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Abstract. We study the exponential growth of the numbers of particles
for a branching symmetric a-stable process in terms of the principal eigenvalue of
an associated Schrodinger operator. Here the branching rate and the branching
mechanism can be state-dependent. In particular, the branching rate can be a
measure belonging to a certain Kato class and is allowed to be singular with
respect to the Lebesgue measure. We calculate the principal eigenvalues and give
some examples.

1. Introduction.

In [26], we gave a criterion for extinction or local extinction of a branching
symmetric a-stable process in terms of the principal eigenvalue for an associated
time changed process of the symmetric a-stable process. We also proved in [26]
that, if the branching process does not extinct, then the number of particles in
the whole space at time ¢ goes to infinity as ¢ — oo with positive probability. Our
purpose in this paper is to study the exponential growth of the numbers of
particles in the whole space and in every relatively compact open set by using the
principal eigenvalue and the ground state of an associated Schrodinger operator.
We also calculate the principal eigenvalues of the Schrodinger operators
and apply our results to branching Brownian motions and branching symmetric
a-stable processes.

Sevast’yanov [25] and S. Watanabe [34] considered the extinction problem
for a branching Brownian motion on a bounded domain with state-independent
branching rate and branching mechanism. They then gave a criterion for
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extinction by the principal eigenvalue of the Dirichlet Laplacian. Furthermore,
S. Watanabe [35] established a limit theorem for a branching diffusion process
by using the L?martingale theory (see also Ogura [21]). Englinder and
Kyprianou [15] gave a criterion for local extinction of a branching diffusion
process by the generalized principal eigenvalue of an associated Schrédinger
operator (see [22] for the definition of generalized principal eigenvalues). They
also studied the exponential growth of the number of particles in every relatively
compact open set.

Here we consider more general branching processes than those studied in [15]
and [35]. In particular, we discuss the exponential growth for a branching process
whose motion component is a symmetric a-stable process and whose branching
rate is a measure. Indeed, we allow the branching rate to be singular with respect
to the Lebesgue measure. More precisely, let M = (X;, P,) be the symmetric
a-stable process on Rdﬂd M?P the absorbing symmetric a-stable process on an
open set D in R?. Let M” = (X¢, P;) be a branching symmetric a-stable process
such that each particle moves independently according to the law of M”. Denote
by p the branching rate measure, that is, the positive continuous additive
functional A} in the Revuz correspondence to u determines the distribution of
the first splitting time of each particle. We assume that the branching rate pu is
Green-tight (in notation, p € %?O) See Section 2 for the definition of %fo. Let
{pn(2)},>0 be the branching mechanism, that is, a particle splits into n particles
at branching site z € D with probability pu(x). Further, let Q(z) := Y0 np,(x)
be the expected number of particles which are born at branching site =z € D.
We now define

LD = 2P 4 Q1)

where .27 is the L?(D)-infinitesimal generator of M. Denote by A the bottom
of the spectrum of L@l and by h the corresponding ground state. Let

Zt
M, :=eM Zh(X;), t>0,
i=1

where Z; denotes the total number of particles at time ¢ and Xi, 1<i1< 7, is
the position of the ith particle at time ¢. Then, under the assumption that A
is negative, we prove that M; is a square integrable martingale, that is,
SUPy<coo Ex[M}] < 0o (Lemma 3.4). As a result, the limit M, := lim;_, M; exists
P,-a.s. and in L'(P,). Furthermore, we show that the limit M, is positive P,-a.s.
on the event that the branching process survives (Theorem 3.7). This result says
that Z; grows exponentially at least with rate —A. We also show that the number
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of particles in every relatively compact open set grows exponentially with rate —\
(Theorem 3.12).

A crucial point is the square integrability of M;. We now explain how to
prove it. By the definition of the branching symmetric a-stable process, it follows
that

E, [Mf] =NE, [exp(AiQfl)’L)h(Xt)%t < TD}
. 1.1
e[ e (2)\ A<Q*1>“)h 2 gARu Y
" p(2As + A (X5)"dA" |,
0

where A9 .= A% _ A" is the continuous additive functional, 7 is the exit

time of M® from D and R(z):=) " n(n—1)p,(x). To show the uniform
boundedness of the second term, we use a criterion for the gaugeability of
measures (see Z.-Q. Chen [6], Takeda [28] and Takeda and Uemura [32]): for
a signed measure = pu*t —pu~ € ,%/ODQ — P it holds that

oo

sup E, [exp (A‘TLD)} < 00

zeD

if and only if the principal eigenvalue for the time changed process of the
exp(—Afi)—subprocess with respect to p* is greater than one (see also Theorem
2.2 below). Applying this result to the second term of (1.1), we establish the
square integrability of M;.

We note that Theorems 3.7 and 3.12 are applicable to more general
branching symmetric Hunt processes under some assumptions (see Assumptions
3.15 and 3.16 below). For instance, they are applicable to branching Brownian
motions on Riemannian manifolds and branching stable-like processes on R? in
the sense of Z.-Q. Chen and Kumagai [8] (see Remark 3.17).

2. Preliminaries.

2.1. Symmetric Hunt processes and two classes of measures.

Let X be a locally compact separable metric space and Xa its one point
compactification. Let m be a positive Radon measure on X with full support.
Let M = (Q, #, %#,,0:, Xy, P, () be an m-symmetric Hunt process on X, where
{Z}4~¢ is the minimal admissible filtration, {6;},., is the time-shift operator
satisf{ing X; 00, = Xy, identically for s,t >0, and ¢ is the lifetime, ¢ =
inf{t > 0: X; = A}. We denote by p; the Markovian transition semigroup of M
given by
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pif(2) = E[f(Xy)].

Let . be the set of smooth measures on X (see [16, p.80] for definition). It is
then known in Theorem 5.1.4 of [16] that smooth measures and positive
continuous additive functionals are in one to one correspondence under the
so-called Revuz correspondence as follows: if we denote by A} the positive
continuous additive functional corresponding to p € ., then for any ~-excessive
function A (v > 0) and any positive Borel measurable function f,

to t Jx

lim1 E, { Ut f(Xy) dA_’;} h(z) m(dx) = /Xf(:r)h(x) w(dzx).
Let 7/ be the right continuous inverse of A,
= inf{s >0: Al > t},
and let F* be the fine support of the measure u defined by
Ft={zeX:P(r)=0)=1}. (2.1)

In the sequel, we assume that the transition density of M is absolutely
continuous with respect to the measure m and denote by p;(x,y) the integral
kernel of py,

pf(@) = [ ) midy).
Let Go(z,y) be the a-resolvent density of M,

o0
Go(z,y) :/ e py(x,y)dt, a>0.
0

If M is transient, then the Green function

Go(z,y) = /Ooopt(%y) dt

exists for z # y, and we put G(z,y) = Go(z,y).
We now introduce two classes of measures in .&.
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DEFINITION 2.1.
(i) A positive smooth Radon measure on X is said to be in % o (G,,), if for any
e > 0, there exist a compact set K C X and a positive constant § > 0 such that

sup Ga(z,y) pldy) <e,
reX JX\K

and for all measurable sets B C K with u(B) < 6,

sup/ Ga(z,y) p(dy) <e.
zeX JB

Further, the class J# , is defined by

v H o(G), M is transient
* | #(G1), M is recurrent.

(ii) A positive smooth Radon measure p on X is said to be in ¥« (G,), if
for any € > 0, there exist a compact set K C X and a positive constant § > 0
such that

Ga ) GOL )
sup / Gal@,9)Caly.) 0y o o
@oexxx\atJxg  Galz, 2)

and for all measurable sets B C K with u(B) < 6,

sup pu(dy) <,

(z,2)eXxX\A

/ Go(z,y)Ga(y, 2)
B G(l (ZL’, Z)

where A = {(z,y) € X x X :x #y}. If M is transient, then .7, (G) is simply
denoted by .¥.

