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Abstract. In this paper we deduce weak type extension theorems for the

groups of measure-preserving homeomorphisms of noncompact manifolds. As an

application, we show that the group of measure-preserving homeomorphisms with

compact support of a noncompact connected manifold, endowed with the

Whitney topology, is locally contractible.

1. Introduction.

In this paper we study some topological properties of groups of measure-

preserving homeomorphisms and spaces of measure-preserving embeddings in

noncompact manifolds (cf. [4], [5], [8], [11], [12]). Suppose M is a �-compact

topological n-manifold possibly with boundary and U is an open subset of M. Let

E �ðU;MÞ denote the space of proper embeddings of U into M endowed with the

compact-open topology. The local deformation lemma for E �ðU;MÞ [6], [7] asserts
that for any compact subset C of U and any compact neighborhood K of C in U

there exists a deformation ’t (t 2 ½0; 1�) of an open neighborhood V of the

inclusion map iU : U �M in E �ðU;MÞ such that ’0ðfÞ ¼ f , ’1ðfÞjC ¼ iC and

’tðfÞjU�K ¼ f jU�K (t 2 ½0; 1�) for each f 2 V . For a subset A of M let H AðMÞ
denote the group of homeomorphisms h of M with hjA ¼ idA endowed with the

compact-open topology. The local deformation lemma is equivalent to the

following weak type extension theorem: for any compact neighborhood L of C in U

there exists a neighborhood V of iU in E �ðU;MÞ and a homotopy st : U !
H M�LðMÞ such that s0ðfÞ ¼ idM and s1ðfÞjC ¼ fjC ðf 2 U Þ.

This result motivates the following general formulation: Suppose G is a

topological group acting on M with the unit element e. Consider the subspace of

E �ðU;MÞ defined by EGðU;MÞ ¼ fbgjU j g 2 Gg, where bg denotes the homeo-
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morphism on M induced by g 2 G. The weak extension theorem for the group

action of G on M asserts that there exists a neighborhood U of iU in EGðU;MÞ
and a homotopy st : U ! G such that s0ðfÞ ¼ e and ds1ðfÞjC ¼ f jC ðf 2 U Þ.

Suppose � is a good Radon measure onM with �ð@MÞ ¼ 0. Let H ðM;�Þ and
H ðM;�-regÞ denote the subgroups of H ðMÞ consisting of �-preserving homeo-

morphisms and �-biregular homeomorphisms ofM and let E �ðU;M;�-regÞ denote
the subspace of E �ðU;MÞ consisting of �-biregular proper embeddings of U into

M. In [8] A. Fathi obtained a local deformation lemma for the space

E �ðU;M;�-regÞ ([8, Theorem 4.1]). This is reformulated as the weak extension

theorem for the group H ðM;�-regÞ ([8, Corollary 4.2]). In the caseM is compact

and connected, he also obtained a selection theorem for �-biregular measures on

M ([8, Theorem 3.3]) and used these results to deduce the weak extension

theorem for the group H ðM;�Þ ([8, Theorem 4.12]).

In this paper we are concerned with the case where M is non-compact. In [4]

R. Berlanga has already extended the selection theorem for �-biregular measures

to the non-compact case ([4, Theorem 4.1]). We combine these results to obtain

the weak extension theorem for the group H ðM;�Þ (cf. Corollary 5.1).

THEOREM 1.1. Suppose M is an n-manifold, � is a good Radon measure on

M with �ð@MÞ ¼ 0, C is a compact subset ofM, U is an open neighborhood of C in

M. Then there exists a neighborhood U of iU in EH ðM;�ÞðU;MÞ and a homotopy

s : U � ½0; 1� !H ðM;�Þ such that
(1) for each f 2 U

(i) s0ðfÞ ¼ idM , (ii) s1ðfÞjC ¼ f jC, (iii) if f ¼ id on U \ @M, then

stðfÞ ¼ id on @M ðt 2 ½0; 1�Þ,
(2) stðiUÞ ¼ idM ðt 2 ½0; 1�Þ.

In comparison with topological or �-biregular homeomorphisms, ‘‘�-preserv-

ing homeomorphism’’ is a global property and we can not obtain a compactly

supported weak extension theorem for the group H ðM;�Þ. This obstruction

vanishes on the kernel of the end charge homomorphism c�.

In [2] S. R. Alpern and V. S. Prasad introduced the end charge homo-

morphism c�, which is a continuous homomorphism defined on the subgroup

H EM ðM;�Þ of �-preserving homeomorphisms of M which fix the ends of M. The

kernel of c�, ker c�, includes the subgroup H cðM;�Þ of �-preserving homeo-

morphisms of M with compact support. If h 2H EM ðM;E;�Þ and c�ðhÞ ¼ 0, then

one can split moves of �-volume by h. Hence, we can obtain the compactly

supported weak extension theorem for the subgroup ker c� (cf. Theorem 5.2).

THEOREM 1.2. Suppose M is a connected n-manifold, � is a good Radon

measure onM with �ð@MÞ ¼ 0, C is a compact subset ofM and U and V are open
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neighborhoods of C in M such that V \O is connected for each connected

component O of M � C. Then there exists a neighborhood U of iU in E ker c�ðU;MÞ
and a homotopy s : U � ½0; 1� !H M�V ;cðM;�Þ such that

(1) for each f 2 U

(i) s0ðfÞ ¼ idM , (ii) s1ðfÞjC ¼ f jC, (iii) if f ¼ id on U \ @M, then

stðfÞ ¼ id on @M ðt 2 ½0; 1�Þ,
(2) stðiUÞ ¼ idM ðt 2 ½0; 1�Þ.

We also discuss a non-ambient deformation lemma for �-preserving embed-

dings (Theorem 5.3).

In the last section we study the group H cðM;�Þw endowed with the Whitney

topology (cf. [3]). It is known that the group H ðNÞ and the subgroup H ðN ; �Þ
are locally contractible for any compact n-manifold N and any good Radon

measure � on N with �ð@NÞ ¼ 0 ([7, Corollary 1.1], [8, Theorem 4.4]). In [3] it is

shown that the group H cðMÞw consisting of homeomorphisms ofM with compact

support, endowed with the Whitney topology, is locally contractible. In this

article, as an application of the weak extension theorem for H cðM;�Þ, we show

that the group H cðM;�Þw is also locally contractible for any connected

n-manifold M (Theorem 6.1).

This paper is organized as follows. Section 2 is devoted to the general

formulations and basic properties of local weak extension property and local weak

section property for group actions. Section 3 contains fundamental facts related

to Radon measures on manifolds (selection theorems for measures, end charge

homomorphism, etc.). In Section 4 we recall the local deformation lemma for

biregular embeddings and discuss some direct consequences of this lemma. In

Section 5 we obtain the weak extension theorems for the groups H ðM;�Þ, ker c�
and H cðM;�Þ and a non-ambient deformation lemma for �-preserving embed-

dings. In Section 6 we recall basic facts on the Whitney topology and show that

the group H cðM;�Þw is locally contractible for any connected n-manifold M.

2. Fundamental facts on group actions.

2.1. Conventions.

For a topological space X and a subset A of X, the symbols IntXA, clXA and

FrXA denote the topological interior, closure and frontier of A in X. Let C ðXÞ
denote the collection of all connected components of X.

Suppose Y is a locally connected, locally compact Hausdorff space. Let H ðY Þ
denote the group of homeomorphisms of Y endowed with the compact-open

topology. For a subset A of Y , let H AðY Þ ¼ fh 2H ðY Þ j hjA ¼ idAg (with the

subspace topology). The group H ðY Þ and the subgroup H AðY Þ are topological
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groups. In general, for any topological group G, the symbols G0 and G1 denote the

connected component and the path-component of the unit element e in G.

For subspaces A � X of Y let E ðX; Y Þ denote the space of embeddings f :

X,!Y endowed with the compact-open topology, and let EAðX; Y Þ ¼ ff 2
E ðX; Y Þ j f jA ¼ idAg (with the subspace topology). By iX : X � Y we denote the

inclusion map of X into Y .

In this article, an n-manifold means a paracompact �-compact (separable

metrizable) topological n-manifold possibly with boundary. Suppose M is an

n-manifold. The symbols @M and IntM denote the boundary and interior ofM as

a manifold. For a subspace X of M, an embedding f : X !M is said to be proper

if f�1ð@MÞ ¼ X \ @M. Let E �ðX;MÞ denote the subspace of E ðX;MÞ consisting
of proper embeddings f : X !M. For a subset A of X let E �AðX;MÞ ¼
E �ðX;MÞ \ EAðX;MÞ.

By an n-submanifold ofM we mean a closed subset N ofM such that N is an

n-manifold and FrMN is locally flat in M and transverse to @M so that (i) M �
IntMN is an n-manifold and (ii) FrMN and N \ @M are ðn� 1Þ-manifolds with the

common boundary ðFrMNÞ \ ðN \ @MÞ. For simplicity, let @þN ¼ FrMN , @�N ¼
N \ @M and Nc ¼M � IntMN. More generally, for a subset U of M let

@�U ¼ U \ @M.

Suppose M is an n-manifold.

LEMMA 2.1 ([1, Theorem 0], cf. [9]). Suppose C is a compact subset of M

and U is a neighborhood of C in M. Then there exists a compact n-submanifold N

of M such that C � IntMN and N � U.

LEMMA 2.2.
(1) If M is connected and L is an n-submanifold of M such that @þL is

compact, then there exists a connected n-submanifold N of M such that

L � IntMN and N \ Lc is compact.
(2) Suppose C is a compact subset of M.

(i) For any neighborhood U of C in M there exists a compact n-

submanifold N of M such that C � IntMN, N � U and O�N is

connected for each O 2 C ðM � CÞ.
(ii) If U is an open neighborhood of C in M such that U \O is connected

for each O 2 C ðM � CÞ, then there exists a compact n-submanifold N

of M such that C � IntMN, N � U and N \O is connected for each

O 2 C ðM � CÞ.

PROOF.

(1) SinceM is connected and @þL is compact, C ðLÞ is a finite collection. Since
M is connected, there exists a finite collection of disjoint arcs f�igi in Lc such that
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L [ ð
S
i �iÞ is connected. We apply Lemma 2.1 to C ¼ @þL [ ð

S
i �iÞ in the

n-manifold Lc in order to find a compact n-submanifold N0 of Lc such that C �
IntLcN0 and each K 2 C ðN0Þ meets C. Then N ¼ L [N0 satisfies the required

conditions.

(2) (i) We may assume thatM is connected (apply the connected case to each

component of M). By Lemma 2.1 there exists a compact n-submanifold N1 of M

such that C � IntMN1 and N1 � U. Let C ¼ fO 2 C ðM � CÞ j O 6� N1g. Since

C ðNc
1Þ is a finite collection, so is C .

For each O 2 C , it is seen that O is a connected n-manifold, Nc
1 \O is an

n-submanifold of O, ðNc
1 \OÞ

c ¼ N1 \O in O and FrOðNc
1 \OÞ ¼ ðFrMN1Þ \O is

compact (it is a union of components of FrMN1). Thus, by (1) we can find a

connected n-submanifold LO of O such that Nc
1 \O � IntOLO and LO \ ðN1 \OÞ

is compact. Note that LO is closed in M so that it is also a connected

n-submanifold of M. Let L ¼
S
O2C LO. Then, N ¼ Lc satisfies the required

conditions. In fact, C �M � L ¼ IntMN, N � N1, C ¼ fO 2 C ðM � CÞ j O 6� Ng
and O�N ¼ IntMLO for each O 2 C .

(ii) Since C ðU � CÞ ¼ fO \ U j O 2 C ðM � CÞg, by replacing M by U , we

may assume that U ¼M. Again we may assume that M is connected. By Lemma

2.1 there exists a compact n-submanifold N1 of M such that C � IntMN1.

