� kg e1 þ gð!� xÞ; ð4.18Þ

because divðð!� xÞ � ru � !� uÞ ¼ ð!� xÞ � rdivu ¼ div½gð!� xÞ�.
Let E be the fundamental solution of the Laplace equation, i.e. E ¼ �1=ð4�rÞ.

Assuming firstly F 2 C1
0 we have p ¼ E ? divF and rp ¼ rE ? divF and so,

p ¼ rE ? F and rp ¼ r2E ? F. It is well known that both formulas can be

extended for F 2 L2
�þ1; � with 0 < � < 1 and �2 < �þ � < 2 (the last convolution

rp ¼ r2E ? F due to the fact that r2E is the singular kernel of the Calderon-

Zygmund type and that ��þ1
� belongs to the Muckenhoupt class of weights A2), see

[2, Theorem 3.2, Theorem 5.5], [26, Theorem 4.4, Theorem 5.4], where the
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theorems are formulated for the pressure part P of the fundamental solution of

the classical Oseen problem, so P ¼ rE and rP ¼ r2E . For F 2 L2
�þ1;� we get

p 2 L2
�;��1 and rp 2 L2

�þ1;�, and there are positive constants C1; C2 such that the

following estimates are satisfied:

pk k2;�;��1 � C1 Fk k2;�þ1;�; rpk k2;�þ1;� � C2 Fk k2;�þ1;� ð4.19Þ

REMARK. Another possibility of construction of the pressure is the use of

Hörmander-Michlin multiplier theorem. Both techniques can be used in L2- as

well as in Lq-framework to get an estimate of rp.

4.2. The problem in BR.

We will study in this section the existence of a weak solution of the following

problem in a bounded domain BR, pressure p is assumed here to be known, the

right hand side f �rp ¼ ef 2 L2
�þ1;�:

���u þ k @1u � !� xð Þ � ru þ !� u ¼ ef in BR ð4.20Þ
u ¼ 0 on @BR: ð4.21Þ

We show the existence of a weak solution uR 2 H
�

1ðBRÞ. Following (1.5), (1.6)

again with w ¼ �0�0 , �0 2 ð0; 1�, using notation (2.13), let us introduce a continuous

bilinear form eQð�; �Þ on H
�

1ðBRÞ �H
�

1ðBRÞ:

eQ u; vð Þ ¼ �

Z
BR

ru : r v � �0�0
� �

dx þ k

Z
BR

@1u � v�0�0

� �
dx

þ
Z
BR

!� xð Þ � ru v�0�0

� �
dx þ

Z
BR

!� uð Þ � v�0�0

� �
dx;

eQ v; vð Þ � 2�1�

Z
BR

rvj j2�0�0 dx þ 2�1

Z
BR

v2F0;�0 s; r; �ð Þ��1
�0�1 dx: ð4.22Þ

LEMMA 4.1. Let 0 < �0 � 1. Then, for all ef 2 L2
1;�0

ðBRÞ, "0 < ð1=2Þ � ðk=�Þ �
ð1=�0Þ, ���0 
 ��;"0�0;"0

, there exists unique uR 2 H
�

1ðBRÞ such that for all v 2 H
�

1ðBRÞ.

eQ uR; vð Þ ¼
Z
BR

ef � v�0�0 dx: ð4.23Þ

PROOF. Bilinear form eQ is coercive, i.e. there exists a constant CR > 0 such

that eQðv; vÞ � CR kvk2, where k � k is the norm in the space H
�

1ðBRÞ. Indeed, we
get
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eQ v; vð Þ �
�

2

Z
BR

rvj j2�0�0 dx þ
1

2

Z
BR

v2F0;�0ðs; rÞ ��1
�0�1 dx

Because "0 < ð1=2Þ � ðk=�Þ � ð1=�0Þ there is a constant � satisfying all previous

conditions and additionally "0 � ð1=2�Þ � ðk=�Þ � ð1=�0Þ. Because � ¼ 0 we get from

Lemma 2.5 Z
BR

v2F0;�0ðs; rÞ ��1
�0�1 dx � 1� ��1

� �
k"20�0

Z
BR

v2��1
�0�1s dx;

eQ v; vð Þ �
�

2

Z
BR

rvj j2�0�0 dx þ
1

2
1� 1

�

� �
k"0�0

Z
BR

v2��1
�0�1 "0sð Þ dx:

Using Lemma 2.3 and Remark 2.4 we derive:

eQ v; vð Þ �
�

4

Z
BR

rvj j2�0�0 dx þ
�

16
"20�

2
0

Z
BR

v2��1
�0�1 dx

þ 1

2
1� 1

�

� �
k"0�0

Z
BR

v2��1
�0�1 "0sð Þ dx

� 1�
1

�

� �
�

4
min 1;