In the reminder of this subsection, we assume that M is transient. Then it
holds that .¥«, C J# « by Corollary 3.1 of [11]. It is also known in Proposition 2.2
of [6] that any measure p in . is Green bounded, that is,

sup E, [A’d = sup/XG(x,y) p(dy) < oo. (2.2)

zeX zeX

Let p be a signed measure on X which can be decomposed into p = ut — p~
for some put, u~ € H «. Then the measure p is said to be gaugeable if
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sup E, [exp (A’g)] < o0,
zeX

where A" := A" — A" Let (&,.F) be the regular Dirichlet form on L2(X;m)
generated by M. It is then known in Theorem 2.1.3 of [16] that each f € . admits
a quasi continuous m-version (see p.67 of [16] for the definition of the quasi

continuity). In the sequel, we always assume that each f € . is quasi continuous.
Define

S —utfern+ [ facires, [ Par-a)

Then the Dirichlet principle yields that X(u) is the bottom of the spectrum for
the time changed process of the exp(—Aff’i)—subprocess of M with respect to
the positive continuous additive functional Aéﬁ. When we specify the positive
and negative parts of the measure y, we denote A(u) by A(u*, p).

THEOREM 2.2 ([6, Corollary 2.9, Theorem 5.1]). Suppose that a signed
measure p on X can be decomposed into p=put —p~ for some pt T € H .
Then the following conditions are equivalent:

(i) The measure y is gaugeable;
(i) A7) > 1
(iii) sup,ex Ex {fé exp(A}) dAf] < oo foranyv € K .

PROOF. The implications (i) < (ii) and (iii) = (ii) are already proved
in [6, Corollary 2.9, Theorem 5.1]. We now show the implication (ii) = (iii) in
a similar way to that yielding Proposition 3.2 of [7]. Let u be a measure on X
which can be decomposed into = u* — p~ for some p*,u~ € # o and assume
that A(u*, ) > 1. Since

Npp™ ™) > Xppp7) ==Xt 1)

AR

for any p > 1, we can take p > 1 so that )I(p,u*,p/f) > 1 and the conjugate
component of p is a positive integer. We fix such p > 1 and denote its conjugate
component by ¢, that is, ¢ > 2 is the positive integer such that 1/p+1/¢ = 1.
Then the Holder inequality implies that for any measure v € ¢,

1/p

E, [ /0 Cexp(AQ")dAf} <E, EZ[(AZ)"} T (23

As it holds that

sup (exp(A7"))
0<t<(
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s (4)] < (g ]}

1/q
(see Lemma 3.7 of [12]), we have sup,cx F. [(AZ) q} < 0o. A direct calculation
yields that

¢ -
sup (exp(AM)) < / exp(AY")dAM" +1,
0

0<t<¢

where 47 — i~ is the Jordan decomposition of the measure u. Since the measures
gt and [~ belong to the class . respectively, and the condition that
Xpp",pu~) > 1 is equivalent to that A(pi*,pi~) > 1 by [32, Lemma 3.1], we
obtain

¢ -
sup E, [/ exp(AP")d A } < o0
reX 0

by [6, Corollary 2.9, Theorem 5.1]. Therefore, the right hand side of (2.3) is
bounded, which shows the implication (ii) = (iii). O

2.2. Branching symmetric Hunt processes.
Following [18], [19] and [34], we introduce the mnotion of branching
symmetric Hunt processes. Let {p,(z)},-q, * € X, be a sequence such that

0<pu(x) <1 and > pu(x)=1.
n=0

For p € ., we denote by Z the random variable of the exponential distribution
with rate A}

Pt < Z| F) =exp(—AL).
A particle of the branching symmetric Hunt process starts at x € X according to
the law P,. If ( < Z, then it dies at time {. On the other hand, if Z < (, then it
splits into n particles with probability p,(Xz-) at time Z. Then each of these

particles starts at Xz independently according to the law Py, . Let X = {A}
and X = X Define the equivalent relation ~ on X" = X x --- x X as follows;
—_—

n
let x" = (x', 22,2, 2"), y" = (v}, 9%, 9%, - -+, 9") € X". If there exists a permu-

tation o on {1,2,3,---,n} such that y* = z°0) for all i, then it is denoted by
x" ~y". Let X = X"/~ and X =J,2, X When the branching process
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consists of n particles at time ¢, they determine a point in X Hence it defines a
branching symmetric Hunt process M = (X;, Py,%;) on X with motion compo-
nent M, branching rate y and branching mechanism {Pu(®) },150-

Let T be the first splitting time of M:

P,(t<T|o(X) =Pyt < Z| Fu)

— exp(~ A1) 24

Denote by Z, the total number of particles of M at time ¢, that is,
Zy=n if X;=(XLX2X3 ... X" e x,
Let
eo = inf{t > 0: Z, = 0}.

Then e, is called the extinction time of M. Let wu.(r)=P,(ey < 00) =
P.(lim; .o Z; = 0). We then say that M extincts if u, =1 on X. Denote by
Z(A) the number of particles in a set A C X at time ¢ and let

Ly =sup{t>0:2Z,(A) >0}.
Let ua(z) = P,(La < o0) = P, (limy o Z;(A) = 0). We then say that M extincts
locally if uq4 =1 on X for every relatively compact open set A in X.

2.3. Symmetric a-stable processes.

Let M® = (Q, %, Zy, 01, Xt, P.), 0 < a < 2, be a symmetric a-stable process
on R? and denote by (&%,.7“) the Dirichlet form on L?(R?) generated by M. If
o =2, then M? is the Brownian motion on R’ and (&% .%%) = (D/2, H'(R?)),
where H'(R?) is the Sobolev space of order one and D is the Dirichlet integral,

D)= [ Vflds e H (R,

On the other hand, if 0 < o < 2, then M is a pure jump process and

_ 2
&(f, f) = o (d, / / . Rd\A yIJ;(*Zi)) dzdy

= *(R? —f(y))2
_{feL (R%) //R RM e dmdy<oo}’
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where

2073 (L

2; and I‘(x):/ e it dt.
0

If d > «, then M“ is transient and the Green function G(z,y) is given by

21 ()

d/2 a |l‘ - y|0f*d'
/2T (5)

G(x,y) =

Let MP = (XD, PP) be the absorbing symmetric a-stable process on an open
set D C R%: set

XP =

{Xt, OSt<TD
A? tZTD;

where 7p is the exit time of M* from D, that is, 7p = inf{¢t > 0: X; ¢ D}. Then
the Dirichlet form (&7,.#") of M” is the following:

FP={feZ*:f=0 qe. onD}

5 [ Ivetds 0=2
1 (f(x) — f()*
£2F 1) = §ﬂ(d7 * //DxD\A |z — g dwdy
1
+%(d’a)/pf($)2</”ﬁ|d+ady> de, 0<a<2

([16, Theorem 4.4.2, Example 4.4.1]). Here q.e. is an abbreviation for quasi
everywhere (see [16, p.66] for definition). Let p? be the Markovian transition
semigroup of M? given by

vy f(@) = E7[F(X7)].
Then by definition,
Pl f(x) = B[ f(X) - ¢ < 7p].

We denote by p?(x,y) the integral kernel of pP,
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D = D X .
PP f(x) = /D PP, 9) () dy

Let Gg(x, y) be the (-resolvent density of MP,

GP(z,y) =/O e 'pp(x,y)dt, 5> 0.

If M? is transient, then the Green function

GP(z,y) = /] PPz, y) dt
(

exists for z # y, and we put G (z,y) = G (z,y).

