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Abstract. This paper is the second part of our study on limiting behavior
of characters of wreath products Sn(T ) of compact group T as n → ∞ and its
connection with characters of S∞(T ). Contrasted with the first part, which has a
representation-theoretical flavor, the approach of this paper is based on probabilistic
(or ergodic-theoretical) methods. We apply boundary theory for a fairly general
branching graph of infinite valencies to wreath products of an arbitrary compact
group T . We show that any character of S∞(T ) is captured as a limit of normalized
irreducible characters of Sn(T ) as n → ∞ along a path on the branching graph of
S∞(T ). This yields reconstruction of an explicit character formula for S∞(T ).

Introduction.

In the present paper, we discuss the connection between limits of irreducible
characters of wreath products of a compact group with symmetric groups and
characters of its wreath product with the infinite symmetric group, taking an
alternative route of [8] (Part I).

Wreath product group Sn(T ) of compact group T with the symmetric group
Sn, where n ∈ N = {1, 2, . . . }, is defined as Sn(T ) = Dn(T )oSn. Here Dn(T ) =
Tn denotes the n-fold direct product of T . The action of σ ∈ Sn on Dn(T ) is
defined by

σ : d = (ti) 7−→ σ(d) = (tσ−1(i)).

Similarly, we consider S∞(T ) = D∞(T )oS∞ where
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D∞(T ) = {d = (ti)i∈N | ti ∈ T, ti = eT except for finite i’s},
S∞ = {permutation σ of N | σ(i) = i except for finite i’s},

eT being the identity element of T . S∞(T ) is an inductive limit of Sn(T ).
Equipped with its inductive limit topology, S∞(T ) is a topological group, which
is no longer locally compact if T is continuous.

A probabilistic or ergodic method for describing the characters of S∞ was first
developed by Vershik-Kerov [17]. The essential idea is to translate properties of
the characters into those of probability measures on the path space of the Young
graph, which is the branching graph of S∞. Developing this method due to
Vershik-Kerov to the wreath product group S∞(T ) for any compact group T , we
show the following results in this paper.

• Every character of S∞(T ) is described as a limit of normalized irreducible
characters of Sn(T ) as n →∞.

• The classifying parameters for characters of S∞(T ) are expressed by
rescaled limits of families of Young diagrams indexed by ζ ∈ T̂ .

• As a consequence we recapture the character formula for S∞(T ).

We fully use structure of the branching graph of S∞(T ). Reflecting the effect of
compact group T , the graph naturally allows infinite valencies. We note that, for
finite group T , such a character theory for wreath product groups was developed
by Boyer [2].

This paper is organized as follows. In Section 1 we review fundamental facts
on irreducible representations and their characters of the wreath product Sn(T ),
including their branching rules. Section 2 and Section 3 are devoted to developing
some materials in boundary theory of a general branching graph. In Section 4,
applying these to our case of wreath product groups, we prove the above mentioned
results.

1. Irreducible representations and the branching rule for Sn(T ).

In this section we briefly review the irreducible representations, the irreducible
characters and the branching rule for Sn(T ).

1.1. Irreducible representations of Sn(T ).
Let T be an arbitrary compact group and T̂ denote the set of equivalence

classes of continuous irreducible unitary representations (IURs). The equivalence
class of IUR ζ of T is denoted by [ζ]. For simplicity, however, we often use the
notation like ζ ∈ T̂ for IUR ζ. The equivalence classes of IURs of wreath product
Gn = Sn(T ) are parametrized by
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Yn(T ) =
{

Λ = (λζ)ζ∈bT

∣∣∣ λζ ∈ Y ,
∑

ζ∈bT
|λζ | = n

}
. (1.1)

Here Y denotes the set of all Young diagrams. The size (i.e. the number of boxes)
of λ ∈ Y is denoted by |λ|. Thus Λ ∈ Yn(T ) is a map from T̂ to Y which assigns
the empty diagram ∅ζ to almost all ζ with finite exceptions. Construction of an
IUR corresponding to Λ ∈ Yn(T ) was given in [8, Section 3] (Part I), which we
recall below for the sake of convenience. For the case where T is a finite group,
see e.g. [11, Chapter 4].

Let Λ = (λζ)ζ∈bT ∈ Yn(T ) be arbitrarily given. Pick up a partition of
{1, 2, . . . , n} whose block structure agrees with {|λζ |}ζ∈bT :

{1, 2, . . . , n} =
⊔

ζ∈bT
In,ζ , |In,ζ | = |λζ |.

In,ζ is empty except for finite numbers of ζ. According to this partition, we take
IUR η of Dn = Dn(T ) given as

η = £ζ∈bT
(

£i∈In,ζ
ζi

)
= £ζ∈bT £i∈In,ζ

ζi, where ζi ≡ ζ (i ∈ In,ζ).

Then the stationary subgroup S[η] = {σ ∈ Sn | ση ∼= η} of [η] coincides with∏
ζ∈bT SIn,ζ

. Here σ ∈ Sn acts on η ∈ D̂n as

ση(d) = η(σ−1(d)), σ−1(d) = (tσ(i)) (d = (ti)i∈{1,2,...,n} ∈ Dn).

For ζ ∈ T̂ , let ρζ be the IUR of SIn,ζ
(T ) = DIn,ζ

(T )oSIn,ζ
defined by

ρζ((d, σ)) =
(

£i∈In,ζ
ζi

)
(d)I(σ) (d ∈ DIn,ζ

(T ), σ ∈ SIn,ζ
)

where we set ζi ≡ ζ for i ∈ In,ζ and

I(σ) :
⊗

i∈In,ζ

vi 7−→
⊗

i∈In,ζ

vσ−1(i)

on
⊗

i∈In,ζ
V (ζi), V (ζi) ≡ V (ζ) being the representation space of IUR ζ of T for

i ∈ In,ζ . These ρζ ’s yield an IUR of
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Hn = Dn(T )o S[η] = Dn(T )o
∏

ζ∈bT
SIn,ζ

=
∏

ζ∈bT
SIn,ζ

(T )

as the outer tensor product ρ = £ζ∈bT ρζ on V (η) =
⊗

ζ∈bT
⊗

i∈In,ζ
V (ζi).

Let π(λζ) be an IUR of SIn,ζ
on V (π(λζ)) corresponding to Young diagram

λζ . Take IUR ξ = £ζ∈bT π(λζ) of S[η] =
∏

ζ∈bT SIn,ζ
on V (ξ) =

⊗
ζ∈bT V (π(λζ)).

The normal subgroup Dn(T ) acting trivially, ξ is regarded as a representation of
the semi-direct product group Hn = Dn(T )o S[η].

Set η¡ξ = ρ⊗ξ, which is an IUR of Hn on V (η)⊗V (ξ). The desired IUR Π(Λ)
of Gn corresponding to Λ = (λζ)ζ∈bT is thus given by the induced representation

Π(Λ) = IndGn

Hn
η ¡ ξ.

1.2. Irreducible characters of Sn(T ).
We recall the description of the conjugacy classes of a wreath product group.

See [6] and also [8] (Part I). Every element g = (d, σ) ∈ Gn = Sn(T ) admits a
standard decomposition

g = ξq1 · · · ξqrg1 · · · gm (1.2)

uniquely determined modulo orders of ξq’s and of gj ’s. Here each ξqi has the form
(tqi , (qi)) holding tqi ∈ T at a certain position qi ∈ {1, 2, . . . , n}. The singleton
{qi} is called the support of ξqi and denoted by supp(ξqi). Each gj has the form
(dj , σj) where σj is a cycle permutation in Sn with length `(σj) ≥ 2 and dj holds
an element of T at each position of supp(σj). Here the set of permuted letters
by τ ∈ Sn is called the support of τ and denoted by supp(τ). All the supports
{q1}, · · · , {qr}, supp(σ1), · · · , supp(σm) are taken to be disjoint.