1

4
"20�

2
0 ; 2

k

�
�0"0

� �
�
Z
BR

rvj j2�0�0 dx þ
Z
BR

v2��1
�0
dx

� �
ð4.24Þ

eQ v; vð Þ � CR

Z
BR

rvj j2 dx þ
Z
BR

v2 dx

� �
¼ CR vk k2; ð4.25Þ

where CR ¼ ð�=4Þ � ð1� ��1Þ �minf1; "20�20=4; 2ðk=�Þ�"0g � ð1þ "0RÞ. Using Lax-

Milgram theorem we get that there is uR 2 H
�

1ðBRÞ such that (4.23) is

satisfied. �

REMARK 4.2. An arbitrary function � 2 H
�

1ðBRÞ can be expressed in the

form � ¼ v �0�0 , where v 2 H
�

1ðBRÞ. Therefore for all � 2 H
�

1ðBRÞ

Q uR;�ð Þ ¼
Z
BR

ef �� dx; ð4.26Þ

where by the definition QðuR;�Þ 
 QðuR; v�0�0Þ 
 eQðuR; vÞ.
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4.3. Uniform estimates of uR in R3.

Our next aim is to prove that the weak solutions uR of (4.23) are uniformly

bounded in V�;� as R! þ1.

Let y1 be the unique real solution of the algebraic equation 4y3 þ 8y2 þ
5y� 1 ¼ 0. It is easy to verify that y1 2 ð0; 1Þ. We will explain later, why the

control of �=� by y1 is necessary.

LEMMA 4.3. Let 0 < � � 1, 0 � � < y1�, ef 2 L2
�þ1;�. Then, as R! þ1, the

weak solutions uR of (4.23) given by Lemma 4.1 are uniformly bounded in V�;�.

There is a constant c > 0, which does not depend on R such thatZ
R3

~u2
R�

��1
� dx þ

Z
R3

r ~uRj j2��� dx � c

Z
R3

ef			 			2��þ1
� dx ð4.27Þ

for all R greater than some R0 > 0, ~uR being extension by zero of uR on R3 nBR.

PROOF. First, we derive estimate of uR on a bounded subdomain BR0
� BR;

The choice of R0 will be given in the next part of the proof. Our aim is to get an

estimate with a constant not depending on R. Let us substitute v ¼ uR into

(4.23). Hence, we get from (4.24):

eQ uR;uRð Þ ¼
Z
BR

ef uR�0�0 dx � C1

Z
BR

ruRj j2�0�0 dx þ
Z
BR

u2
R�

�1
�0
dx

� �
;

with the constant C1 > 0 stated in (4.24). Let R0 be some fixed positive number

such that 0 < R0 < R. We getZ
BR0

ruRj j2��� dx þ
Z
BR0

u2
R�

��1
� dx � C2

Z
BR

ef			 			 uRj j��� dx; ð4.28Þ

where the constant C2 ¼ C�1
1 ð1þ "0 R0Þ�ð1þ "0 2R0Þj���0j depends on k, �, �, �,

�0, "0, R0, �, but does not depend on R.

Now, we are going to derive an estimate of uR on domain BR. Using the test

function � ¼ uR�
�
� ¼ uRð1þ �rÞ�ð1þ "sÞ� 2 H

�
1ðBRÞ in (4.26) we get after

integration by parts:

�

Z
BR

ruRj j2��� dx þ �

Z
BR

uR � ruRð Þ � r��� dx �
k

2

Z
BR

u2
R @1�

�
� dx

¼
Z
BR

efuR��� dx:
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So, we get for some � > 1:

�

2

Z
BR

ruRj j2��� dx þ
1

2

Z
BR

u2
RF�;�ðs; rÞ���1

��1 dx �
Z
BR

ef			 			 uRj j��� dx:

Let R0 � j��1 � ð2"Þ�1jð�� 1Þ�1. Using Lemma 2.5 (with 0 � � < �, " � ð1=ð2�ÞÞ
ðk=�Þðð� � �Þ=�2Þ) and Lemma 2.3 (with � < 2"), the second term in the previous

estimate can be evaluated from below:Z
BR

u2
R F�;�ðs; rÞÞ���1

��1 dx

� ���k 1þ
��

k
��

� �
2�

�"

�þ �

��	

� �2Z
BR0

R

ruRj j2��� dx

þ 1� ��1
� �

k�" � � �ð Þ
Z
BR0

R

u2
R�

��1
��1s dx � 2C4

Z
BR0

ruRj j2��� dx:

Denote C5 ¼ ��kð1þ ����=kÞð�=ð� "ÞÞðð�þ �Þ=ð��	ÞÞ2. It is clear that C5 �
�=ð2�2Þ < �=ð2�Þ if 1þ ����=k � � (i.e. � � ðk=�Þ � ðð�� 1ÞÞ=ð��Þ) and � �
ð1=ð2�4ÞÞ � ð�=kÞ � ðð� �	Þ=ð�þ �ÞÞ2". We have

�

2�

Z
BR

ruRj j2 ��� dx þ
1

2
1� 1

�

� �
k�" � � �ð Þ

Z
BR

u2
R�

��1
��1 s dx

� C6

Z
BR0

u2
R�

��1
��1 dx � C7

Z
BR0

ruRj j2��� dx �
Z
BR

ef			 			 uRj j��� dx:

We use now relation (4.28) in order to estimate the integrals computed on the

domain BR0
. Before using the mentioned inequality we should re-scale it with

respect to new values "; �, see Remark 1.1. The new constant in (4.28) after

rescaling we denote C0
2.

