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Abstract. In this paper we deduce weak type extension theorems for the
groups of measure-preserving homeomorphisms of noncompact manifolds. As an
application, we show that the group of measure-preserving homeomorphisms with
compact support of a noncompact connected manifold, endowed with the
Whitney topology, is locally contractible.

1. Introduction.

In this paper we study some topological properties of groups of measure-
preserving homeomorphisms and spaces of measure-preserving embeddings in
noncompact manifolds (cf. [4], [5], [8], [11], [12]). Suppose M is a o-compact
topological n-manifold possibly with boundary and U is an open subset of M. Let
& (U, M) denote the space of proper embeddings of U into M endowed with the
compact-open topology. The local deformation lemma for & (U, M) [6], [7] asserts
that for any compact subset C' of U and any compact neighborhood K of C in U
there exists a deformation ¢; (t € [0,1]) of an open neighborhood ¥ of the
inclusion map iy : U C M in &(U, M) such that ¢o(f) = f, ©1(f)|c =ic and
(N = fly_x (¢ €]0,1]) for each f & ¥. For a subset A of M let I 4(M)
denote the group of homeomorphisms h of M with h|, =id4 endowed with the
compact-open topology. The local deformation lemma is equivalent to the
following weak type extension theorem: for any compact neighborhood L of C'in U
there exists a neighborhood ¥ of iy in & (U, M) and a homotopy s;: % —
JCv—1,(M) such that so(f) =1idy and s1(f)|o = fle (f € %).

This result motivates the following general formulation: Suppose G is a
topological group acting on M with the unit element e. Consider the subspace of
& (U, M) defined by &%(U, M) ={gl, | g€ G}, where § denotes the homeo-
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morphism on M induced by g € G. The weak extension theorem for the group
action of G on M asserts that there exists a neighborhood % of iy in &9 (U, M)
and a homotopy s; :  — G such that so(f) = e and 51( Hle=Ffle (f € %).

Suppose p is a good Radon measure on M with p(0M) = 0. Let #(M; i) and
H(M; p-reg) denote the subgroups of (M) consisting of u-preserving homeo-
morphisms and p-biregular homeomorphisms of M and let & (U, M; u-reg) denote
the subspace of & (U, M) consisting of u-biregular proper embeddings of U into
M. In [8] A. Fathi obtained a local deformation lemma for the space
&*(U, M; p-reg) ([8, Theorem 4.1]). This is reformulated as the weak extension
theorem for the group 42 (M; p-reg) ([8, Corollary 4.2]). In the case M is compact
and connected, he also obtained a selection theorem for p-biregular measures on
M ([8, Theorem 3.3]) and used these results to deduce the weak extension
theorem for the group J(M;u) ([8, Theorem 4.12]).

In this paper we are concerned with the case where M is non-compact. In [4]
R. Berlanga has already extended the selection theorem for p-biregular measures
to the non-compact case ([4, Theorem 4.1]). We combine these results to obtain
the weak extension theorem for the group 2 (M;u) (cf. Corollary 5.1).

THEOREM 1.1.  Suppose M is an n-manifold, i is a good Radon measure on
M with p(OM) = 0, C is a compact subset of M, U is an open neighborhood of C in
M. Then there exists a neighborhood % of iy in @”’%(MM(U, M) and a homotopy
$:U x[0,1] — H(M;p) such that
(1) for each f € U
(1) so(f) =idar, (1) s1(N)le = fle, (i) if f=1id on UNOM, then
si(f) =1id on OM (t € [0,1]),
(2) seliv) =idy (¢ € [0,1]).

In comparison with topological or u-biregular homeomorphisms, “u-preserv-
ing homeomorphism” is a global property and we can not obtain a compactly
supported weak extension theorem for the group S#(M;u). This obstruction
vanishes on the kernel of the end charge homomorphism c*.

n [2] S. R. Alpern and V. S. Prasad introduced the end charge homo-
morphism ¢, which is a continuous homomorphism defined on the subgroup
g, (M; 1) of p-preserving homeomorphisms of M which fix the ends of M. The
kernel of ¢, kerc#, includes the subgroup 4.(M;u) of u-preserving homeo-
morphisms of M with compact support. If h € #g,, (M, E; 1) and ¢'(h) = 0, then
one can split moves of p-volume by h. Hence, we can obtain the compactly
supported weak extension theorem for the subgroup ker ¢* (cf. Theorem 5.2).

THEOREM 1.2.  Suppose M is a connected n-manifold, u is a good Radon
measure on M with p(OM) = 0, C is a compact subset of M and U and V are open
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neighborhoods of C in M such that VNO is connected for each connected
component O of M — C. Then there exists a neighborhood % of iy in & (U, M)
and a homotopy s : U x [0,1] — Hrn—v..(M; ) such that
(1) for each f e U
(1) so(f) =idar, (1) s1(N)le = fle, (i) if f=1id on UNIM, then
si(f) = id on OM (¢ € [0,1),
(2) sili) = idy (t € 0,1]).

We also discuss a non-ambient deformation lemma for p-preserving embed-
dings (Theorem 5.3).

In the last section we study the group J2.(M; p),, endowed with the Whitney
topology (cf. [3]). It is known that the group J#(N) and the subgroup J#(N;v)
are locally contractible for any compact n-manifold N and any good Radon
measure v on N with v(ON) =0 ([7, Corollary 1.1], [8, Theorem 4.4]). In [3] it is
shown that the group 4¢.(M),, consisting of homeomorphisms of M with compact
support, endowed with the Whitney topology, is locally contractible. In this
article, as an application of the weak extension theorem for 42 .(M;u), we show
that the group J.(M;p), is also locally contractible for any connected
n-manifold M (Theorem 6.1).

This paper is organized as follows. Section 2 is devoted to the general
formulations and basic properties of local weak extension property and local weak
section property for group actions. Section 3 contains fundamental facts related
to Radon measures on manifolds (selection theorems for measures, end charge
homomorphism, etc.). In Section 4 we recall the local deformation lemma for
biregular embeddings and discuss some direct consequences of this lemma. In
Section 5 we obtain the weak extension theorems for the groups 42 (M; ), ker ¢*
and J.(M;p) and a non-ambient deformation lemma for p-preserving embed-
dings. In Section 6 we recall basic facts on the Whitney topology and show that
the group J.(M; p),, is locally contractible for any connected n-manifold M.

2. Fundamental facts on group actions.

2.1. Conventions.

For a topological space X and a subset A of X, the symbols Intx A, cly A and
Frx A denote the topological interior, closure and frontier of A in X. Let €(X)
denote the collection of all connected components of X.

Suppose Y is a locally connected, locally compact Hausdorff space. Let 5#(Y)
denote the group of homeomorphisms of Y endowed with the compact-open
topology. For a subset A of Y, let J4(Y) ={h € H(Y) | h|, =ida} (with the
subspace topology). The group #2(Y) and the subgroup 52 4(Y") are topological
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groups. In general, for any topological group G, the symbols Gy and G denote the
connected component and the path-component of the unit element e in G.

For subspaces A C X of Y let &(X,Y) denote the space of embeddings f :
X—Y endowed with the compact-open topology, and let &4(X,Y)={f¢€
E(X,Y) | fl4 =1da} (with the subspace topology). By ix : X C Y we denote the
inclusion map of X into Y.

In this article, an n-manifold means a paracompact o-compact (separable
metrizable) topological n-manifold possibly with boundary. Suppose M is an
n-manifold. The symbols M and Int M denote the boundary and interior of M as
a manifold. For a subspace X of M, an embedding f : X — M is said to be proper
if f~Y(OM)=XnNOM. Let & (X, M) denote the subspace of &(X, M) consisting
of proper embeddings f:X — M. For a subset A of X let &4(X,M)=
E (X, M)N&E4(X, M).

By an n-submanifold of M we mean a closed subset NV of M such that NV is an
n-manifold and Fry/N is locally flat in M and transverse to M so that (i) M —
Inty N is an n-manifold and (ii) Fry N and N N 9M are (n — 1)-manifolds with the
common boundary (Frp;N) N (N NOM). For simplicity, let 9, N = FryyN, _N =
NNOM and N¢= M —Inty;N. More generally, for a subset U of M let
0_-U=UnNoaoM.

Suppose M is an n-manifold.

LEMMA 2.1 ([1, Theorem 0], cf. [9]). Suppose C is a compact subset of M
and U is a neighborhood of C in M. Then there exists a compact n-submanifold N
of M such that C C IntyyN and N C U.

LEMMA 2.2.
(1) If M is connected and L is an n-submanifold of M such that 0+L is
compact, then there exists a connected n-submanifold N of M such that

L C Intyy N and N N L° is compact.

(2) Suppose C is a compact subset of M.

(i) For any neighborhood U of C in M there exists a compact n-
submanifold N of M such that C C IntyyN, NCU and O— N is
connected for each O € €(M — C).

(ii) If U is an open neighborhood of C in M such that U N O is connected
for each O € €(M — C), then there exists a compact n-submanifold N
of M such that C C IntyyN, N C U and N NO is connected for each
0Oe¥(M-C).

PROOF.
(1) Since M is connected and 0, L is compact, € (L) is a finite collection. Since
M is connected, there exists a finite collection of disjoint arcs {a;}; in L® such that
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LU (U, «;) is connected. We apply Lemma 2.1 to C'=0;LU(|J; ;) in the
n-manifold L¢ in order to find a compact n-submanifold Ny of L¢ such that C' C
Intz. Ny and each K € €(Ny) meets C. Then N = LU Ny satisfies the required
conditions.