We use also supp(gj) instead of supp(σj). Note that σ admits the cycle
decomposition σ1 · · ·σm. Each factor in (1.2), ξqi or gj , is called a basic element
of Gn.

Let [t] denote the conjugacy class of t ∈ T . When σj is expressed as σj =
(ij,1 ij,2 · · · ij,`j ) with `j = `(σj), we set for dj = (ti)i∈supp(σj)

Pσj (dj) = [tij,`j
tij,`j−1 · · · tij,1 ]. (1.3)

The conjugacy class Pσj (dj) in T is well-defined since it does not depend on the
cyclic orders of the product. Using these notations, we know that the conjugacy
classes of Gn = Sn(T ) are parametrized by the data
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[tqi
] (i = 1, . . . , r) and (Pσj

(dj), `(σj)) (j = 1, . . . , m)

under the standard decomposition (1.2). To visualize this parametrization, we
may assign a color to each conjugacy class of T , the identity element eT being
white (= non-colored). Then, a conjugacy class of Sn(T ) is indicated by a family
of Young diagrams

P = (ρθ | θ : color (↔ conjugacy class of T )),
∑

θ

|ρθ| = n,

by putting together the cycles of color θ to form ρθ.

Example 1.1. Let

σ =
(

1 2 3 4 5 6
4 6 3 1 2 5

)
= (1 4)(2 6 5)(3) ∈ S6,

d = (a1, b1, c1, a2, b2, b3) ∈ D6(T ) and g = (d, σ) ∈ S6(T ). Then we have g =
ξ1g1g2 where ξ1 = (c1, (3)), g1 = (d1, σ1), g2 = (d2, σ2) with d1 = (a1, a2), d2 =
(b1, b2, b3), σ1 = (1 4), σ2 = (2 6 5). Here `(σ1) = 2, `(σ2) = 3. We have [c1],
Pσ1(d1) = [a2a1] and Pσ2(d2) = [b2b3b1] as colors.

Example 1.2. Consider S6(T ) where T = {z ∈ C | |z| = 1} is a one-
dimensional torus. The set of colors is T itself. Moreover, the order of product
in (1.3) is meaningless. For g = (d, σ) in Example 1.1, let a1a2 = c1 = 1 and
b1b2b3 =

√−1. Then, as its conjugacy class, we have a family of Young diagrams
P = (ρθ) where

ρ1 = (1121), ρ√−1 = (31), and ρθ = ∅ (θ 6= 1,
√−1).

The character of an IUR of Gn corresponding to Λ ∈ Yn(T ) described in
Subsection 1.1 were computed in [8, Section 4] (Part I) by using the induced
character formula. We review the result below. See [8, Theorem 4.5].

Let Π(Λ) = IndGn

Hn
η ¡ ξ be the IUR of Gn corresponding to Λ = (λζ)ζ∈bT ∈

Yn(T ) as constructed in Subsection 1.1. The character of Π(Λ) is denoted by χΠ(Λ)

or simply χΛ. Then the normalized character is

χ̃Π(Λ) = χ̃Λ =
χΠ(Λ)

dimΠ(Λ)
.

Since Π(Λ) is induced from a representation of Hn, we see χΛ(g) = 0 if g ∈ Gn
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is not conjugate to an element of Hn. Let us write down a formula for χΛ(g)
assuming that g = (d, σ) ∈ Gn is conjugate to an element of Hn. Take a standard
decomposition of g as in (1.2). Set Q = {q1, . . . , qr} and J = {1, . . . , m}. We call
Q = (Qζ)ζ∈bT and J = (Jζ)ζ∈bT partitions of Q and J respectively if they yield
disjoint unions

Q =
⊔

ζ∈bT
Qζ and J =

⊔

ζ∈bT
Jζ .

The common value of the character of IUR π(λζ) of SIn,ζ
on the conjugacy class

determined by partition (`j) = (`1, `2, . . . ) is denoted by χ(λζ , (`j)). Similarly
χ̃(λζ , (`j)) is the normalized one. Recall that `(σj) denotes the cardinality of
supp(σj) (i.e. the length of σj) for each j. Under these notations, we have

χΛ(g) =
∑

Q,J

(
n−∑

ζ∈bT |Qζ | −
∑

j∈J `(σj)
)
!

∏
ζ∈bT

(|In,ζ | − |Qζ | −
∑

j∈Jζ
`(σj)

)
!

×
∏

ζ∈bT

{
(dim ζ)|In,ζ |−|Qζ |−

P
j∈Jζ

`(σj)
( ∏

q∈Qζ

χζ(tq)
)( ∏

j∈Jζ

χζ(Pσj (dj))
)

× χ
(
λζ , (`(σj))j∈Jζ

)}
(1.4)

where Q = (Qζ)ζ∈bT and J = (Jζ)ζ∈bT run over all the partitions of Q and J

respectively. Note also that we adopt the notational convention of 1/(−k)!(=
1/Γ(−k + 1)) = 0 for positive integer k. The normalized character χ̃Λ is obtained
by dividing (1.4) by dim Π(Λ):

χΛ(g) =
n!∏

ζ∈bT |In,ζ |!
∏

ζ∈bT

{
(dim ζ)|In,ζ | dim λζ

}
χ̃Λ(g). (1.5)

Remark 1.3. For IUR π(λζ) of SIn,ζ
and partition (`j)j∈Jζ

, χ(λζ , (`j)j∈Jζ
)

may be expressed alternatively by χλζ

(τ,1nζ−|τ|)
, where we set nζ = |In,ζ | = |λζ | and

τ is the Young diagram indicating (`j) such that |τ | =
∑

j∈Jζ
`j . Equation (1.4)

remains valid when Q or J is empty, in particular when g is the identity element.
In the case of Jζ is empty, we have

χ
(
λζ , (`(σj))j∈∅ζ

)
= χλζ

(1nζ ) = dim λζ .
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Here ∅ζ is the empty diagram assigned to ζ.

1.3. Branching rule for Sn(T )’s.
Sn is embedded into Sn+1 as the permutations fixing the letter n + 1, while

Dn(T ) is embedded into Dn+1(T ) with eT ∈ T as the last entry. This yields
embedding Gn = Sn(T ) ⊂ Gn+1 = Sn+1(T ). For Λ = (λζ)ζ∈bT ∈ Yn(T ) and

M = (µζ)ζ∈bT ∈ Yn+1(T ), we use the notation Λ ↗ M if there exists ζ ∈ T̂ such
that λζ ↗ µζ . Here the latter NE-arrow means that Young diagram µζ is obtained
by adding one box to Young diagram λζ . This ζ is uniquely determined for such
a pair (Λ, M) and hence denoted by ζΛ,M.

Proposition 1.4. Let M ∈ Yn+1(T ). Restricted on Gn, IUR Π(M) of Gn+1

has irreducible decomposition

Π(M)
∣∣
Gn

∼=
⊕

Λ∈Yn(T );Λ↗M

[dim ζΛ,M] Π(Λ).

Proof. Instead of looking into detailed structure of the irreducible decom-
position, we show the assertion by using the character formula in Subsection 1.2.
In other words, we just verify

χM
∣∣
Gn

=
∑

Λ∈Yn(T );Λ↗M

(dim ζΛ,M) χΛ. (1.6)

Equation (1.4) together with an obvious identity for multinomial coefficients:

n!
n1! · · ·np!

=
p∑

k=1

(n− 1)!
n1! · · · (nk − 1)! · · ·np!

for
p∑

k=1

nk = n

yields the following. Let g ∈ Gn have a standard decomposition as (1.2). We use
the notations in (1.2) and (1.4), setting further `(σj) = `j and Pσj (dj) = Pj for
simplicity. Let M = (µζ)ζ∈bT ∈ Yn+1(T ). We have for (χM

∣∣
Gn

)(g) = χM(g),

χM(g)

=
∑

Q,J

(
n−∑

ζ∈bT |Qζ | −
∑

j∈J `j

)
!

