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The relative cohomology of formal contact vector fields
with respect to formal Poisson vector fields
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Abstract. We review the method due to Gel’fand and Fuks to show the
finite dimensionality of the cohomology ring of the Lie algebra of formal contact
vector fields. We apply this method to prove the relative cohomology of it with
respect to formal Poisson vector fields is trivial.

1. Introduction.

Let g be the Lie algebra of formal contact vector fields in R*'! at the
origin and h that of formal Poisson vector fields in R?" (for the precise definitions,
see Section 2). We know the following facts about H*(g). Gel’fand and Fuks
showed its finite dimensionality in [7]. In [8], Guillemin and Shnider showed
that H%(g) =0 for 0 < ¢ <n. In [3], using a spectral sequence, Feigin showed
that it is isomorphic to the cohomology ring of the total space of the restriction
of the standard universal Sp(2n)-bundle to the (4n + 2)-skeleton of the base
space.

In this paper we review the method due to Gel’fand and Fuks [7] and apply it
to show that H?(g) = 0 for ¢ > 2n? + 7n + 6. This is of course a part of Feigin’s
results. We also apply this method to prove that the relative cohomology of g with
respect to b is trivial:

THEOREM 1.1. H%(g,h) =0 for ¢ > 0.

A (2n + 1)-dimensional contact structure is considered to be a projectifica-
tion of a (2n + 2)-dimensional symplectic structure. It is also locally regarded as a
(pre)quantization of 2n-dimensional symplectic structure. In fact Feigin com-
puted H%(g) by looking at the linear part sp(2n + 2) of the Hamiltonian vector
fields. This is the first point of view. However it does not seem that the second
point of view has been well taken. As our problem is local, this point of view is one
of the motivations of the present work. 2n-dimensional Hamiltonian vector fields
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do not naturally lift to (2n + 1)-dimensional contact space but once they are
enlarged to Poisson ones, they do.

The quotient b’ = b/i is naturally identified with the Lie algebra of formal
Hamiltonian vector fields on R*", where the ideal i is the set of constant functions
in the sense of Section 2 below. Therefore it seems that b’ and b are very close to
each other. There is one important problem asking whether H*(§’) is infinite
dimensional or not. So far its calculation is regarded as a difficult problem.
For example n =1, its dimension is at least 112, among which we explicitly
know only eight generators (six by Gel’fand, Kalinin and Fuks [4] and other two
by Metoki [10]). Moreover practically nothing more is known about H*(h')
for n > 1. This problem also motivated this article.

The author would like to express his gratitude to Professor Yoshihiko
Mitsumatsu for his encouragement and the members of Do Semi at TIT for many
useful comments.

2. The Lie algebras of formal contact vector fields.

First we recall contact vector fields. We consider the standard contact 1-form
a=dz+ zdy; + - - + z,dy, on R*. A vector field X on R*! is a contact
vector field if it preserves the contact plane field Ker . We associate a contact
vector field X with a function —a(X). Conversely, for any function f €
C®(R* ™), there exists a unique contact vector field X such that a(X;) = —f.
This correspondence determines a Lie algebra structure on C*°(R*"*!) (for detail,
see [1]). The Lie bracket relation between two contact vector fields are translated
in the following form between functions:

_&(of 99 of dg\ Of (<~ 0y 99 (<~ Of
[fvg]__Z(%a_ys_a_yéa_xs>_5<;xs%_g>+$<;xsaxs_f>

s=1 S

Here we formalize the functions. We define the Lie algebra g of formal
contact vector fields on R?"*! as the vector space of formal power series
R[[z1, ..., Tn, Y1, - -, Yn, 2]] with the bracket presented above. Since the subspace
R[[z1, ..., Tn,Y1,--.,Yn]] Of g is stable under this bracket and it reduces to the
following form

& 0f a9 Of 39)
[f?g]_ ;(81‘8 8yb 8y5 8335 5

this subalgebra is naturally identified with the Lie algebra h of formal Poisson
vector fields on R*".
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For convenience, we prepare the following notation on multi-indices. Let .4
denote the set of non-negative integers. For multi-indices cy = (@51, ..., ®s2011) €
N (s =1,2) and a € A, we set

ar+op = (a1 + a1, Qo1 + 0ong1),  aoq = (acy; + -+ aa ong1).
We set the following multi-indices:

0=(0,...,0), & =(0,...,0,1,0,...,0) (s=1,...,2n+1).

For a multi-index oy € A*"! we define the length by |oy| = o B e o S
and

ap .01 1 Qe+l Q120 50 2041
T =T Ty Yy Yn "2 .