Let p be a signed measure on D which can be decomposed into p = ut — p~
for some p*, u € Jf/fo, where Ji/g)o denotes the class %, associated with MP.
Define

EWD(f.f) = EP(f. ) — / P, e
D

Since any measure in IODO charges no set of zero capacity by [1, Theorem 3.3],
the form (&P, .7%) is well-defined. Moreover, it follows from [1, Theorem 4.1]
that ("7, .Z") is a lower semibounded and closed form. Denote by pff”D the
L*(D)-semigroup generated by (@”’”’D,Q‘D). Then the Feynman-Kac formula

shows that
pf’Df(m) = Ear[eXP(Ag)f(Xt% t < 7p].

We now note that p” f is a bounded and continuous function for any f € %,(D)
and |[pP ||, o, < oo for any ¢ > 0, where %,(D) stands for the set of bounded Borel
measurable functions on D and || - ll,,, denotes the operator norm from L”(D) to
L1(D). We then obtain the following from [1]:

THEOREM 2.3. Suppose that a signed measure y on D can be decomposed
into p=pt —p- el — L.
(i) For any f € %y(D), pf’Df is a bounded and continuous function on D.

(ii) For any t > 0, it holds that pr’DH < oo forany 1 <p<q<oo.
Pa
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Theorem 2.3 (i) assures the existence of the integral kernel p/” (z, y) of p/"?,
o7 1@ = [ o )1 (0) dy (25)

Let o(&"") be the totality of the spectrum of the self-adjoint operator
associated with (cg’”’D,ﬁD). Set £’1D(f, =1+ I f? dx. We can then show
that the embedding from (ﬂD, éa?) to L?(D;v) is compact for any v € Jf/fo by the
same way as in Theorem 2.8 of [29]. Hence, if we put

(D) =inf{5D(f,f) L fec(D), /Df%lx= 1},

then, by the Friedrichs theorem [20, 2.5.4, Lemma 1], the spectrum in o(£*?) less
than A(D) consists of isolated eigenvalues with finite multiplicities.

In the remainder of this section, we fix a signed measure p on D which can be
decomposed into p=put —pu~ € #2 — #. Denote by A(u; D) the bottom of
a(&"P):

3uiD) = {205,y p e o), [ pas =1},

Assume that A := A(u; D) < 0, that is, A is the principal eigenvalue. Then, since
the ground state h satisfies h = eAtpf’Dh on D, we see that h is bounded and
continuous by Theorem 2.3, and strictly positive by combining the irreducibility
of MP? with the strict positivity of exp(Al). Let Ggi"D(aﬁ,y) be the (-resolvent
density of the exp(—Aff)—subprocess of MP?,

[ a5 sy =] [ esw(-o- ) g ae|
0
We can then see in a similar way to Section 4 of [31] that

h(z) = /D G (z, y)h(y) " (dy). (2.6)

REMARK 2.4. Assume that M” is transient. We now show that, if the
support of a measure v € Ji/i is compact, then v belongs to % (Gg) for any
B8>0.Letve Ji/fo be a measure with compact support and put F' = supp[v]. Let
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O be a finite union of bounded C'! domains in D such that F' C O. Here we say
that a set A is a CY! domain, if for any = € JA, there exists a positive constant
r >0 such that B,(r) NOA is the graph of a function whose first derivatives
are Lipschitz continuous, where B,(r) = {y € R*: |z — y| < r}. Since GP(z,y) <
G(z,y), Corollary 1.3 of [10] implies that

GO(z,y) < GP(z,y) < CG(z,y)

for any z,y € F, where C' > 1 is a positive constant depending on F'. Furthermore,
since

sup
(x,2)€OxO\A

dy < oo

/ GO (x,9)G(y, )
0] GO(x’ Z)

by Theorem 1.8 of [10], it follows from Theorem 5.3 of [6] and Lemma 3.3 of [28]
that

G (x,y) < GO(x,y) < CGY(x,y)
for any z,y € O, which leads us to that
Gl(z,y) < GP(z,y) < CGJ(z,y)

for any z,y € F. Here the constants C above are different and depend on f,
respectively. Therefore, for any nonnegative Borel function f on D,

Dig, Dy, z
[ G G2 b ay)

(z,2)EDxD\A G[?(SL’, Z)

-y [ B9
F G[?(Z‘,Z)

fy) v(dy) (2.7)

(z,2)EFXF\A

GP(z,y)G"(y, 2)
<C (m,z)zEEF\A/F GP(z, 2) fly) v(dy).

Here we note that the following 3G-inequality holds locally for GP(x,y):

GP(x,y)GP(y, 2)

GD(x Z) < C(GD(SU,Z/) + GD(y7 Z)), (x,z> c Fx F\A7
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where C'is a constant depending on F. Thereby the right hand side of (2.7) is not
greater than

2C’sup/ GP(x,y) f(y) v(dy) = 2C’bup/ GP(x,y) f(y) v(dy),

zelF zeD

which shows that v belongs to . Gg

Let u be a signed measure on D which can be decomposed into u = ut — u~ €
%ODO — ,/“i/fo such that the supports of ™ and p~ are compact. Assume that \ :=
Ap; D) < 0 and denote by h the corresponding ground state. Since pt and p~
belong to . (G?A) as discussed above, we can show that, by the same way as in
Section 4 of [31],

C'GP,(0,x) < h(x) < CG?,(0,2), z€ D\ K (2.8)

for a compact set K C D and a fixed point o € K, where C > 1 is a positive
constant depending on K.

REMARK 2.5. Let p be a measure belonging to Ji/f)o and let O be a finite
union of bounded C'! domains in D. Then there exists a positive constant
C = C(0,a) > 1 such that

GO<x,y>G0<y,z><C< Lo, > 2y, 2€0
— |.13 |d—a |y |¢1—a

by [10, Theorem 1.6] and there exists a positive constant C' = C(D, O, «) > 1 such
that

071
ﬁSG (x y)

xz,y € 0.
|z =yl

ey

Hence it follows that pul, € .7
with M©.

> Where 5”000 denotes the class ., associated

3. Exponential growth of the numbers of particles.

Let MP = (Xt,Pz,%t) be the branching symmetric a-stable process with
motion component MP, branching rate p € ¢ ODO and branching mechanism

{pn(x)}nz() Let
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Q) = 3 (@)

n=0

and suppose that sup,.p Q(z) < co. Define
A, Q; D) =inf{5D(f,f)+/Df2 du: f € C°(D), /DfQQdMZ 1}.

Then X(u, Q; D) is the principal eigenvalue for the time changed process of
the exp(—A!)-subprocess of MP with respect to A%, Define A(p,Q;D) =

3. D) = int{ 627 0) = [ P@-vaus fecro) [ far=1}. @)
We then see that A(u, Q; D) > 0 if and only if X(i, @; D) > 1 by the same way as

in Lemma 2.2 of [31]. We can thus rephrase Theorem 3.1 of [26] as follows:

THEOREM 3.1.  Assume that P,(tp < 00) =1 for any x € D. If the branching
rate pu belongs to 5”50, then M eatincts if and only if \(u, Q; D) > 0.

We also proved in Lemma 3.8 of [26] the following:

LEMMA 3.2.  Assume that Py(1p < 00) =1 for any x € D. Then
{eg = o0} = {lim 7, = oo} P.-a.s.
t—00

for any x € D.

Lemma 3.2 says that, if the branching process M does not extinct, then

6000)1.