Consider the finite collection C ¼ fO 2 C ðM � CÞ j O 6� N1g. For each O 2 C , it

is seen that O is a connected n-manifold, N1 \O is an n-submanifold of O, ðN1 \
OÞc ¼ Nc

1 \O in O and FrOðN1 \OÞ ¼ ðFrMN1Þ \O is compact. Thus, by (1) we

can find a connected n-submanifold KO of O such that N1 \O � IntOKO and

KO \ ðNc
1 \OÞ is compact. Then, N ¼ N1 [ ð

S
O2C KOÞ satisfies the required

conditions. In fact, fO 2 C ðM � CÞ j O 6� Ng � C and N \O ¼ KO for each

O 2 C . �

2.2. Pull-backs.

For maps B1�!
p
B �� E, we obtain the pull-back diagram in the category of

topological spaces and continuous maps:

p0

p�E �! E?y�0
?y �

B1 �! B
p

Explicitly, the space p�E and the maps B1 �
�0
p�E�!p

0

E are defined by

p�E ¼ fðb1; eÞ 2 B1 � E j pðb1Þ ¼ �ðeÞg and �0ðb1; eÞ ¼ b1; p0ðb1; eÞ ¼ e:
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Suppose a topological group G acts on spaces B and B1 transitively. Let

p : B1 ! B be a G-equivariant map. Fix a point b1 2 B1 and let b ¼ pðb1Þ 2 B and

let Gb be the stabilizer of b under the G-action on B. Consider the orbit map

� : G! B, �ðgÞ ¼ gb. Then the maps B1�!
p
B �� G induce the pull-back

diagram:

p0

p�G �! G?y�0
?y �

B1 �! B
p

The group Gb acts freely on p�G on the right by ðx; gÞ � h ¼ ðx; ghÞ (ðx; gÞ 2 p�G,
h 2 Gb). The induced map p0 : p�G! G admits a right inverse r : G! p�G, rðgÞ ¼
ðgb1; gÞ (i.e., p0r ¼ idG).

DEFINITION 2.1. We say that the G-equivariant map p : B1 ! B has the

local section property for G (LSPG) at b1 if there exists a neighborhood U1 of b1 in

B1 and a map s1 : U1 ! G such that �s1 ¼ pjU1
.

LEMMA 2.3.

(1) The map p has LSPG at b1 if and only if the induced map �0 : p�G! B1 is a

principal Gb-bundle.

(2) If the fiber p�1ðbÞ is contractible, then the map p0 : p�G! G is a homotopy

equivalence.

PROOF.

(1) Suppose the map p has LSPG at b1. Take any point b2 2 B1. Since G acts

on B1 transitively, there exists a g 2 G with b2 ¼ gb1. Then U2 ¼ gU1 is a

neighborhood of b2 in B1 and the map s2 : U2 ! G, s2ðxÞ ¼ gs1ðg�1xÞ satisfies the
condition �s2 ¼ pjU2

(i.e., �s2ðxÞ ¼ gs1ðg�1xÞb ¼ gðpðg�1xÞÞ ¼ pðxÞ). The map �0 :

p�G! B1 admits a local trivialization

� : U2 �Gb ¼� ð�0Þ�1ðU2Þ ¼
[
x2U2

ðfxg � ��1ðpðxÞÞÞ

over U2 defined by �ðx; hÞ ¼ ðx; s2ðxÞhÞ:

The converse is obvious.

(2) It remains to show that rp0 ’ idp�G. There exists a contraction �t :

p�1ðbÞ ! p�1ðbÞ ðt 2 ½0; 1�Þ such that �1ðp�1ðbÞÞ ¼ fb1g. If ðx; gÞ 2 p�G, then x 2
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p�1ðgbÞ ¼ g p�1ðbÞ. Thus, we can define a homotopy

�t : p
�G! p�G from idp�G to rp0 by �tðx; gÞ ¼ ðg�tðg�1xÞ; gÞ: �

2.3. Group actions and spaces of embeddings.

Suppose a topological group G acts continuously on a locally compact

Hausdorff space Y . Each g 2 G induces ĝ 2H ðY Þ defined by ĝðyÞ ¼ gy ðy 2 Y ).
Let H be any subset of G. For subsets A;B of Y we have the following subsets of

H:

HA ¼ fh 2 H j ĥjA ¼ idAg; HðBÞ ¼ HY nB; HAðBÞ ¼ HA \HðBÞ;

Hc ¼ fh 2 H j supp ĥ is compactg:

If H is a subgroup of G, then these are subgroups of H.

For subsets X � C � U of Y , the group GXðUÞ acts continuously on the space

EXðC;UÞ by the left composition g � f ¼ ĝf (g 2 GXðUÞ, f 2 EXðC;UÞ) and we

have the following subspace of EXðC;UÞ:

EH
XðC;UÞ ¼ HXðUÞiC ¼ fĝjC j g 2 HXðUÞg (with the compact-open topology):

Since EH
XðC;UÞ ¼ EHX ðC;UÞ, by replacing H by HX if necessary, we omit X in the

subsequent statements.

Consider the pull-back diagram:

p0

p�G �! G

�0
??y ??y� where �ðgÞ ¼ ĝjC and pðfÞ ¼ f jC:

EGðU; Y Þ �! EGðC; Y Þ;
p

The group G acts on the spaces EGðU; Y Þ and EGðC; Y Þ transitively. The

restriction map p is G-equivariant and has the fiber p�1ðiCÞ ¼ EG
CðU; Y Þ.

DEFINITION 2.2. We say that the pair ðU;CÞ has the local section property

for G (LSPG) if the G-equivariant map p : EGðU; Y Þ ! EGðC; Y Þ has LSPG at iU .

LEMMA 2.4. The pair ðU;CÞ has LSPG if and only if the map �0 : p�G!
EGðU; Y Þ is a principal GC-bundle.

This lemma follows directly from Lemma 2.3 (1).
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LEMMA 2.5. Suppose there exists a path h : ½0; 1� ! G such that h0 ¼ e,bh1ðUÞ � C and bhtðUÞ � U, bhtðCÞ � C ðt 2 ½0; 1�Þ. Then the following hold.
(1) The map p : EGðU; Y Þ ! EGðC; Y Þ is a homotopy equivalence.
(2) There exists a strong deformation retraction �t ðt 2 ½0; 1�Þ of EG

CðU; Y Þ
onto the singleton fiUg.

(3) The map p0 : p�G! G is a homotopy equivalence.

PROOF.

(1) We can define a map p1 : E
GðC; Y Þ ! EGðU; Y Þ by p1ðfÞ ¼ f bh1jU . It

follows that

(i) p1pðfÞ ¼ f bh1jU and a homotopy �t : id ’ p1p is defined by �tðfÞ ¼
f bhtjU , and

(ii) pp1ðfÞ ¼ f bh1jC and a homotopy  t : id ’ pp1 is defined by  tðfÞ ¼
f bhtjC .

(2) The contraction �t of E
G
CðU; Y Þ is defined by �tðfÞ ¼ bht�1f bhtjU .

(3) The assertion follows from (2) and Lemma 2.3 (2). �

Lemmas 2.4 and 2.5 yield the following consequence.

PROPOSITION 2.1. If a subset C of Y satisfies the condition ð�Þ below, then
the map

GC � G�!
�

EGðC; Y Þ de�ned by �ðhÞ ¼ ĥjC

is a locally trivial bundle up to homotopy equivalences and hence has the exact

sequence for homotopy groups.

(�) There exists a subset U of Y such that (i) C � U, (ii) the pair ðU;CÞ has
LSPG, and (iii) there exists a path ht 2 G ðt 2 ½0; 1�Þ such that

h0 ¼ e; bh1ðUÞ ¼ C; bhtðUÞ � U; bhtðCÞ � C ðt 2 ½0; 1�Þ:

2.4. Weak extension property.

Suppose a topological group G acts on an n-manifold M. Consider a pair

ðH;F Þ of subsets of G and a triple ðV ; U; CÞ of subsets of M such that C � U \ V
(we do not assume that F � H and U � V ).

DEFINITION 2.3. We say that the triple ðV ; U; CÞ has the weak extension

property for ðH;F Þ (abbreviated as WEPH;F or WEPðH;F Þ) if there exists a

neighborhood U of iU in EHðU;MÞ and a homotopy s : U � ½0; 1� ! F ðV Þ such
that
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(1) for each f 2 U (i) s0ðfÞ ¼ e, (ii) ds1ðfÞjC ¼ f jC , (iii) if f ¼ id on @�U,

then dstðfÞ ¼ id on @M ðt 2 ½0; 1�Þ,
(2) stðiUÞ ¼ e ðt 2 ½0; 1�Þ.

The map st : U ! F ðV Þ (t 2 ½0; 1�) is called the local weak extension map (LWE

map). When H ¼ F , we simply say that ðV ; U; CÞ has WEPH . When V ¼ U , we
say that the pair ðU;CÞ has WEPH;F . Note that WEPG for ðU;CÞ implies LSPG
for ðU;CÞ.

One of our interest is the following problem.

PROBLEM 2.1. Given a class of triples ðV ; U; CÞ in Y and a subset F of G,

determine the largest subset H of G for which each triple ðV ; U; CÞ in this class has

WEPðH;F Þ.

The next lemma easily follows from the definition.

LEMMA 2.6. Suppose ðV ; U; CÞ and ðV 0; U 0; C0Þ are two triples of subsets in

M such that C � U \ V and C0 � U 0 \ V 0 and ðH;F Þ and ðH 0; F 0Þ are two pairs of

subsets in G. If (i) ðV ; U; CÞ has WEPðH;F Þ, (ii) V � V 0, U � U 0, C � C0 and (iii)

H � H 0, F � F 0, then ðV 0; U 0; C0Þ has WEPðH 0; F 0Þ.

LEMMA 2.7. Suppose F is a subgroup of G. If two triples ðV1; U1; C1Þ and
ðV2; U2; C2Þ haveWEPðH;F Þ and V1 \ V2 ¼ ;, then the triple ðV1 [ V2; U1 [ U2; C1 [
C2Þ also has WEPðH;F Þ.

PROOF. For i ¼ 1; 2 let EHðUi;MÞ � U i�!
sit
F ðViÞ be the associated LWE

map for ðVi; Ui; CiÞ. Take a neighborhood U of iU1[U2
in EHðU1 [ U2;MÞ such that

f jUi 2 U i (i ¼ 1; 2) for each f 2 U . Then the required LWE map st :

U ! F ðV1 [ V2Þ for ðV1 [ V2; U1 [ U2; C1 [ C2Þ is defined by

stðfÞ ¼ s1t ðf jU1
Þs2t ðf jU2

Þ (the multiplication in G):

Note that dstðfÞ ¼ dsitðfjUiÞ on Vi and dstðfÞ ¼ id on M � ðV1 [ V2Þ. �

3. Spaces of Radon measures and groups of measure-preserving

homeomorphisms.

3.1. Spaces of Radon measures.

Suppose Y is a locally connected, locally compact, �-compact (separable

metrizable) space. Let BðY Þ denote the �-algebra of Borel subsets of Y . A Radon

measure on Y is a measure � on the measurable space ðY ;BðY ÞÞ such that �ðKÞ <
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1 for any compact subset K of Y . Let M ðY Þ denote the set of Radon measures on

Y . The weak topology w on M ðY Þ is the weakest topology such that the function

�f : M ðY Þ �! R : � 7�!
Z
Y

f d�

is continuous for any continuous function f : Y ! R with compact support. The

set M ðY Þ is endowed with the weak topology w, otherwise specified.

