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Geometric Seifert 4-manifolds with hyperbolic bases

By Michael KEMP
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Abstract. It is shown that Seifert 4-manifolds with hyperbolic bases are

geometric in the sense of Thurston if and only if the monodromies are periodic.

This result will be used to prove virtually geometric Seifert 4-manifolds with

hyperbolic bases are geometric and thus give a classification of such manifolds in

terms of finite covers.

Introduction.

Seifert fibred 3-manifolds were originally defined and classified by Seifert

in [6]. Scott (in [5]) gives a survey of results connected with these classical Seifert

spaces, in particular he shows they correspond to 3-manifolds having one of six

of the eight 3-dimensional geometries (in the sense of Thurston). Thurston’s

geometrization conjecture asserts that any 3-manifold can be decomposed into

such geometric pieces and so Seifert 3-manifolds are important building blocks.

For manifolds of higher dimensions we can not expect similar results, however the

class of geometric 4-manifolds is still an interesting class. In this paper we

will generalise the concept of a Seifert manifold to four dimensions and find out if

they similarly define geometric manifolds.

Essentially, a classical Seifert manifold is a circle bundle over a 2-orbifold.

In general, we will define a Seifert manifold to be the total space of a bundle over a

2-orbifold with flat fibres (for Seifert 4 manifolds the fibre can either be a 2-torus

or a Klein bottle). Ue has considered the geometries of orientable Seifert 4-

manifolds (which have general fibre a torus) ([9], [10]). He proves that (with a

finite number of exceptions) orientable manifolds of eight of the 4-dimensional

geometries are Seifert fibred. However, Seifert manifolds with a hyperbolic

base are not necessarily geometric. In this paper, we seek to extend Ue’s work to

the non-orientable case. Because Seifert manifolds with hyperbolic bases are not

always geometric we will concentrate on that interesting case.

Ue proved that orientable Seifert 4-manifolds with hyperbolic bases are

geometric if and only if the monodromies are periodic, and we will prove that this
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is also true for non-orientable Sefiert 4-manifolds. We will use this result to

produce some corollaries concerning finite covers.

The proofs given here can be generalised to Seifert 4-manifolds with

aspherical bases. The two types of Sefiert manifolds considered in this paper

are the key types to understand the other types of Seifert 4-manifolds with

aspherical bases. That is another reason to concentrate on hyperbolic bases.

We will prove this result by utilising the fundamental group. So in the

first section we will clarify our definitions of orbfiolds and Seifert bundles and

give a presentation for their fundamental group. We then will show how Vogt

in [11] proves Seifert 4-manifolds with hyperbolic base are determined by their

fundamental group. In the next two sections, we will introduce the two geometries

that occur with such Seifert bundles: H 2 �E2 and fSLSL2 �E. In Section 4 we will

give necessary and sufficient conditions for Seifert bundles with hyperbolic bases

and 2-torus (T 2) fibres to be geometric (Theorem 4.7). We will prove this result in

three parts. Firstly we will prove the result in the simpler case, the H 2 �E2 case

in order to show the general method, but we will defer proving the technical parts

concerning reflector curves. Secondly we will show how the general method can be

altered for the fSLSL2 �E case. Lastly in Section 5 we will prove the parts of the

proof concerning reflector curves. In Section 6 we will give necessary and sufficient

conditions for Seifert bundles with hyperbolic bases and Klein bottle (Kb) fibres

to be geometric. To conclude, we will give two applications of our results to finite

covers. Namely we will prove virtually geometric Seifert manifolds (= a Seifert

manifold which is finitely covered by a geometric manifold) with hyperbolic bases

are geometric and give a classification of such manifolds in terms of finite covers.

1. Seifert bundles.

In this section we will give some background results of orbifolds and Seifert

bundles which are useful later on. Scott ([5]) gives a good survey of classical

Seifert spaces (when the general fibre is the circle: S1) and includes good

background information on 2-orbifolds and their coverings. Bonahon and

Seibenmann ([1]) considered classical Seifert spaces but also allowed for

singularities in the total space. In their paper, they also give a good background

of orbifolds. We will briefly introduce these ideas, but for more background

information, see these papers.