(2) (i) We may assume that M is connected (apply the connected case to each
component of M). By Lemma 2.1 there exists a compact n-submanifold Ny of M
such that C C IntyyN; and N; CU. Let € ={0 € €M —C) | O ¢ N;}. Since
% (NY) is a finite collection, so is E.

For each O € €, it is seen that O is a connected n-manifold, Ny N O is an
n-submanifold of O, (NfN0)" = N;NO in O and Fro(N N O) = (FryN1) N O is
compact (it is a union of components of Fry;N7). Thus, by (1) we can find a
connected n-submanifold Lo of O such that N*NO C IntoLo and Lo N (N; N O)
is compact. Note that Lo is closed in M so that it is also a connected
n-submanifold of M. Let L =|Jyey Lo. Then, N = L¢ satisfies the required
conditions. In fact, C C M — L=IntyN, N C N, ¢ ={0€6(M—-C)|O ¢ N}
and O — N = Inty, Lo for each O € €.

(ii) Since F(U -C)={0ONU| 0 e €(M — C)}, by replacing M by U, we
may assume that U = M. Again we may assume that M is connected. By Lemma
2.1 there exists a compact n-submanifold Ny of M such that C C IntyNV;.
Consider the finite collection € = {O € (M — C) | O ¢ N1}. For each O € G, it
is seen that O is a connected n-manifold, N; N O is an n-submanifold of O, (N N
0) = N{NO in O and Fro(N; N O) = (FryN1) N O is compact. Thus, by (1) we
can find a connected n-submanifold Ky of O such that Ny NO C IntpKp and
KoNn(NfNO) is compact. Then, N = N;U ([Jpey Ko) satisfies the required
conditions. In fact, {O € €(M —-C)|O¢ N} C% and NNO = Ky for each
0ec%. O

2.2. Pull-backs.
For maps B; 2. B E, we obtain the pull-back diagram in the category of
topological spaces and continuous maps:

/

p
p'E — FE
7 l T
Bl — B
p

Explicitly, the space p*FE and the maps By Lp*E 2, F are defined by
p'E={(bi,e) € B x E|p(b1) =n(e)} and 7'(bi,e) =bi, p'(bi,e) =e.
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Suppose a topological group G acts on spaces B and B; transitively. Let
p: By — B be a G-equivariant map. Fix a point b € By and let b = p(b;) € B and
let Gy be the stabilizer of b under the G-action on B. Consider the orbit map
7:G — B, w(g) =gb. Then the maps B; — B<—G induce the pull-back
diagram:

/

p
PG — G
7 | K
Bl i B
p

The group Gy acts freely on p*G on the right by (z,9) - h = (z,gh) ((z,9) € p*G,
h € Gyp). The induced map p’ : p*G — G admits a right inverse r : G — p*G, r(g) =
(gblag) (i~C~, p,T = ldg)

DEFINITION 2.1.  We say that the G-equivariant map p: By — B has the
local section property for G (LSP¢) at by if there exists a neighborhood U of by in
By and a map s; : Uy — G such that ws; = p|U1.

LEMMA 2.3.

(1) The map p has LSP¢ at by if and only if the induced map 7 : p*G — By is a
principal Gy-bundle.

(2) If the fiber p~1(b) is contractible, then the map p' : p*G — G is a homotopy
equivalence.

PROOF.

(1) Suppose the map p has LSP¢ at b;. Take any point by € B;. Since G acts
on B transitively, there exists a g€ G with by = gb;. Then U; = gU; is a
neighborhood of by in B; and the map sy : Uy — G, so(x) = gs1(g~ ') satisfies the
condition msy = ply, (i-e., wsa(x) = gsi1(g'x)b = g(p(g 'x)) = p(x)). The map ' :
p*G — B; admits a local trivialization

¢: Uy x Gy = (r)'(U) = | ({z} x 7 (p(2)))
zel,
over U; defined by  ¢(z,h) = (x, so(z)h).
The converse is obvious.

(2) It remains to show that 7p’ ~id,. There exists a contraction ¢, :
pL(b) — p~(b) (t €[0,1]) such that ¢1(p~1(b)) = {b1}. If (z,9) € p*G, then z €



Weak extension theorem for measure-preserving homeomorphisms 693

p~L(gb) = gp~(b). Thus, we can define a homotopy

®;:p'G — p'G  from idy to rp’ by  ®4(z,g) = (96:(g '), 9). O

2.3. Group actions and spaces of embeddings.

Suppose a topological group G acts continuously on a locally compact
Hausdorff space Y. Each g € G induces g € 77(Y) defined by §(y) =gy (y€Y).
Let H be any subset of G. For subsets A, B of Y we have the following subsets of
H:

Hyi={he€ H|h|,=ids}, H(B)=Hyyp, Ha(B)=HinH(B),
H.={h € H |supp his compact}.
If H is a subgroup of G, then these are subgroups of H.
For subsets X C C C U of Y, the group Gx(U) acts continuously on the space

Ex(C,U) by the left composition g- f =gf (g € Gx(U), f € Ex(C,U)) and we
have the following subspace of &x(C,U):

E8(C,U) = Hy(D)ic = {4l | g € Hx(U)} (with the compact-open topology).
Since £4(C,U) = &%(C,U), by replacing H by Hy if necessary, we omit X in the

subsequent statements.
Consider the pull-back diagram:

p
p'G — G
W’l l’]‘(’ where 7(g9) =gl and p(f) = fleo-
s4UY) — &%C,Y),
p

The group G acts on the spaces &°(U,Y) and &Y(C,Y) transitively. The
restriction map p is G-equivariant and has the fiber p~(i¢) = éag(U7 Y).

DEFINITION 2.2. We say that the pair (U, C) has the local section property
for G (LSPg) if the G-equivariant map p : &°(U,Y) — &%(C,Y) has LSP¢ at ip.

LEMMA 2.4.  The pair (U,C) has LSPq if and only if the map 7' : p*G —
éaG(U, Y) is a principal Go-bundle.

This lemma follows directly from Lemma 2.3 (1).
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LEMMA 2.5.  Suppose there exists a path h:[0,1] — G such that hy =e,
hi(U) C C and hy(U) C U, hy(C) C C (t € [0,1]). Then the following hold.
(1) The map p: cg’G(U, Y)— £’G(C’, Y) is a homotopy equivalence.
(2) There exists a strong deformation retraction x; (t € [0,1]) of £5(U,Y)
onto the singleton {iy}.
(3) The map p' : p*G — G is a homotopy equivalence.

PROOF.
(1) We can define a map p; : £°(C,Y) — &9(U,Y) by pi(f) :th1|U. It
follows that
(i) pip(f) = fl?l|U and a homotopy ¢, :id ~ p1p is defined by ¢;(f) =

f )y, and
(ii) ppi(f) = th1|C and a homotopy ¢ : id ~ ppy is defined by ¥ (f) =
f bl
(2) The contraction x; of &5(U,Y) is defined by xi(f) = hy " fhy|,.
(3) The assertion follows from (2) and Lemma 2.3 (2). O

Lemmas 2.4 and 2.5 yield the following consequence.

PROPOSITION 2.1.  If a subset C of Y satisfies the condition (x) below, then
the map

Go € G- 89C,Y)  defined by n(h) = hl

is a locally trivial bundle up to homotopy equivalences and hence has the exact
sequence for homotopy groups.

(%) There exists a subset U of Y such that (1) C C U, (ii) the pair (U,C) has
LSP¢, and (iii) there exists a path hy € G (t € [0,1]) such that

ho=e, m(U)=C, hU)CU, h(C)cC (tel1]).

2.4. Weak extension property.

Suppose a topological group G acts on an n-manifold M. Consider a pair
(H, F) of subsets of G and a triple (V,U, C) of subsets of M such that C cUNV
(we do not assume that F C H and U C V).

DEFINITION 2.3.  We say that the triple (V,U,C) has the weak extension
property for (H,F) (abbreviated as WEPy p or WEP(H, F)) if there exists a
neighborhood % of iy in &% (U, M) and a homotopy s : % x [0,1] — F(V) such
that
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(1) for cach f €% (i) so(f) = e, (ii) s1(fle = fle (iii) if f=id on 0_U,
then st(f) id on OM (t € [0,1]),

(2) si(iv) =e (t €[0,1]).

The map s : % — F(V) (t € [0,1]) is called the local weak extension map (LWE
map). When H = F', we simply say that (V,U,C) has WEPy. When V = U, we
say that the pair (U,C) has WEPy r. Note that WEP¢ for (U, C) implies LSP¢
for (U, C).

One of our interest is the following problem.

PROBLEM 2.1.  Given a class of triples (V,U,C) in Y and a subset F of G,
determine the largest subset H of G for which each triple (V, U, C) in this class has
WEP(H, F).

The next lemma easily follows from the definition.

LEMMA 2.6.  Suppose (V,U,C) and (V',U',C") are two triples of subsets in
M such that C CUNV and C' CU' NV’ and (H,F) and (H', F’) are two pairs of
subsets in G. If (i) (V,U,C) has WEP(H,F), i) VC V', U Cc U, C D C’ and (iii)
H>H, FCF, then (V,U',C") has WEP(H', ).

LEMMA 2.7.  Suppose F is a subgroup of G. If two triples (V1,U1,C1) and
(Va,Us, Cy) have WEP (H, F) and Vy NV, = 0, then the triple (Vi U Vs, Uy U Uy, C1 U
Cs) also has WEP(H, F).