We first study the exponential growth of Z; in terms of the principal eigenvalue
A(p, Q; D). Let

P, (flim Zy = 00

o0

R(z) = Z n(n —1)p,(z).

n=1
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We now prove the following:

LEMMA 3.3.  Ifsup,.pQ(x) < oo, then

E,

Z:f(Xi)

=FE, {exp (A,EQ*U“) f(Xy);t < TD:| (3.2)

for any f € By(D). If sup,cp R(z) < 00, then

Z Z
E, (Z f(xi)) (Z g(x;j)> = B, [exp(4[") F(X)g(X0)it < )
=1 =1 (33)
tATD Zi—s Zy—s
PB | [ (A0 By, Y A | B Yo a(Xi) | dal
0 i=1 i=1

for any f,g € By(D).

PROOF. Let us denote by Z;(m) the total number of particles at time ¢
such that each of their trajectories over time interval [0, ¢] has m branching points,
and by

Xi(m) = (X} (m). X} (m), - X[ (m))

the positions of all such particles at time ¢. Define
Zy ) Zi(m) .
Z(f)y=Y_f(X}) and Z(m;f) =) f(X{(m)),
i=1

i=1

respectively for f € %,(D). Then

205 =" Zum: f)

m=0

We first show (3.2). It follows from (2.4) that
E.[Z(0; )] = Eulexp(—Af) f(X1);t < 7p].

Since each particle moves independently, the strong Markov property yields that
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E.[Zy(m; )] = Ez[Ex, [Zi-r(m — 1; f); T < 1]
=E, iEX}[Zt,T(m -LHET<t

(3

—E, [/WD exp(—AY)Ex, [Zi—s(m — 1; f)] dA?“}
0

Hence

E,[Z;(m; f)] = E, |exp(—A}) Tf(Xt);t <7Tp

by iterations, which implies (3.2).

We next show (3.3). Denote by ZJ(m) the total number of children of z/ at
time ¢ such that each of their trajectories over time interval [0, ¢] has m branching
points under the law Pyn, x" = (2!, 2%,2°,---,2") € X and by

i 1 1 1 *,Z,j m
X3 (m) = (X} (m), X} (m), X} (m), -+, X[ 7" (m))

the positions of all such particles at time t. Let us define

Z/(m)

Zi(m; ) =Y f(X{'(m)).

i=1
Then the strong Markov property shows that
E.[Z,(m; [)Zi(n; 9)] = Eo[Ex, [Zi(m — 1; [) Zi(n — 1; 9)|; T < 1]
> Zlp(m =112 4(n —1;9)
=1

=E, EX1

+ Z Z_p(m =15 £)Zf p(n — 13 )

1<) k<Zp.j#k

;T <t

for m,n > 1. Moreover, since each particle moves independently, (2.4) yields that
the last term above is equal to
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Zr
> Exi[Zir(m—1;0)Z 1(n—1;9);T <t
=1

+E| Y EyglZr(m— LB Zr(n- L ART <t

1<4,k<Zp,j#k

tATD
= Ew |:/ eXp(_Ag)EXs [Zt—s (m - 1; f)Zt—s (’I’L - 1; g)] dA?“:|
0

tATD
e [/0 exp(—AL)Ex, [Zio(m = 1; N]Ex [Zis(n = 1;9)] dAfﬂ} :

Here we note that
E.[Z:(0; £)Z:(0; 9)] = Exlexp(—AY) f(X1)g(X1);t < D]

and Z;(0; f)Zi(m;g) =0 for any m > 1 by definition. Then, by iterations and
Fubini’s theorem,

(4)"
E.[Z(m; f)Zi(m; g)] = E. |exp(—A}) Tf(xt)g(Xt)§t <7p

tATD m (AQ)*!
+E, / exp(—A) Z Ex,[Zi_(m — k; f)|Ex,[Zi—s(m — k; g)] -2 dARE
0

—~ (k—1)!

and

E.[Z:(m; f)Zi(n; g)]

ATD n Qu k—1
~E, / " exp(—an) S Ex [Zi—i(m — k; £)Ex,[Zi-u(n — k; 9)] A gam

0 k=1 (k_ 1)'

for m > n > 1. Since

LN Zla) =3 Zlms N Zmig) + 3 S (Zulms ) Zu(s ) + Zaloms ) Zu(s ),

m=0 n=1 m=n+1

we obtain (3.3) by Fubini’s theorem. O

In the sequel, we assume that A := A(i, @Q; D) < 0. We denote by h the ground
state corresponding to A. Then
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h(z) = ME, {exp (Ai‘?*””)h(xt); t<1p). (3.4)
Define
Zy )
M, =M h(X]), t=>0. (3.5)
i=1

Then M; is a P,-martingale by (3.2) and (3.4). Furthermore, it follows from (3.3)
and (3.4) that

E, [M,Q] =eME, [exp(AEQfl)#)h(Xt)Q;t < TD}
tAT, (36)
+ B, [/ ’ exp (2/\8 + AgQ’U") h(X,)? dAf“] .
0

The following lemma is crucial in this paper.
LEMMA 3.4.  Assume that sup,cp R(x) < 0o. Then M, is square integrable.

PROOF. Since
eME, [exp (AgQ*W)h(Xt)?;t < TD] < e¥||h| h(z)

by (3.4) and the right hand side converges to 0 as t — oo, it follows from (3.6) that

D
tlim E, [Mf] =FE, [/ exp (2)\5 + A,(sQfl)”)h(Xs)Q dAf“}
0 . (3.7)
< ||h||io||R||OO sup B, {/ exp(2)\s + AgQ—l)u> dAfj] )
reD 0

Since

: D 2 2 . 00 2 _
mf{g (f,f)—/Df (Q—l)du—2)\/Df da: f € C*(D), /Df dx_l}

=-A>0

by the definition of A, Lemma 3.5 of [28] shows that
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: D 2 2 . 00 2 _
1nf{£ (f,f)+/Df d,u—2>\/Df do: feCy (D),/Df Qdu_1}>1.

Hence the last term of (3.7) is finite by Theorem 2.2, which implies the square
integrability of M;. O

Lemma 3.4 tells us that there exists the limit M., = lim;_,o, M; € [0,00) P,-
a.s. and in LY (P,), say, E;[My] = h(z) > 0, which yields that P, (M., € (0,00)) >
0 for any x € D. It also holds that

D
B = B U exp(2)s + AV (X, dAf”} .
0
We now consider the following equation:

u(x) = B, [exp( AL, )imp < oc| + E, [ / " exp(- AN F()(X,) At

0<u(x)<1l, =zeD,
(3.8)

where

Then the function v = 1 is a solution to (3.8). Moreover, as proved in Proposition
3.1 of [26], the extinction probability wu. (see Section 2.2 for definition) is a
minimal solution to (3.8). Here we give a sufficient condition for the solutions of
(3.8) to be just u, and w =1 in terms of the branching rate and the Green
function. To be precise, let G*P(z,y) be the Green function of the exp(—A})-
subprocess of M”,

B [ e | = [ 6o

We then have

LEMMA 3.5. Assume that Py(tp<oo)=1 for any x€D. If
II pwp G*P(z,y) p(dz)pu(dy) < oo, then the equation (3.8) has just two solutions,
u=1 and u,.
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PROOF. Let u be a solution to (3.8) such that u(xy) < 1 for some xy € D.
Since w is finely continuous by Lemma 3.2 of [26], it follows from (3.8) that
P, (0onpe < 00) > 0, where O = {z € D : u(x) < 1} and F* is the fine support of
the measure y defined in (2.1). Moreover, by the irreducibility of the process M?,
it holds that P,(conr: < 00) > 0 for any x € D, which implies that v < 1 on D.

We now define

D
61w = .| [ expl-apysx) ant].
Then the right hand side above is equal to

/D GP (2, ) () p(dy).