An orbifold is a generalisation of a manifold. The quotient of manifold by a

group which acts discretely and freely is another manifold. Orbifolds provide

geometric models of quotients of manifolds by groups which act discretely but not

necessarily freely. Recall for a n-manifold each point has a neighbourhood that is

homeomorphic to an open subset of Rn. We define an n-orbifold similarly: each
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point in a n-orbifold has a neighbourhood that is homeomorphic to a quotient of

an open subset of Rn by a finite group. (See one of the above references for a more

formal definition.)

Note that orbifolds do not need to be a quotient of a manifold by a discrete

group - although if they are they are called good (as opposed to bad orbifolds).

The orbifolds that we mostly consider in this paper are hyperbolic 2-orbifolds

which are finitely covered by a hyperbolic manifold and so are good.

Orbifolds can be thought of as a topological space (called the underlying

space) with marked singular points that have an associated finite group. We call a

point in a orbifold regular if it has a neighbourhood homeomorphic to an open set

of Rn. Otherwise we call it a singular point. For 2-orbifolds there are three types

of singular points. A cone point of order m is a singular point has a neighbourhood

homeomorphic to a quotient of Rn by a cyclic group Zm generated by rotation of

order m. Cone points are always isolated. A reflector point is a singular point has

a neighbourhood homeomorphic to a quotient of Rn by a group of order two Z2

generated by a reflection. A corner reflector of order m is a singular point has a

neighbourhood homeomorphic to a quotient of Rn by a dihedral group D2m

generated by a reflection and a rotation of order m. A connected component of

the set of reflector points and corner reflectors is an arc or closed loop and is

called a reflector curve.

The idea of covering maps extends to orbifolds. A continuous map of

orbifolds f : X ! Y is an orbifold covering if every y in Y has an open

neighbourhood U so that its preimage f�1ðUÞ is a disjoint union, ie is
S

�2� V�

for some indexing set �, where f jV� : V� ! U is a natural quotient map

Rn=� ! Rn=�0, where � � �0 (both groups will be finite). Note the map between

the underlying spaces is not necessarily a covering. (It may have branch points.)

We call an orbifold covering regular, if it is of the form M=� ! M=�0 where �

is a normal subgroup of �0 and which both act discretely on the orbifold M.

It can be proved that each orbifold X has a unique universal orbifold cover,

and X is the quotient of its universal cover by some group G (see Proposition

13.2.4 of [7]). We call G the orbifold fundamental group of X and denote it as

�orb
1 ðXÞ. For a proof of existence of universal covers and construction of an

orbifold fundamental group see [5] Section 2.

As we will define below, Seifert manifolds have a bundle structure with

a 2-orbifold as a base. Since the base is in general an orbifold and not

simply a manifold we will broaden the concept of a bundle map to orbifolds

(following [1]).

Recall a bundle map is a continuous map � : S ! B of spaces where there is a

space F , such that for every point b of B there is an open neighbourhood, Ub and a

commutative diagram:
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Ub × F
πUb � Ub

η−1Ub

φb

�

η
� Ub

�
�
�
�
�
�
�
�
�
�

in which �Ub
is a projection and �b is a homeomorphism. The fibre above b is

defined to be the subspace ��1ðbÞ, which is homeomorphic to F . We call S the

total space and say it has the structure of a bundle. We call B the base and call �

the projection. (We shall always assume that F is connected.)

An orbifold bundle map is a continuous map � : S ! B of orbifolds such that

for every point b of B there is an open neighbourhood, Ub and a commutative

diagram:

Ũb × Fb

πŨb � Ũb

η−1Ub

φb

�

η
� Ub

fb

�

in which � ~UUb
is a projection, �b and fb are regular orbifold covering projections and

Fb is some connected orbifold. The fibre above b is defined to be the suborbifold

��1ðbÞ, which will be covered by Fb. Without loss of generality, fb can be a

quotient map of ~UUb under action by a finite group, ie fb : ~UUb ! ~UUb=�b ¼� Ub.