Therefore f € g is expressed as an infinite sum

f= Z G, " (aq, € R).

a E;/VM'JA

We define the topology of g by the family of semi-norms

f= Z Ao, ™ — sup las,| (K=0, 1, ...).

eyt |y |<E

Therefore the topological dual of g is isomorphic to the vector space of the
polynomials on R?"*!,

3. Cohomology of Lie algebras.

Following [9] and [11], we define the cohomology of Lie algebras as follows.
We set A%(g) = R. For each positive integer ¢, we set

Al(g) ={p:gx -+ x g — R;alternating R-multilinear continuous map}.
—_—

q

The exterior derivation d : A%(g) — A" (g) is defined by
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do(fi, - for) = D (U o(for il fro o Fo o Fooo s fi)

s<t

for p € A%(g), fi,..., for1 € . If p € A(g) then dp = 0. Jacobi’s identity implies
d?> = 0 and we obtain the cochain complex {A*(g),d}. We call the cohomology of
{A*(g),d} the (continuous) cohomology of g and it is denoted by H*(g).

For f € g, we define the interior product i(f) : A%(g) — A% !(g) by

(Z'(f)@)(fl?"‘?qul) = (P(fafla" 'qufl)

for ¢ € A%g), fi,...,f;-1 €9, and the Lie derivative .Z;: A%(g) — A%(g) by
Cartan’s formula:

If o € A%(g) then i(f)p =0 for all f € g.
We put

Al(g,h) = {p € Ag);i(f)p = Lo =0 for any f € b},

then {A*(g,h),d} is a subcomplex of {A*(g), d}. We call the cohomology group of
{A*(g,h),d} the relative cohomology of g with respect to b and it is denoted by

H*(g,b).

REMARK 3.1. By definition, H’(g) = R and H%(g,h) = R.

4. Cohomology of formal contact vector fields.

We review the method of Gel’fand and Fuks [7] and show H*(g) =0 for
q>2n2+Tn+6. For aq € 4! we define the 1-cochain 6, € A'(g) by

6’11 (f) - am fOr f = Z aﬂl mﬁl c g

B el

By the continuity, a cochain ¢ € A9(g) is expressed as a finite sum of monomials
Oy N+ N g,

= Z aalmuqéal A-er A 604,1 (aalmaq c R) (41>
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We define the multi-order x; € A#*"*! of a monomial oy N -+ Nbo, € Al(g) as
K1 =a1+ -+ a4

We put the suffix 1 to s in order to emphasize that k; is a multi-index.

LEMMA 4.1.  We have the following:

(1) gz(éoq JAERIAN 6cvq> = (5171 +---+ Rin + R12n+1 — Q)5a1 ARRRA 6%-
(i) Ly, (6o Ao Nba,) = (Kints — F1,6)0a; Ao Nbo, (s=1,...,n).

PROOF. A cochain .Z.0,, is expressed as a finite sum

L8y = a', (a"€R).

’Y]G</V2n+l
Since [z, %] = —(B11 + -+ + Bin + Brons — )2 for B € NP we have

a’ = (L.6.,) (™) = =64, ([2,2™))
= (Bt + Bin + Bronss — 1)ba, (™)

Then we have o =0 for 8 #a; and a™ = o+ o, oo — 1
Hence we obtain .Z,04, = (a1 + -+ a1 + 012041 — 1)8a,. Thus we have (i)
from this and the formula Z.(pAY)=Z. oAb+ AL, and (ii) in the
same way as (i). O

We decompose A9(g) to the eigen spaces by Lie derivation. We put
Al (9) = {p € AYg); Loy p = s (s=1,...,n), L.p=vp}
for = (p1,..., 1) € Z", v € Z. By Lemma 4.1, we have the decomposition

A(g) = P A7 (9)-

Since dA? (g) C A% 1(g), {A* (g),d} is a subcomplex of {A*(g),d}. The coho-

1L,V 4,0 18,0

mology of {A}, (g),d} is denoted by H;, (g). Hence we obtain

H'(9) = P H; ,(9).
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LEMMA 4.2. We have H (g) = 0 for (u,v) # (0,0).

PrOOF. Ifp € AZ,U(E) is a cocycle, Cartan’s formula implies

psp = Loyp =di(zsys)e (s=1,...,n) and vp=.Z,p=di(2)e.
Therefore, if (u,v) # (0,0) then ¢ is a coboundary. O
LEMMA 4.3.  We have Af\(g) =0 for ¢ > 2n* + 7n +6.
PROOF. Take a monomial 8., A -+ Ada, € Af,(g). By Lemma 4.1, we have
Kls = Kints (8 =1,...,n), Ki1+ -+ Kip+ Ko = ¢
Hence we obtain
2¢=Ki1 + -+ Kion + 2K10041 > |K1]- (4.2)

On the other hand, in general the length of a multi-index is at least 3 except for
the following three cases of multi-indices, in each of which the length is 0, 1 or 2:

0, e (s=1,....2n+1), e+ (1<s<t<2n+1).
Thus we have

Fal = laa] + -+ + |y (4.3)
>3¢—3x1-2x@2n+1)—1x 2n+1)(n+1)
=3q— (2n® + Tn +6).