PROOF. For i=1,2 let &% (U;, M) > %, —>F(V) be the associated LWE
map for (V;, U;, C;). Take a neighborhood % of iy,up, in &7 (Uy U Uy, M) such that
fly, €%;i (i=1,2) for each fe€%. Then the required LWE map s;:
U — F(Vl U Vé) for (‘/1 U VQ,U1 U UQ,Cl U CQ) is defined by

si(f) = s%(f|Ul)s%(f|U9) (the multiplication in G).

—

Note that stff\) = 5;(fly;) on Vi and sif\) =idon M — (V; UT,). O

3. Spaces of Radon measures and groups of measure-preserving
homeomorphisms.

3.1. Spaces of Radon measures.

Suppose Y is a locally connected, locally compact, o-compact (separable
metrizable) space. Let (Y) denote the o-algebra of Borel subsets of Y. A Radon
measureon Y is a measure y on the measurable space (Y, 4(Y)) such that u(K) <
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oo for any compact subset K of Y. Let .#(Y) denote the set of Radon measures on
Y. The weak topology w on .#(Y) is the weakest topology such that the function

O M(Y)— R : ,u»—>/deu

is continuous for any continuous function f:Y — R with compact support. The
set 4 (Y) is endowed with the weak topology w, otherwise specified.

For pe #(Y) and A € B(Y), the restriction pl, is the Radon measure on A
defined by (u],)(B) = u(B) (B € #(4)).

LEMMA 3.1 ([4, Lemma 2.2]). For any closed subset A of Y, the map
MY) — M(A) : p— |, is continuous at each p € A (Y) with p(FryrA) = 0.

We say that u € #(Y) is good if pu(p) = 0 for any point p € Y and p(U) > 0
for any nonempty open subset U of Y. For A € B(Y) let ///j(Y) denote the
subspace of .Z(Y) consisting of good Radon measures p on Y with pu(A4) = 0. For
w,v € M (Y), we say that v is p-biregular if v and p have same null sets (i.e.,
v(B) =0 if and only if x(B) =0 for any B € #(Y)). For p € ///?(Y) we set

Ay, _ A L ,
My (Y prreg) = {v € A (Y) | vis p-biregular} (with the weak topology).

For he (YY) and p € #(Y), the induced measures h.u, h*u € A (Y) are
defined by

(hep)(B) = u(h™'(B)) and (h"u)(B) = u(h(B)) (B € A(Y)).

The group J7(Y) acts continuously on the space #(Y) by h-p = h,u. We say
that h € (Y) is

(i) p-preserving if hop = p (ie., p(h(B)) = p(B) for any B € B(Y)) and
(ii) p-biregular if h.p and p have the same null sets (i.e., p(h(B)) = 0 if and
only if u(B) =0 for any B € #(Y)).

Let (Y;u) C S(Y; p-reg) denote the subgroups of J#(Y) consisting of
p-preserving and p-biregular homeomorphisms of Y respectively. For a subset
A of Y, the subgroups A (Y; ), Ha(Y;5 1), Hac(Y; 1), #A(Y; preg), ete. are
defined according to the conventions in Sections 2.1 and 2.3.

For spaces of embeddings, we use the following notations. Suppose Y is a
locally compact, o-compact (separable metrizable) space and p € #(Y). For any
X € A(Y), an embedding f: X — Y is said to be



Weak extension theorem for measure-preserving homeomorphisms 697

(i) Borelif f(X) € B(Y),
(ii) p-biregular provided f is Borel and p(f(B)) =0 if and only if u(B) =0
for any B € #(X),
(iii) p-preserving provided f is Borel and f: (X, uly) = (f(X), plyy)) 1s a
measure-preserving homeomorphism (i.e., u(f(B)) = u(B) for any B €
A(X))-
For a subset A of X, let &4(X,Y; u-reg) and &4(X,Y; 1) denote the subspaces of
E4(X,Y) consisting of p-biregular embeddings and p-preserving embeddings

respectively.
Suppose M is a compact connected n-manifold and p € ///3(1\4)(2 %gA'I(M)).

THEOREM 3.1 ([10]). Ifve ///2(M) and v(M) = u(M), then there exists
h € 7Hy(M), such that hop = v.

Let //lg(M, u)={ve ///f(M; preg) | v(M) = (M)} (with the weak top-
ology). (See Section 3.2 for the definition in the case where M is noncompact.)
The group S(M;p-reg) acts continuously on ///2(M; ) by h-v=hw. This
action induces the map

(M, p-reg) — ///;)(M;p) : h— hop.
THEOREM 3.2 ([8, Theorem 3.3]). The map 7 admits a section
o: l///;)(M; w) — Ho(M; p-reg), C J(M; p-reg)

such that (mo = id and) o(p) = idyy;.

Next we recall basic facts on the product of measures. Suppose (X, %, u) and
(Y,9,v) are o-finite measure spaces. Let .# x ¢ denote the g-algebra on X x Y
generated by the family {Ax B| Ae #,Be ¥}. For G€.% x ¥ and x € X, the
slice G, C Y is defined by G, = {y € Y | (z,y) € G}. It is well known that
(1) there exists a unique measure w on the measurable space (X X Y, .# x ¥)
such that w(A x B) = pu(A)-v(B) (A€ .Z,Be¥) (we follow the con-
vention 0 - oo = 0),

(2) forany G € ¥ x ¥
(i) ¥(G,) (z € X) is an .#-measurable function on X and

(i) (@) = [ 1(G.)du(a).

This result yields the following consequences on the product of Radon measures.
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PROPOSITION 3.1.  Suppose (X, u) and (Y,v) are locally compact separable
metrizable spaces with Radon measures. Then the following hold:
(0) BX)x BY)=B(X xY).
(1) There ezists a unique w € (X XY) such that w(A x B) = u(A) - v(B)
(Ae B(X),Be AB(Y)).
(2) Forany G € B(X xY)
(i) v(Gy) (z € X) is a B(X)-measurable function on X and

(i) w(G) = /XV(GI) du(x).

The measure w is called the product of p and v and denoted by u x v.

PROPOSITION 3.2.  Suppose f:(X,u) — (X1,11) and g:(Y,v) — (Yi,11)
are homeomorphisms between locally compact separable metrizable spaces with
Radon measures. Then the product homeomorphism fxg: (X xY, uxv)—
(X1 x Y1, 11 X v1) has the following properties:

(1) If f and g are biregular, then f x g is bireqular.

(2) If f and g are measure-preserving, then f X g is measure-preserving.

PROOF. For G € #A(X xY), we have
@) (0% 2)(G) = [ G2)dula) and
) (o x (7 9(G) = [ n(((F % DG don(w)

X1

:/ vi(9(Giey))) dpa ().
X1

(1) Note that
(i) (uxv)(G) =0 if and only if ¥(G,) =0 (p-a.e. z € X)

(i.e., 3A € #(X) such that u(A) =0 and v(G,) =0 (z € X — A)),

(i) (u1 x ) ((f x 9)(G)) =0 if and only if v1(g(Gfipy)) =0 (m-a.e.
xr € Xl)

Since f and g are biregular, if (i) holds, then it follows that

f(A) € B(X1), m(f(A)) =0 and vi(9(Gfi1(xy))) =0 (21 € X1 — f(A)).
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This implies (ii). The same argument shows the opposite implication. This means
that f x g is biregular.
(2) Since f and g are measure-preserving, it follows that

umxmqugx®>=/

X

Vl(g(Gf’l(m)))dul(xl):/ V(Gpay)) dpa(z1)

X1

a/wammm:waw»
X

This means that f x g is measure-preserving. We also note that (f x g)"(u1 x
1) € M (X xY) satisfies the condition: for any A € #(X) and B € B(Y)

((f x 9)"(m x 11))(A x B) = (1 x v1)((f x 9)(A x B)) = (ua x 11)(f(A) x g(B))
= (f(A)) - n(g(B)) = (A) - v(B).

By definition we have (f x g)"(p1 X v1) = u X v. This also implies the conclu-
sion. g

We conclude this subsection with some remarks on collars of the boundary of
a submanifold. Suppose M is an n-manifold and p € ///Z(M)

REMARK 3.1. Suppose N is an m-submanifold of M such that 0, N is
compact. Since wp(OM) =0, we have pu(ON)=p(0;N). Take a bicollar
0+N x [-1,1] of ;N in M. Since 9;N x [—1,1] is compact, it follows that
w0+ N x [-1,1]) < oo and {t € [-1,1] | u(0+N x {t}) # 0} is a countable subset
of [-1,1]. Hence, we can modify N by adding or subtracting a thin collar of 9, N
so that pu(ON) = u(0,N) =0.

Let m denote the Lebesgue measure on the real line R.