Similarly �b can be a quotient map of S, so long as Fb is good. We call S the total

space and say it has the structure of an orbifold bundle. We call B the base and

call � the projection.

If the fibres are all compact (for example if the total space is compact) then Fb

can always be chosen to be a copy of a regular fibre F (see [1]), that is, the fibre

above a regular point. The set of regular points is dense in B and so we commonly

refer to F as the general fibre.

In this paper, we call orbifolds flat if they have a Euclidean geometry. The

examples we consider are the circle (S1), the 2-torus (T 2) and the Klein bottle

(Kb).

We are now equipped to give the definition of a Seifert manifold that we will
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use in this paper:

DEFINITION 1.1 (Seifert bundle). A Seifert bundle is an orbifold bundle

with base a 2-orbifold and compact flat fibres. A Seifert orbifold is the total space

of a Seifert bundle.

Since the fibres are compact the bundle has a compact flat general fibre (see

above). Explicitly, if S is a Seifert orbifold, then there is an associated (locally

trivial) orbifold bundle map � : S ! B (B is the 2-orbifold base) with general

(compact flat) fibre, F . In this paper we will consider Seifert manifolds, that is

when S has no singularities (and consequently neither has F ). We will assume

that all Seifert manifolds are compact (and hence the bases will be compact too).

We will concentrate our attention on Seifert 4-manifolds which have T 2 orKb

as fibres. Note when the manifold is orientable, it cannot have Kb general fibres.

When studying Seifert manifolds we will rely on the associated fundamental

group sequence which the following lemma justifies.

LEMMA 1.2 (cf. Lemma 3.2 in [5]). Let � : S ! B be a orbifold bundle map

with nonsingular total space and general fibre F . Then we have a short exact

sequence:

�1ðF Þ ! �1ðSÞ ! �orb
1 ðBÞ ! 1;

where the maps are determined by the inclusion of fibre above the basepoint of B

and �. Furthermore, if the base is good and aspherical then �1ðF Þ maps injectively

into �1ðSÞ.

DEFINITION 1.3 (Monodromies). If B is aspherical, then �1ðF Þ is a normal

subgroup of �1ðSÞ from the previous lemma. Let A : �1ðSÞ ! Autð�1ðF ÞÞ be the

homomorphism which sends � to the automorphism h 7! �h��1. If we quotient the

domain of this map by �1ðF Þ and the codomain by Innð�1ðF ÞÞ, then we get a map
�AA : �orb

1 ðBÞ ! Outð�1ðF ÞÞ. We call �AA the monodromy map, and we call Imð �AAÞ the
group of monodromies. Also, for ��� 2 �orb

1 ðBÞ we call �AAð���Þ the monodromy above ���.

If F ¼ Tn, then �1ðF Þ is abelian, and so Outð�1ðF ÞÞ ¼ Autð�1ðF ÞÞ ¼ GLnZ.

If � 2 �1ðSÞ projects to ��� 2 �orb
1 ðBÞ, then �AAð���Þ ¼ Að�Þ 2 GLnZ. In this case, the

group of monodromies also equals ImA.

The following proposition gives a presentation of the fundamental group for a

Seifert manifold. Presentations for the fundamental group are mentioned by

several authors, for example in Section 5 of [9] and Proposition 2.3 of [11].
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PROPOSITION 1.4. Suppose S is a Seifert manifold over a closed base B, such

that B has k0 cone points, l reflector curves and ki corner reflector on the ith

reflector curve. Let m0j be the order of the jth cone point, and let mij be the order

of the jth corner reflector on the ith reflector curve. Let Ba be the underlying

manifold associated to B. Let �1ðF Þ be generated by h1; . . . ; hq, with set of relations

W . Then �1ðSÞ has the following presentation (~eeij; ~ffi; ~ggij; ~bbi and ~aa elements of

�1ðF Þ).

generators h1; . . . ; hq;

sijði ¼ 0; . . . ; l; j ¼ 1; . . . ; kiÞ;
@1; . . . ; @l;

r1; . . . ; rl;

t1; u1; . . . ; tg; ug (if Ba is orientable, genus g)

v1; . . . ; vg (if Ba is non-orientable, g cross-caps)

relations W;