∏
ζ∈bT

(|In,ζ | − |Qζ | −
∑

j∈Jζ
`j

)
!

×
∏

ζ∈bT

{
(dim ζ)|In,ζ |−|Qζ |−

P
j∈Jζ

`j
∏

q∈Qζ

χζ(tq)
∏

j∈Jζ

χζ(Pj)χ
(
µζ , (`j)j∈Jζ

)}
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=
∑

Q,J

{ ∑

ζ∈bT

(
n− 1−∑

κ∈bT |Qκ| −
∑

j∈J `j

)
!(|In,ζ | − 1− |Qζ | −

∑
j∈Jζ

`j

)
!
∏

θ 6=ζ

(|In,θ| − |Qθ| −
∑

j∈Jθ
`j

)
!

}

×
∏

θ∈bT

{
(dim θ)|In,θ|−|Qθ|−

P
j∈Jθ

`j
∏

q∈Qθ

χθ(tq)
∏

j∈Jθ

χθ(Pj)χ
(
µθ, (`j)j∈Jθ

)}

=
∑

Q,J

[ ∑

ζ∈bT

(
n− 1−∑

κ∈bT |Qκ| −
∑

j∈J `j

)
!(|In,ζ | − 1− |Qζ | −

∑
j∈Jζ

`j

)
!
∏

θ 6=ζ

(|In,θ| − |Qθ| −
∑

j∈Jθ
`j

)
!

×
∏

θ∈bT

( ∏

q∈Qθ

χθ(tq)
∏

j∈Jθ

χθ(Pj)
)

(dim ζ)|In,ζ |−|Qζ |−
P

j∈Jζ
`j

χ
(
µζ , (`j)j∈Jζ

)

×
∏

θ 6=ζ

{
(dim θ)|In,θ|−|Qθ|−

P
j∈Jθ

`j χ
(
µθ, (`j)j∈Jθ

)}]

=
∑

ζ∈bT
(dim ζ)

∑

Q,J

[ (
n− 1−∑

κ∈bT |Qκ| −
∑

j∈J `j

)
!(|In,ζ | − 1− |Qζ | −

∑
j∈Jζ

`j

)
!
∏

θ 6=ζ

(|In,θ| − |Qθ| −
∑

j∈Jθ
`j

)
!

×
∏

θ∈bT

( ∏

q∈Qθ

χθ(tq)
∏

j∈Jθ

χθ(Pj)
) ∏

θ 6=ζ

(dim θ)|In,θ|−|Qθ|−
P

j∈Jθ
`j

× (dim ζ)|In,ζ |−1−|Qζ |−
P

j∈Jζ
`j

{ ∑

λζ :λζ↗µζ

χ
(
λζ , (`j)j∈Jζ

) ∏

θ 6=ζ

χ
(
µθ, (`j)j∈Jθ

)}]

=
∑

ζ∈bT

∑

λζ :λζ↗µζ

(dim ζ)

×
∑

Q,J

[ (
n− 1−∑

κ∈bT |Qκ| −
∑

j∈J `j

)
!(|In,ζ | − 1− |Qζ | −

∑
j∈Jζ

`j

)
!
∏

θ 6=ζ

(|In,θ| − |Qθ| −
∑

j∈Jθ
`j

)
!

× (dim ζ)|In,ζ |−1−|Qζ |−
P

j∈Jζ
`j

∏

θ 6=ζ

(dim θ)|In,θ|−|Qθ|−
P

j∈Jθ
`j

×
∏

θ∈bT

( ∏

q∈Qθ

χθ(tq)
∏

j∈Jθ

χθ(Pj)
)

χ
(
λζ , (`j)j∈Jζ

) ∏

θ 6=ζ

χ
(
µθ, (`j)j∈Jθ

)]

=
∑

Λ:Λ↗M

(dim ζΛ,M)χΛ(g),

which completes the proof of (1.6). ¤
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2. Branching graph and central measures.

In this section, we prepare some notions of harmonic analysis on a general
branching graph along the lines of [12], [14], [1] and [13] in order to translate
analysis on groups into that on their dual objects. For our purpose, we cannot
help allowing infinite (even uncountable) valencies of the graph.

2.1. Branching graph.
Definition 2.1. A branching graph consists of the stratified vertex sets

G =
∞⊔

n=0

Gn (disjoint union)

and the edges satisfying the following conditions. We call Gn the vertices of the
nth level.

(1) Two vertices α, β ∈ G can be adjacent only if they belong to two consecutive
levels. If α ∈ Gn and β ∈ Gn+1 are adjacent, we express them as α ↗ β

and call (α, β) the ingoing [resp. outgoing] edge of β [resp. α].
(2) G0 consists of the unique element ∅ that has no ingoing edges.
(3) For any vertex except ∅, its ingoing [resp. outgoing] edges form a nonempty

finite [resp. nonempty (possibly infinite)] set.
(4) If α ↗ β holds, the edge (α, β) carries multiplicity κ(α, β) > 0.

For the sake of convenience we set κ(α, β) = 0 if α and β belong to two consecutive
levels but are not adjacent. The branching graph itself is also denoted by G for
simplicity of the notation.

Remark 2.2. What is primarily in our mind is the branching graph for the
wreath product groups Sn(T ), namely

Gn = Sn(T )̂ = Yn(T ) and κ(Λ, M) = dim ζΛ,M

for Λ ∈ Gn, M ∈ Gn+1. The unique element of G0 = Y0(T ) is ∅ = (∅ζ)ζ∈bT ,
where each ∅ζ is the empty Young diagram. If T is a continuous compact group,
the number of outgoing edges of a vertex is necessarily infinite.

Definition 2.3. A complex-valued function ϕ on G is usually said to be
harmonic if it satisfies

ϕ(α) =
∑

β:α↗β

κ(α, β)ϕ(β), α ∈ G. (2.1)
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Figure 1. Branching for Sn(Z2), Weyl group of type Bn/Cn; Λ = (λζ0 , λζ1), ζ0 = 1:
The integer associated with a pair indicates the dimension of the corresponding IUR.
The meaning of a boldface integer concerns restriction to the Weyl group of type Dn.
See Remark 4.10.

In this paper, however, we call ϕ a harmonic function on a branching graph G if
it is

nonnegative : ϕ(α) ≥ 0, α ∈ G, (2.2)

normalized : ϕ(∅) = 1, (2.3)

countably supported : suppϕ is an at most countable set, (2.4)

and satisfies (2.1). The meaning of the sum in (2.1) is now clear since supp ϕ is at
most countable.

Note that (2.1) and (2.2) imply that if α /∈ supp ϕ and α ↗ β, then β /∈
suppϕ, in other words that:
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If β ∈ supp ϕ and α lies on a path terminating at β, then α ∈ supp ϕ. (2.5)

Let T = T(G) denote the set of all infinite paths on branching graph G

starting at ∅. A path t ∈ T is expressed as

t = (t(0) ↗ t(1) ↗ · · · ↗ t(n) ↗ · · · )

where t(n) ∈ Gn is the nth level vertex of t. For any path t ∈ T, t(0) is always ∅.
Its truncated path up to the nth level is denoted by

tn = (t(0) ↗ t(1) ↗ · · · ↗ t(n)).

Tn = Tn(G) denotes the set of all finite paths up to the nth level. For finite path
u connecting α ∈ Gm and β ∈ Gn: α = u(m) ↗ · · · ↗ u(n) = β, its weight wu is
defined by

wu =
n−1∏

i=m

κ(u(i), u(i + 1)). (2.6)

Summing up the weights over all paths connecting α to β as

d(α, β) =
∑

path u : α↗···↗β

wu, (2.7)

we define the (combinatorial) dimension function d on branching graph G. If there
are no paths connecting α to β, our convention yields that some edge multiplicity
in (2.6) vanishes and hence d(α, β) = 0.