LEMMA 3.2.  Suppose N is an n-submanifold of M such that . N is compact
and u(0N) =0 and suppose v € ///?((%N). Then, there exists a bicollar E =
4N x [a,b] (a<0<b) of 0N in M such that O, N =9, N x {0}, NNE =
94N X [a,0] and p|p = v x (mj,,)-

PROOF. Let €(04N)={F,---,F,}. For each i =1,---,m, choose a small
bicollar E; = F; x [a;,b] (a; <0<b;) such that F;=F, x{0}, NNE, =
Fox (0], a0 F) =0, a(F: x [a;,0)) = |au(F) and a(Fs x [0,b]) = bv(F).
We can apply Theorem 3.1 to
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£l E (a0 V1R X (M, 0) € J/ZZ(F, X [a;,0]) and

/“F,x[o,prV|FZ X (m|[0,b,]) € ///?(Fz x [0, b))

to replace the identification of the collar E; = F; x [a;,b;] so that p|p = v|p x
(m|[a“b’,}). Finally, take a,b such that max;a; <a <0< b < min; b, and set
E = 0.N x [a,b] = J,(F; x [a,b]). O

3.2. End compactification and finite-end weak topology (cf. [2], [4]).

In order to extend the selection theorem 3.2 to the noncompact case, it is
necessary to include the information of the ends. Suppose Y is a noncompact,
connected, locally connected, locally compact, separable metrizable space. Let
Z(Y) denote the collection of all compact subsets of Y. An end of Y is a function
e which assigns an e(K) € €(Y — K) to each K € #(Y) such that e(K;) D e(K>)
if K1 C Ks. The set of ends of Y is denoted by Ey. The end compactification of Y
is the space Y =Y U Fy equipped with the topology defined by the following
conditions: (i) Y is an open subspace of Y, (ii) the fundamental open
neighborhoods of e € Fy are given by

N(e,K) = e(K)U{e' € By | €(K) = e(K)} (K € #(Y)).

Then Y is a connected, locally connected, compact, metrizable space, Y is a dense
open subset of Y and Fy is a compact 0-dimensional subset of Y.

For h € #(Y) and e € Ey we define h(e) € Ey by h(e)(K) = h(e(h 1(K)))
(K € #(Y)). Each h € s(Y) has a unique extension h € #(Y) defined by
h(e) = h(e) (e € By). The map #(Y) — #(Y) : h+ h is a continuous group
homomorphism. For ACY we set g, (Y)={he€ A s(Y)|hly =idg,}.
Note that g, (Y), = H4(Y),-

Let € #(Y). An end e € Ey is said to be p-finite if p(e(K)) < oo for some
K € #(Y).Let E} = {e € Ey | e is p-finite}. Then Y U E}- is an open subset of Y.
For Ae B(Y) and pu € //l’;(Y) we set

///‘;(Y; p-e-reg) = {v € %‘;(Y) | v is p-biregular, EY = EY},
MY 1) = (v € MY preves) | oY) = u(Y)}.

The finite-ends weak topology ew on ,//;(Y; p-e-reg) is the weakest topology such
that the function

(I’f:///;(Y;u—e—reg)—>R : yb—>/yf|ydz/
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is continuous for any continuous function f: Y U E}, — R with compact support.

There is an alternative description of this topology ([4, Section 3, p. 245]).
Consider the space .Z(Y UE}) (with the weak topology). Each v € . ,(Y;
p-e-reg) has a natural extension 7 € .#,(Y UE}) defined by 7(B) =v(BNY)
(B € A(Y UEY)). The topology ew on ///f(Y; u-e-reg) is the weakest topology for
which the injection ‘

L j/j(Y; p-ereg) — MY UEY), : v—T

is continuous. The symbol ///‘;(Y; -e-reg)
endowed with the topology ew.

We say that h € S2(Y) is p-end-biregular if h is p-biregular and EQ*” =Ey
(ie., h(EY) = EY.). Let J(Y; p-e-reg) denote the subgroup of 7#(Y) consisting of
p-end-biregular homeomorphisms of Y.

Suppose M is a connected n-manifold and u € ///?(M) The group 52 (M;
p-e-reg) acts continuously on //{2(]\/[; 1)y DY B - v = h,v. This action induces the
map

denotes the space ///_?(Y; u-e-reg)

ew

ew

7 H(M; p-e-reg) —n///g(M;u) i h— hop.

ew

THEOREM 3.3 ([4, Theorem 4.1]).  The map 7 has a section
o MO (M;p),,, — Ho(M; pre-reg), = Hy(M; pirreg),

such that (mo =id and) o(p) = idy;.

3.3. End charge homomorphism.

We recall basic properties of the end charge homomorphisms defined in [2,
Section 14]. Suppose Y is a connected, locally connected, locally compact
separable, metrizable space. Let 2(Fy) denote the algebra of clopen subsets of Ey
and let B.(Y) ={C € B(Y) | Fry C is compact}. For each C € Z.(Y) let

Ec={e€ Ey|e(K)CC forsome K € #(Y)} and C=CUEcCY.

Note that (i) Ec € 2(Ey) and C is a neighborhood of E¢ in Y with C' N Ey = E¢,
(ii) for C,D € A.(Y) it follows that Ec = Ep if and only if CAD = (C — D) U
(D — C) is relatively compact (i.e., has the compact closure) in Y, (iii) if C' €
B:(Y) and h € A, (Y), then h(C) € B.(Y) and Eyc) = Ec.

An end charge of Y is a finitely additive signed measure c on 2(Ey), that is, a
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function ¢ : 2(Fy) — R which satisfies the following condition:
c(FUG)=c(F)+c(G) for F,G € 2(Ey) with FNG =1.

Let .#(Y") denote the space of end charges c of Y endowed with the weak topology

(or the product topology). This topology is the weakest topology such that the

function

Up: A(Y)— R : c— ¢(F)

is continuous for any F € 2(Ey). For p € A (Y) let

LY, u) = {c e L(Y)

(i) ¢(F)=0for F € 2(Ey) with F C E{j}
(ii) ¢(Ey)=0

(with the weak topology). Then #(Y) is a topological linear space and .#(Y, u) is
a linear subspace.

For h € g, (Y; p) the end charge ¢ € (Y, p) is defined as follows: For any
F € 2(Ey) there exists C' € £.(Y) with Ec = F. Since h|y = id, it follows that
Ec = Ej) and that CAR(C) is relatively compact in Y. Thus u(C — h(C)),
u(h(C) — C) < oo and we can define

ch(F) = p(C = h(C)) — u(h(C) - C) € R.

This quantity is independent of the choice of C.

PROPOSITION 3.3.  The end charge homomorphism ¢ : g, (Y;u) — (Y, 1)
is a continuous group homomorphism ([2, Section 14.9, Lemma 14.21 (iv)]).

In [12] we have shown that, for any connected n-manifold M and p€
(//lg(M), the end charge homomorphism ¢ : g, (M;u) — . (M; u) has a (non-
homomorphic) section s : (M, u) — Ho(M; p),.

For any subset A of Y we have the restriction of ¢/

cy 1 H avp, (Vi) — S(Y, p).
The kernel of the homomorphism c¢* is denoted by kerc*. Note that

Ho(M;p) C kerc and (kerc”), =kerc,. By the definition, if h € kerc#, then
for any C' € Z.(Y) we have u(C — h(C)) = u(h(C) = C).
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LEMMA 3.3.  Suppose h € kerc and C € B.(Y). If L € B(CNh(C)) and
C — L is relatively compact in 'Y, then h(C) — L is also relatively compact and
u(h(C) — L) = p(C — L).

PROOF. Since u(C — h(C)) = p(h(C) — C), the assertion follows from the
equalities:

h(C) — L = (h(C) — C) U ((C N h(C)) — L) and
C— L= (C—h(C)U((CNhKC)) - L). 0

4. Weak extension theorem for biregular homeomorphisms.

Throughout this section M is an n-manifold and p € ///d( M). The weak
extension theorem for the group G = #(M; p-reg) is already obtained in [8]. In
this section we discuss some consequences of this extension theorem. In Section 5
we combine the weak extension theorem for J#(M;pu-reg) and the selection
theorem for p-biregular measures (Theorems 3.2 and 3.3) in order to obtain the
weak extension theorems for the groups (M;pu) and ker c*.

First we recall the deformation theorem for p-biregular embeddings [8,
Theorem 4.1]. For X € (M) and A C X, let &% (X, M; u-reg) denote the space of
proper p-biregular embeddings f: X — M with f|, =ids, endowed with the
compact-open topology (cf. Sections 2.1 and 3.1).

Suppose C'is a compact subset of M, U € (M) is a neighborhood of C' in M
and D C E are two closed subsets of M such that D C Inty/FE.

THEOREM 4.1 ([8, Theorem 4.1]).  For any compact neighborhood K of C' in
U, there exists a neighborhood % of iy in & pry(U, M; preg) and a homotopy
0 U x[0,1] — Epny (U, M; p-reg) such that
(1) for each f € %,
1) wolf) =f, (@) 1Nl =tc, (D) @ Hly_x = flu_x (¢ €10,1]),
(iv) if f=1id on 0_U, then ¢(f) =id on 0_U (t € [0,1]),
(2) @iiv) =iv (t €[0,1]).

Theorem 4.1 is equivalent to the next weak extension theorem.

THEOREM 4.2 ([8, Corollary 4.2]).  For any compact neighborhood L of C in
U, there exists a neighborhood % of iy in &y (U, M; p-reg) and a homotopy
5: U x [0,1] — S pyi-1)(M; p-reg), such that
(1) Jor cach f €% () solf) =idw, () s1(Plo = flo» () if f=id on
0_U, then s:(f) =id on OM,
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(2) St(iU) =idyy (t S [O, 1])

(In [8, Corollary 4.2] the map s; alone is mentioned.)
Now we discuss some consequences of Theorem 4.2 for the group G = (M,
p-reg). Suppose X is a compact subset of M. Note that Gx = 5 x(M; u-reg).
Suppose C'is a compact subset of M with X C C'and U is a neighborhood of C'
in M. Consider the pull-back diagram:

/

p
p*GX - Gx
W’l lw where w(h) =h|. and p(f) = flo.
£UM) — £, M),
p

By Theorem 4.2 the pair (U,C) has WEPs. Hence it has LSP¢ and also
LSP¢,. Thus the next assertion follows from Lemma 2.4.