�hp�
�1 ¼ Að�Þhp for � ¼ sij; @j; rj; tj; uj

s
mij

ij ~eeij ¼ 1

r2i
~ffi ¼ 1

risijr
�1
i ¼

Yki
p¼jþ1

sip

 !�1

s�1
ij

Yki
p¼jþ1

sip

 !
~ggij ði 6¼ 0Þ

@�1
i

Yki
j¼1

sij

 !
ri@ir

�1
i ¼ ~bbi ði 6¼ 0Þ

Yg
p¼1

½tp; up�
Yk0
j¼1

s0j
Yl
i¼1

@i ¼ ~aa ðif Ba is orientableÞ

Yg
p¼1

v2p
Yk0
j¼1

s0j
Yl
i¼1

@i ¼ ~aa ðif Ba is non-orientableÞ

Note in the above presentation, A generates the monodromy map, s0j
corresponds to the jth cone point, sij (i 6¼ 0) the jth corner reflector on the ith

reflector curve, ri the ith reflector curve and @i the boundary of a neighbourhood

of the ith reflector curve. Later we will also find it convenient to rewrite the

generators sij (i 6¼ 0) in terms of �ij ¼
Qki

p¼j sip (for notational convenience we

define �i;kiþ1 ¼ 1). [Note sij ¼ �ij�
�1
i;jþ1.] [Other authors (for example in [11])

rewrite these generators in terms of rij ¼ �ijri for j ¼ 1; . . . ki þ 1.]
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Reflector curves provide the biggest technical difficulties when proving our

results. So we will consider the restriction of a Seifert bundle to the bundle above

a neighbourhood of a reflector curve in order to isolate these technicalities. The

following lemmas give the fundamental group of such a bundle and list some

relationships between ~ff and ~eej etc.

LEMMA 1.5. If �CC is a reflector curve with annulus neighbourhood, �AA , with k

corner reflectors so that the jth corner reflector has order mj and if ��� : �RR ! �AA is a

Seifert bundle with general fibre F , then �1ð �RRÞ has the following presentation:

generators h1; h2; . . . ; hq; �1; . . . ; �k; @; r

relations W;

�hp�
�1 ¼ Að�Þhp for � ¼ �j; @; r

�j�
�1
jþ1

� �mj

~eej ¼ 1

r2 ~ff ¼ 1

r�jr
�1 ¼ ��1

j
~GGj

@�1�1r@r
�1 ¼ ~bb;

where ~GGj ¼
Qk

i¼j Að�iþ1Þ~ggi.

Note ð�j�
�1
jþ1Þ

mj~eej ¼ 1 can be more simply expressed as s
mj

j ~eej ¼ 1.

LEMMA 1.6. The following relationships exist between the various parts of

the presentations of �1ð �RRÞ:

~eej ¼ Að�j�
�1
jþ1Þ ~eej

� �
ð1Þ

~eej ¼ AðsjÞ ~eej
� �

ð10ÞYmj�1

i¼0

Að�j�
�1
jþ1Þ

�i ~GGj
~GGjþ1

� ��1
� � !

~eejAð�jrÞ ~eej
� �

¼ 1 ð2Þ

~ff ¼ AðrÞ ~ff
� �

ð3Þ
~ff
� ��1

Að�jrÞ ~ff
� �

¼ ~GGj

� ��1
Að�jrÞ ~GGj

� �
ð4Þ

~bbAðrÞ ~bb
� �

~ff
� ��1

Að@�1Þ ~ff
� �

¼ Að@�1Þ ~GG1

� �
ð5Þ

PROOF. To get the relation (10) (and hence (1) as well) conjugate s
mj

j ~eej by

sj. To get the other relationships requires conjugating relations by r and then

simplifying (for instance by using the other relations or inverting) to get new
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relations involving just the hi. For instance, take the relation @�1�1r@r
�1 ¼ ~bb.