As a direct calculation yields that
™D
E, [exp(—AﬁDﬂ =1-FE, [/0 exp(—A})dAY],
the equation (3.8) is equivalent to that
v=GrP(F(1) = F(1—v))

on D, where v =1 — u > 0. Since the function v, = 1 — u, > 0 is a solution to the
equation above, we see that

[ oE) = Fa= ) du = [ GEP(FQ) - F - o)(PO) - P 0) da
D D
= [ GLP(P) ~ P = 0))(F() - F(L =) du

= / ve(F(1) — F(1 —v)) dp.
D

Here the integrability of the terms above follows by the assumption on p and
the second equality holds by the symmetry of the operator Gﬁ"D with respect
to u (see Theorem 3.2 (iv) of [2]). Since F(-) is strictly convex and v, > v > 0,
it holds that
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FQ)-F(1—v) F(1)-F1-uv,)
1—-(1-v)  1—(1-w)

p-a.e.,

which shows that u = u, p-a.e. Using (3.8), we have u = u, on D.

PROPOSITION 3.6. Assume that Py(1p <oo)=1 for any =z € D.

sup,ep R(z) < 0o and [[ ., G"P(z,y) p(dz)u(dy) < oo, then
{eg = 0} = {M >0} P,-a.s.

forany x € D.

PROOF. Since A < 0 and
M; < M Zi|h]|
it holds that
{M >0} C {eg = o0}.

It also holds that, by the assumption on the exit time 7p,

P.(T = o00,eg = ) = E, {exp(—AﬁD);TD = oo} =0.

Hence, by noting that
{T = o0} C {eg < o0} C {My =0},
we see that

P, (M, =0)=P
=P,(T =00) +P,(My =0,T < 0)
E

- exp(—A¢D>;TD < oo}

+ E, [/D exp(—A{) F(P.(Mx = 0))(Xy) dA7 |,
0

(Moo =0,T =00) +Py(Mx =0,T < 0)

95

If

that is, the function P,(M = 0) is a solution to (3.8). Since P (M =0) < 1, it
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follows from Lemma 3.5 that P,(My =0) =u.(z) for any z € D. Namely,
P,(My > 0) =P,(ey = c0) for any x € D, which completes the proof. O

THEOREM 3.7.  Suppose that P,(tp < o0) =1 for any z € D.
(i) If sup,ep R(z) < 00 and [, , G*P(z,y) p(dz)pu(dy) < oo, then

P,(My € (0,00) |eg =00) =1, xz€D. (3.10)

As a consequence,

P, (11}11 infeMZ, >0

ey = oo) =1, zeD. (3.11)

(i) If sup,ep R(z) < 00 and ([}, ;, G"P(z,y) p(dx)pu(dy) < oo, then for any k > X,

P, (flim e Z, =00 | ey = oo> =1, ze€D. (3.12)

(iii) For any k <\,

Z
. Kt A _
P, (tlgge ;h(Xt) = 0) =1, zeD (3.13)
and
P, (h}n inf ez, = 0) —1, zeD. (3.14)
l— 00

Furthermore, if the open set D is Green bounded, that is, sup,cp E.[Tp] < 0o, then
for any k < A,

P, (tlim ez, = O> =1, ze€D. (3.15)
PROOF. The equation (3.10) follows from Proposition 3.6. Since
{My >0} C {li%ninfeM’Zt > 0} C {flim ez, = oo}

for k > A by (3.9), we have (3.11) and (3.12).
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Suppose that £ < A. Then the equation (3.13) holds by Lemma 3.4. By (3.2),
"B, [Z)) = E, {exp (nt + Angl)“) it < TD}

t
=e"E, [exp(—Aé‘)/ exp (A?“) dAt < TD] + " B, [exp(—Al);t < p).
0

Choose a positive constant € such that 0 < € < A — k. Then the last term above is
not greater than

D
Gl [/ exp((/\ —e)s+ AgQ_l)“) dASQ”] + "B, lexp(—Al);t < 7p]. (3.16)
0
Further, by the same argument as in Lemma 3.4, it follows that

™D
sup F, [ / exp((A —e)s+ AgQ‘1>“) dA?“] < o0,
zeD 0

and thus the term (3.16) converges to 0 as t — co. Hence by Fatou’s lemma,
E. [n}n inf e”tZt} < flim e"E,[Z] =0,

which implies (3.14).
In the sequel, we further assume that the open set D is Green bounded. Let

uﬁ(m) = E.’I? [GXP (KTD + A,(rgil)#>:| .

Then sup,cpux(z) < oo by Theorem 2.2. Moreover, Jensen’s inequality yields
that

injg ug(x) > exp (n sup E,[7p] — sup E, [Aﬁn}) >0,
xe

zeD zeD

where we note that sup,cp E£;[A% ] < oo by (2.2). By the definition of u, and (3.2),

entEI

i un(Xi)] =e"E, [exp(AﬁQfl)”)“n(Xt)%t < TD}
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=e"E, {exp (AEQ_l)“> Ex, [exp (li'rD + A5271>#)} < TD:|.
Then the last term above is equal to
E, [exp (KJTD + A(Tg_l)“) it < TD} < ug(z)

by the Markov property. Since e 3% u,.(X!) is a nonnegative P,-super-
martingale such that

sup "B,
(2,t)eDx[0,00)

Z
E uH(X;)] < supu,(z) < 00,
i—1 xeD

there exists a limit lim;_,, e Zi’l uR(Xi) < oo Py-a.s. for any x € D. Further-

more, we see that limsup,_,., e™Z; < co P,-a.s. because inf,cp ug(x) > 0 and

Zt
: Kt < efit i
(;ng) u,{(x)>e Z;<e 221 e (X3).

?

Noting that x < A is arbitrary, we have (3.15). O

We next study the exponential growth of the number of particles in every
relatively compact open set. In Theorem 3.2 of [26], we gave a criterion for local
extinction of a branching symmetric a-stable process in terms of the principal
eigenvalue for an associated time changed process of the symmetric a-stable
process. By using A(p, Q; D) defined in (3.1), we can rephrase Theorem 3.2 of [26]
as follows:

THEOREM 3.8.  Suppose that, for any relatively compact open set A in D,
PP(ps < 00) =1 for any x € D, where py = sup{t > 0: X’ € A}. If the branching
rate p belongs to yODO, then MP extincts locally if and only if A, Q; D) > 0.

In the sequel, we assume that A := A\(u, Q; D) < 0. We then have

LEMMA 3.9. For any non-empty open set A in D,

P, <limsup Zi(A) = oo) >0, ze€D. (3.17)

t—o0
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Moreover, if PP(ps < 00) =1 for any x € D and [[,, , G"P(z,y) p(dz)u(dy) <
00, then

t—00

P, <limsup Zi(A)=0or oo> =1, ze€D. (3.18)
Namely,
{Ly =00} = {limsup Zi(A) = oo} P,-a.s., zeD.
t—00

To prove Lemma 3.9, we consider the following equation:

u(w) = B [exp (-2 )] + . [ [ ewcanrwc) dAﬂ ,

0 (3.19)

0<u(x)<1l, zxze€D.

We can then prove the following by the same way as in Lemma 3.5.

LEMMA 3.10.  Suppose that ([, , G"P(z,y) p(dz)u(dy) < co. If the func-
tions u; and uy are solutions to (3.19) respectively, and uy < wug <1 on D, then
u; = us on D.

PROOF OF LEMMA 3.9. Let O be a finite union of bounded C*! domains in
D such that A < A(u, Q; O) < 0. Since the measure p|, belongs to .#< by Remark
2.5, we see from Theorem 3.8 that M® = (Pg) does not extinct, and thus

P, <flim Zi(0) = oo) > PY <flim Z, = oo> >0, z€O.

Furthermore, the left hand side above is positive for any x € D by the
irreducibility of MP.