For � 2M ðY Þ and A 2 BðY Þ, the restriction �jA is the Radon measure on A

defined by ð�jAÞðBÞ ¼ �ðBÞ (B 2 BðAÞ).

LEMMA 3.1 ([4, Lemma 2.2]). For any closed subset A of Y , the map

M ðY Þ !M ðAÞ : � 7! �jA is continuous at each � 2M ðY Þ with �ðFrMAÞ ¼ 0.

We say that � 2M ðY Þ is good if �ðpÞ ¼ 0 for any point p 2 Y and �ðUÞ > 0

for any nonempty open subset U of Y . For A 2 BðY Þ let MA
g ðY Þ denote the

subspace of M ðY Þ consisting of good Radon measures � on Y with �ðAÞ ¼ 0. For

�; � 2M ðY Þ, we say that � is �-biregular if � and � have same null sets (i.e.,

�ðBÞ ¼ 0 if and only if �ðBÞ ¼ 0 for any B 2 BðY Þ). For � 2MA
g ðY Þ we set

MA
g ðY ;�-regÞ ¼ f� 2MA

g ðY Þ j � is �-biregularg (with the weak topology):

For h 2H ðY Þ and � 2M ðY Þ, the induced measures h��; h
�� 2M ðY Þ are

defined by

ðh��ÞðBÞ ¼ �ðh�1ðBÞÞ and ðh��ÞðBÞ ¼ �ðhðBÞÞ ðB 2 BðY ÞÞ:

The group H ðY Þ acts continuously on the space M ðY Þ by h � � ¼ h��. We say

that h 2H ðY Þ is

(i) �-preserving if h�� ¼ � (i.e., �ðhðBÞÞ ¼ �ðBÞ for any B 2 BðY Þ) and
(ii) �-biregular if h�� and � have the same null sets (i.e., �ðhðBÞÞ ¼ 0 if and

only if �ðBÞ ¼ 0 for any B 2 BðY Þ).

Let H ðY ;�Þ �H ðY ;�-regÞ denote the subgroups of H ðY Þ consisting of

�-preserving and �-biregular homeomorphisms of Y respectively. For a subset

A of Y , the subgroups H AðY ;�Þ, H AðY ;�Þ1, H A;cðY ;�Þ, H AðY ;�-regÞ, etc. are
defined according to the conventions in Sections 2.1 and 2.3.

For spaces of embeddings, we use the following notations. Suppose Y is a

locally compact, �-compact (separable metrizable) space and � 2M ðY Þ. For any
X 2 BðY Þ, an embedding f : X ! Y is said to be
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(i) Borel if fðXÞ 2 BðY Þ,
(ii) �-biregular provided f is Borel and �ðfðBÞÞ ¼ 0 if and only if �ðBÞ ¼ 0

for any B 2 BðXÞ,
(iii) �-preserving provided f is Borel and f : ðX;�jXÞ ¼� ðfðXÞ; �jfðXÞÞ is a

measure-preserving homeomorphism (i.e., �ðfðBÞÞ ¼ �ðBÞ for any B 2
BðXÞ).

For a subset A of X, let EAðX; Y ;�-regÞ and E AðX; Y ;�Þ denote the subspaces of

EAðX; Y Þ consisting of �-biregular embeddings and �-preserving embeddings

respectively.

SupposeM is a compact connected n-manifold and � 2M @
g ðMÞð¼M @M

g ðMÞÞ.

THEOREM 3.1 ([10]). If � 2M @
g ðMÞ and �ðMÞ ¼ �ðMÞ, then there exists

h 2H @ðMÞ1 such that h�� ¼ �.

Let M @
g ðM;�Þ ¼ f� 2M @

g ðM;�-regÞ j �ðMÞ ¼ �ðMÞg (with the weak top-

ology). (See Section 3.2 for the definition in the case where M is noncompact.)

The group H ðM;�-regÞ acts continuously on M @
g ðM;�Þ by h � � ¼ h��. This

action induces the map

� : H ðM;�-regÞ �!M @
g ðM;�Þ : h 7�! h��:

THEOREM 3.2 ([8, Theorem 3.3]). The map � admits a section

� : M @
g ðM;�Þ �!H @ðM;�-regÞ1 �H ðM;�-regÞ

such that ð�� ¼ id andÞ �ð�Þ ¼ idM .

Next we recall basic facts on the product of measures. Suppose ðX;F ; �Þ and
ðY ;G ; �Þ are �-finite measure spaces. Let F � G denote the �-algebra on X � Y
generated by the family fA� B j A 2 F ; B 2 Gg. For G 2 F � G and x 2 X, the

slice Gx � Y is defined by Gx ¼ fy 2 Y j ðx; yÞ 2 Gg. It is well known that

(1) there exists a unique measure ! on the measurable space ðX � Y ;F � G Þ
such that !ðA�BÞ ¼ �ðAÞ � �ðBÞ ðA 2 F ; B 2 G Þ (we follow the con-

vention 0 � 1 ¼ 0),
(2) for any G 2 F � G

(i) �ðGxÞ ðx 2 XÞ is an F -measurable function on X and

(ii) !ðGÞ ¼
Z
X

�ðGxÞ d�ðxÞ.

This result yields the following consequences on the product of Radon measures.
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PROPOSITION 3.1. Suppose ðX;�Þ and ðY ; �Þ are locally compact separable

metrizable spaces with Radon measures. Then the following hold:

(0) BðXÞ �BðY Þ ¼ BðX � Y Þ.
(1) There exists a unique ! 2M ðX � Y Þ such that !ðA�BÞ ¼ �ðAÞ � �ðBÞ
ðA 2 BðXÞ; B 2 BðY ÞÞ.

(2) For any G 2 BðX � Y Þ
(i) �ðGxÞ ðx 2 XÞ is a BðXÞ-measurable function on X and

(ii) !ðGÞ ¼
Z
X

�ðGxÞ d�ðxÞ.

The measure ! is called the product of � and � and denoted by �� �.

PROPOSITION 3.2. Suppose f : ðX;�Þ ! ðX1; �1Þ and g : ðY ; �Þ ! ðY1; �1Þ
are homeomorphisms between locally compact separable metrizable spaces with

Radon measures. Then the product homeomorphism f � g : ðX � Y ; �� �Þ !
ðX1 � Y1; �1 � �1Þ has the following properties:

(1) If f and g are biregular, then f � g is biregular.
(2) If f and g are measure-preserving, then f � g is measure-preserving.

PROOF. For G 2 BðX � Y Þ, we have

(a) ð�� �ÞðGÞ ¼
Z
X

�ðGxÞ d�ðxÞ and

(b) ð�1 � �1Þððf � gÞðGÞÞ ¼
Z
X1

�1ðððf � gÞðGÞÞx1Þ d�1ðx1Þ

¼
Z
X1

�1ðgðGf�1ðx1ÞÞÞ d�1ðx1Þ:

(1) Note that

(i) ð�� �ÞðGÞ ¼ 0 if and only if �ðGxÞ ¼ 0 (�-a.e. x 2 X)

(i.e., 9A 2 BðXÞ such that �ðAÞ ¼ 0 and �ðGxÞ ¼ 0 (x 2 X � A));

(ii) ð�1 � �1Þððf � gÞðGÞÞ ¼ 0 if and only if �1ðgðGf�1ðx1ÞÞÞ ¼ 0 (�1-a.e.

x1 2 X1).

Since f and g are biregular, if (i) holds, then it follows that

fðAÞ 2 BðX1Þ; �1ðfðAÞÞ ¼ 0 and �1ðgðGf�1ðx1ÞÞÞ ¼ 0 ðx1 2 X1 � fðAÞÞ:
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This implies (ii). The same argument shows the opposite implication. This means

that f � g is biregular.

(2) Since f and g are measure-preserving, it follows that

ð�1 � �1Þððf � gÞðGÞÞ ¼
Z
X1

�1ðgðGf�1ðx1ÞÞÞ d�1ðx1Þ ¼
Z
X1

�ðGf�1ðx1ÞÞ d�1ðx1Þ

¼
Z
X

�ðGxÞ d�ðxÞ ¼ ð�� �ÞðGÞ:

This means that f � g is measure-preserving. We also note that ðf � gÞ�ð�1 �
�1Þ 2M ðX � Y Þ satisfies the condition: for any A 2 BðXÞ and B 2 BðY Þ

ððf � gÞ�ð�1 � �1ÞÞðA� BÞ ¼ ð�1 � �1Þððf � gÞðA�BÞÞ ¼ ð�1 � �1ÞðfðAÞ � gðBÞÞ
¼ �1ðfðAÞÞ � �1ðgðBÞÞ ¼ �ðAÞ � �ðBÞ:

By definition we have ðf � gÞ�ð�1 � �1Þ ¼ �� �. This also implies the conclu-

sion. �

We conclude this subsection with some remarks on collars of the boundary of

a submanifold. Suppose M is an n-manifold and � 2M @
g ðMÞ.

REMARK 3.1. Suppose N is an n-submanifold of M such that @þN is

compact. Since �ð@MÞ ¼ 0, we have �ð@NÞ ¼ �ð@þNÞ. Take a bicollar

@þN � ½�1; 1� of @þN in M. Since @þN � ½�1; 1� is compact, it follows that

�ð@þN � ½�1; 1�Þ <1 and ft 2 ½�1; 1� j �ð@þN � ftgÞ 6¼ 0g is a countable subset

of ½�1; 1�. Hence, we can modify N by adding or subtracting a thin collar of @þN

so that �ð@NÞ ¼ �ð@þNÞ ¼ 0.

Let m denote the Lebesgue measure on the real line R.

LEMMA 3.2. Suppose N is an n-submanifold ofM such that @þN is compact

and �ð@þNÞ ¼ 0 and suppose � 2M @
g ð@þNÞ. Then, there exists a bicollar E ¼

@þN � ½a; b� ða < 0 < bÞ of @þN in M such that @þN ¼ @þN � f0g, N \ E ¼
@þN � ½a; 0� and �jE ¼ � � ðmj½a;b�Þ.

PROOF. Let C ð@þNÞ ¼ fF1; � � � ; Fmg. For each i ¼ 1; � � � ;m, choose a small

bicollar Ei ¼ Fi � ½ai; bi� (ai < 0 < bi) such that Fi ¼ Fi � f0g, N \ Ei ¼
Fi � ½ai; 0�, �ð@þEiÞ ¼ 0, �ðFi � ½ai; 0�Þ ¼ jaij�ðFiÞ and �ðFi � ½0; bi�Þ ¼ bi�ðFiÞ.
We can apply Theorem 3.1 to
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�jFi�½ai;0�; �jFi � ðmj½ai;0�Þ 2M @
g ðFi � ½ai; 0�Þ and

�jFi�½0;bi�; �jFi � ðmj½0;bi�Þ 2M @
g ðFi � ½0; bi�Þ

to replace the identification of the collar Ei ¼ Fi � ½ai; bi� so that �jEi ¼ �jFi �
ðmj½ai;bi�Þ. Finally, take a; b such that maxi ai < a < 0 < b < mini bi and set

E ¼ @þN � ½a; b� ¼
S
iðFi � ½a; b�Þ. �

3.2. End compactification and finite-end weak topology (cf. [2], [4]):

In order to extend the selection theorem 3.2 to the noncompact case, it is

necessary to include the information of the ends. Suppose Y is a noncompact,

connected, locally connected, locally compact, separable metrizable space. Let

K ðY Þ denote the collection of all compact subsets of Y . An end of Y is a function

e which assigns an eðKÞ 2 C ðY �KÞ to each K 2 K ðY Þ such that eðK1Þ � eðK2Þ
if K1 � K2. The set of ends of Y is denoted by EY . The end compactification of Y

is the space Y ¼ Y [ EY equipped with the topology defined by the following

conditions: (i) Y is an open subspace of Y , (ii) the fundamental open

neighborhoods of e 2 EY are given by

Nðe;KÞ ¼ eðKÞ [ fe0 2 EY j e0ðKÞ ¼ eðKÞg ðK 2 K ðY ÞÞ:

Then Y is a connected, locally connected, compact, metrizable space, Y is a dense

open subset of Y and EY is a compact 0-dimensional subset of Y .