Remark 2.4. In the case of Gn = Yn(T ), the value d(∅,Λ) agrees with the
dimension of IUR Π(Λ) of Sn(T ) associated with Λ ∈ Yn(T ), which is readily seen
from Proposition 1.4.

Definition 2.5. Consider a subset G0 ⊂ G as a new vertex set and the
edges inherited from G. Let G0 become a branching graph in the sense of Def-
inition 2.1. Furthermore assume that, for any β ∈ G0 and any finite path in G

connecting ∅ to β, all the vertices lying on the path belong to G0. Then we call
G0 a subgraph of branching graph G. If G0 is an at most countable set, we refer
to it as a countable subgraph.

Remark 2.6. If G0 is a subgraph of G, then we have for any α ∈ G0 ∩Gn,
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n = 0, 1, 2, . . . that

{u ∈ Tn(G) | u(n) = α} = {u ∈ Tn(G0) | u(n) = α}.

Equation (2.5) shows that supp ϕ of a harmonic function on G is a countable
subgraph of G.

Lemma 2.7. Harmonic function ϕ on G satisfies

ϕ(α) =
∑

β∈Gn

d(α, β)ϕ(β) (2.8)

for any m < n and α ∈ Gm.

Proof. Set G0 = supp ϕ, which is a countable subgraph of G. If β ∈ G0
n

and d(α, β) > 0, then α ∈ G0
m. Hence in the case of α /∈ G0

m, (2.8) holds trivially
as 0.

Let α ∈ G0
m be taken. For β2 ∈ G0

m+2 we have

d(α, β2) =
∑

β1∈G0
m+1

d(α, β1)d(β1, β2)

since β2 ∈ G0
m+2 and β1 ↗ β2 imply β1 ∈ G0

m+1. Then (2.8) is shown inductively
by iterating (2.1). ¤

2.2. Central measures.
For each u = (u(0) ↗ · · · ↗ u(n)) ∈ Tn = Tn(G), we set

Cu = {t ∈ T | t(k) = u(k), k = 0, 1, . . . , n}.

T = T(G) is equipped with the topology in which each t ∈ T has {Ctn}n=0,1,2... as
its neighborhoods. Definition 2.1 yields that T is totally disconnected under this
topology. For the branching graph of S∞(T ), the set T̂ can be identified with the
set T1 of all paths of the first level, and it is equipped with the discrete topology.
The Borel field of T is denoted by B(T).

Definition 2.8. Probability M on measurable space (T,B(T)) is usually
said to be central if it satisfies

M(Cu)
wu

=
M(Cv)

wv
(2.9)
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for all n and u, v ∈ Tn which share a common terminating vertex. In this paper,
however, we call probability M on (T,B(T)) to be central if M is supported by
the path space T(G0) of some countable subgraph G0 of G in addition that it
satisfies (2.9).

Lemma 2.9. There exists a bijective correspondence between the central prob-
abilities M on T = T(G) and the harmonic functions ϕ on G through

M(Cu)
wu

= ϕ(α) (2.10)

for any α ∈ Gn and u ∈ Tn = Tn(G) such that u(n) = α (n = 0, 1, 2, . . . ).

Proof. If G0 is a subgraph of G, we have

T(G0) =
∞⋂

n=0

{
t ∈ T(G) | t(0), · · · , t(n) ∈ G0

}
. (2.11)

In fact, the inclusion ⊂ is obvious. To show the converse inclusion ⊃, note that
T(G) [resp. T(G0)] is identified with the projective limit of (Tn(G))n=0,1,... [resp.
(Tn(G0))n=0,1,...]. Projection pmn is defined by pmn(tn) = tm for m < n for
t ∈ T(G) [resp. t ∈ T(G0)]. The projective sequence corresponding to t ∈ T(G)
is (t0, t1, t2, · · · ). If t belongs to the right hand side of (2.11), we have tn ∈
Tn(G0) for any n. This means that (tn)n=0,1,... belongs to the projective limit of
(Tn(G0))n=0,1,....

Let M be a central probability on T and G0 an associated countable subgraph
of G such that M is supported by T(G0). Equation (2.9) for M assures that (2.10)
determines the function ϕ well. Then suppϕ is included in G0, which is at most
countable. Harmonicity of ϕ follows from countable additivity of M .

Conversely, let ϕ be a harmonic function on G and set G0 = supp ϕ. As noted
in Remark 2.6, G0 is a countable subgraph of G. Equation (2.10) defines atomic
probability Mn on Tn = Tn(G) which is supported by an at most countable set.
Harmonicity of ϕ yields that ((Tn,Mn), (pmn)) is a consistent projective system.
This means that we have (pmn)∗Mn = Mm for m < n where ∗ indicates a push-
forward. Then we obtain the unique probability M on T, which is the projective
limit of Tn, such that (pn)∗M = Mn holds for any n where pn : T −→ Tn is the
canonical projection. (See e.g. [18, Volume 1, Chapter 2] for a comprehensive ac-
count on extension theorems of measures. Our measure space (Tn, Mn) is almost
countably separated since M is supported by a countable set.) Centrality of M is
obvious from the definition of (2.10). Furthermore (2.11) implies
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M(T(G0)) = lim
n→∞

M({t ∈ T | t(0), · · · , t(n) ∈ G0}) = 1.

It is obvious that the above correspondences are mutually inverse. ¤

The centrality of a probability on the path space T is rephrased as quasi-
invariance with respect to groups. For α ∈ Gn set

T(α) = {u ∈ Tn(G) | u(n) = α}.

T(α) consists of all paths terminating at α. It is a finite set by virtue of Defini-
tion 2.1 (3). The set of all permutations of T(α) is denoted by ST(α). We regard
any element τ ∈ ST(α) as a permutation of T by

t 7−→ τ(t) =

{
τ
(
t(0) ↗ · · · ↗ t(n)

) ↗ t(n + 1) ↗ · · · , t(n) = α,

t, t(n) 6= α.

We have then canonical inclusion

ST(α) ⊂ ST(β) if α ↗ · · · ↗ β. (2.12)

If G0 is a subgraph of G, T(G0) is invariant under any ST(α).

Lemma 2.10. Let G0 be a countable subgraph of G. Probability M supported
by T(G0) satisfies (2.9) if and only if

M(τ−1B) =
∫

B

wτ−1(tn)

wtn

M(dt), B ∈ B(T(G)) (2.13)

holds for any α ∈ G and any τ ∈ ST(α).

Proof. Note that the definition of a function fτ on T

t ∈ T 7−→ fτ (t) =
wτ−1(tn)

wtn

, tn = (t(0) ↗ · · · ↗ t(n)) (2.14)

for τ ∈ ST(α) is consistent with the inclusion (2.12).
Assume that M satisfies (2.9). Let τ ∈ ST(α) be given for α ∈ Gn. Take a

finite path u = (u(0) ↗ · · · ↗ u(m)) ∈ Tm and subset Cu from B(T).

(i) Case of m = n. If u(m) = α, we have
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∫

Cu

fτ (t)M(dt) =
∫

Cu

wτ−1(u)

wu
M(dt) =

wτ−1(u)

wu
M(Cu) = M(τ−1(Cu)).

Otherwise the left side is M(Cu) = M(τ−1(Cu)).

(ii) Case of m < n. A path extending u to β ∈ G0 is denoted by u ↗ · · · ↗
β ∈ Tn. Since

Cu =
⊔

β∈G0

⊔

path: u↗···↗β

Cu↗···↗β

⊔
(M -null set)

holds, where the first is a countable disjoint union and the second is a finite one,
we have

∫

Cu

fτ (t)M(dt) =
∑

β∈G0

∑

u(m)↗···↗β

∫

Cu↗···↗β

fτ (t)M(dt)

=
∑

u↗···↗α

wτ−1(u↗···↗α)

wu↗···↗α
M(Cu↗···↗α)

+
∑

β∈G0:β 6=α

∑

u↗···↗β

M(Cu↗···↗α)

= M(τ−1(Cu)).