LEMMA 4.1.  The induced map ' : p*Gx — ES(U, M) is a principal G ¢ -bundle.

Suppose N is a compact n-submanifold of M such that u(0.N) =0 and
X C Inty/N. Take any compact n-submanifold Ny of M such that u(9.N;) =0
and N; is obtained from N by adding an outer collar of 9y N. We obtain the pull-
back diagram:

p
p'Gx — Gx
ﬂ/l lﬁ where w(g9) =gly, p(f)=fly and
EG(NLM) —  ES(N, M), p~(in) = EG(N, M),
p

LEMMA 4.2.  There exists a path h : [0,1] — Gx such that
ho =idy, hi(Ni) =N and h(N1) C Ny, h(N)CN (t€][0,1]).

PROOF.
(1) Let m denote the Lebesgue measure on R. We can find a bicollar E =
0N x [a,b] (a<0,b>1) of 9, N in M — X and v € .#J(, N) such that

(l) 8+N = 8+N X {0}, 8+N1 = 8+N X {1} and (11) M|E =V X (m|[a1b]).
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This follows from the following observation. First take any bicollar E' = 0, N x
[-1,2] of 0N in M — X which satisfies (i) and the weaker condition (ii)’
p(0+N x {—=1}) = p(0+N x {2}) = 0. Let €(0+N)={F1,...,F,} and set E] =
Fi x[-1,2] (i=1,...,m). Choose any v € .#2(0,N) such that v(F}) = u(F; x
0,1) (i=1,...,m). For each i=1,...,m, determine a; <0 and b; >1 by
la;|v(F;) = w(F; x [—1,0]) and (b; — 1)v(F;) = u(F; x [1,2]), and reparametrize
F; x [-1,0] to F; x [a;,0] and F; x [1,2] to F; x [1,b;]. We can apply Theorem
3.1 on F; x [a;,0], F; x [0,1] and F; x [1,b;] to obtain a new identification E] =
F; x [a;, b;] so that /1|E§ =v x (m|,,,)- Take a,b such that max;a; <a <0 and
1 < b < min; b;, and set E = J,(F; x [a,]]).

(2) Choose X € #y([a,b]) such that X is piecewise affine and A\(0) = a/2,
A(1) = 0. We obtain two isotopies

M € Hy([a,b])  (t €10,1]) defined by \i(s) = (1 —¢)s + tA(s) and
Gt € o, Nxiapy (01N x [a,0]) (¢ € [0,1]) defined by g:(y,s) = (y, \e(s)).

Note that Ay = id, A ([a,1]) = [a, 0], A([a, 0]) C [a,0] and A([a, 1]) C [a, 1]. Since A
is also piecewise affine, it is seen that )\; is m\[ab]—biregular. Then each g; is
v X (m|[a7b])-biregular by Proposition 3.2. Finally, the required isotopy h; €
I pe(M; preg) C Gx (t €[0,1]) is defined by hi|p = g. O

By Lemmas 4.1, 4.2 and 2.5 we have the following conclusions.

LEMMA 4.3.

(1) The induced map ' : p*Gx — ES(Ny, M) is a principal G y-bundle.

(2) The map p: EG(Ny, M) — ESG(N, M) is a homotopy equivalence.

(3) There exists a strong deformation retraction x; (t € [0,1]) of ES(Ny, M)
onto the singleton {iy, }.

(4) The map p' : p*Gx — Gx is a homotopy equivalence.

COROLLARY 4.1.  Suppose X is a compact subset of M and N is a compact
n-submanifold of M such that w(ON) =0 and X C Inty;N. Then the restriction
map

AN (M; preg) C A x(M; p-reg) —— é"ff(M;”’reg)(N, M)  defined by w(h) = h|y

1s a fibration up to homotopy equivalences and has the exact sequence for homotopy
groups.
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5. Weak extension theorem for measure-preserving homeomor-
phisms.

Throughout this section M is an n-manifold and p € ///2(M) In this section
we combine the weak extension theorem for G = (M p-reg) (Theorem 4.2) and
the selection theorem for p-biregular measures (Theorems 3.2 and 3.3) in order to
obtain the weak extension theorems for the groups H = 5#(M; u) and F = ker ¢*.
We also discuss a non-ambient weak deformation of measure-preserving embed-
dings (Theorem 5.3). Some application to the group H. = J€.(M;u) endowed
with the Whitney topology is provided in Section 6.

5.1. Weak extension theorem for J#(M;u).

We obtain the weak extension theorem for J#(M;u) in a general form
(Theorem 5.1, cf. [8, Theorem 4.12]). This answers Problem 2.1 and also leads us
to the weak extension theorem for ker¢” in Section 5.2. (Recall that M is an
n-manifold, p € //lg(M), G = H(M; p-reg) and H = 7 (M; p).)

For A, B € (M), consider the subset G4 of G defined by

G ={h e G |hl, € E(A M;p) and u(h(L)) = u(L) (L € €(M — B))}.

When A = B, we simply write G4. For any X C M we have the pair (G‘;(’B, Hy) of
subsets in Gy.

LEMMA 5.1.  Suppose N is a compact n-submanifold of M with u(ON) =0,
U e B(M) is a neighborhood of N in M and X is a closed subset of OM with
XN N =0. Then the triple (M,U,N) has WEP(GY, Hx).

PROOF.

Case 1: First we consider the case where M is connected.

Since <§"Gi¥(U, M) c & (U, M; p-reg), by Theorem 4.2 applied to (U,C) =
(M — X, N), there exists a neighborhood % of iy in £’G3\?’(U, M) and a map o :
% x [0,1] — (Gx), such that

(i) foreach f €% (a) ool(f) = idur, (b) 1(fly = fly» (e) if £ =id on U,

then oy(f) = id on OM,

(11) O’t(iU) =idy (t S [0, 1])

(1) First we modify the map o to achieve the following additional condition:

(i) (b) ou(f) € H.

Consider the induced map

v:Ux[0,1] — //lg(M, )., defined by v,(f) = ov(f)" .



Weak extension theorem for measure-preserving homeomorphisms 707

Since M is connected, each L € €(N¢) meets d.N. Since 0y N is compact, it
follows that €(N°¢) is a finite set. We note that vi(f)|, € ,//lg(L;mL) for any
f €% and L € €(N°). In fact, since v(f) € ///f(M; p-e-reg) and p(ON) = 0, we
have v1(f)[,, € ///2(L;u|L—e—reg). It remains to show that v (f)(L) = u(L). Since
f e &X(U, M), there exists h € GY such that f=h|,. Then k=h"lo\(f) €
Hn(M). Since M is connected, we see that N N L # (), and since k = id on N, we
have k(L)= L. Hence, o1(f)(L)=h(L) and it follows that v (f)(L)=

(o1 (F)(L)) = u(h(L)) = (L). |

For each L € ¥(N°) we obtain the map % — //lg(L;u\L)ew s fr— (),
By the alternative description of the finite-ends weak topology and Lemma 3.1,
this map is seen to be continuous (cf. [11, Lemma 3.2]). By Theorem 3.3 there
exists a map

N ML pil)y — Ho(L; il -reg),
such that 0y (v), (ul,) = v and 9y (ply) = idz.
Define the map 7, : % x [0,1] — #5(L; p|-reg), by
7L(ft) = (1 = Ol +tn(f)lL)-
Combining 7, (L € €(N*)), we obtain the map

T: U x [0,1] — S nvon(M; p-reg),
T.(f,t) on L € €(N°)

defined by 7(f,t) = {
id on N.

Note that 79(f) = idy and 71 (f),p = v1(f). Define a map

o2 (f) (t€0,1/2])

o U x[0,1] — Ax(M;pereg), by o)(f) = {Ul(f)ml(f) (t € [1/2,1).

Then the map ¢’ satisfies the conditions (i) (a), (b), (¢) and (ii). The condition (i)
(b') is verified by

o1 (). = o1(f)mi(f)op = o1 (Fon(f) = o1 (.o () ' = p.

(2) To see that the triple (M,U, N) has WEP(GY, Hx), we construct a map
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s: U x [0,1] — Hx such that
(iii) for each f € % (a) so(f) =idnr, (b) s1(f)|ly = flys (¢) if f=id on 0_U,
then s;(f) = id on OM,
(iv) si(ip) = idy (¢ € [0,1)).
Consider the induced map

Vi x[0,1] — //lg(M; W), defined by v,(f) = oi(f)" p.
It is seen that 1(f) = v{(f) = p. By Theorem 3.3 there exists a map

n: //lg(M; e — (Go); suchthat n(v),u=v and n(p) =idy.

The required map s is defined by s,(f) = o,(f)n(v;(f)) ((f,t) € % x [0,1]). The
conditions (iii) and (iv) are easily verified. For example, (iii) (b) is seen by

s1(f) = oy (N () = o1 (Fm(p) = 01(f) and  s1(f)ly = o1 (N)lx = fly-

Case 2: Next we treat the general case where M may not be connected.