For h 2H ðY Þ and e 2 EY we define hðeÞ 2 EY by hðeÞðKÞ ¼ hðeðh�1ðKÞÞÞ
ðK 2 K ðY ÞÞ. Each h 2H ðY Þ has a unique extension h 2H ðY Þ defined by

hðeÞ ¼ hðeÞ ðe 2 EY Þ. The map H ðY Þ !H ðY Þ : h 7! h is a continuous group

homomorphism. For A � Y we set H A[EY ðY Þ ¼ fh 2H AðY Þ j hjEY ¼ idEY g.
Note that H A[EY ðY Þ0 ¼H AðY Þ0.

Let � 2M ðY Þ. An end e 2 EY is said to be �-finite if �ðeðKÞÞ <1 for some

K 2 K ðY Þ. Let E�
Y ¼ fe 2 EY j e is �-finiteg. Then Y [ E�

Y is an open subset of Y .

For A 2 BðY Þ and � 2MA
g ðY Þ we set

MA
g ðY ;�-e-regÞ ¼ f� 2MA

g ðY Þ j � is �-biregular; E�
Y ¼ E

�
Y g;

MA
g ðY ;�Þ ¼ f� 2MA

g ðY ;�-e-regÞ j �ðY Þ ¼ �ðY Þg:

The finite-ends weak topology ew on MA
g ðY ;�-e-regÞ is the weakest topology such

that the function

�f : M
A
g ðY ;�-e-regÞ �! R : � 7�!

Z
Y

f jY d�

700 T. YAGASAKI



is continuous for any continuous function f : Y [ E�
Y ! R with compact support.

There is an alternative description of this topology ([4, Section 3, p. 245]).

Consider the space M ðY [ E�
Y Þ (with the weak topology). Each � 2M gðY ;

�-e-regÞ has a natural extension � 2M gðY [ E�
Y Þ defined by �ðBÞ ¼ �ðB \ Y Þ

(B 2 BðY [ E�
Y Þ). The topology ew on MA

g ðY ;�-e-regÞ is the weakest topology for

which the injection

� : MA
g ðY ;�-e-regÞ �!M ðY [ E�

Y Þw : � 7�! �

is continuous. The symbol MA
g ðY ;�-e-regÞew denotes the space MA

g ðY ;�-e-regÞ
endowed with the topology ew.

We say that h 2H ðY Þ is �-end-biregular if h is �-biregular and Eh��
Y ¼ E�

Y

(i.e., hðE�
Y Þ ¼ E

�
Y ). Let H ðY ;�-e-regÞ denote the subgroup of H ðY Þ consisting of

�-end-biregular homeomorphisms of Y .

Suppose M is a connected n-manifold and � 2M @
g ðMÞ. The group H ðM;

�-e-regÞ acts continuously on M @
g ðM;�Þew by h � � ¼ h��. This action induces the

map

� : H ðM;�-e-regÞ �!M @
g ðM;�Þew : h 7�! h��:

THEOREM 3.3 ([4, Theorem 4.1]). The map � has a section

� : M @
g ðM;�Þew �!H @ðM;�-e-regÞ1 ¼H @ðM;�-regÞ1

such that ð�� ¼ id andÞ �ð�Þ ¼ idM .

3.3. End charge homomorphism.

We recall basic properties of the end charge homomorphisms defined in [2,

Section 14]. Suppose Y is a connected, locally connected, locally compact

separable, metrizable space. LetQðEY Þ denote the algebra of clopen subsets of EY

and let BcðY Þ ¼ fC 2 BðY Þ j FrY C is compactg. For each C 2 BcðY Þ let

EC ¼ fe 2 EY j eðKÞ � C for some K 2 K ðY Þg and C ¼ C [ EC � Y :

Note that (i) EC 2 QðEY Þ and C is a neighborhood of EC in Y with C \ EY ¼ EC ,

(ii) for C;D 2 BcðY Þ it follows that EC ¼ ED if and only if C�D ¼ ðC �DÞ [
ðD� CÞ is relatively compact (i.e., has the compact closure) in Y , (iii) if C 2
BcðY Þ and h 2H EY ðY Þ, then hðCÞ 2 BcðY Þ and EhðCÞ ¼ EC .

An end charge of Y is a finitely additive signed measure c on QðEY Þ, that is, a
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function c : QðEY Þ ! R which satisfies the following condition:

cðF [GÞ ¼ cðF Þ þ cðGÞ for F;G 2 QðEY Þ with F \G ¼ ;:

Let S ðY Þ denote the space of end charges c of Y endowed with the weak topology

(or the product topology). This topology is the weakest topology such that the

function

�F : S ðY Þ �! R : c 7�! cðF Þ

is continuous for any F 2 QðEY Þ. For � 2M ðY Þ let

S ðY ; �Þ ¼ c 2 S ðY Þ
(i) cðF Þ ¼ 0 for F 2 QðEY Þ with F � E�

Y

(ii) cðEY Þ ¼ 0

�����
( )

(with the weak topology). Then S ðY Þ is a topological linear space and S ðY ; �Þ is
a linear subspace.

For h 2H EY ðY ;�Þ the end charge c�h 2 S ðY ; �Þ is defined as follows: For any

F 2 QðEY Þ there exists C 2 BcðY Þ with EC ¼ F . Since hjEY ¼ id, it follows that

EC ¼ EhðCÞ and that C�hðCÞ is relatively compact in Y . Thus �ðC � hðCÞÞ;
�ðhðCÞ � CÞ <1 and we can define

c�hðF Þ ¼ �ðC � hðCÞÞ � �ðhðCÞ � CÞ 2 R:

This quantity is independent of the choice of C.

PROPOSITION 3.3. The end charge homomorphism c� : H EY ðY ;�Þ ! S ðY ; �Þ
is a continuous group homomorphism ð½2; Section 14.9, Lemma 14.21 (iv)]).

In [12] we have shown that, for any connected n-manifold M and � 2
M @

g ðMÞ, the end charge homomorphism c� : H EM ðM;�Þ ! S ðM;�Þ has a (non-

homomorphic) section s : S ðM;�Þ !H @ðM;�Þ1.
For any subset A of Y we have the restriction of c�

c�A : H A[EY ðY ;�Þ �! SðY ; �Þ:

The kernel of the homomorphism c� is denoted by ker c�. Note that

H cðM;�Þ � ker c� and ðker c�ÞA ¼ ker c�A. By the definition, if h 2 ker c�, then

for any C 2 BcðY Þ we have �ðC � hðCÞÞ ¼ �ðhðCÞ � CÞ.
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LEMMA 3.3. Suppose h 2 ker c� and C 2 BcðY Þ. If L 2 BðC \ hðCÞÞ and

C � L is relatively compact in Y , then hðCÞ � L is also relatively compact and

�ðhðCÞ � LÞ ¼ �ðC � LÞ.

PROOF. Since �ðC � hðCÞÞ ¼ �ðhðCÞ � CÞ, the assertion follows from the

equalities:

hðCÞ � L ¼ ðhðCÞ � CÞ [ ððC \ hðCÞÞ � LÞ and

C � L ¼ ðC � hðCÞÞ [ ððC \ hðCÞÞ � LÞ: �

4. Weak extension theorem for biregular homeomorphisms.

Throughout this section M is an n-manifold and � 2M @
g ðMÞ. The weak

extension theorem for the group G ¼H ðM;�-regÞ is already obtained in [8]. In

this section we discuss some consequences of this extension theorem. In Section 5

we combine the weak extension theorem for H ðM;�-regÞ and the selection

theorem for �-biregular measures (Theorems 3.2 and 3.3) in order to obtain the

weak extension theorems for the groups H ðM;�Þ and ker c�.

First we recall the deformation theorem for �-biregular embeddings [8,

Theorem 4.1]. For X 2 BðMÞ and A � X, let E �AðX;M;�-regÞ denote the space of
proper �-biregular embeddings f : X !M with f jA ¼ idA, endowed with the

compact-open topology (cf. Sections 2.1 and 3.1).

Suppose C is a compact subset of M, U 2 BðMÞ is a neighborhood of C in M

and D � E are two closed subsets of M such that D � IntME.

THEOREM 4.1 ([8, Theorem 4.1]). For any compact neighborhood K of C in

U, there exists a neighborhood U of iU in E �E\UðU;M;�-regÞ and a homotopy

’ : U � ½0; 1� �! E �D\UðU;M;�-regÞ such that

(1) for each f 2 U ,

(i) ’0ðfÞ ¼ f, (ii) ’1ðfÞjC ¼ iC, (iii) ’tðfÞjU�K ¼ f jU�K ðt 2 ½0; 1�Þ,
(iv) if f ¼ id on @�U, then ’tðfÞ ¼ id on @�U ðt 2 ½0; 1�Þ,

(2) ’tðiUÞ ¼ iU ðt 2 ½0; 1�Þ.

Theorem 4.1 is equivalent to the next weak extension theorem.

THEOREM 4.2 ([8, Corollary 4.2]). For any compact neighborhood L of C in

U, there exists a neighborhood U of iU in E �E\UðU;M;�-regÞ and a homotopy

s : U � ½0; 1� !H D[ðM�LÞðM;�-regÞ1 such that

(1) for each f 2 U ðiÞ s0ðfÞ ¼ idM , (ii) s1ðfÞjC ¼ f jC, (iii) if f ¼ id on

@�U, then stðfÞ ¼ id on @M,
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(2) stðiUÞ ¼ idM ðt 2 ½0; 1�Þ.

(In [8, Corollary 4.2] the map s1 alone is mentioned.)

Now we discuss some consequences of Theorem 4.2 for the group G ¼H ðM;

�-regÞ. Suppose X is a compact subset of M. Note that GX ¼H XðM;�-regÞ.
Suppose C is a compact subset ofM with X � C and U is a neighborhood of C

in M. Consider the pull-back diagram:

p0

p�GX �! GX

�0
??y ??y� where �ðhÞ ¼ hjC and pðfÞ ¼ f jC:

EG
XðU;MÞ �! EG

XðC;MÞ;
p

By Theorem 4.2 the pair ðU;CÞ has WEPG. Hence it has LSPG and also

LSPGX
. Thus the next assertion follows from Lemma 2.4.

LEMMA 4.1. The induced map �0 : p�GX ! EG
XðU;MÞ is a principalGC-bundle.

Suppose N is a compact n-submanifold of M such that �ð@þNÞ ¼ 0 and

X � IntMN . Take any compact n-submanifold N1 of M such that �ð@þN1Þ ¼ 0

and N1 is obtained from N by adding an outer collar of @þN . We obtain the pull-

back diagram:

p0

p�GX �! GX

�0
??y ??y� where �ðgÞ ¼ gjN; pðfÞ ¼ f jN and

EG
XðN1;MÞ �! EG

XðN;MÞ; p�1ðiNÞ ¼ EG
NðN1;MÞ:

p

LEMMA 4.2. There exists a path h : ½0; 1� ! GX such that

h0 ¼ idM; h1ðN1Þ ¼ N and htðN1Þ � N1; htðNÞ � N ðt 2 ½0; 1�Þ:

PROOF.