Conjugate by r, simplify r2 and r�1r
�1 via the relations to ~ff

� ��1
and ��1

1
~GG1

respectively, invert then use the original relation to get (5). The relations are

ordered the same way as in the relations (in Lemma 1.5) they are based on, so that

(2) corresponds to
�
�j�

�1
jþ1

�mj~eej ¼ 1 etc. �

When the general fibre is a torus, its fundamental group is abelian and the

above relations may be expressed as follows.

COROLLARY 1.7. Suppose F ¼ Tn, then the relations (1)–(5) become

~eej ¼ Að�j�
�1
jþ1Þ~eej ð6Þ

~eej ¼ AðsjÞ~eej ð60ÞXmj�1

i¼0

Að�j�
�1
jþ1Þ

�i ~GGj � ~GGjþ1

� � !
þ ðAð�jrÞ þ IÞ~eej ¼ 0 ð7Þ

~ff ¼ AðrÞ~ff ð8Þ
ðAð�jrÞ � IÞ~ff ¼ ðAð�jrÞ � IÞ ~GGj ð9Þ

ðAðrÞ þ IÞ~bbþ ðAð@�1Þ � IÞ~ff ¼ Að@�1Þ ~GG1 ð10Þ

PROOF. Since �1ðTnÞ ¼� Zn is abelian, A induces a group homomorphism

A : �orb
1 ð �AA Þ ! Outð�1ðTnÞÞ ¼ Autð�1ðTnÞÞ ¼ GLnZ. The rest follows from the

lemma. �

The following theorem due to Vogt shows that a Seifert manifold with

hyperbolic base is determined topologically by its fundamental group.

THEOREM 1.8 (Vogt). Suppose S and S0 are Seifert 4-manifolds with

hyperbolic bases. Then every isomorphism � : �1ðSÞ ! �1ðS0Þ is realised by a fibre

preserving homeomorphism � : S ! S0.

PROOF. In Section 7 of [11], Vogt proves this result (in Theorem 7.4) for

a larger class of 4-manifolds, M ð4Þ. We will show that S and S0 are in M ð4Þ
and hence the result.

Vogt defines M ð4Þ to be the class of all sufficiently complicated closed 4-

manifolds, S, which have the structure of an orbifold bundle with aspherical fibre,

F and base B, such that rank �1ðF Þ < JðBÞ for all integers J > 1. By sufficiently

complicated, Vogt means B is hyperbolic (Definition 5.1 in [11]). The expression

JðBÞ (Definition 6.4 in [11]) is the minimum rank of a normal subgroup of �orb
1 ðBÞ

with finite index J > 1. Such subgroups are fundamental groups of a hyperbolic

surface so in particular, JðBÞ > 2. Since the rank of �1ðF Þ ¼ 2 for F ¼ T 2 and Kb,
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Seifert 4-bundles with hyperbolic bases (that is orbifold 4-bundles with flat

2-fibres) are in M ð4Þ. �

2. The geometry H2 �E2.

In this section we look at the geometry H 2 �E2. We will prove that closed

manifolds with these geometries are Seifert fibred.

The model space for the geometry H 2 �E2 is H 2 �R2. It is also useful to

consider the model space as H 2 �C ¼ fðz; wÞ 2 C2j=z > 0g. The group of

isometries is IsomðH 2 �E2Þ ¼ IsomðH 2Þ � IsomðE2Þ.
There is a natural fibration of H 2 �E2 which is preserved by the group of

isometries:

R2 ! H 2 �E2 ! H 2:

Seifert fibrations descend from this fibration as the following proposition shows.

PROPOSITION 2.1. If S is a compact quotient of H 2 �E2 by a discrete group

of isometries then S is a Seifert 4-manifold over a hyperbolic base.

PROOF. Now S ¼ ðH 2 �E2Þ=� for some discrete group of isometries of

H 2 �E2. Let �̂� ¼ � \ IsomðE2Þ. Then �̂� is a discrete subgroup of IsomðE2Þ and

is cocompact by Theorem 6.3 of [12]. So R2=�̂� will be a (flat) closed orbifold.