Let us denote by ngfl)ﬂ’D(x,y) the integral kernel of the Feynman-Kac
semigroup p\® " as defined in (2.5). Then p\¢ " (z, A) := N PP (3 0 dy
is bounded and continuous on D by Theorem 2.3 (i) and

by the irreducibility of MP”. Since
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E.[Z(A)] = E, [exp (AgQ—”“); t<1p, X, € A}

by (3.2), it holds that

inf B, [Z1(A)] = p > 0,
€0

and thus

inf P,(Z1(A) > 1) > 0. (3.20)

€O
Let ¢ be a nonnegative constant such that

e ! =supE,[exp(—Z1(A))].

€O

Then it holds that 0 < g < p because the right hand side above is less than one by
(3.20) and

€O

sup B.fexp(~Z4(4)] > exp — nf B.[24(4))
by Jensen’s inequality. Choose a positive constant g such that 0 < § < ¢q. Then for
any x" = (¢!, 22, 2%, .- 2") € O™,

Py (Z1(A) < GZy(0)) = Pxn(exp(—Z1(A)) > exp(—qZy(0)))

< T [ Bxlexp(—Za(4)]

i=1

by Chebyshev’s inequality. Since the last term above is not greater than e ¢ < 1
for any n > 1 by the definition of ¢, it holds that

sup  Pui(Z1(4) <Z(0)) < 1.

n>1,x"€0®
Namely,

inf Py (Zl(A) > QZO(O)) > 0.

n>1,x"€0m
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Let us define
Am = {Z’m,(A) > qu—l(O)}

for any positive integer m > 1 and
Q= {tlim Z(0) = oo}‘ (3.21)

Then, by the Markov property,
P.(Ani1 |9n)(w) = PXm(w)(Zl(A) >G2(0))
> inf Pu(Zi(A) > 3%(0)) > 0

n>1, xreOm

for any z € D and w € £, and hence

Z P:z(Am+1 | gm)(w) = Q.
m=0

Noting that

{ZPAAM | Fn) = oo} =1U 4.
m=0

by [14, p.237, Corollary 3.2], we obtain (3.17).
In the sequel, let A be an open set in D such that P”(ps4 < 00) =1 for any
z € D and assume that [[, , G"P(z,y) p(dz)u(dy) < co. Set

u(z) = P, <tlij?0 Zy(A) = 0)

and

us(z) = P, <1im sup Zi(A) < oo).

t—o00

We then see in a similar way to Proposition 3.6 that the functions u; and wuy are
solutions to (3.19) respectively, by the assumption on A. Since it holds that
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u; < ug < 1 by definition, Lemma 3.10 implies that u; = us on D, which leads us
to (3.18). O

PROPOSITION 3.11.  For any non-empty open set A in D and k > ),

P, <lim supe™Z,(A) = oo) >0, zeD. (3.22)

t—o00

Moreover, if PP(pa < 00) =1 for any x € D and [[,, , G"P(z,y) p(dx)u(dy) <
oo, then

{Ls =00} = {limsup e Z,(A) = oo} P,-a.s., z€D,

t—o00
and

{Lg < 0} = {tlirglo e Z,(A) = O} P,-a.s., ze€D.

PROOF. For any x > ), there exists a finite union of bounded C*! domains
O in D such that A < A(u, Q; O) < k. Then, by Theorem 3.7 (ii),

t—o00

P, <tlim e 7,(0) = oo> >pY <lim ez, = oo> >0, z€O.

Moreover, the left hand side above is positive for any € D by the irreducibility
of MP. Hence if we replace Qy defined in (3.21) with

{tlim e Z,(0) = oo},

then (3.22) follows by the same way as in Lemma 3.9.
In the sequel, let A be an open set in D such that PP(ps < 0o) =1 for any
x € D and assume that [, , G"P(z,y) p(dz)u(dy) < co. Set

w(z) =P, (tlirglo e Zi(A) = 0)

and
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uz(x) =P, <lim sup e Z;(A) < oo)

t—o00

Then it follows from (3.22) that ug <wu; <wuy <1 on D, where wua(z)=
P.(L4 < 00). Furthermore, by noting that u4, u; and us are solutions to (3.19)
respectively, Lemma 3.10 implies that uy =u; = uo on D, which completes
the proof. 0

THEOREM 3.12.
(i) For any relatively compact open set A in D,

P, <lim sup eM Z,(A) < oo) =1, ze€D. (3.23)

t—o0

As a consequence, for any k < A,
P, (tlim e Zy(A) = 0) =1, ze€D.

(ii) Assume that [[ ,, , G*P(z,y) p(dz)pu(dy) < oo. Then, for any non-empty open
set A in D such that PP(py < 00) =1 for any x € D and k > ),

P, (hmsup e Z,(A) = 0o ' L,= oo> =1, ze€D. (3.24)

t—o00

PROOF. Let A be a relatively compact open set in D. Then

1
At
Zy(A) < ———— M,.
CLA) < T M
Since
: A 1
limsupe®Z;(A) < ————— My < oo Py-as,
t—00 infyea h(.T)
(3.23) holds. The equation (3.24) follows from Proposition 3.11. O

REMARK 3.13. Englidnder and Kyprianou [15] studied the exponential
growth of the number of particles in every relatively compact open set for a
branching diffusion process such that the branching rate is a bounded, non-
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negative and continuous function. On the other hand, we can take unbounded
functions as branching rate in (3.22) of Proposition 3.11 and Theorem 3.12 (i).
For instance, suppose that a =2 and D= R’. Since the measure pu(dz)=
1/]2|X|zj<1 d= belongs to %5,
Moreover, the ground state of A(yu; R?) satisfies (2.8) because the support of p is
compact.

we can take the measure p as branching rate.

REMARK 3.14. Assume that d=1and 1 < o <2 or d = a = 2, that is, the
symmetric a-stable process M® on R? is Harris recurrent. Let us consider the
branching symmetric a-stable process M® = (P,) on R’ with branching rate
S Ji/gl. We denote by T the first splitting time of M®. Then, since
P,(A" = 00) = 1 for any = € R? (see [24, p.426, Proposition 3.11]), it follows that

P, (T =00) =E, [exp(—A’o"oﬂ =0

for any = € R?. Using this fact, we can show Theorems 3.7 and 3.12 by the same
argument. Here the condition [[,, , G"P(z,y) u(dx)u(dy) < oo is replaced with
p(RY) < oo and the condition on the exit time 7p or the last exit times is not
imposed.

Let us recall that M = (X;, P,) is an m-symmetric Hunt process on X, where
X is a locally compact separable metric space and m is a positive Radon measure
on X with full support. Let (&,.%) be the regular Dirichlet form on L?(X;m)
generated by M. We make the following assumption on M:

ASSUMPTION 3.15.

(i) (Irreducibility) If a Borel set A is pi-invariant, that is, if p;(xaf) =
xapif(x) for any feL*(X;m)N%By(X) and t>0, then m(A)=0 or
m(X\ 4) =0.

(ii) (Strong Feller property) For any f € %,(X), p:f is a bounded and
continuous function on X.

(iii) (Ultracontractivity) For any ¢ >0, it holds that |p|, . < oo, where
| -l,, denotes the operator norm from L?(X;m) to LI(X;m).

Let M be the branching symmetric Hunt process with motion component
M, branching rate p € £ and branching mechanism {p,(z)},>,. Put Q(z) =
Yoo o npn(x) and assume that sup,cx Q(z) < co. We now define

A1.Q) =inf{£<f, n- [ r@-vau:res, [ fan- 1}. (3.25)
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We also make the following assumption on M:

ASSUMPTION 3.16. (Compact embedding) The embedding from (%, &) to
L?*(X; p) is compact, where &1(f, f) = &(f, f) + [y f>dm.