(1) Let m denote the Lebesgue measure on R. We can find a bicollar E ¼
@þN � ½a; b� (a < 0, b > 1) of @þN in M �X and � 2M @

g ð@þNÞ such that

(i) @þN ¼ @þN � f0g; @þN1 ¼ @þN � f1g and (ii) �jE ¼ � � ðmj½a;b�Þ:
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This follows from the following observation. First take any bicollar E0 ¼ @þN �
½�1; 2� of @þN in M �X which satisfies (i) and the weaker condition (ii)0

�ð@þN � f�1gÞ ¼ �ð@þN � f2gÞ ¼ 0. Let C ð@þNÞ ¼ fF1; . . . ; Fmg and set E0i ¼
Fi � ½�1; 2� (i ¼ 1; . . . ;m). Choose any � 2M @

g ð@þNÞ such that �ðFiÞ ¼ �ðFi �
½0; 1�Þ (i ¼ 1; . . . ;m). For each i ¼ 1; . . . ;m, determine ai < 0 and bi > 1 by

jaij�ðFiÞ ¼ �ðFi � ½�1; 0�Þ and ðbi � 1Þ�ðFiÞ ¼ �ðFi � ½1; 2�Þ, and reparametrize

Fi � ½�1; 0� to Fi � ½ai; 0� and Fi � ½1; 2� to Fi � ½1; bi�. We can apply Theorem

3.1 on Fi � ½ai; 0�, Fi � ½0; 1� and Fi � ½1; bi� to obtain a new identification E0i ¼
Fi � ½ai; bi� so that �jE0i ¼ � � ðmj½ai;bi�Þ. Take a; b such that maxi ai < a < 0 and

1 < b < mini bi, and set E ¼
S
iðFi � ½a; b�Þ.

(2) Choose 	 2H @ð½a; b�Þ such that 	 is piecewise affine and 	ð0Þ ¼ a=2,
	ð1Þ ¼ 0. We obtain two isotopies

	t 2H @ð½a; b�Þ ðt 2 ½0; 1�Þ de�ned by 	tðsÞ ¼ ð1� tÞsþ t	ðsÞ and
gt 2H @þN�fa;bgð@þN � ½a; b�Þ ðt 2 ½0; 1�Þ de�ned by gtðy; sÞ ¼ ðy; 	tðsÞÞ:

Note that 	0 ¼ id, 	1ð½a; 1�Þ ¼ ½a; 0�, 	tð½a; 0�Þ � ½a; 0� and 	tð½a; 1�Þ � ½a; 1�. Since 	t
is also piecewise affine, it is seen that 	t is mj½a;b�-biregular. Then each gt is

� � ðmj½a;b�Þ-biregular by Proposition 3.2. Finally, the required isotopy ht 2
H EcðM;�-regÞ � GX (t 2 ½0; 1�) is defined by htjE ¼ gt. �

By Lemmas 4.1, 4.2 and 2.5 we have the following conclusions.

LEMMA 4.3.
(1) The induced map �0 : p�GX ! EG

XðN1;MÞ is a principal GN -bundle.
(2) The map p : EG

XðN1;MÞ ! EG
XðN;MÞ is a homotopy equivalence.

(3) There exists a strong deformation retraction �t ðt 2 ½0; 1�Þ of EG
NðN1;MÞ

onto the singleton fiN1
g.

(4) The map p0 : p�GX ! GX is a homotopy equivalence.

COROLLARY 4.1. Suppose X is a compact subset of M and N is a compact

n-submanifold of M such that �ð@NÞ ¼ 0 and X � IntMN. Then the restriction

map

H NðM;�-regÞ �H XðM;�-regÞ�!� E
H ðM;�-regÞ
X ðN;MÞ de�ned by �ðhÞ ¼ hjN

is a fibration up to homotopy equivalences and has the exact sequence for homotopy

groups.
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5. Weak extension theorem for measure-preserving homeomor-

phisms.

Throughout this section M is an n-manifold and � 2M @
g ðMÞ. In this section

we combine the weak extension theorem for G ¼H ðM;�-regÞ (Theorem 4.2) and

the selection theorem for �-biregular measures (Theorems 3.2 and 3.3) in order to

obtain the weak extension theorems for the groups H ¼H ðM;�Þ and F ¼ ker c�.

We also discuss a non-ambient weak deformation of measure-preserving embed-

dings (Theorem 5.3). Some application to the group Hc ¼H cðM;�Þ endowed
with the Whitney topology is provided in Section 6.

5.1. Weak extension theorem for H ðM;�Þ.
We obtain the weak extension theorem for H ðM;�Þ in a general form

(Theorem 5.1, cf. [8, Theorem 4.12]). This answers Problem 2.1 and also leads us

to the weak extension theorem for ker c� in Section 5.2. (Recall that M is an

n-manifold, � 2M @
g ðMÞ, G ¼H ðM;�-regÞ and H ¼H ðM;�Þ.)

For A;B 2 BðMÞ, consider the subset GA;B of G defined by

GA;B ¼ fh 2 G j hjA 2 E ðA;M;�Þ and �ðhðLÞÞ ¼ �ðLÞ ðL 2 C ðM �BÞÞg:

When A ¼ B, we simply write GA. For any X �M we have the pair ðGA;B
X ;HXÞ of

subsets in GX.

LEMMA 5.1. Suppose N is a compact n-submanifold of M with �ð@NÞ ¼ 0,

U 2 BðMÞ is a neighborhood of N in M and X is a closed subset of @M with

X \N ¼ ;. Then the triple ðM;U;NÞ has WEPðGN
X;HXÞ.

PROOF.

Case 1: First we consider the case where M is connected.

Since EGN
X ðU;MÞ � E �ðU;M;�-regÞ, by Theorem 4.2 applied to ðU;CÞ ¼

ðM �X;NÞ, there exists a neighborhood U of iU in EGN
X ðU;MÞ and a map � :

U � ½0; 1� ! ðGXÞ1 such that
(i) for each f 2 U (a) �0ðfÞ ¼ idM , (b) �1ðfÞjN ¼ f jN , (c) if f ¼ id on @�U,

then �tðfÞ ¼ id on @M,
(ii) �tðiUÞ ¼ idM ðt 2 ½0; 1�Þ.

(1) First we modify the map � to achieve the following additional condition:

(i) (b0) �1ðfÞ 2 H.

Consider the induced map

� : U � ½0; 1� �!M @
g ðM;�Þew de�ned by �tðfÞ ¼ �tðfÞ��:
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Since M is connected, each L 2 C ðNcÞ meets @þN . Since @þN is compact, it

follows that C ðNcÞ is a finite set. We note that �1ðfÞjL 2M @
g ðL;�jLÞ for any

f 2 U and L 2 C ðNcÞ. In fact, since �1ðfÞ 2M @
g ðM;�-e-regÞ and �ð@NÞ ¼ 0, we

have �1ðfÞjL 2M @
g ðL;�jL-e-regÞ. It remains to show that �1ðfÞðLÞ ¼ �ðLÞ. Since

f 2 EGN
X ðU;MÞ, there exists h 2 GN

X such that f ¼ hjU . Then k 	 h�1�1ðfÞ 2
H NðMÞ. Since M is connected, we see that N \ L 6¼ ;, and since k ¼ id on N , we

have kðLÞ ¼ L. Hence, �1ðfÞðLÞ ¼ hðLÞ and it follows that �1ðfÞðLÞ ¼
�ð�1ðfÞðLÞÞ ¼ �ðhðLÞÞ ¼ �ðLÞ.

For each L 2 C ðNcÞ we obtain the map U !M @
g ðL;�jLÞew : f 7�! �1ðfÞjL.

By the alternative description of the finite-ends weak topology and Lemma 3.1,

this map is seen to be continuous (cf. [11, Lemma 3.2]). By Theorem 3.3 there

exists a map


L : M @
g ðL;�jLÞew �!H @ðL;�jL-regÞ1

such that 
Lð�Þ�ð�jLÞ ¼ � and 
Lð�jLÞ ¼ idL.

Define the map �L : U � ½0; 1� !H @ðL;�jL-regÞ1 by

�Lðf; tÞ ¼ 
Lðð1� tÞ�jL þ t�1ðfÞjLÞ:

Combining �L (L 2 C ðNcÞ), we obtain the map

� : U � ½0; 1� �!H N[@MðM;�-regÞ1

de�ned by �ðf; tÞ ¼ �Lðf; tÞ on L 2 C ðNcÞ
id on N .

�

Note that �0ðfÞ ¼ idM and �1ðfÞ�� ¼ �1ðfÞ. Define a map

�0 : U � ½0; 1� �!H XðM;�-regÞ1 by �0tðfÞ ¼
�2tðfÞ ðt 2 ½0; 1=2�Þ
�1ðfÞ�2t�1ðfÞ ðt 2 ½1=2; 1�Þ.

(

Then the map �0 satisfies the conditions (i) (a), (b), (c) and (ii). The condition (i)

(b0) is verified by

�01ðfÞ�� ¼ �1ðfÞ��1ðfÞ�� ¼ �1ðfÞ��1ðfÞ ¼ �1ðfÞ��1ðfÞ
�� ¼ �:

(2) To see that the triple ðM;U;NÞ has WEPðGN
X;HXÞ, we construct a map
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s : U � ½0; 1� ! HX such that
(iii) for each f 2 U (a) s0ðfÞ ¼ idM , (b) s1ðfÞjN ¼ f jN , (c) if f ¼ id on @�U,

then stðfÞ ¼ id on @M,
(iv) stðiUÞ ¼ idM ðt 2 ½0; 1�Þ.

Consider the induced map

�0 : U � ½0; 1� �!M @
g ðM;�Þew de�ned by �0tðfÞ ¼ �0tðfÞ

��:

It is seen that �00ðfÞ ¼ �01ðfÞ ¼ �. By Theorem 3.3 there exists a map


 : M @
g ðM;�Þew �! ðG@Þ1 such that 
ð�Þ�� ¼ � and 
ð�Þ ¼ idM:

The required map s is defined by stðfÞ ¼ �0tðfÞ
ð�0tðfÞÞ ððf; tÞ 2 U � ½0; 1�Þ. The
conditions (iii) and (iv) are easily verified. For example, (iii) (b) is seen by

s1ðfÞ ¼ �01ðfÞ
ð�01ðfÞÞ ¼ �01ðfÞ
ð�Þ ¼ �01ðfÞ and s1ðfÞjN ¼ �01ðfÞjN ¼ f jN:

Case 2: Next we treat the general case where M may not be connected.

By Lemma 2.6 we may assume that U is compact. LetM1; . . . ;Mm denote the

connected components of M which meet U . For each i ¼ 1; � � � ;m, we set

ðUi;Ni;XiÞ ¼ ðU;N;XÞ \Mi and �i ¼ �jMi
. By Case 1, the triple ðMi; Ui;NiÞ in

Mi has WEP for ðGi;HiÞ ¼ ðH Xi
ðMi;�i-regÞNi ;H Xi

ðMi;�iÞÞ. Since the pair

ðGi;HiÞ can be canonically identified with the subpair ðGN
XðMiÞ; HXðMiÞÞ of

ðGN
X;HXÞ and EGiðUi;MiÞ ¼ EGN

XðMiÞðUi;MÞ ¼ EGN
X ðUi;MÞ \ E ðUi;MiÞ, which is

an open subset of EGN
X ðUi;MÞ, it is seen that the triple ðMi; Ui;NiÞ in M has

WEPðGN
X;HXÞ. Hence, by Lemma 2.7 ð

S
i Mi; U;NÞ has WEPðGN

X;HXÞ and by

Lemma 2.6 so is ðM;U;NÞ. �

THEOREM 5.1. Suppose C is a compact subset of M, U 2 BðMÞ is a

neighborhood of C in M and X is a closed subset of @M with X \ C ¼ ;. Then the

triple ðM;U;CÞ has WEPðGU;C
X ;HXÞ.