�

�

Z
BR

ruRj j2��� dx þ k�" � � �ð Þ
Z
BR

u2
R�

��1
��1s dx � C8

Z
BR

ef			 			 uRj j��� dx;

where C8 ¼ f1þ C0
2 maxðC6; C7Þg � 2 � ð1� ��1Þ�1. We use Lemma 2.3 and Re-

mark 2.4. So, if � < 2" and 1 < � � 2"=� þ �=ð2"Þ � 1 we get

�

2�

� �	� "

�� þ 2�"

� �2Z
BR

u2
R �

��1
��1 dx �

�

2�

Z
BR

ruRj j2��� dx;
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�

2�

Z
BR

ruRj j2��� dx þ
�

2�

� �	� "

�� þ 2�"

� �2Z
BR

u2
R�

��1
��1 dx

þ k�" � � �ð Þ
Z
BR

u2
R�

��1
��1s dx � C8

Z
BR

ef			 			 uRj j��� dx:

So we get Z
BR

ruRj j2��� dx þ 2

Z
BR

u2
R�

��1
��1 dx þ 2"

Z
BR

u2
R�

��1
��1s dx

¼
Z
BR

ruRj j2��� dx þ 2

Z
BR

u2
R�

��1
� dx � C10

Z
BR

ef			 			 uRj j��� dx;

C9 ¼ minð�=ð2�Þ; ð�=ð2�ÞÞ ð��	�"=ð�� þ 2�"ÞÞ2, k�ð� � �Þ=2Þ and C10 ¼ C8=C9.

We have also:Z
BR

ef			 			 uRj j��� dx �
t

2

Z
BR

u2
R�

��1
� dx þ

1

2t

Z
BR

ef			 			2��þ1
� dx

So, if we choose t ¼ 2 � C�1
10 then we get:Z

BR

ruRj j2��� dx þ
Z
BR

u2
R �

��1
� dx � c

Z
R3

ef			 			2��þ1
� dx:

It can be easily shown that the all conditions on �, �, �, ", � used in the proof are

compatible if 0 � � < y1�, see Appendix B. �

4.4. The problem in R3.

Let y1 be the same as in Lemma 4.3.

THEOREM 4.4 (Existence and uniqueness in R3). Let 0 < � � 1, 0 � � <

y1�, f 2 L2
�þ1;�, g 2 H1

loc such that �rg� kg e1 þ gð!� xÞ 2 L2
�þ1;�. Then there

exists a unique weak solution fu; pg of the problem

���u þ k@1u � !� xð Þ � ru þ !� u þrp ¼ f in R3; ð4.29Þ
divu ¼ g in R3 ð4.30Þ

such that u 2 V�;�, p 2 L2
�;��1, rp 2 L2

�þ1;� and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C fk k2;�þ1;� þ �rg� kg e1 þ g !� xð Þk k2;�þ1;�

� �
: ð4.31Þ
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PROOF. The uniqueness of the solution follows from Theorem 3.1, and we

now justify the existence. Let p be the same as in Subsection 4.1. Let fRng be a

sequence of positive real numbers, converging to þ1. Let uRn
be the weak

solution of (4.20), (4.21) on BRn
. Extending uRn

by zero on R3 nBRn
to a function

~un 2 V�;� we get a bounded sequence f ~ung in V�;�. Thus, there is a subsequence

~unk of ~un with a weak limit u in V�;�. Obviously, u is a weak solution of (4.29)

and

uk k22;��1;� þ ruk k22;�;� � lim inf
k2N

Z
R3

~u2
nk
���1
� dx þ

Z
R3

r ~unkj j2��� dx
� �

� c ef			 			2 ��þ1
� dx ¼ c

Z
R3

f �rpj j2 ��þ1
� dx:

Taking into account also relation (4.19) we get (4.31).

Let us also check that for u the equation (4.30) is satisfied. Let us mention

that u 2 H 2
loc because f �rp 2 L2

�þ1;�. So, computing the divergence of (4.29), we

get

� �� divuð Þ þ k@1 divuð Þ � !� xð Þ � r divuð Þ ¼ div f �4p ð4.32Þ

in the distributional sense. From (4.18) we have

���� þ k@1� � !� xð Þ � r� ¼ 0

for � ¼ divu � g 2 L2
�;� � L2. Using Fourier transform we get

� j	j2 þ i k 	1

� �b� � !� 	ð Þ � r	b� ¼ 0 in S 0:

Assuming b� in cylindrical coordinates ½	1; �; ’�, � ¼ ð	22 þ 	23Þ
1=2, we can overwrite

the equation in the form:

�@’b� þ ð�=e!Þ j	j2 þ i ðk=e!Þ 	1h ib� ¼ 0:

Using the same approach as in the proof of the uniqueness Theorem 3.1 we

prove that supp b� � f0g. The proof of this fact is reduced to the solvability of the

equation (3.17) which was proved for arbitrary � 2 C1
0 ðR3 n f0gÞ in the proof of

Theorem 3.1. So, by the same procedure we derive that � is a polynomial in R3

and because � 2 L2 we get � 
 0, i.e. (4.30). �
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5. Uniqueness in an exterior domain � � R3.