(iii) Case of m > n. Independent of whether α lies in u or not, we have

∫

Cu

fτ (t)M(dt) =
wτ−1(u)

wu
M(Cu) = M(τ−1(Cu)).

All cases summed up, (2.9) implies (2.13).
Conversely, following the above argument of (i), we see (2.13) implies (2.9).

¤

Consider a random variable Xn : T −→ Gn defined by Xn(t) = t(n). Here any
subset B ⊂ Gn is measurable by definition. Then B(T) is generated by random
variables X1, X2, · · · . Let Bn be the sub-σ-field generated by the Xn, Xn+1, · · ·
and set the tail σ-field as B∞ =

⋂∞
n=0 Bn. Lemma 2.10 says that centrality of

M is equivalent to
⋃

α∈G ST(α)-quasi-invariance. Among such probabilities, an
extremal one is often said to be

⋃
α∈G ST(α)-ergodic.

Lemma 2.11. Let M be an extremal central probability on T. Then M is
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trivial on B∞, namely M(B) = 0 or 1 for B ∈ B∞, and hence a B∞-measurable
function is constant M -a.s.

Proof. The following argument is standard, as is seen in e.g. [18, Vol-
ume 2, Chapter 2]. Let E ∈ B∞ satisfy M(E) 6= 0, 1. Set

M1(B) =
1

M(E)
M(B ∩ E), M2(B) =

1
M(Ec)

M(B ∩ Ec), B ∈ B(T).

Then M1 and M2 are central probabilities. In fact, let α ∈ G and τ ∈ ST(α) be
taken arbitrarily. Noting that E ∈ B∞ satisfies τ−1(E)=E, we have for B∈B(T)

M1(τ−1(B)) =
1

M(E)
M(τ−1(B ∩ E))

=
1

M(E)

∫

B

fτ (t)1E(t)M(dt) =
∫

B

fτ (t)M1(dt),

and similarly for M2. Thus, using disjoint central probabilities M1 and M2, we
have a convex decomposition

M = M(E)M1 + M(Ec)M2,

which contradicts extremality of M . This completes the proof. ¤

3. Limit of Martin kernels on a branching graph.

In this section we continue working on a general branching graph to prove a
limit theorem for Martin kernels.

3.1. Martingales and convergence theorem.
We briefly summarize necessary notions of martingales and a convergence

theorem for them. See e.g. [3, Chapter 4].
As usual let (Ω, F, P ) be a probability space and E[X] =

∫
Ω

X(ω)P (dω)
denote the expectation of real-valued random variable X on Ω. For sub-σ-field
E ⊂ F the conditional expectation of X with respect to E is denoted by E[X|E],
which is characterized as the E-measurable function such that

∫

A

E[X|E](ω)P (dω) =
∫

A

X(ω)P (dω), A ∈ E.

Let (Fn)n=0,1,2,... be a decreasing sequence of sub-σ-fields of F, i.e. Fn ⊃ Fn+1. A
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sequence of integrable random variables (Xn)n=0,1,2,... is called a backward (Fn)-
martingale if it satisfies

E[Xn|Fn+1] = Xn+1 a.s., n = 0, 1, 2, . . . .

Proposition 3.1. Let (Xn)n=0,1,2,... be a backward martingale with respect
to decreasing sub-σ-fields (Fn) as above. Then

X∞ = lim
n→∞

Xn

exists a.s. The convergence holds also in L1-topology. Clearly X∞ is (
⋂∞

n=0 Fn)-
measurable.

3.2. Martin kernels.
According to the common terminology of Markov chains, the ratio of Green

kernels (or potential kernels) G(x, y)/G(x0, y) is referred to as a Martin kernel,
where G(x, y) denotes the expected number for the chain starting at x to visit
y. Here x0 is a fixed reference vertex. When we consider the simple random
walk on the Young graph, whose transitions are made from a vertex to another
lying in the adjacent upper level, and its long-time limiting behaviour, the ratio
of dimension functions plays the role of a Martin kernel. In our case where the set
Gn of the nth level vertices may be infinite, we can no longer associate a simple
random walk with the branching graph G. Nevertheless, since the combinatorial
dimension function d(α, β) is well-defined by virtue of Definition 2.1 (3), we regard
the ratio

d(α, β)
d(∅, β)

, α, β ∈ G

as a Martin kernel on the branching graph G.
Let a central probability M be given on T = T(G). Take an associated

countable subgraph G0 of G such that M is supported by T(G0). Then M can
be traced to probability M0 on sub-σ-field

B0 = B(T) ∩ T(G0) = {B ∩ T(G0) | B ∈ B(T)}

which is defined well by

M0(B ∩ T(G0)) = M(B), B ∈ B(T). (3.1)
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Theorem 3.2. Assume that M is an extremal central probability on
(T, B(T)). Let ϕ be an extremal harmonic function on G associated with M which
is determined in Lemma 2.9. Then, for M -a.s. t ∈ T,

lim
n→∞

d(α, t(n))
d(∅, t(n))

= ϕ(α), α ∈ G0 (3.2)

holds.

Proof.

Step 1: Recall the notations Xn, Bn and B∞ in Subsection 2.2. For each
α ∈ G0

m and n > m, we consider random variables defined by

Z(α)
n (t) =

d(α, t(n))
d(∅, t(n))

=
d(α, Xn(t))
d(∅, Xn(t))

, t ∈ T(G0) (3.3)

on probability space (T(G0), B0,M0) where M0 comes from (3.1). Set B0
n =

Bn ∩ T(G0) for n = 0, 1, 2, . . . ,∞. (B0
n)n=0,1,2,... is a sequence of decreasing

sub-σ-field of B0.
(Z(α)

n )n=m+1,m+2,... is a backward (B0
n)-martingale. In fact, we verify

∫

A

Z(α)
n dM0 =

∫

A

Z
(α)
n+1dM0, A ∈ B0

n+1. (3.4)

Since

B0
n+1 = σ[Xn+1, Xn+2, · · · ] = σ

[ ∞⋃
r=1

σ[Xn+1, · · · , Xn+r]
]

(where all Xi’s are restricted on T(G0)) holds, it suffices to show (3.4) for any set
having the form of

A = {t ∈ T(G0) | t(n + 1) = β1, · · · , t(n + r) = βr}, βi ∈ G0
i .

We have

M0(A) =
∑

u∈Tn(G0) : u(n)↗β1

M0(Cu↗β1↗···↗βr )

=
∑

u∈Tn(G0) : u(n)↗β1

wu↗β1↗···↗βr ϕ(βr)

= ϕ(βr)κ(β1, β2) · · ·κ(βr−1, βr)d(∅, β1). (3.5)
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Using this we have

∫

A

Z
(α)
n+1dM0 =

d(α, β1)
d(∅, β1)

M0(A) = d(α, β1) wβ1↗···↗βr ϕ(βr).

On the other hand, we have

∫

A

Z(α)
n dM0 =

∑

β : β↗β1

d(α, β)
d(∅, β)

M0(Aβ),

where A is decomposed as

A =
⊔

β∈Gn : β↗β1

Aβ ,

Aβ = {t ∈ T(G0) | t(n) = β, t(n + 1) = β1, · · · , t(n + r) = βr}.

Computing M0(Aβ) similarly as (3.5), we have

∫

A

Z(α)
n dM0 =

∑

β : β↗β1

ϕ(βr)d(α, β)κ(β, β1) · · ·κ(βr−1, βr)

= ϕ(βr) wβ1↗···↗βr d(α, β1).

This completes the proof of (3.4).

Step 2: The mean of Z
(α)
n is computed as follows. Set

Bβ = {t(n) ∈ T(G0) | t(n) = β}, β ∈ G0
n.