PROOF. By Lemma 2.2 (2)(i) and Remark 3.1, there exists a compact

n-submanifold N of M such that

C � IntMN; N � IntMU �X;
O�N is connected for each O 2 C ðM � CÞ and �ð@NÞ ¼ 0:

We show that GU;C � GN . Take any h 2 GU;C. Since hjU 2 E ðU;M;�Þ, we have
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hjN 2 E ðN;M;�Þ. By the choice of N , for each L 2 C ðM �NÞ there exists a

unique O 2 C ðM � CÞ such that L ¼ O�N . Since h 2 GU;C , we have �ðhðOÞÞ ¼
�ðOÞ. Since hjU 2 E ðU;M;�Þ, O \N � N � U and N is compact, it follows that

�ðhðO \NÞÞ ¼ �ðO \NÞ 
 �ðNÞ <1. Hence, �ðhðLÞÞ ¼ �ðLÞ. This means that

h 2 GN .

By Lemma 5.1 the triple ðM;U;NÞ has WEPðGN
X;HXÞ and by Lemma 2.6 we

conclude that the triple ðM;U;CÞ has WEPðGU;C
X ;HXÞ. �

Since HX � GU;C
X , the next statement is an immediate consequence of

Theorem 5.1 and Lemma 2.6.

COROLLARY 5.1. Suppose C is a compact subset of M, U 2 BðMÞ is a

neighborhood of C in M and X is a closed subset of @M with X \ C ¼ ;. Then the

triple ðM;U;CÞ has WEPðH XðM;�ÞÞ.

5.2. The weak extension theorem for ker c�.

Suppose M is a connected n-manifold and � 2M @
g ðMÞ. In this section we

deduce the weak extension theorem for the group F ¼ ker c� (Theorem 5.2).

(Recall that G ¼H ðM;�-regÞ and H ¼H ðM;�Þ. Note that Hc ¼ Fc andHðCÞ ¼
F ðCÞ for any compact subset C of M.)

THEOREM 5.2. Suppose C is a compact subset of M, U and V are open

neighborhoods of C in M such that V \O is connected for each O 2 C ðM � CÞ.
Then, the triple ðV ; U; CÞ has WEPðker c�;H cðM;�ÞÞ.

PROOF.

(1) By Lemma 2.2 (2)(ii) and Remark 3.1, there exists a compact

n-submanifold N of M such that

C � IntMN; N � V ;
N \O is connected for each O 2 C ðM � CÞ and �ð@NÞ ¼ 0:

Note that C ðN � CÞ ¼ fN \O j O 2 C ðM � CÞg. Take compact subsets D andW

of M such that C � IntMD, D � IntMW and W � U \ IntMN . Since N � V and

W � U , by Lemma 2.6 it suffices to show that the triple ðN;W;CÞ has

WEPðker c�;H cðM;�ÞÞ.
Since E F ðW;MÞ � E �ðW;M;�-regÞ, by Theorem 4.2 there exists a neighbor-

hood U of iW in E F ðW;MÞ and a map

s : U ! GðNÞ such that sðfÞjD ¼ fjD and sðiW Þ ¼ idM:
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Replacing U by a smaller one, we may assume that fðW Þ � N (f 2 U ).

(2) Consider the n-manifold N and �jN 2M @
g ðNÞ. By Theorem 5.1 the triple

ðN;D;CÞ has WEP for

ðG0; H 0Þ ¼ ðH @þNðN ;�jN -regÞ
D;C;H @þNðN;�jNÞÞ:

Let EG0 ðD;NÞ � U 0 �!
�0t
H 0 be the associated LWE map. Each h0 2 H 0 has a

canonical extension  ðh0Þ 2 HðNÞ and this defines the canonical homeomorphism

 : H 0 ¼� HðNÞ.
(3) We show that sðfÞjN 2 G0 for any f 2 U . Since sðfÞ 2 GðNÞ, we have

sðfÞjN 2H @þNðN;�jN -regÞ. Since f 2 E F ðW;MÞ, there exists h 2 F such that

f ¼ hjW . Since sðfÞjD ¼ fjD ¼ hjD 2 E ðD;M;�Þ and sðfÞðNÞ ¼ N , it follows that

sðfÞjD 2 E ðD;N ;�jNÞ. Take any L 2 C ðN � CÞ. Then there exists a unique O 2
C ðM � CÞ with L ¼ N \O. Let K ¼ O� L ¼ O�N. Consider g 	 h�1sðfÞ 2
H DðMÞ. SinceM is connected, we have O \D 6¼ ; and since g ¼ id on D, we have

gðOÞ ¼ O and so sðfÞðOÞ ¼ hðOÞ. Since sðfÞ 2 GðNÞ, it follows that

sðfÞðKÞ ¼ K and sðfÞðLÞ ¼ sðfÞðO�KÞ ¼ sðfÞðOÞ �K ¼ hðOÞ �K:

Thus, we have �ðsðfÞðLÞÞ ¼ �ðhðOÞ �KÞ. Since

FrMO � C; O�K ¼ L � N and K ¼ sðfÞðKÞ � sðfÞðOÞ ¼ hðOÞ;

it follows that O 2 BcðMÞ, K � O \ hðOÞ and O�K is relatively compact in M.

Since h 2 F , by Lemma 3.3 we have �ðhðOÞ �KÞ ¼ �ðO�KÞ ¼ �ðLÞ. Therefore,
we have �ðsðfÞðLÞÞ ¼ �ðLÞ. This means that sðfÞjN 2 G0.

(4) By (3), for any f 2 U , we have sðfÞjN 2 G0 and f jD ¼ sðfÞjD ¼
ðsðfÞjNÞjD 2 EG0 ðD;NÞ. Thus, we obtain the continuous map � : U ! EG0 ðD;NÞ
defined by �ðfÞ ¼ f jD. Replacing U by a smaller one, we may assume that

�ðU Þ � U 0. Finally, the associated LWE map St : U ! HðNÞ for WEPðF;HcÞ of
the triple ðN;W;CÞ is defined by

StðfÞ ¼  �0t�ðfÞ: �

Since Hc � F , the next statement is an immediate consequence of Theorem

5.2 and Lemma 2.6.

COROLLARY 5.2. Suppose C is a compact subset of M, U and V are open

neighborhoods of C in M such that V \O is connected for each O 2 C ðM � CÞ.
Then the triple ðV ; U; CÞ has WEPðH cðM;�ÞÞ.
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5.3. Non-ambient weak deformation of measure-preserving em-

beddings.

SupposeM is an n-manifold and � 2M @
g ðMÞ. In this section we obtain a non-

ambient weak deformation theorem for measure-preserving embeddings. For

X 2 BðMÞ, let E �ðX;M;�Þ ¼ E ðX;M;�Þ \ E �ðX;MÞ with the compact-open

topology.

THEOREM 5.3. Suppose C is a compact subset of M and U 2 BðMÞ is a

neighborhood of C in M. Then there exists a neighborhood U of iU in E �ðU;M;�Þ
and a map s : U � ½0; 1� ! E �ðC;M;�Þ such that s0ðfÞ ¼ iC, s1ðfÞ ¼ f jC ðf 2 U Þ
and stðiUÞ ¼ iC ðt 2 ½0; 1�Þ.

We call the map s a local weak deformation map (an LWD map) for the pair

ðU;CÞ in M.

LEMMA 5.2. Suppose N is a compact n-submanifold of M with �ð@þNÞ ¼ 0

and U 2 BðMÞ is a neighborhood of N inM. Then the pair ðU;NÞ admits an LWD

map in M.

PROOF.

Case 1: First we treat the case where N is connected.

(1) By Lemma 3.2 there exists a bicollar E ¼ @þN � ½a; b� (a < 0 < b) of @þN

in M such that

@þN ¼ @þN � f0g; N \ E ¼ @þN � ½a; 0� and �jE ¼ � � ðmj½a;b�Þ;

where � 2M @
g ð@þNÞ and m is the Lebesgue measure on R. Let C ð@þNÞ ¼

fF1; . . . ; Fmg and Ei ¼ Fi � ½a; b� (i ¼ 1; . . . ;m). For notational simplicity, we use

the following notations:

EðIÞ ¼ @þN � I; EiðIÞ ¼ Fi � I ðI � ½a; b�Þ and

Nt ¼ ðN � EÞ [ E½a; t� ðt 2 ½a; b�Þ:

Take " > 0 such that a < �3", 3" < b, and define �t 2H @ð½a; b�Þ (t 2 ð�2"; 2"Þ) by
the conditions:

�tðsÞ ¼ sþ t ðs 2 ½�"; "�Þ and �t is a�ne on the intervals ½a;�"� and ½"; b�:

For each i ¼ 1; . . . ;m, we obtain the isotopy

�it ¼ idFi � �t 2H @þEiðEi;�jEi -regÞ ðt 2 ð�2"; 2"ÞÞ:
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Note that �0 ¼ id½a;b� and �
i
0 ¼ idEi .

Take a small neighborhood W of iN in E �ðN;M;�-regÞ such that for any

g 2 W and i ¼ 1; . . . ;m,

Ei½a;�"� � gðNÞ \ Ei � Ei½a; "�; N�" � gðNÞ � N" and gðFiÞ � Eið�"; "Þ:

Then, for each g 2 W and i ¼ 1; . . . ;m, we have
(i) ð�"� aÞ�ðFiÞ < �ðgðNÞ \ EiÞ < ð"� aÞ�ðFiÞ,
(ii) �ð�itðgðNÞ \ EiÞÞ ¼ �ðgðNÞ \ EiÞ þ t�ðFiÞ, since �it is �-preserving on

Ei½�"; "�.
For each i ¼ 1; . . . ;m, consider the map

ci : W �! R de�ned by ciðgÞ ¼ �ðgðNÞ \ EiÞ:

Since �ðgð@þNÞÞ ¼ 0, the map ci is seen to be continuous. Note that ciðgÞ 2
ðð�"� aÞ�ðFiÞ; ð"� aÞ�ðFiÞÞ.

(2) Next we construct a neighborhood U of iU in E �ðU;M;�Þ and a map


 : U � ½0; 1� ! E �ðN;M;�-regÞ such that for any f 2 U and t 2 ½0; 1�,

(iii) 
0ðfÞ ¼ iN ; 
1ðfÞ ¼ f jN; 
tðiUÞ ¼ iN and (iv) �ð
tðfÞðNÞÞ ¼ �ðNÞ:

By Theorem 4.2 there exists a neighborhood U of iU in E �ðU;M;�Þ and a

map

� : U � ½0; 1� �!H cðM;�-regÞ

such that �0ðfÞ ¼ idM , �1ðfÞjN ¼ f jN ðf 2 U Þ and �tðiUÞ ¼ idM ðt 2 ½0; 1�Þ.

Replacing U by a smaller one, we may assume that �tðfÞjN 2 W (f 2 U ,

t 2 ½0; 1�). Consider the map

� : U � ½0; 1� �! W � E �ðN;M;�-regÞ de�ned by �tðfÞ ¼ �tðfÞjN:

The map � satisfies the condition (iii). To achieve the condition (iv) we modify the

map �.

We define the maps 	i : U � ½0; 1� ! R and �i : U � ½0; 1� ! ð�2"; 2"Þ by

	itðfÞ ¼ ð1� tÞciðiNÞ þ tciðf jNÞ and cið�tðfÞÞ þ �it ðfÞ�ðFiÞ ¼ 	itðfÞ:

Since 	itðfÞ; cið�tðfÞÞ 2 ðð�"� aÞ�ðFiÞ; ð"� aÞ�ðFiÞÞ, we have

j�it ðfÞj�ðFiÞ ¼ j	itðfÞ � cið�tðfÞÞj < 2"�ðFiÞ:
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The map �i has the following properties:

(v) �i0ðfÞ ¼ �i1ðfÞ ¼ �it ðiUÞ ¼ 0,

(vi) �ð�i
�it ðfÞ
ð�tðfÞðNÞ \ EiÞÞ ¼ �ð�tðfÞðNÞ \ EiÞ þ �it ðfÞ�ðFiÞ ¼ 	itðfÞ.