The last two sections are devoted to the problem in an exterior domain. We

start with the question of uniqueness. The uniqueness theorem proved in this

section together with the uniqueness theorem in R3 from Section 3 will be used in

the next section in the proof of the existence of a solution in an exterior domain, in

the localization procedure. The homogenous Dirichlet boundary condition on @�

for u in the next theorem follows from the assumption u 2 V 0;0ð�Þ.

THEOREM 5.1. Let fu; pg be a distributional solution of the problem (1.1)–

(1.3) with f ¼ 0 and g ¼ 0 such that u 2 V 0;0ð�Þ and p 2 L2
�1;0ð�Þ. Then u ¼ 0

and p ¼ 0.

PROOF. Let � ¼ �ðzÞ 2 C1
0 ðh0;þ1ÞÞ be a non-increasing cut-off function

such that �ðzÞ 
 1 for z < 1=2 and �ðzÞ 
 0 for z > 1. Let j�0j � 3. Let

�R 
 �RðxÞ 
 �ðjxj=RÞ. We have jr�Rj � 3=R and j@1�Rj � 3=R for x 2 R3,

R=2 � jxj � R. Let fRjg 2 R be an increasing sequence of radii with the limit

þ1. So we have that uj 
 u � �Rj
2 H

�
1ð�Þ, and fujg is a sequence of functions

with limit u in the space V 0;0ð�Þ. Using the (non-solenoidal) test functions

’ ¼ u �2
Rj

¼ uj �Rj
2 H

�
1ð�Þ for equation (1.1) we get:

�

Z
�

ru : r u �2
Rj

� �
dx þ k

Z
�

@1u � u �2
Rj
dx

þ
Z
�

!� xð Þ � ru � u �2
Rj
dx þ

Z
�

rp � u �2
Rj
dx ¼ 0: ð5.33Þ

Using in (5.33) relation ru : rðu�2
Rj
Þ ¼ jrujj2 �r�Rj

� r�Rj
juj2, integrating

by parts, we get after some evident rearrangements

�

Z
�

ruj
		 		2 dx �

1

2

Z
�

div !� xð Þ uj
		 		2 dx

�
k

2

Z
�

uj j2 @1�2
Rj
dx �

1

2

Z
�

uj j2 !� xð Þ � r�2
Rj
dx

� �

Z
�

r�Rj

		 		2 uj j2 dx �
Z
�

pu � r �2
Rj

� �
dx ¼ 0:

�

Z
�

ruj
		 		2 dx � C

Z
�
Rj=2

Rj

uj j2r�1 dx þ
Z
�
Rj=2

Rj

pj j uj jr�1 dx

 !
:

u 2 L2
�1;0ð�Þ, p 2 L2

�1;0ð�Þ, pu 2 L1
�1;0ð�Þ. So, for j! 1 we get

R
� jruj2 dx � 0.

Hence, the function ru ¼ 0 a.e. in �, and this means u is a constant a.e. in �.
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From u 2 L2
�1;0ð�Þ it follows that u ¼ 0 a.e. in �. Using now an arbitrary test

function � for equation (1.1), we get
R
� rp � dx ¼ 0. So, the function rp ¼ 0 a.e.

in �, and this means p is a constant a.e. in �. From p 2 L2
�1;0ð�Þ it follows that

p ¼ 0 a.e. in �, and the uniqueness is proved. �

6. Existence of solution in exterior domains.

In this section we assume problem (1.1)–(1.4) in an exterior domain �. First

we assume the case of the homogenous Dirichlet boundary condition on @�.

6.1. Homogenous Dirichlet boundary conditions.

Function g is assumed to be zero, and f ¼ divF with F 2 C1
0 ð�Þ9. We will

prove that the problem has a weak solution fu; pg 2cH 1
0ð�Þ � L2

locð�Þ. So we

assume the following sequence of problems on domains �R ¼ BR \ �:

���uR þ k @1uR þ !� xð Þ � ruR � !� uR þrpR ¼ DivF in �R ð6.34Þ
divuR ¼ 0 in �R ð6.35Þ
uR ¼ 0 on @�R ð6.36Þ

Following Girault-Raviart [16], we formulate each problem in the following mixed

variational form: To find fuR; pRg 2 WR � �R, such that for all v 2 WR, � 2 �R:

a uR; vð Þ þ b v; pRð Þ ¼ DivF; vh i ð6.37Þ
b uR; �ð Þ ¼ 0; ð6.38Þ

where WR ¼cH 1
0ð�RÞ, �R ¼

n
� 2 L2ð�RÞ;