Using

M0(Bβ) =
∑

u∈Tn(G0) : u(n)=β

wuϕ(β) = d(∅, β)ϕ(β),

and decomposing the whole space into Bβ ’s, we have

∫

T(G0)

Z(α)
n dM0 =

∑

β∈G0
n

∫

Bβ

d(α, t(n))
d(∅, t(n))

M0(dt) =
∑

β∈G0
n

d(α, β)
d(∅, β)

M0(Bβ)

=
∑

β∈G0
n

d(α, β)ϕ(β) = ϕ(α)
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by virtue of Lemma 2.7.

Step 3: Applying Proposition 3.1, from the backward martingale convergence
theorem, we conclude that

lim
n→∞

Z(α)
n = Z(α)

∞ (3.6)

exists M -a.s. as a B∞-measurable function. Since M is extremal, Z
(α)
∞ is M -a.s.

constant as is seen from Lemma 2.11. The convergence of (3.6) is valid also in
L1-topology. Hence the constant agrees with

E
[
Z(α)
∞

]
= lim

n→∞
E

[
Z(α)

n

]
= ϕ(α).

Finally we note that α just runs over countable set G0 and hence that the
exceptional subset of T can be taken commonly. ¤

4. Limit of irreducible characters of Sn(T ).

4.1. Branching graph and characters of S∞(T ).
In what follows, we consider the branching graph of a wreath product group.

Recalling notations, let T be an arbitrary compact group, Gn = Sn(T ) its wreath
product with the symmetric group Sn, and Yn(T ) as defined in (1.1), where
n = 1, 2, . . . . Set

Y (T ) =
∞⊔

n=0

Yn(T ).

Here Y0(T ) consists of the unique element ∅ = (∅ζ)ζ∈bT , in which each ∅ζ is the
empty Young diagram. We equip Y (T ) with the structure of a branching graph
induced by the branching rule for Sn(T )’s in Proposition 1.4. We use Λ,M, · · · to
indicate vertices instead of α, β, · · · and put

κ(Λ, M) = dim ζΛ,M,

with ζΛ,M in Subsection 1.3. It is obvious that Y (T ) satisfies the conditions in
Definition 2.1.

Set G = S∞(T ) for simplicity. E(G) denotes the set of extremal elements
among the continuous, positive definite, central and normalized functions on G.
An element of E(G) is also called a character of G since it is essentially a normal-
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ized trace of a factor representation of finite type of G. Using the machinery of
Sections 2 and 3, we can transfer to Y (T ) in investigating E(G) as below (Theo-
rem 4.2).

We begin with referring to a Bochner type theorem on a compact group.

Proposition 4.1. Let K be a compact group and g a complex-valued func-
tion on K. The following two statements for g are equivalent.

• g is a linear combination of continuous and positive definite functions.
• g belongs to L1(K) and admits an absolutely convergent Fourier series ex-

pansion.

In particular, g is continuous, positive definite and central if and only if g ∈ L1(K)
and

g =
∑

α∈ bK
cαχα, cα ≥ 0,

∑

α∈ bK
cα dim α < ∞ (4.1)

hold. Here χα denotes the (non-normalized) irreducible character associated with
α ∈ K̂.

Proof. See [4, Section 34], especially Equations (34.13) and (34.37). ¤

Theorem 4.2. For G = S∞(T ), we have bijective correspondences between
the following three objects:

(1) E(G),
(2) the set of extremal harmonic functions on Y (T ),
(3) the set of extremal central probabilities on T(Y (T )).

To be precise, f in (1) and ϕ in (2) are connected as

f |Sn(T ) =
∑

Λ∈Yn(T )

ϕ(Λ)χΛ (4.2)

while the bijection between (2) and (3) is described in Lemma 2.9.

Proof. Let f ∈ E(G) be given. Restricted onto Gn = Sn(T ), f specifies
countable subset Y 0

n of Yn(T ) for each n according to (4.2) as

f
∣∣
Gn

=
∑

Λ∈Y 0
n

ϕ(Λ)χΛ (4.3)
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with Fourier coefficients ϕ(Λ) > 0. Applying (4.3) for n + 1 together with (1.6),
we have

f |Gn
=

∑

M∈Y 0
n+1

ϕ(M)χM|Gn
=

∑

M∈Y 0
n+1

ϕ(M)
∑

Λ∈Yn(T ): Λ↗M

(dim ζΛ,M) χΛ

=
∑

Λ∈Y 00
n

( ∑

M∈Y 0
n+1: Λ↗M

(dim ζΛ,M) ϕ(M)
)

χΛ, (4.4)

where we set Y 00
n = {Λ ∈ Yn(T ) | Λ ↗ M for some M ∈ Y 0

n+1}. Each coefficient
of the rightmost hand is strictly positive for Λ ∈ Y 00

n . Hence comparing this with
(4.3), we have Y 0

n = Y 00
n and

ϕ(Λ) =
∑

M∈Y 0
n+1: Λ↗M

(dim ζΛ,M)ϕ(M), Λ ∈ Y 0
n .

Accordingly we see that Y 0 =
⊔∞

n=0 Y 0
n is a subgraph of Y (T ) and that ϕ is a

harmonic function with supp ϕ = Y 0.
Conversely, let ϕ in (2) be given. Set Y 0

n = (supp ϕ)∩Yn(T ). Then Y 0
n = Y 00

n

holds. The same computation with (4.4) yields that (4.3) defines f ∈ E(G) well,
namely f |Gn = (f |Gn+1)|Gn is valid.

The above correspondences clearly give mutual inverses. ¤

4.2. Limit of irreducible characters of Sn(T ).
Theorem 4.3. Let f ∈ E(S∞(T )) be given and M the corresponding ex-

tremal central probability in Theorem 4.2. For M -a.s. path t ∈ T, the convergence

lim
n→∞

χ̃t(n) = f (4.5)

holds uniformly on each Gk = Sk(T ), k ∈ N .

Proof.

Step 1: For t ∈ T and k < n, we have

χ̃t(n)
∣∣
Gk

=
∑

Λ∈Yk(T )

d(Λ, t(n))
d(∅, t(n))

χΛ (4.6)

by iterating (1.6). Indeed,



Limits of characters of Sn(T ) 1209

χt(n)
∣∣
Gk

=
∑

M∈Yn−1(T ): M↗t(n)

(dim ζM,t(n)) χM|Gk

=
∑

M∈Yn−1(T ): M↗t(n)

∑

N∈Yn−2(T ): N↗M

(dim ζM,t(n) dim ζN,M) χN|Gk

=
∑

N∈Yn−2(T )

d(N, t(n))χN|Gk
= · · · =

∑

Λ∈Yk(T )

d(Λ, t(n))χΛ.

Step 2: Under the correspondences of f ↔ ϕ ↔ M in Theorem 4.2, set
Y 0 = supp ϕ. Then, M is supported by T(Y 0). Theorem 3.2 tells us that we
have, for M -a.s. path t,

lim
n→∞

d(Λ, t(n))
d(∅, t(n))

= ϕ(Λ), Λ ∈ Y 0. (4.7)

Take a path t ∈ T(Y 0) satisfying (4.7). We see

Λ ∈ Yk(T ) and d(Λ, t(n)) > 0 imply Λ ∈ Yk(T )0 = Yk(T ) ∩ Y 0 (4.8)

since Y 0 is a subgraph. Set

Q(Λ) = ϕ(Λ)d(∅, Λ),

Qt(n)(Λ) =
d(Λ, t(n))
d(∅, t(n))

d(∅,Λ)
(4.9)

for Λ ∈ Yk(T ). Clearly supp Q ⊂ Yk(T )0 is countable. Also (4.8) yields
supp Qt(n) ⊂ Yk(T )0. Furthermore, both are probabilities. In fact, it follows
from