By Lemma 2.6 we may assume that U is compact. Let M, ..., M, denote the
connected components of M which meet U. For each i=1,---,m, we set
(Ulj,Ni,ij) = (U, N, X) N MZ and i = “|M,,' By Case 1, the triple (Mi7Ul‘,N1;) in
M; has WEP for (Gy, H;) = (x,(M;; pi-reg)™", 5 x, (M;; ;). Since the pair
(Gi, H;) can be canonically identified with the subpair (G¥(M;), Hx(M;)) of
(GN,Hy) and &% (U;, M;) = £5XM(U,, M) = £55(U;, M) N &(U;, M;), which is
an open subset of éaGi\g(Ui,M), it is seen that the triple (M;,U;, N;) in M has
WEP(GY, Hx). Hence, by Lemma 2.7 ({J; M;,U, N) has WEP(GY, Hx) and by
Lemma 2.6 so is (M, U, N). O

THEOREM 5.1.  Suppose C is a compact subset of M, U € B(M) is a
neighborhood of C in M and X is a closed subset of OM with X N C = 0. Then the
triple (M, U, C) has WEP(GYC, Hy).

PROOF. By Lemma 2.2 (2)(i) and Remark 3.1, there exists a compact
n-submanifold N of M such that

C CIntyyN, N ClIntyU— X,
O — N is connected for each O € €(M — C) and p(0N)=0.

We show that GU'¢ C GV. Take any h € GU'C. Since h|; € &(U, M; ), we have
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hly € &N, M;p). By the choice of N, for each L € ¥(M — N) there exists a
unique O € € (M — C) such that L = O — N. Since h € GUC, we have u(h(0)) =
w(0). Since h|,; € &(U,M;p), ONN C N C U and N is compact, it follows that
w(h(ONN)) =pu(ONN) < p(N) < oo. Hence, p(h(L)) = p(L). This means that
he G~

By Lemma 5.1 the triple (M, U, N) has WEP(G¥, Hyx) and by Lemma 2.6 we
conclude that the triple (M, U, C) has WEP(G)U(’C, Hy). O

Since Hy CGgJ(’C, the next statement is an immediate consequence of
Theorem 5.1 and Lemma 2.6.

COROLLARY 5.1.  Suppose C is a compact subset of M, U € B(M) is a
neighborhood of C in M and X is a closed subset of OM with X N C = (. Then the
triple (M, U, C) has WEP(H x(M; 1)).

5.2. The weak extension theorem for ker c”.

Suppose M is a connected n-manifold and p € ///g(M). In this section we
deduce the weak extension theorem for the group F = kerc” (Theorem 5.2).
(Recall that G = (M p-reg) and H = € (M; p). Note that H, = F, and H(C) =
F(C) for any compact subset C of M.)

THEOREM 5.2.  Suppose C is a compact subset of M, U and V are open
neighborhoods of C in M such that V N O is connected for each O € €(M — C).
Then, the triple (V,U,C) has WEP (ker ¢, 5€.(M; 11)).

PROOF.
(1) By Lemma 2.2 (2)(ii) and Remark 3.1, there exists a compact
n-submanifold N of M such that

CCIDtMN, NcCV,
NN O is connected for each O € €(M —C) and p(ON) = 0.

Note that (N —C) ={NNO | O € €(M — C)}. Take compact subsets D and W
of M such that C C Inty;D, D C Inty;/W and W C U NInty/N. Since N C V and
W CU, by Lemma 2.6 it suffices to show that the triple (N,W,C) has
WEP (ker ¢, 7€.(M; p)).

Since & (W, M) ¢ & (W, M; p-reg), by Theorem 4.2 there exists a neighbor-
hood % of iy in & (W, M) and a map

s: % — G(N) such that s(f)|p = flp and s(iy) =idy.
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Replacing % by a smaller one, we may assume that f(W) C N (f € %).
(2) Consider the n-manifold N and ply € ///Z(N). By Theorem 5.1 the triple
(N, D,C) has WEP for

(G',H') = (#o.x(N; pl y-reg)”C, o n(N; | y))-

Let &% (D,N) > %' L H' be the associated LWE map. Each h' € H' has a
canonical extension (k') € H(N) and this defines the canonical homeomorphism
b H' = H(N).

(3) We show that s(f)|y € G’ for any f e %. Since s(f) € G(N), we have
s(f)|y € #o,n(N; | y-reg). Since f e & (W, M), there exists h € F such that
f = hly. Since s(f)|p = flp = hlp € E(D, M; ) and s(f)(N) = N, it follows that
s(f)lp € &(D,N;u|y). Take any L € €(N — C). Then there exists a unique O €
€M —C) with L=NNO. Let K=0-L=0-N. Consider g=h"'s(f) €
A p(M). Since M is connected, we have O N D # () and since g = id on D, we have
9(0) = O and so s(f)(O) = h(O). Since s(f) € G(N), it follows that

s(/)K) =K and s(f)(L) = s(f)(0 - K) = 5(f)(0) - K = h(0) - K.
Thus, we have p(s(f)(L)) = u(h(0) — K). Since
FryOcC, O—K=LCN and K =s(f)(K)Cs(f)(O)=h(0),

it follows that O € B.(M), K C ONh(O) and O — K is relatively compact in M.
Since h € F, by Lemma 3.3 we have u(h(O) — K) = u(O — K) = p(L). Therefore,
we have u(s(f)(L)) = p(L). This means that s(f)|y € G’

(4) By (3), for any fe %, we have s(f)|y € G and flp,=s(f)|p=
(s(H)ly)lp € €7 (D, N). Thus, we obtain the continuous map ¢ : % — &% (D, N)
defined by ¢(f) = f|p- Replacing % by a smaller one, we may assume that
&(%) C %'. Finally, the associated LWE map S; : % — H(N) for WEP(F, H,) of
the triple (N, W, C) is defined by

Si(f) = voi8(f)- O

Since H. C F, the next statement is an immediate consequence of Theorem
5.2 and Lemma 2.6.

COROLLARY 5.2.  Suppose C' is a compact subset of M, U and V are open
neighborhoods of C in M such that V N O is connected for each O € €(M — C).
Then the triple (V,U,C) has WEP(Z.(M; p)).
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5.3. Non-ambient weak deformation of measure-preserving em-

beddings.

Suppose M is an n-manifold and y € .#' fl)(M ). In this section we obtain a non-
ambient weak deformation theorem for Iheasure—preserving embeddings. For
X eB(M), let &(X,M;p)=8EX,M;u)N& (X, M) with the compact-open
topology.

THEOREM 5.3.  Suppose C is a compact subset of M and U € B(M) is a
neighborhood of C in M. Then there exists a neighborhood % of iy in & (U, M; )
and a map s: % x [0,1] — & (C, M; ) such that so(f) =ic, s1(f) = flo (f € %)
and s(iy) =ic (t € [0,1]).

We call the map s a local weak deformation map (an LWD map) for the pair
(U,C) in M.

LEMMA 5.2.  Suppose N is a compact n-submanifold of M with u(0+N) =10
and U € B(M) is a neighborhood of N in M. Then the pair (U, N) admits an LWD
map in M.

PROOF.

Case 1: First we treat the case where N is connected.

(1) By Lemma 3.2 there exists a bicollar E = 0. N x [a,b] (a <0 < b) of 0y N
in M such that

0N =0.Nx{0}, NNE=0.N x[a,0] and plp=rvx(ml,y)
where v € ///2(8+N) and m is the Lebesgue measure on R. Let €(0.N) =
{F,...,F,} and E; = F; x [a,b] (i =1,...,m). For notational simplicity, we use

the following notations:

E(D=8,Nx1I, E(I)=FxI (IC[ab) and
Ny = (N — E)UE]a,t] (t€]a,b]).

Take e > 0 such that a < —3e¢, 3¢ < b, and define ay € H#y([a,b]) (t € (—2¢,2¢)) by
the conditions:

ai(s)=s+t (s€]—¢e]) and « is affine on the intervals [a, —¢] and g, b].

For each i = 1,..., m, we obtain the isotopy

¢, =idp, x oy € Ay, p,(Eis il -reg) (t € (—2¢,2¢)).
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Note that ay = idj,) and ¢f) = idg,.
Take a small neighborhood # of iy in &*(N, M;pu-reg) such that for any
geEW andi=1,...,m,

Ei[a’v _6] C g(N) mEi C Ei[aag]v N,S - g(N) - NS and g(E) c Ei(_575)'

Then, for each g€ # and i = 1,...,m, we have
(i) (e —a)v(F}) < p(g(N) N E;) < (e — a)v(F), ,
(i) 1(9}(9(N) N E)) = pu(g(N) N B) + tw(Fy), since ¢} is p-preserving on
El‘[—é‘, 5].

For each ¢ = 1,...,m, consider the map
¢ W — R defined by ¢;(g9) = u(g(N) N E;).
Since 1(g(04+N)) =0, the map ¢; is seen to be continuous. Note that ¢;(g) €
((—e — a)u(F)), (e — a)v(F})).
(2) Next we construct a neighborhood % of iy in & (U, M;u) and a map
n:% x [0,1] — & (N, M; u-reg) such that for any f € % and t € [0,1],
(i) mo(f) = in, m(f) = fly, m(iv) =in and  (iv) p(m(f)(N)) = p(N).

By Theorem 4.2 there exists a neighborhood % of iy in & (U, M;pu) and a
map

o: U x[0,1] — H.(M; p-reg)
such that Uo(f) = id]\j, 0’1(f)|N = f|N (f S %) and Ut(iU) = idM (t S [0, 1])

Replacing % by a smaller one, we may assume that oy(f)|y € ¥ (feX,
t € [0,1]). Consider the map

Y% x[0,1] — # C & (N, M; p-reg) defined by w(f) = or(f)|y-

The map ~ satisfies the condition (iii). To achieve the condition (iv) we modify the
map 7.