The assertion (vi) follows from the property (1)(ii), while the assertion (v) follows

from

�i0ðfÞ�ðFiÞ ¼ 	i0ðfÞ � cið�0ðfÞÞ ¼ ciðiNÞ � ciðiNÞ ¼ 0;

� i1ðfÞ�ðFiÞ ¼ 	i1ðfÞ � cið�1ðfÞÞ ¼ ciðf jNÞ � ciðf jNÞ ¼ 0;

� it ðiUÞ�ðFiÞ ¼ 	itðiUÞ � cið�tðiUÞÞ ¼ ciðiNÞ � ciðiNÞ ¼ 0:

The maps �i�i ði ¼ 1; . . . ;mÞ are combined to induce the map

� : U � ½0; 1� �!H EcðM;�-regÞ de�ned by �tðfÞjEi ¼ �
i
�it ðfÞ

ði ¼ 1; . . . ;mÞ:

The desired map 
 : U � ½0; 1� ! E �ðN;M;�-regÞ is defined by 
tðfÞ ¼ �tðfÞ�tðfÞ.
From (v) it follows that �0ðfÞ ¼ �1ðfÞ ¼ �tðiUÞ ¼ idM , since

�0ðfÞjEi ¼ �1ðfÞjEi ¼ �tðiUÞjEi ¼ �
i
0 ¼ idEi :

Thus, the map 
 satisfies the condition (iii). To see the condition (iv), first note

that


tðfÞðNÞ ¼ �tðfÞ�tðfÞðNÞ ¼ �tðfÞ Na [
[
i

ð�tðfÞðNÞ \ EiÞ
 ! !

¼ Na [
[
i

�i�it ðfÞ
ð�tðfÞðNÞ \ EiÞ

 !
:

Since f is �-preserving, we have �ðfðNÞÞ ¼ �ðNÞ. Hence, from (vi) it follows that

�ð
tðfÞðNÞÞ ¼ �ðNaÞ þ
X
i

�ð�i�it ðfÞð�tðfÞðNÞ \ EiÞÞ ¼ �ðNaÞ þ
X
i

	itðfÞ

¼ �ðNaÞ þ ð1� tÞ
X
i

ciðiNÞ þ t
X
i

ciðf jNÞ

¼ ð1� tÞ �ðNaÞ þ
X
i

ciðiNÞ
 !

þ t �ðNaÞ þ
X
i

ciðfjNÞ
 !

¼ ð1� tÞ�ðNÞ þ t�ðfðNÞÞ ¼ �ðNÞ:
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(3) The required LWD map s is obtained as follows.

Theorem 3.2 yields a map � : M @
g ðN;�jNÞ !H @ðN ;�jN -regÞ1 such that

�ð!Þ�ð�jNÞ ¼ ! ð! 2M @
g ðN ;�jNÞÞ and �ð�jNÞ ¼ idN:

By the condition (2)(iv) we have the map


 : U � ½0; 1� �!M @
g ðN;�jNÞ de�ned by 
tðfÞ ¼ 
tðfÞ��:

Since 
tðfÞ ¼ 
tðfÞ�� ¼ ðð�tðfÞ�tðfÞÞ��ÞjN , the map 
 is the composition of the

following maps:

U � ½0; 1� �!
1 H ðM;�-regÞ�!
2 M @
g ðM;�-regÞ�!
3 M @

g ðN ;�jN -regÞ;
where 
1ðf; tÞ ¼ �tðfÞ�tðfÞ; 
2ðhÞ ¼ h�� and 
3ð!Þ ¼ !jN:

Since �ð@þNÞ ¼ 0, by Lemma 3.1 the third map is continuous. Thus the

continuity of the map 
 follows from the continuity of these maps. Finally, the

map

s : U � ½0; 1� �! E �ðN;M;�Þ is de�ned by stðfÞ ¼ 
tðfÞ�ð
tðfÞÞ:

Since stðfÞ�� ¼ �ð
tðfÞÞ�ð
tðfÞ��Þ ¼ �ð
tðfÞÞ�
tðfÞ ¼ �jN , it follows that stðfÞ is
�-preserving. If t ¼ 0; 1 or f ¼ iU , then by (2)(iii), 
tðfÞ is �-preserving, and so


tðfÞ ¼ �jN and stðfÞ ¼ 
tðfÞ. Hence, by (2)(iii) the map s satisfies the required

conditions: s0ðfÞ ¼ iN , s1ðfÞ ¼ fjN and stðiUÞ ¼ iN .

Case 2: Next we treat the general case where N may not be connected.

Let C ðNÞ ¼ fN1; � � � ; Nmg. By Case 1, each pair ðU;NiÞ (i ¼ 1; � � � ;m)

admits an LWD map in M

E �ðU;M;�Þ � U i�!
sit

E �ðNi;M;�Þ ðt 2 ½0; 1�Þ:

For each i ¼ 1; . . . ;m, choose a neighborhood Ui of Ni in U such that Ui \ Uj ¼ ;
(i 6¼ j).

We can find a small neighborhood U of iU in E �ðU;M;�Þ such that U � U i

and sitðfÞðNiÞ � Ui (f 2 U ) for each i ¼ 1; � � � ;m. An LWD map

s : U � ½0; 1� �! E �ðN;M;�Þ

for ðU;NÞ is defined by stðfÞjNi
¼ sitðfÞ ði ¼ 1; . . . ;mÞ. �
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PROOF OF THEOREM 5.3. By Lemma 2.1 and Remark 3.1 there exists a

compact n-submanifold N of M such that �ð@þNÞ ¼ 0 and C � N � IntMU . By

Lemma 5.2 the pair ðU;NÞ admits an LWD map

E �ðU;M;�Þ � U �!�t E �ðN;M;�Þ ðt 2 ½0; 1�Þ:

An LWD map st : U ! E �ðC;M;�Þ for ðU;CÞ is defined by stðfÞ ¼ �tðfÞjC . �

6. Groups of measure-preserving homeomorphisms endowed with

the Whitney topology.

Suppose M is a connected noncompact n-manifold and � 2M @
g ðMÞ. In [3,

Proposition 5.3] we have shown that the group H cðMÞw, endowed with the

Whitney topology, is locally contractible. In this section we shall apply the weak

extension theorem for H cðM;�Þ (Corollary 5.2) to verify the local contractibility

of the group H cðM;�Þw endowed with the Whitney topology (Theorem 6.1).

6.1. Homeomorphism groups with the Whitney topology.

First we recall basic properties of the Whitney topology on homeomorphism

groups (cf. [3, Section 4.3]). Suppose Y is a paracompact space and covðY Þ is the
family of all open covers of Y . For maps f; g : X ! Y and U 2 covðY Þ, we say that

f; g are U -near and write ðf; gÞ � U if every point x 2 X admits U 2 U with

fðxÞ; gðxÞ 2 U . For each h 2H ðY Þ and U 2 covðY Þ, let

U ðhÞ ¼ ff 2H ðY Þ j ðf; hÞ � U g:

The Whitney topology on H ðY Þ is generated by the base U ðhÞ (h 2H ðY Þ,
U 2 covðY Þ). The symbol H ðY Þw denotes the group H ðY Þ endowed with the

Whitney topology (while the symbol H ðY Þ denotes the group H ðY Þ with the

compact-open topology). It is known that G ¼H ðY Þw is a topological group.

Recall the notations G0 ¼H 0ðY Þw (the identity component of G) and Gc ¼
H cðY Þw (the subgroup of G consisting of homeomorphisms with compact

support). In [3, Sections 4.1, 4.3] it is shown that H 0ðY Þw �H cðY Þw.

6.2. The box topology on topological groups.

The Whitney topology is closely related to box products (cf. [3]). Next we

recall basic properties of (small) box products (cf. [3, Sections 1, 2]). The box

product �n�1Xn of a sequence of topological spaces ðXnÞn�1 is the productQ
n�1Xn endowed with the box topology generated by the base consisting of boxesQ
n�1 Un (Un is an open subset of Xn). The small box product �n�1Xn of a sequence

of pointed spaces ððXn; �nÞÞn�1 is the subspace of �n�1Xn defined by
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�n�1Xn ¼ fðxnÞn�1 2 �n�1Xn j 9m � 1 such that xn ¼ �n ðn � mÞg:

It has the canonical distinguished point ð�nÞn�1. For a sequence of subsets An �
Xn (n � 1), we set

�n�1An ¼ �n�1Xn \�n�1An:

We say that a space X is (strongly) locally contractible at x 2 X if every

neighborhood V of x contains a neighborhood U of x which is contractible in V

(rel. x) (i.e., there is a homotopy h : U � ½0; 1� ! V such that h0 ¼ idU , h1ðUÞ ¼
fxg (and htðxÞ ¼ x (t 2 ½0; 1�)). A pointed space ðX; x0Þ is said to be locally

contractible if X is locally contractible at any point of X and strongly locally

contractible at x0. It is easily seen that if a topological group G is locally

contractible at the identity element e, then the pointed space ðG; eÞ is locally

contractible ([3, Remark 1.9]). The next lemma follows from a straightforward

argument.

LEMMA 6.1 ([3, Proposition 1.10]). If pointed spaces ðXi; �iÞ ði � 1Þ are

locally contractible, then the small box product �i�1ðXi; �iÞ is also locally

contractible as a pointed space.

Suppose G is a topological group with the identity element e 2 G. A sequence

of closed subgroups ðGnÞn�1 of G is called a tower in G if it satisfies the following

conditions:

G1 � G2 � G3 � � � � and G ¼
[
n�1

Gn:

Any tower ðGnÞn�1 in G induces the small box product �n�1ðGn; eÞ and the

multiplication map

p : �n�1ðGn; eÞ �! G de�ned by pðx1; . . . ; xm; e; e; . . .Þ ¼ x1 � � �xm:

Note that �n�1Gn is a topological group with the coordinatewise multiplication

and the identity element e ¼ ðe; e; . . .Þ and that the map p is well-defined and

continuous ([3, Lemma 2.1]).

DEFINITION 6.1. We say that G carries the box topology with respect to

ðGnÞn�1 if the map p : �n�1Gn ! G is an open map.

Recall that G is the direct limit of ðGnÞn�1 in the category of topological

groups if any group homomorphism h : G! H to an arbitrary topological group

H is continuous provided the restriction hjGn is continuous for each n � 1. If G
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carries the box topology with respect to ðGnÞn�1, then G is the direct limit of

ðGnÞn�1 in the category of topological groups ([3, Proposition 2.7]). Note that the

map p is an open map if it is open at e (i.e., for any neighborhood U of e in �n�1Gn

the image pðUÞ is a neighborhood of e in G). We say that a map f : X ! Y has a

local section at y 2 Y if there exists a neighborhood U of y in Y and a map

s : U ! X such that fs ¼ iU . If the map p has a local section s : U ! �n�1Gn at

e 2 G, then (i) we can adjust s so that sðeÞ ¼ e and so (ii) the map p is open at e.

Thus, the next lemma follows from Definition 6.1 and Lemma 6.1.

LEMMA 6.2. Suppose the map p : �n�1Gn ! G has a local section at e. Then
(1) G carries the box topology with respect to the tower ðGnÞn�1,
(2) if the subgroups Gn ðn � 1Þ are locally contractible, then G is also locally

contractible.