Let
Aozinf{g(f,f):fef, /demzl}.
X

Then, as discussed in Section 2.3 for symmetric a-stable processes, Assumption
3.16 implies that, if A(u, Q) < Ao, then A(u, @) is the principal eigenvalue and
Assumption 3.15 yields that the corresponding ground state h is bounded,
continuous and strictly positive on X. Hence, if the motion component M is
transient or Harris recurrent, then Theorem 3.7 holds. In addition, if the support
of p is compact, then Theorem 3.12 holds.

REMARK 3.17.

(i) Let M be a simply connected, complete and non-compact Riemannian
manifold and consider the Brownian motion on M. Denote by (&,.%) the
associated regular Dirichlet form on L?(M;V):

s =3 [ vatav

# = the closure of Cj°(M) with respect to &(-,-) + || - H%z(z\,m/)7

where V is the Riemannian volume of M. We then see in a similar way to [30,
Section 3] that (&,.%) satisfies Assumption 3.16. Hence, if the Brownian motion
on M fulfills Assumption 3.15, then Theorems 3.7 and 3.12 are applicable to
branching Brownian motions on M. For example, we can find in [13, Section 5]
some sufficient conditions for the Brownian motion on M to satisfy Assumption
3.15.

(ii) Let (&,.%) be a regular Dirichlet form on L?(R?) and M the associated
symmetric Hunt process. If (£7,.%#) is comparable to that of the symmetric a-
stable process, then, by applying the same argument as in [29], we can show that
the embedding from (Z, &) to L?(R% p) is compact for any pu € J# ..

For instance, we consider stable-like processes on R? in the sense of Z.-Q.
Chen and Kumagai [8]: let ¢(x,y) be a symmetric function on R? x R? which is
bounded between two positive constants co > ¢; > 0, that is,
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a <c(x,y) <c, ae (r,y) € R x R

Fix 0 < o < 2 and define

_ 2
&0 = //RJXR“\A yi];(i)) elzy) dedy

2( pd —f(y))2
{feL R") //R"XR"\A y|d+a dxdy<oo}.

Since (&,.%) is a regular Dirichlet form on L?*(R?), there exists the associated
symmetric Hunt process on R, which is called the a-stable-like process. Clearly
the Dirichlet form (&, .%) is comparable to that of the symmetric a-stable process.
Moreover, it is proved in [8, Theorem 4.14] that the a-stable-like process on R¢
admits a Holder continuous transition density which is comparable to that of the
symmetric a-stable process. These facts imply that stable-like processes on R?
fulfill Assumptions 3.15 and 3.16, and thus Theorems 3.7 and 3.12 are applicable
to branching stable-like processes. Note that the class J£,, of the a-stable-like
process on R? is identified with that of the symmetric a-stable process on RY.

We announce that, if the motion component M satisfies Assumptions 3.15
and 3.16, then the following limit theorem is established for the branching process
M in [9]: for any = € X, there exists a subspace 2 of the sample path space of M
with P,(€y) = 1 such that, for any w € g,

lim )@ Z,(A)(w) = My (w) / hdm
A

t—00

for any relatively compact Borel set A in X such that m(9A) = 0. Hence Theorem
3.7 (i) gives a sufficient condition for the right hand side above to be positive
under the condition that M survives.

4. Examples.

We calculate the principal eigenvalues and the ground states of the
Schrodinger operators and apply Theorems 3.7 and 3.12 to branching Brownian
motions and branching symmetric a-stable processes.

4.1. In case of a = 2.
In this subsection, we suppose that @ = 2, that is, we consider the Brownian
case.
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EXAMPLE 4.1. Suppose that d = 1. Let us take first D = (—R, R) for R > 0
and p=>" @by, a; >0, —R<a; <ay < - <a, <R, where §, is the Dirac
measures at a; € (—R, R). Denote by h the ground state corresponding to
A= A(p; (=R, R)). We then see from (2.6) that

M) = 3 0GP, (. ah(a),

where Gg(sc,y), B3>0, is the (-resolvent density of the absorbing Brownian
motion on (=R, R). Let G be the n x n-matrix defined by (a;Gf(ai,a;)),<; j<p-
Then the relation above implies that

A =min{x: |G" —1I| =0},
where [ is the n X n-unit matrix.
First suppose that n =1, a = a; and a; = 1. Since

2
VvV —2Asinh(vV—2\R)

GE\ (z,y) = sinh{V—=2A(R — z)} sinh{V-2\(R+y)} (4.1)

for —-R <y <z <R ([4, p.105]) and G¥,(a,a) = 1, it holds that

\/7—2)\(62\/72)‘]? _ 6—2\/—2)\13) .
V=R | o=2V=2AR _ 2V-2a _ o-2V=2ha

If we take h(a) = v —2Asinh(2v—2AR)/2, then

h(z) = { sinh{2V—2A(R — a)} sinh{2V—2A(R+ )}, —R<z<a
- sinh{2V —=2A(R + a)} sinh{2vV —2A\(R — z)}, a <z < R.

For instance, suppose that a = 0. Since the equation (4.2) becomes

VN PR ) .
e2V-2AR _ 1 o

we can find that if R > 1, then A is a unique solution to the equation above and
—1/2 < XA < 0. Otherwise, A = 0.

Cousider the binary branching absorbing Brownian motion on (—R, R) with
branching rate §,. Then this process does not extinct if and only if R > 1. Note
that (—R, R) is Green bounded because
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Ex'[TR} = Q(RQ - xz)v

where 7z is the exit time of the one-dimensional Brownian motion from (—R, R).
Hence if R > 1, then (3.10), (3.12) and (3.15) hold.
Next suppose that p = 6, + 6_, for a € (0, R). Then it follows from (4.1) that

VvV —2Asinh(2v —2AR) _1 (43)
2sinh{vV—2A(R — a)}(sinh{vV—2A(R — a)} + sinh{V—2X(R+a)})
If we take h(a) = v —2Asinh(2v —2AR)/2, then
h(z) =
sinh{2v —2A(R — a)} sinh{2V —2A\(R + a) } sinh{2V —2A(R + )},
—R<x< —a
sinh{2V —2A(R — a)} sinh{2vV —2X\(R — z)} sinh{2V —2A(R + z)},
—a<x<a
sinh{2V —=2A(R — a)} sinh{2vV' —2A\(R + a)} sinh{2v —2A\(R — z)},
a<z <R

Assume that a =1. If R > 3/2, then the principal eigenvalue A is a negative
unique solution to (4.3). Otherwise, A = 0.

Let us consider the binary branching absorbing Brownian motion on (—R, R)
with branching rate 6; + 6_;. Then this process does not extinct if and only if
R > 3/2. Furthermore, (3.10), (3.12) and (3.15) hold if R > 3/2.

EXAMPLE 4.2. Suppose that d=1. Let us take first D = (0,00) and
a € (0,00). Denote by G%(m,y), B> 0, the [-resolvent density of the absorbing
Brownian motion on (0, 00):

GY(z,y) = \/%_ﬂ e~V sinh(@y)

for 0 <y < z ([4, p.107]). By the same way as in Example 4.1, it follows that A :=
A(6q; (0,00)) satisfies

\/—:é—)'\eQ\/—Q)\a

e2V=2Xa _ 1 =1
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Moreover, a direct calculation implies that this equation has a negative unique
solution —1/2 < A < 0if a > 1/2. We denote by h the ground state corresponding
to A\. If we take h(a) = v—2A/2, then

W) { eV ginh(vV—-2\z), 0<z<a
xTr) =
e VT2 sinh(\/——2)\a), a <.

Cousider the binary branching absorbing Brownian motion on (0,00) with
branching rate é,. Then this process does not extinct if @ > 1/2. Since (0, 00) is not
Green bounded, (3.10), (3.12) and (3.14) hold if a > 1/2.