Hence we obtain 2n* + 7n + 6 > ¢ from (4.2) and (4.3). O

We now conclude that H*(g) = 0 for ¢ > 2n? + 7n + 6.

5. Relative cohomology.

Let us look at properties of the interior product and the Lie derivation.

LEMMA 5.1.  For any monomial A = 0a, N\ +++ A g, € AZ,U(g) and any multi-
index By € A*" we have i(z™)\ e A%},l(g) and L\ € Al 5(a), where =
(1, fln) € Z" and D€ Z are defined by fis = ps+ Bis — Pints and 9=v —
Bi1— - — Bin — Braas1 + 1 respectively.
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PROOF. If o, # f1 for s=1,...,q, then i(z”)A=0¢€ A% /(g). If there

exists s such that o, = 3, then (2 )\ = (—1)”16&1 NeeNbay N N, Set Ky
the multi-order of 6, A -+ Ada, A+ Adq,. Then we have

Rl =K1 —as =k — [

where r; is the multi-order of A\. By Lemma 4.1, we obtain i(z”)\ € Af{ﬂl(g).
Moreover we obtain .Z,s A € A}, ;(g) because the exterior derivation d preserves
i and v. 0

Now we begin to calculate the relative cohomology of g with respect to b.
We decompose a relative cochain ¢ € A(g, h) as

¥ = Z(P,u,v (@u,v € sz(g))

1,0

Since z € b for a; € A" x {0}, we have

i(x™)p = Zi(a’al)%w =0, Lmp= Zgw“l Ouw =0.

v 0
By Lemma 5.1, we have i(z%)g,, =0 and Zzup,, =0 for a; € 4" x {0}.

Therefore ¢, , is a relative cochain. Moreover we obtain %, , ¢, , = 0 because
zsys € h for s =1,...,n. Hence we obtain u = 0. We put

Af (9,5) = {p € A(g,h); L0 = v}
for v € Z. Then we have

A%(g,b) = D Af (8. b).

v

The cohomology of {Af (g,h),d} is denoted by Hg,(g,h). Thus we obtain
H'(g,h) = @ H&n(ﬂ? h).

LEMMA 5.2.  We have Hg (g,h) = 0 for v# 0.

PROOF. If g, € Ag’,u(g, h) is a cocycle, Cartan’s formula implies di(z)pg, =
vpo.p. We have i(2)pg, € Agfvl(g, h) because
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i(mal)(i(z)(p07,l;) = _i(z)i(mm)wo,u =0

and
Lo (1(2)p0,0) = (di(x™) + (2" )d)i(2) o = 1(x*)di(2) 0,0
= i(x).ZL 2000 = vi(™)pop =0
for any a; € 4" x {0}. Therefore for v # 0, o 1s a coboundary. O

We recall a cochain g € Ag’o(g,f)) is expressed as the equality (4.1).
If there exists oy € A" x {0} which 8., appears in this presentation of ¢y,
then i(x*)poo # 0. Since * € b, this contradicts that ¢ is a relative cochain.
Then ¢g0 € Af,(g,h) is expressed as

SOO,O = Z aalv'“ﬂaqéul ANEERIAN 6&,1'

2
Q@€ N XN

LEMMA 5.3.  We have Af,(g,b) = 0 for all positive integer q.

PrROOF. Take a cochain ¢g € Ag,o(g’ h) and a monomial A = &, A -+ Ad,,
which appears in the above presentation of ¢go. Since .Z.A =0 and oy 2,41 > 1
(s=1,...,q), we obtain

q=kKi1+ -+ K+ Kiantl 2 Kigntl = Q1ope1 + -+ Qgantr 2 G

Then we have Kig9,41 =¢ and K13 == K12, =0. Thus a; =¢e9,41 for s=
1,...,q. For ¢ > 1, we have A = 0 and ¢y = 0. Hence we obtain A{ (g, h) = 0 for
q¢>1. For ¢=1, 4., dose not belong to A},(g,h) because fwr)één“ = 209¢,,.,-
Therefore we obtain Ag (g, h) = 0. ’ O

This completes the proof of Theorem 1.1.
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