We define the maps X' : % x [0,1] — R and 7' : % x [0,1] — (—2¢,2¢) by
M) = A =t)ci(in) +tei(fly) and ci(w(f) + 7 (F)v(F) = N(f)-
Since Xj(f), ci(%(f)) € (=& — a)v(F), (e — a)v(F})), we have

7 (NIv(F) = IXN(f) = ci(n(f))] < 2ev(F).
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The map 7' has the following properties:
(v) 5(f) = i (f) = 7/ (iv) =0,
(¥i) (6 O FYN) 01 D) = (o £)N) 1 E2) + 7 (PVE) = X(f)

The assertion (vi) follows from the property (1)(ii), while the assertion (v) follows
from

N
—~
3 3
~— ~—
I

A (f) = citro(f) = eilin) = ai(in) =0,
M) = e(n(f) =calfly) — a(fly) =0,
7, (iv)v(F) = N(iv) — ci(w(iv)) = ¢i(in) — ci(in) = 0.

The maps ¢, (i =1,...,m) are combined to induce the map

¢ U x [0,1] — A p(M; prreg) defined by ¢;(f)|y = qb%,(f) (i=1,...,m).

The desired map n: % x [0,1] — &* (N, M; p-reg) is defined by n.(f) = ¢ (/)7 (f)-
From (v) it follows that ¢o(f) = ¢1(f) = ¢:(iv) = idyy, since

¢O(f)|E, = ¢1(f)|E,, = (bt(iU)'Ez = % = idg,.

Thus, the map 7 satisfies the condition (iii). To see the condition (iv), first note
that

(3

ne(f)(N) = de(/)ve(f)(N) = & (f) (Na U (U(%(f)(N) N Ei)))
= N, U <U ¢i;(f)(’7t(f)(N) n Ei))'

Since f is u-preserving, we have p(f(N)) = u(N). Hence, from (vi) it follows that

(e (F)N)) = p(Na) + D i@y ) ((HN) O E)) = i(Na) + Y X(f)
= p(No) + (1 =) cilin) “Z a(fly)

=(1-1) <M(Na) + Z Ci(iN)> + t(u(Na) + Z Cz'(le)>

= (1 =)u(N) +tp(f(N)) = p(N).
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(3) The required LWD map s is obtained as follows.
Theorem 3.2 yields a map x : ///g(N;MN) — Hy(N; p| y-reg), such that

X().(uly) = w (we A5 (N;ply)) and  x(uly) = idy.
By the condition (2)(iv) we have the map
p:U X [0,1] — A[(N;ply) defined by pi(f) =m(f) p.

Since pi(f) = m(f) = ((¢:(f)oe(f)) 1)|y, the map p is the composition of the
following maps:

U x [0,1] 5 A (M; pveg) = A )(M; pirreg) > A (N; | y-veg),
where  pi1(f,t) = ¢i(f)oe(f), pa(h) =h"p and p3(w) = wly.
Since p(0+N) =0, by Lemma 3.1 the third map is continuous. Thus the

continuity of the map p follows from the continuity of these maps. Finally, the
map

s: % x[0,1] — & (N, M;p) is defined by s:(f) = m(f)x(p:(f))-

Since s¢(f)" 1 = x(p:(f))" (0 (f) 1) = x(pe(f)) pe(f) = pily, it follows that s;(f) is
p-preserving. If t = 0,1 or f =iy, then by (2)(iii), n:(f) is p-preserving, and so

) =
i), 7
pi(f) = ply and s;(f) = n(f). Hence, by (2 )(111) the map s satisfies the required
conditions: so(f) =iy, s1(f) = fly and s:(iy) =

Case 2: Next we treat the general case where N may not be connected.

Let €(N)={Ny,---,Ny}. By Case 1, each pair (U,N;) (i=1,---,m)
admits an LWD map in M

E(U, M;p) > Ui —5 & (Ni, M p) (¢ € [0,1]).
For each ¢ =1,...,m, choose a neighborhood U; of N; in U such that U; NU; = 0)
(i # j)-
We can find a small neighborhood % of iy in &*(U, M; u) such that % C %;
and s!(f)(N;) CU; (f € %) for each i =1,---,m. An LWD map
s U x[0,1] — & (N, M; p)

for (U, N) is defined by s;(f)|y. = si(f) (i=1,...,m). O
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PROOF OF THEOREM 5.3. By Lemma 2.1 and Remark 3.1 there exists a
compact n-submanifold N of M such that p(9,N) =0 and C C N C Int)U. By
Lemma 5.2 the pair (U, N) admits an LWD map

E(U,M;p) DU =5 & (N, M; ) (t €[0,1)).
An LWD map s; : Z — &*(C, M; p) for (U,C) is defined by s;(f) = o1(f)|o. O

6. Groups of measure-preserving homeomorphisms endowed with
the Whitney topology.

Suppose M is a connected noncompact n-manifold and u € ///‘;(M). In [3,
Proposition 5.3] we have shown that the group 5¢.(M),, endowed with the
Whitney topology, is locally contractible. In this section we shall apply the weak
extension theorem for J#.(M; u) (Corollary 5.2) to verify the local contractibility
of the group J€.(M;p),, endowed with the Whitney topology (Theorem 6.1).

6.1. Homeomorphism groups with the Whitney topology.

First we recall basic properties of the Whitney topology on homeomorphism
groups (cf. [3, Section 4.3]). Suppose Y is a paracompact space and cov(Y) is the
family of all open covers of Y. For maps f,g: X — Y and % € cov(Y), we say that
f,g are % -near and write (f,g) < % if every point = € X admits U € % with
f(x),g9(xz) € U. For each h € (Y) and % € cov(Y), let

Uh) ={feAY)[(fh) <%}

The Whitney topology on S2(Y) is generated by the base Z(h) (h € H(Y),
% € cov(Y)). The symbol (Y, denotes the group #(Y) endowed with the
Whitney topology (while the symbol 52 (Y) denotes the group J#(Y) with the
compact-open topology). It is known that G = J#(Y),, is a topological group.
Recall the notations Gy = #(Y), (the identity component of G) and G, =
H.(Y), (the subgroup of G consisting of homeomorphisms with compact
support). In [3, Sections 4.1, 4.3] it is shown that J¢,(Y),, C H.(Y),,

6.2. The box topology on topological groups.

The Whitney topology is closely related to box products (cf. [3]). Next we
recall basic properties of (small) box products (cf. [3, Sections 1, 2]). The box
product O,>1X,, of a sequence of topological spaces (X,),-,; is the product
[L,>; X, endowed with the box topology generated by the base Eonsisting of boxes
Hn,;l U, (U, is an open subset of X,,). The small box product (3,1 X,, of a sequence
of pointed spaces ((Xn,#n)),; is the subspace of (0,51 X,, defined by
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DnZan = {(mn)nzl € DnZIXn | dm > 1 such that Ty = *p (’I’Z > m)}

It has the canonical distinguished point (*n)nzl' For a sequence of subsets A, C
X, (n>1), we set

EanlAn == Dnlen N DnzlA’n,-

We say that a space X is (strongly) locally contractible at x € X if every
neighborhood V of = contains a neighborhood U of x which is contractible in V'
(rel. ) (i.e., there is a homotopy h : U x [0,1] — V such that hy = idy, hi(U) =
{z} (and h(z) =z (t €]0,1])). A pointed space (X,xg) is said to be locally
contractible if X is locally contractible at any point of X and strongly locally
contractible at xzy. It is easily seen that if a topological group G is locally
contractible at the identity element e, then the pointed space (G, e) is locally
contractible ([3, Remark 1.9]). The next lemma follows from a straightforward
argument.

LEMMA 6.1 ([3, Proposition 1.10]). If pointed spaces (X;,*;) (i > 1) are
locally contractible, then the small box product [Hi>1(Xi, ;) is also locally
contractible as a pointed space.

Suppose G is a topological group with the identity element e € G. A sequence
of closed subgroups (G),),,>, of G is called a tower in G if it satisfies the following
conditions:

G CcGCG3C--- and G:UG,L.

n>1

Any tower (Gy),; in G induces the small box product [,>1(Gn,e) and the
multiplication map

p:>1(Gye) — G defined by  p(z1,...,Zm,e,€,...) = X1+ Ty

Note that [J,>1G, is a topological group with the coordinatewise multiplication
and the identity element e = (e,e,...) and that the map p is well-defined and
continuous ([3, Lemma 2.1]).

DEFINITION 6.1. We say that G carries the box topology with respect to
(Gn),>1 if the map p : [J,>1G,, — G is an open map.

Recall that G is the direct limit of (G,),>, in the category of topological
groups if any group homomorphism A : G — H to an arbitrary topological group
H is continuous provided the restriction h|G,, is continuous for each n > 1. If G
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carries the box topology with respect to (G,),s;, then G is the direct limit of
(G,),~, in the category of topological groups ([3, Proposition 2.7]). Note that the
map piis an open map if it is open at e (i.e., for any neighborhood U of e in [4,51G,,
the image p(U) is a neighborhood of e in G). We say that amap f: X — Y has a
local section at y € Y if there exists a neighborhood U of y in ¥ and a map
s : U — X such that fs =14y. If the map p has a local section s: U — [1,>1G,, at
e € G, then (i) we can adjust s so that s(e) = e and so (ii) the map p is open at e.
Thus, the next lemma follows from Definition 6.1 and Lemma 6.1.