∑

Λ∈Yk(T )0

d(Λ, t(n))d(∅, Λ) =
∑

u∈Tn(Y 0): u(n)=t(n)

wu = d(∅, t(n)),

∑

Λ∈Yk(T )0

ϕ(Λ)d(∅, Λ) =
∑

Λ∈Yk(T )0

ϕ(Λ)
∑

M∈Yk−1(T )0: M↗Λ

d(∅,M)dim ζM,Λ

=
∑

M∈Yk−1(T )0

( ∑

Λ∈Yk(T )0: M↗Λ

(dim ζM,Λ) ϕ(Λ)
)

d(∅, M)

=
∑

M∈Yk−1(T )0

ϕ(M)d(∅, M) = · · · = ϕ(∅) = 1.
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Step 3: We estimate the difference of the following:

χ̃t(n)|Gk
=

∑

Λ∈Yk(T )0

Qt(n)(Λ) χ̃Λ,

f |Gk
=

∑

Λ∈Yk(T )0

ϕ(Λ)χΛ =
∑

Λ∈Yk(T )0

Q(Λ) χ̃Λ
(4.10)

where the first equality follows from (4.6) and (4.9). Take ε > 0 arbitrarily. There
exists finite set F ⊂ Yk(T )0 such that Q(F ) > 1 − ε. Equation (4.7) shows that,
for M -a.s. path t ∈ T(Y 0), sufficiently large n allows

|Qt(n)(F )−Q(F )| < ε, and also

Qt(n)(F c) ≤ 1−Q(F ) + |Qt(n)(F )−Q(F )| < 2ε.

Putting these into (4.10), we have for g ∈ Gk

|χ̃t(n)(g)− f(g)|

≤
∣∣∣∣
∑

Λ∈F

(Qt(n)(Λ)−Q(Λ))χ̃Λ(g)
∣∣∣∣ +

∣∣∣∣
∑

Λ∈Yk(T )0\F
Qt(n)(Λ)χ̃Λ(g)

∣∣∣∣

+
∣∣∣∣

∑

Λ∈Yk(T )0\F
Q(Λ)χ̃Λ(g)

∣∣∣∣

≤
∑

Λ∈F

|Qt(n)(Λ)−Q(Λ)|+ Qt(n)(Yk(T )0 \ F ) + Q(Yk(T )0 \ F ) ≤ 4ε.

We have thus obtained, for M -a.s. path t,

lim
n→∞

sup
g∈Gk

∣∣χ̃t(n)(g)− f(g)
∣∣ = 0. ¤

Theorem 4.3 enables us to determine an explicit form of character f in terms
of two sorts of parameters, one being the Fourier coefficients of f |T and the other
being families of asymptotic frequencies of Young diagrams. In this procedure,
asymptotics for irreducible characters of Sn play an essential role. Given Young
diagram λ = (λ1 ≥ λ2 ≥ · · · ) as a sequence of row lengths, we set

ai(λ) = λi − i, bi(λ) = λ′i − i, i = 1, 2, . . . , d
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where λ′ is the transposed diagram and d = dλ denotes the main diagonal length
of λ. These are called the Frobenius coordinates of λ.

Proposition 4.4. The value of the irreducible character corresponding to
Young diagram λ at k-cycle has an asymptotic expression

χ̃λ
(k,1|λ|−k) =

1
|λ|k pk(λ) + O

(
1
|λ|

)
,

pk(λ) =
dλ∑

i=1

(
ai(λ)k + (−1)k−1bi(λ)k

) (4.11)

as the size of diagram |λ| grows to infinity. Actually, the O-term in (4.11) is a
polynomial of pj(λ), j = 1, . . . , k − 1, of total degree ≤ k − 1 divided by |λ|k.

Proof. We refer to [15, Chapter Five, Section 1] , [17] and [10]. ¤

Theorem 4.5. Let f ∈ E(S∞(T )) be given and M the corresponding ex-
tremal central probability in Theorem 4.2. Along M -a.s. path t = (t(0) ↗ · · · ↗
t(n) ↗ · · · ) in Theorem 4.3 where t(n) = (t(n)ζ)ζ∈bT ∈ Yn(T )0, the following
limits exist :

Bζ = lim
n→∞

|t(n)ζ |
n

, ζ ∈ T̂ , moreover
∑

ζ∈bT
Bζ = 1, (4.12)

αζ,0,i = lim
n→∞

ai(t(n)ζ)
n

, αζ,1,i = lim
n→∞

bi(t(n)ζ)
n

, ζ ∈ T̂ , i ∈ N . (4.13)

Since Bζ = 0 implies αζ,0,i = αζ,1,i = 0 for any i ∈ N , these are 0 except for at
most countable ζ’s.

Proof.

Step 1: Recall that every element of a wreath product group is factorized
into basic elements as (1.2). We write down the values of irreducible characters of
Gn at two kinds of basic elements (s, (q)) and (d, σ).

Let Λ = (λζ)ζ∈bT ∈ Yn(T ), nζ = |λζ |, s ∈ T , σ a k-cycle and d ∈ D(T ) such
that supp d ⊂ suppσ. Then (1.4) yields

χ̃Λ(s, (q)) =
∑

ζ∈bT

nζ

n
χ̃ζ(s), (4.14)
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χ̃Λ(d, σ) =
∑

ζ∈bT

nζ(nζ − 1) · · · (nζ − k + 1)
n(n− 1) · · · (n− k + 1)

1
(dim ζ)k

χζ(Pσ(d)) χ̃λζ

(k,1nζ−k)
.

(4.15)

Here we regard χλζ

(k,1nζ−k)
to be 0 if nζ < k.

Step 2: We show (4.12). Proposition 4.1 ensures that

f(s, (q)) =
∑

ζ∈bT
Bζ χ̃ζ(s) with Bζ ≥ 0,

∑

ζ∈bT
Bζ = 1 (4.16)

since
∑

ζ∈bT Bζ = f(e, (q)) = 1. Theorem 4.3 tells us that χ̃t(n)(s, (q)) converges
to f(s, (q)) uniformly in s ∈ T . Combining these with (4.14) for λζ = t(n)ζ , we
obtain convergence of their Fourier coefficients, namely (4.12).

Step 3: We consider (4.13). Putting Λ = t(n) and d = (s, e, · · · , e) (k − 1
times repetition of the identity element e of T ) in (4.15), we have

χ̃t(n)((s, e, · · · , e), σ)

=
∑

ζ∈bT

|t(n)ζ |(|t(n)ζ | − 1) · · · (|t(n)ζ | − k + 1)
n(n− 1) · · · (n− k + 1)

1
(dim ζ)k−1

χ̃
t(n)ζ

(k,1|t(n)ζ |−k)
χ̃ζ(s)

(4.17)

as a function on T . See Remark 1.3 for the notation of an irreducible charac-
ter. The k-cycles in Sp is denoted by (k, 1p−k). The left side converges to
f((s, e, · · · , e), σ) uniformly on T by virtue of Theorem 4.3. Hence the conver-
gence of the Fourier coefficients implies that

lim
n→∞

|t(n)ζ |(|t(n)ζ | − 1) · · · (|t(n)ζ | − k + 1)
n(n− 1) · · · (n− k + 1)

χ̃
t(n)ζ

(k,1|t(n)ζ |−k)
(4.18)

exists for any ζ ∈ T̂ .

Step 4: Equation (4.13) is deduced by using (4.18) through a compactness
argument, which is a repetition of the argument in [17, Section 5]. We state the
procedure, however, for reader’s convenience below.

It is obvious that (4.13) holds as totally 0 if Bζ = 0.
Let ζ ∈ T̂ be such that Bζ > 0. It suffices to show that, for every i ∈ N ,

two sequences {ai(t(n)ζ)/n}n and {bi(t(n)ζ)/n}n have the unique limit points
respectively. Combining (4.18) with (4.11), we have the existence of
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lim
n→∞

∞∑

i=1

{(
ai(t(n)ζ)

n

)k

+ (−1)k−1

(
bi(t(n)ζ)

n

)k}
. (4.19)

Let αi = αζ
i [resp. βi = βζ

i ] be a limit point of {ai(t(n)ζ)/n}n [resp.
{bi(t(n)ζ)/n}n]. Then, Lemma 4.6 below tells us that (4.19) agrees with

∞∑

i=1

(
αk

i + (−1)k−1βk
i

)
(4.20)

if k ≥ 2. Hence (4.20) does not depend on the choice of limit points αi and βi.
However, (4.20) determines αi and βi uniquely since it holds that

exp
{ ∞∑

k=2

∞∑

i=1

(
αk

i +(−1)k−1βk
i

)zk

k

}
= exp

{
−z

∞∑

i=1

(αi+βi)
} ∞∏

i=1

1 + βiz

1− αiz
, z ∈ C.