Now �̂� is the kernel of the projection p : � ! IsomðH 2Þ. Let ��� be the image of

this projection. Then the action of � gives a Seifert fibration: Rn=�̂� !
ðH 2 �E2Þ=� ! H 2=���. �

For future reference, if � is an isometry of H 2 �E2, let ��� be its image in

IsomðH 2Þ and let ðOð�Þ; yð�ÞÞ be its image in IsomðE2Þ. Thus for ðz; wÞ 2 H 2 �R2,

�ðz; wÞ ¼ ð���ðzÞ;Oð�Þwþ yð�ÞÞ.

3. The geometry gSLSL2 �E.

In this section we look at the geometry fSLSL2 �E. We will prove that closed

manifolds with these geometries are Seifert fibred.

The model space for the geometry fSLSL2 is the universal covering space of

UðH 2Þ, the unit tangent bundle of H 2. The model space is a trivial line bundle

over H 2, however, fSLSL2 is not geometrically a product, rather fSLSL2 can be

considered as a twisted product of the geometries H 2 and E. The group fSLSL2 is the

universal cover of PSL2R. The latter group acts simply transitively on UðH 2Þ, so
a choice of base point in gUðH 2ÞUðH 2Þ determines diffeomorphisms fSLSL2 ! gUðH 2ÞUðH 2Þ and

PSL2R ! UðH 2Þ. The action of fSLSL2 on itself via left multiplication projects to
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the action of PSL2R on itself. The isometry group of fSLSL2 has two components,

both orientable. The identity component of IsomðfSLSL2Þ is fSLSL2 �Z R, the quotient

of the product of fSLSL2 and R modulo identification of the centre of fSLSL2 with the

group of integers Z � R. The isometries of fSLSL2 preserve the fibration R !fSLSL2 ! H 2 with the R factor acting as translations of the fibres. Compact

manifolds which are geometric of this type are precisely the Seifert 3-manifolds

where the base has negative euler characteristic, and where the euler number is

nonzero. See [5] pp. 462–467 for the details of this description of fSLSL2.

The model space for fSLSL2 �E is the universal covering space of the nonzero

tangent bundle ofH 2. The hyperbolic planeH 2 can be considered as a subset of C

whose tangent space can be naturally associated with C �C . Therefore, we shall

identify the tangent bundle of H 2 with the set H 2 �C . Let v be a unit tangent

vector to the hyperbolic plane at z. Then its Euclidean length is given by jvj ¼ =z
and so we may identify the unit tangent bundle of H 2 with the subset

fðz; vÞ 2 H 2 �C jjvj ¼ =zg. Hence the nonzero tangent bundle of H 2 is the

subspace H 2 � ðC � f0gÞ, and so we may identify the model space of fSLSL2 �E

with H 2 �C . The universal cover fSLSL2 �E �! H 2 � ðC � f0gÞ is given by

ðz; wÞ 7! ðz; ewÞ. The model space of fSLSL2 is then identified with the subset

fðz; wÞ 2 H 2 �C j<w ¼ ln=zg.
The isometry group of fSLSL2 �E is IsomðfSLSL2Þ � IsomðEÞ. By extension of thefSLSL2 case, IsomðfSLSL2 �EÞ preserves the fibration R2 ! fSLSL2 �E ! H 2. We then

have an associated exact sequence:

1 ! R� IsomðEÞ ! IsomðfSLSL2 �EÞ !p IsomðH 2Þ ! 1

Note the sequence does not split. See [13] Section 1 for some descriptions offSLSL2 �E.

PROPOSITION 3.1. If S is a compact quotient of fSLSL2 �E by a discrete group

of isometries then S is a Seifert 4-manifold over a hyperbolic base.

PROOF. Firstly, S ¼ ðfSLSL2 �EÞ=� for � a discrete subgroup of

IsomðfSLSL2 �EÞ. Let �̂� ¼ � \ kerðpÞ and ��� ¼ pð�Þ. The group �̂� is a discrete

cocompact subgroup of IsomðE2Þ and ��� is a discrete cocompact subgroup of

IsomðH 2Þ (Theorem 6.3 in [12]). So R2=�̂� will be a (flat) closed orbifold. Then we

have the Seifert fibration

F ¼ R2=�̂� ! S ! H 2=��� ¼ B:

�
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Now we shall consider how the isometries of fSLSL2 �E act in more detail. The

radical of the isometry group is R2. The first factor (corresponding to the radical

of fSLSL2) acts via purely imaginary translations (where the generator of the centre:

Z, acts by ðz; wÞ 7! ðz; wþ 2�iÞ), while the second factor acts via real translations.