R
�R
� dx ¼ 0

o
with usual norms

k�kWR
¼ kr�k2, k�k�R

¼ k�k2, and

a �;  ð Þ ¼ �

Z
�R

r� � r dx þ k

Z
�R

@1� �  dx

þ
Z
�R

!� xð Þ � r�� !� �½ � �  dx

b �; �ð Þ ¼ �
Z
�R

� div�dx:

These bilinear forms are continuous on WR �WR and WR ��R, respectively. It

is easy to see that að�; �Þ � � k�k2WR
, and it is known that

sup
v2WR

�; div vð Þ
vj jWR

� C0 �k k�R
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for some C0 ¼ C0ðRÞ > 0. Hence, there exists a weak solution fuR; pRg of the

problem and kuRkWR
þ kpRk�R

� C1 kDivFk�1 for some C1 ¼ C1ðRÞ > 0. Testing

now (6.37) by v ¼ uR we get:

�

Z
�R

ruRj j2 dx ¼
Z
�R

DivFð Þ � uR dx ¼
Z
�R

F : ruR dx � Fk k2 ruRk k2

ruRk k2� ��1 Fk k2: ð6.39Þ

Since the a priori estimate (6.39) is available, where uR is understood as its

extension by setting zero in � n �R, there exists u 2cH 1
0ð�Þ and a sequence

fRng ! 1 so that uRn
* u weakly in cH 1

0ð�Þ as n! 1.

Let us show that divu ¼ 0 in L2ð�Þ. From the same inequality follows the

weak convergence of divuRn
in L2ð�Þ. From (6.38) we get divuRn


 Cn on �Rn
for

some real constant Cn depending on n. In spite of (6.39) we get that the weak limit

of divuRn
is zero in L2ð�Þ.

Finally, for all � 2 C1
0 ð�Þ with div� ¼ 0 we have from (6.37) after Rn ! 1

Lu �DivF; �h i ¼ 0;

Lu 
 ���u þ k @1u þ !� xð Þ � ru � !� u:

By a result of de Rham, there is a distribution p such that �rp ¼ Lu �DivF in

D 0ð�Þ. Because the right-hand side belongs to H�1ð�RÞ for every sufficiently large

R > 0 we have that p 2 L2ð�RÞ and so, p 2 L2
locð�Þ.

Now we use the following

LEMMA 6.1 (Kozono and Sohr [22, Lemma 2.2, Corollary 2.3]). Let � �
Rnðn � 2Þ be any domain and let 1 < q <1. For all g 2 bW�1;qð�Þ, there is

G 2 Lqð�Þn such that

divG ¼ g; kGkq;� � Ckgk�1;q;�

with some C > 0. As a result, the space fdivG; G 2 C1
0 ð�Þng is dense inbW�1;qð�Þ.

Hence, we get the existence of solution fu; pg 2cH 1
0ð�Þ � L2

locð�Þ for an arbitrary

function ef 2cH�1ð�Þ.
For the extension of Theorem 4.4 to the case of an exterior domain we use the

localization procedure, see [22]. Let now f 2 L2
�þ1;�ð�Þ. We define for an arbitrary

R > 0:
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fR ¼
f ; x 2 �R

0; x 2 � n �R.

�

It can be shown that fR belongs tocH�1ð�Þ \ L2
�þ1;�ð�Þ. By use of cut-off function

� we decompose the solution fu; pg of the problem (1.1)–(1.4) (with the

homogenous Dirichlet boundary condition) on the solution of a problem in R3 and

the solution of a Stokes problem in a bounded domain:

u¼ U þV where U ¼ ð1��Þu, V ¼ �u

p¼ 
þ � where 
 ¼ ð1��Þp, � ¼ �p;

where � 2 C1
0 , supp� �� B�1 such that � 
 1 on B�0 , 0 < �0 < �1 < � so that

R3 n � � B�0 . We get that fU ; 
g is a weak solution of the modified Oseen

problem in R3

��4U þ k @1U � !� xð Þ � rU þ !�U þr
 ¼ Z1 ð6.40Þ
divU ¼ �r� � u ð6.41Þ

and fV ; �g is weak solution of the Stokes problem in a bounded domain ��

��4V þr� ¼ Z2 in �� ð6.42Þ
divV ¼ r� � u in �� ð6.43Þ
V j@��

¼ 0 ð6.44Þ

where the right-hand sides are given by Z1 and Z2.