(Note that
∑∞

i=1(αi + βi) ≤ 1 follows from Fatou’s lemma.) These unique limit
points give (4.13). ¤

Lemma 4.6. Let {ci(n)}(i,n)∈N2 satisfy

c1(n) ≥ c2(n) ≥ · · · ≥ 0 for any n,

∞∑

i=1

ci(n) ≤ n for any n,

lim
n→∞

ci(n)
n

= ci for any i.

Then we have

lim
n→∞

∞∑

i=1

(
ci(n)

n

)k

=
∞∑

i=1

ck
i , k ∈ {2, 3, . . . }.

The proof is elementary and omitted. We note, however, that it can fail to
hold for k = 1.

Remark 4.7. Along a path chosen in Theorem 4.5, we saw that
∑

ζ∈bT Bζ =
1 holds for Bζ defined in (4.12). It is possible to have the situation that

∑
ζ∈bT Bζ <

1 along other paths. In fact, this is the case where normalized irreducible characters
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of Sn(T ) converge to a discontinuous function on S∞(T ). See [8, Section 6] for
more details.

Theorem 4.8 (Recapturing the character formula for S∞(T )). Let a char-
acter f ∈ E(S∞(T )) be given. Take the corresponding extremal central probability
M on T(Y (T )) in Theorem 4.2 and parameters αζ,ε,i, Bζ in Theorem 4.5. Set

µζ = Bζ −
∞∑

i=1

∑

ε∈{0,1}
αζ,ε,i, ζ ∈ T̂ . (4.21)

Then f is completely characterized by these parameters

αζ,ε,i, µζ ; ζ ∈ T̂ , ε ∈ {0, 1}, i ∈ N

so that its values on the basic elements of S∞(T ) are given by

f(s, (q)) =
∑

ζ∈bT

( ∞∑

i=1

∑

ε∈{0,1}

αζ,ε,i

dim ζ
+

µζ

dim ζ

)
χζ(s), s ∈ T, (4.22)

f(d, σ) =
∑

ζ∈bT

{ ∞∑

i=1

∑

ε∈{0,1}
(−1)ε(k−1)

(
αζ,ε,i

dim ζ

)k}
χζ(Pσ(d)), (4.23)

where σ ∈ S∞ is a k-cycle, k ≥ 2, and d ∈ D(T ) satisfies supp d ⊂ suppσ. (Pσ(d)
is defined in (1.3).)

Proof. Equation (4.22) immediately follows from (4.16) and (4.21). Con-
sider the Fourier expansion

f((s, e, · · · , e), σ) =
∑

ζ∈bT
Cζ χ̃ζ(s), s ∈ T.

Since (4.17) converges uniformly to this, (4.11) yields

Cζ = lim
n→∞

|t(n)ζ |(|t(n)ζ | − 1) · · · (|t(n)ζ | − k + 1)
n(n− 1) · · · (n− k + 1)

1
(dim ζ)k−1

χ̃
t(n)ζ

(k,1|t(n)ζ |−k)

=
1

(dim ζ)k−1

∞∑

i=1

∑

ε∈{0,1}
(−1)ε(k−1)αk

ζ,ε,i.
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We hence obtain (4.23) for d = (s, e, · · · , e). Since f is a central function, we see
it is enough to take [s] = Pσ(d), recalling structure of the conjugacy classes of
S∞(T ) described in Subsection 1.2.

Finally, we know that f ∈ E(G) is completely determined by the values on
the basic elements since it is factorizable (see [6, Section 4]). ¤

Remark 4.9. Let us consider a special situation where all αζ,ε,i’s are 0. In
the case of S∞, this condition means that we treat the regular character (= the
delta function at the identity element) of S∞ and the Plancherel measure on the
path space T of the Young graph. It is well known that typical Young diagrams
in the Plancherel ensemble are balanced, i.e. row and column lengths of λ ∈ Yn

are proportional to
√

n. Then, the quantities of (4.13) obviously vanish along
growing typical Young diagrams. The Plancherel measure is no longer captured
as a probability if T is a continuous group. For general T , the situation of all
αζ,ε,i’s being 0 and an associated growth process on the branching graph Y (T )
are described as follows. Let (Bζ)ζ∈bT satisfy Bζ ≥ 0 and

∑
ζ∈bT Bζ = 1 so that

it gives a probability on T̂ with an at most countable support. Let ψ be the
continuous positive-definite central normalized function on T which has Fourier
coefficients Bζ :

ψ(t) =
∑

ζ∈bT

Bζ

dim ζ
χζ(t), t ∈ T (4.24)

(see Proposition 4.1). We consider f ∈ E(S∞(T )) determined by

f(t, (q)) = ψ(t), t ∈ T,

f(d, σ) = 0, if σ is a nontrivial cycle of S∞
(4.25)

at basic elements (t, (q)) and (d, σ) respectively, and multiplicatively extended to
the whole S∞(T ). Then the extremal harmonic function ϕ on Y (T ) corresponding
to f in (4.25) (see Theorem 4.2) is given by

ϕ(Λ) =
∏

ζ∈bT

B
|λζ |
ζ dim λζ

|λζ |! (dim ζ)|λζ | , Λ = (λζ) ∈ Y (T ).

It can be seen that the corresponding central probability on the path space
T(Y (T )) induces a system of parallel Plancherel growth processes parametrized by
ζ ∈ T̂ for which the chain switches from one to another according to the probabil-
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ity (Bζ)ζ∈bT . This growth process canonically associated with the wreath product
group S∞(T ) seems to be interesting and will be treated in separate papers.

Remark 4.10. In this section we treated the branching graph Y (T ) to
obtain the characters of G = S∞(T ). Let T be a compact abelian group and S

its subgroup. Set

GS = D∞(T )S oS∞, D∞(T )S =
{

d = (ti)i∈N ∈ D∞(T )
∣∣∣

∏

i∈N

ti ∈ S

}
,

and call it a canonical subgroup of G. It is the inductive limit of

GS
n = Dn(T )S oSn, Dn(T )S =

{
d = (ti)i=1,...,n ∈ Dn(T )

∣∣∣
n∏

i=1

ti ∈ S

}

as n →∞. The character formula for GS is studied in [5], [6] and [8]. For IUR Π
of GS

n+1, the branching rule of Π
∣∣
GS

n
is described in [8, Section 8]. We thus

obtain the branching graph Y (T )S for GS by modifying Y (T ). For example, let
T be Z2 and S its trivial subgroup. This describes the case of Weyl groups of type
B/C and D. An IUR of WBn/Cn

= Sn(Z2) corresponding to a pair (λ0, λ1), where
|λ0|+|λ1| = n, splits into two IURs of WDn = Sn(Z2){e} if and only if λ0 coincides
with λ1. Moreover, (λ0, λ1) and (λ1, λ0) correspond to equivalent IURs of WDn

if λ0 6= λ1. In Figure 1, an IUR of WBn/Cn
which splits into two IURs of WDn

is specified by using boldface for its dimension. Applying the general theory in
Section 2 and Section 3 to Y (T )S , we have a similar result to Theorem 4.3, namely,
any character of GS is obtained as a limit of normalized irreducible characters of
GS

n as n → ∞ along some path on the branching graph Y (T )S . This fact was
proved in [8, Theorem 8.6] while we see here its probabilistic aspect.
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