Imaginary translations of the w factor project to IsomðUðH 2ÞÞ as rotations of the
tangents. Real translations of the w factor project to isometries of the nonzero

tangent bundle which change the length of the tangent vectors. The quotient of

the identity component of the isometry group by this radical is PSL2R ¼
IsomþðH 2Þ. Therefore to understand the rest of the isometries in the identity

component of IsomðfSLSL2 �EÞ it is sufficient to construct a set-theoretic section

s : IsomþðH 2Þ ! IsomðfSLSL2 �EÞ (ie ps ¼ 1). We will do this below (as well as

extending this section to IsomðH 2Þ).
The isometry group of fSLSL2 has two components, both orientation preserving,

with representative for the non-identity component given by ðz; wÞ 7! ð��zz; �wwÞ.
(As this corresponds to a simultaneous reflection of H 2 and the tangent space,

it is orientation preserving). The isometry group of E also has two components,

with the non-identity component represented by reflection about 0. There is

a corresponding reflection of H 2 �C which fixes the subspace fSLSL2 and which

is given by ðz; wÞ 7! ðz; 2 lnð=zÞ � �wwÞ. So IsomðfSLSL2 �EÞ=Isom0ðfSLSL2 �EÞ ¼
Z2 � Z2, with generators represented by ðz; wÞ 7! ðz; 2 lnð=zÞ � �wwÞ and

ðz; wÞ 7! ð��zz; �wwÞ. We will label each component by the corresponding element of

Z2 � Z2 thought of as f�; 	j� ¼ �1; 	 ¼ �1g (or as the corresponding diagonal

matrices, ð � 0
0 	

Þ).
Define an orientation function w : Isomð Þ 7! f�1g by setting wð
Þ ¼ 1 if 
 is

orientation preserving and �1 if it reverses orientation.

We shall now define the section s : IsomþðH 2Þ ! IsomðfSLSL2 �EÞ. Suppose
�

 is in PSL2R (¼ IsomþðH 2Þ), ie �

ðzÞ ¼ ðazþ bÞ=ðczþ dÞ. Then �

 acts on

PSL2R ¼ fz; v 2 H 2 �C jjvj ¼ =zg via the map ðz; vÞ 7! ðazþ bÞ=ðczþ dÞ;
v=ððczþ dÞ2Þ. Let log : C � f0g ! R� ð��; ��i � C be the principal value of

the inverse of exp, extended so that logð�kÞ ¼ lnðkÞ þ �i for k > 0. Let sð�

Þ be

the map ðz; wÞ 7! ð�

ðzÞ; w� logðczþ dÞ2Þ. Then sð�

Þ is an isometry of fSLSL2 �E

(see [13]) and pðsð�

ÞÞ ¼ �

, so s is a set theoretic section for p. Note sð�

Þ restricts
to an isometry of fSLSL2 as well (since lnð=zÞ ¼ <w implies lnð=�

ðzÞÞ ¼ lnð=zÞ �
lnðjczþ dj2Þ ¼ <ðw� logðczþ dÞ2Þ). Therefore for 
 2 Isom0ðfSLSL2Þ, pð
�1spð
ÞÞ ¼
1 and so 
ðz; wÞ ¼ sðpð
ÞÞðz; wÞ þ ð0; iyÞ for some y 2 R. From now on write �

 to

mean pð
Þ. Let 
 be in Isom0ðfSLSL2Þ � IsomþðEÞ. Then 
ðz; wÞ ¼ sð�

Þðz; wÞ þ
ð0; yð
ÞÞ, for some yð
Þ 2 C .