Z1 ¼ 2r� � ru þ u 4�� k@1�u þ r� � !� xð Þð Þu �r� p

þ 1��ð ÞfR;
Z2 ¼ �2r� � ru � u 4�þ k@1�u þ� !� xð Þ � ru � !� u½ �

þ r� pþ� fR:

Let us mention that Z1 2 L2
�þ1;�ð�Þ. To solve the Stokes problem on the bounded

domain we use the following lemma, see [22]:

LEMMA 6.2 (The Stokes problem on a bounded domain). Let � be a

bounded domain of Rn, n � 2, of class Cmþ2, m � 0. For any

f 2 Wm;q �ð Þ; g 2Wmþ1; q �ð Þ; v	 2 Wmþ2�1=q;q @�ð Þ;
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1 < q <1, with Z
@�

v	 � n dS ¼
Z
�

g dx; ð6.45Þ

there exists one and only one solution fV ; �g to the Stokes system

�4V þr� ¼ f in �

divV ¼ g in �

V ¼ v	 on @�

such that V 2 Wmþ2;qð�Þ, � 2Wmþ1;qð�Þ and

kVkmþ2; q þ k� � �kmþ1; q � c kfkm; q þ kv	kmþ2�1=q; q þ kgkmþ1;q

� �
; ð6.46Þ

where � ¼ j�j�1 R
� � dx and c ¼ cðm;n; q;�Þ.

Furthermore, for � of class C2, for every

f 2 W�1;q
0 �ð Þ; g 2 Lq �ð Þ; v	 2 W 1�1=q;q @�ð Þ;

1 < q <1, with (6.45) there exists one and only one q-generalized solution fV ; �g
to the Stokes system such that V 2 W 1;qð�Þ, � 2 Lqð�Þ and the estimate (6.46) is

valid with m ¼ �1.

From the results about the existence and uniqueness of solutions of the Oseen

problem in R3 (6.40), (6.41), i.e. from Theorem 4.4 and Theorem 3.1 it follows,

that a solution fU ; 
g is subject of the estimate (4.31), with f and g replaced by

Z1 and �r� � u, respectively. Using also the respective results in a bounded

domain for (6.42)–(6.44), see Lemma 6.2 with m ¼ 0 and bounded domain ��, we

get the following lemma for an exterior domain:

LEMMA 6.3. Let � � R3 be an exterior domain and 0 < � � 1, 0 � � < y1 �
�; y1 is given in Lemma 4.3. Then there exists a weak solution fu; pg of the problem
(1.1)–(1.3) with the homogenous Dirichlet boundary condition, f :¼ fR and g ¼ 0,

such that u 2 V�;�ð�Þ, p 2 L2
�;��1ð�Þ, rp 2 L2

�þ1;�ð�Þ and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C1 fRk k2;�þ1;� þ uk k1;2;A�
þ pk k0;2; ��

� �
; ð6.47Þ

where A� :¼ B� nB�=2, and constant C1 does not depend on R.
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Now, we would like to show that the preceding estimate is valid (with

another constant) also if we add to the left-hand side the L2-norm of second

gradient of u on some compact subset of �. Taking into account the assertion of

Lemma 6.2 for m ¼ 0, we get that u 2 W 2;2
locð�Þ, p 2W 1;2

loc ð�Þ. Multiplying the

relation (1.1)–(1.4) in an exterior domain � (with g ¼ 0 and the homogenous

Dirichlet boundary condition on @�) by �u and integrating over the compact set

K1 with A� � K1 � �, we get

k�uk2;K1
� C2 kuk2;K1

þ kruk2;K1
þ kpk2;K1

þ krpk2;K1
þ kfRk2;K1

� �
: ð6.48Þ

Using (6.47), (6.48) and the known relation

kr2uk2;K � c k�uk2;K1
þ kruk2;K1

� �
with A� � K � K1, we get

COROLLARY 6.4. In conditions of Lemma 6.3 the following estimate is valid

and constant C does not depend on R:

uk k2;��1;� þ ruk k2;�;� þ r2u


 



2;A�
þ pk k2;�;��1 þ rpk k2;�þ1;�

� C fRk k2;�þ1;� þ uk k1;2;A�
þ pk k0;2;��

� �
: ð6.49Þ

Now, we will prove that the estimate (6.49) is valid without the right-hand

side terms containing u and p with constant c which does not depend on R, i.e. we

will prove:

uk k2;��1;� þ ruk k2;�;� þ r2u


 



2;A�
þ pk k2;�;��1 þ rpk k2;�þ1;�

� c fRk k2;�þ1;� ð6.50Þ

Let us define the norms:

k v; qð Þkð1Þ :¼ kvk1;2;A�
þ kqk0;2;��

k v; qð Þkð2Þ :¼ kvk2;��1;� þ krvk2;�;� þ kr2vk2;A�

þ kqk2;�;��1 þ krqk2;�þ1;�:

For the corresponding Hilbert spaces H1, H2, we have H2 ,!,! H1. Let us assume

that the estimate (6.50) is not true. This means that there is a sequence of
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functions
n
f
ðkÞ
Rk

o1

k¼1
with Rk ! þ1, a sequence of corresponding solutions

fðuk; pkÞg1k¼1 and a sequence of constants fckg1k¼1 ! 1 such that:

1 
 kukk2;��1;� þ krukk2;�;� þ kr2ukk2;A�
þ kpkk2;�;��1 þ krpkk2;�þ1;�


 uk; pkð Þk kð2Þ � ck f
ðkÞ
Rk




 



2;�þ1;�

:

So we get
n

f
ðkÞ
Rk




 