LEMMA 6.3. The map p : �n�1Gn ! G has a local section at e if and only if

for any (or some) subsequence ðGnðiÞÞi�1 the multiplication map p0 : �i�1GnðiÞ �!
G has a local section at e.

PROOF. Consider the maps � : �n�1Gn ! �i�1GnðiÞ and 
 : �i�1GnðiÞ !
�n�1Gn defined by

�ð. . . ; xnði�1Þþ1; . . . ; xnðiÞ; . . .Þ ¼ ð. . . ; ðxnði�1Þþ1 . . .xnðiÞ
_
i

Þ; . . .Þ and


ð. . . ; xi�1; xi; . . .Þ ¼ ð. . . ; e; xi�1
^

nði�1Þ

; e; . . . ; e; xi

n̂ðiÞ

; . . .Þ; where nð0Þ ¼ 0:

The maps p and p0 have the factorizations p0 ¼ p
 and p ¼ p0�, from which follows

the assertion. �

6.3. Local contractibility of H cðM;�Þw.
SupposeM is a connected noncompact n-manifold and � 2M @

g ðMÞ. Let H ¼
H ðM;�Þ and F ¼ ker c�. (Recall that the subscript w means the Whitney

topology. For example, Hc;w ¼H cðM;�Þw.)
Consider any sequence ðKiÞi�1 of compact subsets of M such that Ki �

IntMKiþ1 ði � 1Þ and M ¼
S
i�1Ki. It induces a tower HðKiÞ ¼H M�Ki

ðM;�Þ
ði � 1Þ of Hc;w and the multiplication map

p : �i�1HðKiÞ �! Hc;w; pðh1; . . . ; hm; idM; idM; . . .Þ ¼ h1 � � �hm:

THEOREM 6.1.
(1) The multiplication map p : �i�1HðKiÞ !H cðM;�Þw has a local section at

idM .
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(2) The group H cðM;�Þw carries the box topology with respect to the tower

ðHðKiÞÞi�1.
(3) The group H cðM;�Þw is locally contractible.

We need some preliminary lemmas. Consider a sequence of compact

connected n-submanifolds ðMiÞi�1 of M such that Mi � IntMMiþ1 (i � 1) and

M ¼
S
i�1Mi. Let M0 ¼ ; and Li ¼Mi � IntMMi�1 (i � 1). There exists a

sequence of compact n-submanifolds ðNiÞi�1 of M such that Li � IntMNi and

Ni \Nj 6¼ ; if and only if ji� jj 
 1. We call the sequence ðMi; Li;NiÞi�1 an

exhausting sequence for M.

LEMMA 6.4. For any sequence ðKiÞi�1 of compact subsets of M there exists

an exhausting sequence ðMi; Li;NiÞi�1 for M such that for each i � 1 (i) Ki �Mi,

(ii) �ð@þMiÞ ¼ 0 and (iii) the pair ðNi; LiÞ has WEPðF;HcÞ.

PROOF. By the repeated application of Lemma 2.1, we can find a sequence

of compact connected n-submanifolds ðMiÞi�1 of M such that
(i) Ki �Mi � IntMMiþ1, �ð@þMiÞ ¼ 0 ði � 1Þ and M ¼

S
i�1Mi,

(ii) L is noncompact and Miþ1 \ L is connected for each i � 1 and each

L 2 C ðMc
i Þ.

Let Mi ¼ ; ði 
 0Þ and Mj
i ¼Mj � IntMMi ( j > i).

(1) First we show that the pair ðN;KÞ ¼ ðMjþ1
i�1 ;M

j
i Þ has WEPðF;HcÞ for

each j > i � 0. Let C ðMc
i�1Þ ¼ fC1; . . . ; Cmg and set ðNk;KkÞ ¼ ðN \ Ck;K \ CkÞ

(k ¼ 1; . . . ;m). Since ðNkÞk is a disjoint finite family, by Lemma 2.7 it suffices to

show that each pair ðNk;KkÞ has WEPðF;HcÞ.
Note that C ðKc

kÞ ¼ fE0; E1; � � � ; E‘g, where

E0 ¼Mi [
[
s6¼k

Cs and fE 2 C ðMc
j Þ j E � Ckg ¼ fE1; . . . ; E‘g:

(If i ¼ 0, we ignore E0.) By the above condition (ii) it is seen that the intersections

Nk \ E0 ¼Mi \ Ck and Nk \ Et ¼Mjþ1 \ Et ðt ¼ 1; . . . ; ‘Þ

are connected. Hence, we can apply Theorem 5.2 to ðV ; U; CÞ ¼ ðIntMNk;

IntMNk;KkÞ to conclude that this triple has WEPðF;HcÞ. Thus, by Lemma 2.6

the pair ðNk;KkÞ also has WEPðF;HcÞ.
(2) Now consider the subsequence ðM3iÞi�1. Let Li ¼M3i

3i�3 and Ni ¼M3iþ1
3i�4

(i � 1). Then, it is seen that ðM3i; Li; NiÞi�1 is an exhausting sequence for M and

by (1) each pair ðNi; LiÞ has WEPðF;HcÞ. �
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Suppose ðMi; Li;NiÞi�1 is an exhausting sequence for M. It induces a tower

ðHðMiÞÞi�1 of Hc;w and the multiplication map p : �i�1HðMiÞ ! Hc;w.

LEMMA 6.5. If each pair ðN2i; L2iÞ ði � 1Þ has WEPðHcÞ, then the map p :

�i�1HðMiÞ ! Hc;w has a local section s : U ! �i�1HðMiÞ at idM such that

sðidMÞ ¼ ðidMÞi�1.

PROOF. We use the following notations: Let Le ¼
S
i L2i, Lo ¼

S
i L2i�1 and

Ne ¼
S
i N2i. Consider the continuous maps defined by

(a) re : Hc;w ! �iE
HcðL2i;MÞ, reðhÞ ¼ ðhjL2i

Þi and
r : Hc;w ! �iE

HcðN2i;MÞ, rðhÞ ¼ ðhjN2i
Þi,

(b) 	 : �iHðN2iÞ ! HcðNeÞw, 	ððgiÞiÞjN2i
¼ gijN2i

and

	o : �iHðL2i�1Þ ! HcðLoÞw, 	oððhiÞiÞjL2i�1
¼ hijL2i�1

,

(c) 
 : �iHðN2iÞ ��iHðL2i�1Þ ! Hc;w, 
ðg;hÞ ¼ 	ðgÞ	oðhÞ.
Note that the map 	o is a homeomorphism, since for any h 2 HcðLoÞ we have

h ¼ id on @þMi and hðMiÞ ¼Mi, so that hðLiÞ ¼ Li (i � 1).

First we construct a local section of the map 
 at idM . By the assumption, for

each i � 1 there exists a neighborhood V i of the inclusion map iN2i
in EHcðN2i;MÞ

and a map

�i : V i �! HðN2iÞ such that �iðfÞjL2i
¼ f jL2i

ðf 2 V iÞ and �iðiN2i
Þ ¼ idM:

Since �iV i is a neighborhood of ðiN2i
Þi in �iE

HcðN2i;MÞ, the preimage U ¼
r�1ð�iV iÞ is a neighborhood of idM in Hc;w. The maps ð�iÞi determine the

continuous maps

� : �iV i �! �iHðN2iÞ de�ned by �ððfiÞiÞ ¼ ð�iðfiÞÞi and


 ¼ 	� r : U �! HcðNeÞw:

For each g 2 U we have 
ðgÞ ¼ g on Le and 
ðgÞ�1g 2 Hc;Le ¼ HcðLoÞ. Thus we

obtain the map

� : U �! HcðLoÞw de�ned by �ðgÞ ¼ 
ðgÞ�1g:

The required local section � : U ! �iHðN2iÞ ��iHðL2i�1Þ of the map 
 is defined

by

�ðgÞ ¼ ð� rðgÞ; 	�1o �ðgÞÞ:

Weak extension theorem for measure-preserving homeomorphisms 719



In fact, we have


�ðgÞ ¼ 
ð� rðgÞ; 	�1o �ðgÞÞ ¼ 	ð� rðgÞÞ�ðgÞ ¼ 
ðgÞð
ðgÞ�1gÞ ¼ g:

Note that �ðidMÞ ¼ ððidMÞi; ðidMÞiÞ.
For each h 2 U the image �ðhÞ ¼ ððfiÞi; ðgiÞiÞ satisfies the following con-

ditions:
(i) h ¼ 	ððfiÞiÞ 	oððgiÞiÞ ¼ ðf1f2 � � �Þðg1g2 � � �Þ ¼ f1g1f2g2f3g3 � � �.
(ii) fi 2 HðN2iÞ � HðM2iþ1Þ, gi 2 HðL2i�1Þ � HðM2i�1Þ � HðM2iþ2Þ ði � 1Þ.
(iii) ðidM; idM; f1; g1; f2; g2; . . .Þ 2 �i�1HðMiÞ and

h ¼ pðidM; idM; f1; g1; f2; g2; . . .Þ.
Therefore, the required local section s : U ! �iHðMiÞ of the map p : �iHðMiÞ !
Hc;w is defined by

sðhÞ ¼ ðidM; idM; f1; g1; f2; g2; . . .Þ:

This completes the proof. �

LEMMA 6.6. Suppose N is a compact n-manifold, L is a (locally flat)

ðn� 1Þ-submanifold of @N and � 2M @
g ðNÞ. Then the group H LðN ; �Þ is locally

contractible.

PROOF. In [8, Theorem 4.4] the case where L ¼ ; or @N is verified. For the

sake of completeness we include a proof. We may assume that N is connected.

(1) First we see that the group GL ¼H LðN; �-regÞ is locally contractible.

Since GL is a topological group, it suffices to show that it is semi-locally

contractible at idN , that is, a neighborhood of idN contracts in GL. Using a collar

L� ½0; 2� of L in N (cf. Lemma 3.2), we have a deformation of GL to GL�½0;1� which

fixes idN . Applying Theorem 4.1 to ðC;U;D;EÞ ¼ ðN;N;L; L� ½0; 1�Þ, we can find

a neighborhood of idN in GL�½0;1� which contracts in GL. These deformations are

combined to yield a desired contraction of a neighborhood of idN in GL.

(2) Next we show that the group HL ¼H LðN; �Þ is a strong deformation

retract (SDR) of GL. By Theorem 3.2 the map � : G!M @
g ðN; �Þ admits a section

s : M @
g ðN ; �Þ ! G@ � GL. This yields a homeomorphism of pairs

HL � ðM @
g ðN; �Þ; f�gÞ 
 ðGL;HLÞ : ðh; !Þ 7�! sð!Þh:

Since M @
g ðN; �Þ admits the ‘‘straight line contraction’’ to f�g, we obtain an SDR

of GL onto HL.

Finally, the conclusion follows from the observations (1) and (2). �
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PROOF OF THEOREM 6.1. (1), (3) By Lemma 6.4 there exists an exhausting

sequence ðMi; Li;NiÞi�1 for M such that �ð@þMiÞ ¼ 0 ði � 1Þ and each pair

ðNi; LiÞ ði � 1Þ has WEPðHcÞ. By Lemma 6.5 the multiplication map p0 :

�i�1HðMiÞ ! Hc;w has a local section at idM . By Lemma 6.3 this implies the

assertion (1) (consider a mixed sequence of ðKiÞi and ðMiÞi). By Lemma 6.6 the

group HðMiÞ ¼� H @þMi
ðMi;�jMi

Þ is locally contractible for each i � 1. Thus, by

Lemma 6.2 (2) the group Hc;w is also locally contractible.

(2) The assertion follows from (1) and Lemma 6.2 (1). �
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