LEMMA 6.2.  Suppose the mapp : [,>1G,, — G has alocal section at e. Then

(1) G carries the box topology with respect to the tower (G,),~,

(2) if the subgroups G,, (n > 1) are locally contractible, then G is also locally
contractible.

LEMMA 6.3.  The map p : ,>1G,, — G has a local section at e if and only if
for any (or some) subsequence (Gy;));~, the multiplication map p" : Biz1Giy —
G has a local section at e.

PROOF. Consider the maps = :[,>1G, — i»1Gyi) and n: His1G6) —
0,>1G,, defined by
i
(oo Tyt - - s T(i)s -+ ) = (oos (Tp(i—1)41 - - - Tp(i))s - ) and
Nz, 2y ) = (.. e, x?\,l €y .oy Tiy...), wheren(0)=0.

n(i—1) n(i)

The maps p and p’ have the factorizations p’ = pn and p = p'w, from which follows
the assertion. O

6.3. Local contractibility of J#.(M;p),,.

Suppose M is a connected noncompact n-manifold and p € //{;?(M) Let H =
H(M;p) and F =kerc”. (Recall that the subscript w means the Whitney
topology. For example, H,, = J€.(M;u),,.)

Consider any sequence (Kj;);»,; of compact subsets of M such that K; C
Inty K (1> 1) and M =~ K;. Tt induces a tower H(K;) = y-k,(M; )
(¢ >1) of H.,, and the multiplication map

p i H(K;) — Hew,  p(ha, ..., by, idyg,idar, o) = hyo by
THEOREM 6.1.

(1) The multiplication map p : B> H(K;) — A (M; p),, has a local section at
idyy.
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(2) The group €.(M;p), carries the box topology with respect to the tower

(H(Ki)) i1 -
(3) The group J.(M;p),, is locally contractible.

We need some preliminary lemmas. Consider a sequence of compact
connected n-submanifolds (M;);.; of M such that M; C IntyM;y1 (4 > 1) and
M =;o; M;. Let My=0 and L; = M; —IntyyM; , (i >1). There exists a
sequence of compact n-submanifolds (Ni);», of M such that L; C Inty/N; and
N;NN;#0 if and only if |i —j| < 1. We call the sequence (M, L;, N;)~, an
exhausting sequence for M. -

LEMMA 6.4.  For any sequence (K;),», of compact subsets of M there exists
an exhausting sequence (M;, Li, N;);-, for M such that for eachi > 1 (i) K; C M;,
(i1) u(04M;) =0 and (iil) the pair (N;, L;) has WEP(F, H,).

PROOF. By the repeated application of Lemma 2.1, we can find a sequence
of compact connected n-submanifolds (M;),~, of M such that

(1) K, Cc M; C Int]\,[Mi+17 u(&rMZ) =0 (Z > 1) and M = Ui>1 M;,

(ii) L is noncompact and M;;; N L is connected for each ¢ >1 and each

L € €(Mf).
Let M; =0 (i <0) and M/ = M; — Ity M; (5> 4).

(1) First we show that the pair (N, K) = (M}, M?) has WEP(F, H,) for
each j >4 >0. Let €(M; ) ={Ch,...,Cy} and set (Ny, Kj) = (NN Cy, K N Cy)
(k=1,...,m). Since (Ny), is a disjoint finite family, by Lemma 2.7 it suffices to
show that each pair (Ny, K;) has WEP(F, H,.).

Note that € (K}) = {Ey, E1, - -, E¢}, where

Ey=M;U|JC, and {E€€(M)|ECCy}={E,...,E}.
s#k

(If i = 0, we ignore Ejy.) By the above condition (ii) it is seen that the intersections
N.NEy=M;NC; and N.NE =M 1NE; (tZL...,f)

are connected. Hence, we can apply Theorem 5.2 to (V,U,C) = (Inty N,
Intp Ni, Ki) to conclude that this triple has WEP(F, H.). Thus, by Lemma 2.6
the pair (N, K) also has WEP(F, H,).

(2) Now consider the subsequence (Ms;);-,. Let L; = M3 , and N; = M)
(¢ > 1). Then, it is seen that (Ms;, L;, N;),5, is an exhausting sequence for M and
by (1) each pair (N;, L;) has WEP(F, H,). O
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Suppose (M;, L;, Ni)i21 is an exhausting sequence for M. It induces a tower
(H(M;));s, of H., and the multiplication map p : s  H(M;) — He -

LEMMA 6.5.  If each pair (Ny;, Lo;) (i > 1) has WEP(H,), then the map p :
Ois1H(M;) — H.y has a local section s: % — i1 H(M;) at idy such that
s(idar) = (idar) s -

PROOF. We use the following notations: Let L. = |J; Lo, Lo, = J; L2i—1 and
N, = J; Na;. Consider the continuous maps defined by
(a) 7e: He — B8 (Lyi, M), 7e(h) = (), and
7 Hey — ;6™ (Nog, M), v(h) = (hly, );,
(b) A: LiH(Noi) — He(Ne)y, AM(90);)|n, = il and
Ao BiH(Lyi1) — HC(LU)w7 AO((hi)i”Lm,l = hi|L2H’
() p:LLiH(Ny) x LiH(Lyi1) — Hew, p(g: h) = Mg)Ao(h).
Note that the map A, is a homeomorphism, since for any h € H.(L,) we have
h =1id on 0, M; and h(M;) = M;, so that h(L;) = L; (i > 1).
First we construct a local section of the map p at idy;. By the assumption, for
each ¢ > 1 there exists a neighborhood ¥; of the inclusion map iy, in EHe(Ny;, M)
and a map

oV — H(NQl) such that Ji(f)|L2L = f‘LZz (f S /7/2) and Ui(iN%) =idy,.
Since [;%; is a neighborhood of (iy,); in Dié’H"(N%,M), the preimage % =

r~(3;%;) is a neighborhood of idy in H,.,. The maps (0i); determine the
continuous maps

o quf/z — DZH(NQ/L) defined by 0((f2)z) = (Ul(fz)), and
n=Aor: % — H.(N.),-

For each g € % we have n(g) = g on L, and 7(g) 'g e H.;, = H.L,). Thus we
obtain the map

¢: U — H.(L,), defined by ¢(g)=mn(g)'g.

The required local section ¢ : % — [; H(Nay;) x ;H(Lg;—1) of the map p is defined
by
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In fact, we have

pC(g) = p(or(9), A, é(9) = Mo r(9))(9) = n(9)(n(g) '9) = g-

Note that ¢(idy) = ((idar);, (idar),)-

For each h € % the image ((h) = ((fi);, (¢9:);) satisfies the following con-
ditions:

(1) h=XM(f)) Mo(90);) = (ffo--)g192- ) = frg1 292395

(11) f, € H(Nz,) C H(Mg,;_._l), g; € H(Lgi_l) - H(ngj_l) C H(MQH_Q) (’L > ].)

(111) (idM, idyy, fl,gh fQ, g, . . ) € Dzle(MZ) and

h= p(idM, id]\,j, fl; g1, fg, g, .. )

Therefore, the required local section s : % — [; H(M;) of the map p : [; H(M;) —
H,, is defined by

s(h) = (idas, idas, f1, 91, fo, 92, -+ -)-

This completes the proof. O

LEMMA 6.6. Suppose N is a compact n-manifold, L is a (locally flat)
(n — 1)-submanifold of ON and v € //ZZ(N). Then the group €1 (N;v) is locally

contractible.

PROOF. In [8, Theorem 4.4] the case where L = () or ON is verified. For the
sake of completeness we include a proof. We may assume that NV is connected.

(1) First we see that the group G = S (N;v-reg) is locally contractible.
Since G is a topological group, it suffices to show that it is semi-locally
contractible at idy, that is, a neighborhood of idy contracts in G,. Using a collar
L x [0,2]of L'in N (cf. Lemma 3.2), we have a deformation of G, to Gx[o,1) which
fixes idy. Applying Theorem 4.1 to (C,U, D, E) = (N, N, L, L x [0,1]), we can find
a neighborhood of idy in Gy which contracts in Gr. These deformations are
combined to yield a desired contraction of a neighborhood of idy in Gf.

(2) Next we show that the group Hy = S (N;v) is a strong deformation
retract (SDR) of G. By Theorem 3.2 the map 7 : G — ///?(N; v) admits a section
s //l?(N; v) — Gy C Gp. This yields a homeomorphism of pairs

Hy x (M(N;v), {v}) ~ (G, Hp) : (h,w) — s(w)h.
Since (///2(]\7; v) admits the “straight line contraction” to {v}, we obtain an SDR

of G onto Hy.
Finally, the conclusion follows from the observations (1) and (2). O
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PROOF OF THEOREM 6.1. (1), (3) By Lemma 6.4 there exists an exhausting
sequence (M;, L;, N;);», for M such that p(04M;) =0 (i >1) and each pair
(N;,L;) (i >1) has WEP(H,). By Lemma 6.5 the multiplication map p':
Uis1 H(M;) — H,, has a local section at idj;. By Lemma 6.3 this implies the
assertion (1) (consider a mixed sequence of (K;), and (M;),;). By Lemma 6.6 the
group H(M;) = Ay nr,(Mi; ply, ) is locally contractible for each i > 1. Thus, by
Lemma 6.2 (2) the group H., is also locally contractible.

(2) The assertion follows from (1) and Lemma 6.2 (1). O
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