2;�þ1;�

o
k
! 0. The sequence fðuk; pkÞg1k¼1 is bounded in the norm

k � kð2Þ, so there is a subsequence of this sequence (we will denote this subsequence

using the same notation) with the weak limit ðu; pÞ in the corresponding Hilbert

space H2. So, ðu; pÞ is a solution of the problem with the zero right-hand side. Due

to uniqueness given by Theorem 5.1 we conclude that kðu; pÞkð2Þ ¼ 0. Because

H2 ,!,! H1, we have kðu � uk; p� pkÞkð1Þ ! 0. From Corollary 6.4 we also get

k u � uk; p� pkð Þkð2Þ ! 0;

i.e. fðuk; pkÞg1k¼1 converges strongly in H2. Because kðuk; pkÞkð2Þ ¼ 1 for k 2 N , so

we also get kðu; pÞkð2Þ ¼ 1. This is the contradiction.

So, we proved the following

THEOREM 6.5. Let � � R3 be an exterior domain and 0 < � � 1, 0 � � <

y1 � �; y1 is given in Lemma 4.3, f 2 L2
�þ1;�ð�Þ. Then there exists a weak solution

fu; pg of the problem (1.1)–(1.3) with the homogenous Dirichlet boundary

condition on @�, g ¼ 0, such that u 2 V�;�ð�Þ, p 2 L2
�;��1ð�Þ, rp 2 L2

�þ1;�ð�Þ and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;� � C fk k2;�þ1;�:

REMARK 6.6. The used contradiction argument is based on a subtle choice

of the sequence
n
f
ðkÞ
Rk

o
k
with Rk ! þ1. We cannot construct a contradiction

separately for fR with fixed R because then the constant c in (6.50) may depend

on R.

6.2. Non-homogenous cases.

In this subsection we take into account the non-homogenous Dirichlet

boundary condition and the non-homogenous continuity equation.

We can prove the following extension of Theorem 6.5 for the case g 6¼ 0:

COROLLARY 6.7. Let � � R3 be an exterior domain and 0 < � � 1,

0 � � < y1 � �; y1 is given in Lemma 4.3, f 2 L2
�þ1;�ð�Þ, g 2W 1;2

0 ð�Þ, with supp g ¼
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K �� � and
R
� g dx ¼ 0. Then there exists a weak solution fu; pg of the problem

(1.1)–(1.3) with the homogenous boundary condition on @� such that u 2 V�;�ð�Þ,
p 2 L2

�;��1ð�Þ, rp 2 L2
�þ1;�ð�Þ and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;� � C fk k2;�þ1;� þ kgk1;2
� �

:

First of all let us recall the lemma which will be used for the extension of our

results to the case with nonzero divergence:

LEMMA 6.8 (M. E. Bogovski, G. P. Galdi, H. Sohr). Let � � Rn, n � 2, be a

bounded Lipschitz domain, and 1 < q <1, n 2 N . Then for each g 2Wk;q
0 ð�Þ withR

� g dx ¼ 0, there exists G 2
�
Wkþ1;q

0 ð�Þ
�n

satisfying

divG ¼ g; Gk kðWkþ1;q
0

ð�ÞÞn � C gk kWk;q
0

�ð Þ

with some constant C ¼ Cðq; k;�Þ > 0.

For the proof and further references see e.g. [31, Lemma 2.3.1].

PROOF OF COROLLARY 6.7. Using Lemma 6.8 we find G 2 W 2;2
0 ð�Þ,

suppG � K , where K is a bounded Lipschitz domain being contained in

"-neighbourhood K " of compact set K for an arbitrary " > 0, divG ¼ g,

kGk2;2 � Ckgk1;2. We choose " such that K " � �. Let us assume the following

problem

���U þ k @1U � !� xð Þ � rU þ !�U þrp ¼ F in �

divU ¼ 0 in �

with the homogenous Dirichlet boundary condition for U , where U ¼ u �G,

F ¼ f þ ��G � k @1G þ ð!� xÞ � rG � !�G. The assertion of Corollary 6.7

follows from Theorem 6.5. �

Now we justify our third main theorem.

THEOREM 6.9. Let � � R3 be an exterior domain and 0 < � � 1,

0 � � < y1 � �; y1 is given in Lemma 4.3, f 2 L2
�þ1;�ð�Þ, g 2W 1;2

0 ð�Þ, with supp g ¼
K �� � and

R
� g dx ¼ 0. Then there exists a weak solution fu; pg of the problem

(1.1)–(1.4) such that u 2 V�;�ð�Þ, p 2 L2
�;��1ð�Þ, rp 2 L2

�þ1;�ð�Þ and
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uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C fk k2;�þ1;� þ kgk1;2 þ !2 þ ! þ k2 þ k
� �

:

PROOF. Let � > 0 be such that R3 nB�=2 � �. Let � ¼ �ðzÞ 2 C1
0 ðh0;þ1ÞÞ

be a non-increasing cut-off function such that �ðzÞ 
 1 for z < 1=2 and �ðzÞ 
 0

for z > 1. Let j�0j � 3. Let �� 
 ��ðxÞ 
 �ðjxj=�Þ. We have jr��j � 3=� and

j@1��j � 3=� for x 2 R3, �=2 � jxj � �. Let us define eu ¼ u � ½ð!� xÞ � ke1� �
��ðxÞ. Then function ðeu; pÞ satisfies to (1.1)–(1.3) with the homogenous Dirichlet

boundary condition, where f 2 L2
�þ1;�ð�Þ is replaced by some another functionef 2 L2

�þ1;�ð�Þ, and g by another function eg 2 C1
0 ð�Þ with supp eg ¼ K [ A�,

A� :¼ B� nB�=2 �� � and Z
�

eg dx ¼ 0:

So, using now Corollary 6.7 we get the assertion of Theorem 6.9. �

Appendix A.

Relation (2.14) follows from an estimate of the derivative of F1:

@

@s
F1 s; rð Þ 


@

@s
F�;� s; rð Þ � 1� ��1

� �
k�" � � �ð Þs


 �
¼ ���2�2"

1

1þ �r
� 2����"

1

r
� 2��2"2

1þ �r

r

1

1þ "sð Þ2

� k��"þ k��
1

r
1þ 2"sð Þ þ k�" 1þ �rð Þ 1

r

� 1� ��1
� �

k�" � � �ð Þ

� �"
n
r�1 k �="þ �=�ð Þ � ��2 � 2��� � 2��2"=�
� �

þ �2��2"þ k � � �ð Þ=�
� �o

� 0:

The last inequality follows from the fact that we have k�=" � � �2 þ 2 � ��,

k�=� � 2 � �2"=�, kð� � �Þ=� � 2��2" if " � ð1=ð2�ÞÞðk=�Þðð� � �Þ=�2Þ. Hence, if

the last inequality (which is included in the conditions of Lemma 2.5) is satisfied

then ð@=@sÞF1ðs; rÞ � 0. So, we get immediately:

F1 s; rð Þ � F1 0; rð Þ 
 �k�� � ��2�2 1þ �rð Þ�1� ���k 1þ �k�1��
� �

:
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Appendix B.

Let us show that all conditions on �, �, �, ", � used in the proof of Lemma 4.3

are compatible if 0 < � � 1, 0 � � < y1�. Let us collect these assumptions:

0 < � < 2", 1 < � � 2"=� þ �=ð2"Þ � 1, 0 � � < �, " � ð1=ð2�2ÞÞ � ðk=�Þ � ðð� � �Þ=
�2Þ, � � ðk=�Þ � ð�� 1Þ=ð��Þ, � � ð1=ð2�4ÞÞ � ðk=�Þ � ð� �	=ð�þ �ÞÞ2".

From � � ð1=ð2�4ÞÞ � ðk=�Þ � ð� �	=ð�þ �ÞÞ2", and " � ð1=ð2�2ÞÞ � ðk=�Þ �
ðð� � �Þ=�2Þ we get � � ð1=ð4�6ÞÞ � ð�	Þ2ð� � �Þ=ð�þ �Þ2. So we get (� > 1,

� � 1): �=� � ð1=ð4�6ÞÞð1� �=�Þ=ð1þ �=�Þ2. By substitution y ¼ �=� we get the

inequality

4y3 þ 8y2 þ 4yþ ��6 � ðy� 1Þ � 0: ð6.51Þ

Taking into account the condition 0 � � < � we seek for solutions from ½0; 1Þ.
It is clear that the equation 4y3 þ 8y2 þ yþ ��6ðy� 1Þ ¼ 0 has a unique real

solution y� 2 ð0; 1Þ for � > 1. It is also clear that arbitrary y 2 ½0; y�Þ solves (6.51).
The value y� as a function of � is decreasing. For �! 1 we get the inequality

4y3 þ 8y2 þ 5y� 1 � 0. This respective equation has a unique solution

y1 ¼ ð
ffiffiffiffiffi
13

p
=ð6

ffiffiffi
6

p
Þ þ 53=216Þ1=3 þ ð1=30Þð

ffiffiffiffiffi
13

p
=ð6

ffiffiffi
6

p
Þ þ 53=216Þ�1=3. Approximate-

ly, with an error less than 10�8 we have y1 ¼: 0:1582981, (y1 > 1=7). If 0 � � < y1�

then there is � > 1 sufficiently close to number 1, such that 0 � � � y��, so the

relation � � ð1=ð4�6ÞÞ � ð�	Þ2ð� � �Þ=ð�þ �Þ2 is satisfied. Then we can define

" ¼ 1=ð2�2Þ � ðk=�Þ � ðð� � �Þ=ð�2ÞÞ. The relation " � ð1=ð2�ÞÞ � ðk=�Þ � ð1=�Þ is

satisfied. Then we take sufficiently small � > 0 such that 0 < � < 2" and

1 < � � 2"=� þ �=ð2"Þ � 1. Hence, all conditions which we assume in the proof

of Lemma 4.3 are satisfied.
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