Next take D = (0,00) and p=46,+6 for 0<a<b and X:=A(6,+
6p; (0,00)). We then see in a similar way to Example 4.1 that \ satisfies

Gg)\(a’ b)Q = (1 - G(l)\(ava))(l - Gg)\(b’ b))

Denote by h the ground state corresponding to A. If we take h(a) =

V=21 + €2V (/Z2X — 1)} /2, then

e VTRar2v_2Aa L VSR 9N — 1)} sinh(V—2\z), 0<z<a
h(z) = ¢ e *QA’”{eQ*/*_Z’\I + eme(v—QA — 1)}sinh(vV—2Xa), a<z<b
V=2XeV2AC=2) sinh (v —2\a), b< .

If we assume that a = 1/4, then —2 < A < 0 for b > 1/4.

We now consider the binary branching absorbing Brownian motion on (0, c0)
with branching rate 6,4 + 6. If b > 1/4, then this process does not extinct.
Furthermore, (3.10), (3.12) and (3.14) hold.

EXAMPLE 4.3.  Suppose that d = 3. Let us take D = R® and u = g, the
surface measure on {z € R’ : |z| = R}. It is then known in [3] that if R > 1, then
X := A(6g; R®) is a unique solution to

2v/—2\e2V 2R
e2V—2AR _ 1 =1

and A € (—1/8,0). On the other hand, if R <1, then A =0. Thus the binary
branching Brownian motion on R* with branching rate 6z does not extinct locally
if and only if R > 1. Moreover, if R > 1, then (3.23) and (3.24) hold.
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4.2. Incaseof 0 < a<2.
In this subsection, we assume that 0 < a < 2.

EXAMPLE 4.4. Suppose that d=1 and 1<a<2. Let D=R and pu=
St @ibe, o >0, —00 < ap < ay < -+ < a, <oo. Denote by h the ground state
corresponding to A(a) := A(u; R). Let Gg(x,y) be the B-resolvent density of M?,

dz, 1<a<?2

21/ /°° cos{2Y%(z — y)z}
0

Golm) =4 T B+ 2
s(,y) L e o,
V28 ’

We then see in a similar way to Example 4.1 that
h(z) =Y Gy (@, a;)h(a;)
i=1
and
M) =min{x : |G_, — I| =0},
where G is the n x n-matrix defined by (a;Gs(ai, a;)),<; j<,- We now assume that

n=1anda; =0.Letay =Q —1>0.Forl <a <2, since (Q —1)G_5)(0,0) =1
and

o 21/& 9] 1 p
e (0,0) =
A( >( ) ﬂ_(_)\(a))(a—l)/u/o 14 2¢ ?

21/a
asin(m/a) (= Ma)) @D/

)

it follows that

Y o (a-1)
o) = _{(Q—m/} .

asin(r/a)

This value is also true for o« = 2. It also follows that
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1’4 1.5 1.6 1.7 1.8 1.9

Figure 1. A a), l4<a<2.

(Q —1)2Y /°° cos(2Yx2)
h(z) = ™ 0 —Ma)+ 2@
e*(Qfl)\rlh(o)’ o=2.

dzh(0), 1<a<?2

Here we note that there exists a positive constant C' > 1 such that

c! C
—— < h(zx) < ,
|:L,|1+o< — ( ) — |x|1+a

lz| > 1

for 1 < a < 2 by (II.18) of [5]. Figure 1 is the graph of A(«) for 1.4 < o < 2 when
@ = 2. We note that lim,j; M) = —o0.

Let M = (X;,P,) be a branching symmetric a-stable process on R with
branching rate . Assume that the branching mechanism satisfies py(0) +
p2(0) = 1. Then Q(0) = 2p2(0). Since the extinction probability is a minimal
solution to (3.8) as can be proved in a similar way to that yielding Proposition 3.1
of [26], we obtain

1, 0 < po(0) < 1/2
(1=p2(0))/p2(0), 1/2<p2(0) <1.

eozoo>:1

PQ,(BQ < OO) = {
Hence if 1/2 < p9(0) < 1, then it holds that

Zy
P, (lim NN " h(X]) € (0,00)

i
o0 =1

and
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P, <lim infeMtz, > 0

t—o00

eooo)l

by Remark 3.14, where each @ in A(«) and h is replaced by Q(0). It also holds
that, for any relatively compact open set A,

P, (lim sup eA(”)tZt(A) < oo) =1,

t—o0

and for any non-empty open set A and any k > A(«),

P, (limsupe”tZt(A) =00 ‘ Ly= oo) =1.

t—00

EXAMPLE 4.5. Suppose that d =1 and 1 < a < 2. Let us take D = (=R, R)
and p = 6,4, a € (—R, R). Then, combining Example 3.11 of [27] with Lemma 3.5
of [28], we see that A(é,; (—R, R)) < 0 if and only if

A+ VA% +4a?
R>%, (4.4)

where

Ao {(a 1)2er <3>2}1/(a1>.

Note that A(6,; (—R, R)) | A(a) as R — oo for each a € (1,2]. Denote by h the
ground state corresponding to A := A(é,; (—R, R)). Then

h(z) = Glj)\(m, a)h(a),

where G%, (z,y) is the —A-resolvent density of the absorbing symmetric a-stable
process on (—R, R). It also follows from (3) of [23] and (2.8) that

R
hm{o“”” R, @R
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Let us consider the binary branching absorbing symmetric a-stable process
on (—R, R) with branching rate §,. Then this process does not extinct if and only if
a and R satisfies (4.4). Here we note that (=R, R) is Green bounded because

2

2 2\ /2
F(a—|—1)( - )

E;hR]:

as proved by Getoor [17, Section 5] or S. Watanabe [33, Theorem 2.1], where 7 is
the exit time of the one-dimensional symmetric a-stable process from (—R, R).
Therefore, if a and R satisfies (4.4), then (3.10), (3.12) and (3.15) hold.

EXAMPLE 4.6. Suppose that d =1 and 1 < a < 2. Let us take D = (0, 0)
and p =&, a € (0,00). Denote by G°(z,y) the Green function of the absorbing
symmetric a-stable process on (0,00). It is then shown in [23] that

G(z,y) =

TNy
/ Ae=2)/2 (z+ |y — 9E|)<D‘72>/2 dz.
0

Hence, by the same way as in Example 3.11 of [27], it holds that

inf{gwm)(f, £ fec((0,00)), fla)’ = 1} = #

a,a)

(a=D(5)"

20,“_1

We then see that the left hand side above is less than 1 if and only if
2y 1/(a—1)
—DI(e
a> {W} . (4.5)

Moreover Lemma 3.5 of [28] implies that (4.5) is also equivalent to that
A(64;(0,00)) < 0. Denote by h the ground state corresponding to A(84; (0, 00)).
Then it follows from (3) of [23] and (2.8) that

z/? T —
h(z) = {O( )7 0

a O(a:_<1+”>), T — 0.
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Consider the binary branching absorbing symmetric a-stable process on
(0,00) with branching rate ¢,. Then this process does not extinct if and only if a
satisfies (4.5). Since (0, c0) is not Green bounded, (3.10), (3.12) and (3.14) hold if
a satisfies (4.5).

EXAMPLE 4.7.  Suppose that 1 < o < 2 and d > a. Let us take D = R? and
1 = g, the surface measure on {z € R : |z| = R}. Then it follows from Example
4.1 of [32] and Lemma 3.5 of [28] that

d 1/(a-1)
(52
. pd
AMéop; RY) <0< R > P p . (4.6)
I'(——|T
2 2
Hence, the binary branching symmetric a-stable process on R? with branching

rate dp does not extinct locally if and only if R > 0 satisfies the right hand side
of (4.6). Furthermore, under this condition, (3.23) and (3.24) hold.
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