We will modify s slightly to have a special form when �

 is elliptic, which

will be useful later on. From above, sð�

Þmðz; wÞ ¼ sðpðsð�

ÞmÞÞðz; wÞ þ ð0; iyÞ ¼
sð�

mÞðz; wÞ þ ð0; iyÞ for some y 2 R. Suppose �

 is elliptic of orderm. Then �

m ¼ 1.
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Let s0ð�

Þðz; wÞ ¼ sð�

Þðz; wÞ þ ð0;�iy=mÞ, then s0ð�

Þmðz; wÞ ¼ sð�

Þmðz; wÞ þ
ð0;�iyÞ ¼ sð�

mÞðz; wÞ since sð�

Þ commutes with imaginary translations, and

so s0ð�

Þm ¼ 1. Replace sð�

Þ by s0ð�

Þ to get the desired modification. As remarked

in [10], if �

 is hyperbolic the imaginary part of the second factor is defined by

the parallel translation of the unit tangent vector along the axis of �

. We will not

encounter parabolic elements, since the fundamental groups of compact hyper-

bolic orbifolds contain no parabolic elements ([3] Corollary 4.2.7), so we will not

alter the action. Note s is not a group homomorphism; however sð�

 ���Þsð�

Þ�1sð ���Þ�1

will be a rational translation of 2�i (ie the subgroup Q of R in fSLSL2 �Z R).

We can extend our definition of s to IsomðH 2Þ. Take ��� 2 IsomðH 2Þ n
IsomþðH 2Þ, then ���ðzÞ ¼ �

ð��zzÞ for some �

 2 PSL2R. A lift of ��� is then

sð ���Þðz; wÞ ¼ sð�

Þð��zz; �wwÞ. As before, if wð�Þ ¼ 1, then �ðz; wÞ ¼ sð ���Þðz; wÞ þ
ð0; yð�ÞÞ for some yð�Þ 2 C . Note, �2ðz; wÞ ¼ sð ��2�2Þðz; wÞ þ ð0; yð�Þ þ �yyð�ÞÞ. If 
 2
IsomðfSLSL2 �EÞ is orientation reversing, then 
ðz; wÞ ¼ sð�

Þðz; 2 lnð=zÞ � �wwÞ þ
ð0; yð
ÞÞ for some yð
Þ 2 C .

In all this, if 
 is in the component labelled ð�; 	Þ, then wð
Þ ¼ � and wð�

Þ ¼ 	.

Furthermore, if �t is a translation, ie �tðz; wÞ ¼ ðz; wþ tÞ, then 
�t

�1ðz; wÞ ¼

ðz; wþ ð � 0
0 	

ÞtÞ, considering C ¼ R2. We will label this matrix Oð
Þ :¼ ð � 0
0 	

Þ ¼
ðwð
Þ 0

0 wð�

Þ Þ.
The lifts sð���Þ are chosen so that if ��� is elliptic with order m, then sð���Þm ¼ 1.

In [10], it was also observed if �ll1�ll2 . . . �lln is trivial in IsomðH 2Þ and the �lli are all

elliptic or hyperbolic (for example a relation of a hyperbolic orbifold), then

sð�ll1Þsð�ll2Þ . . . sð�llnÞ is an imaginary translation with magnitude the holonomy

corresponding to the relation, that is the composition of the parallel translations

of the �lli. For example the standard global relation of an orientable hyperbolic

orbifold without reflectors is
Qg

p¼1½tp; up�
Qk

j¼1 s0j. This relation corresponds to

traversing the entire orbifold and so the holonomy corresponding to this relation

is the holonomy of the orbifold. This connection can be seen in [3] Theorem 4.3.2

when constructing fundamental regions.

Note sð�

Þ and reflection in fSLSL2 commute. Suppose 
1; 
2; . . . ; 
l are

isometries of fSLSL2 �E such that 
1
2 . . .
l ¼ 1 and pð
iÞ are not parabolic. Then

sð�

1Þsð�

2Þ . . . sð�

nÞ is also an imaginary translation, � say, with magnitude the

parallel translate corresponding to the relation. Also ðOð
1Þ; yð
1ÞÞ . . .
ðOð
lÞ; yð
lÞÞ ¼ ��1.

When considering the fSLSL2 �E geometry below, it is convenient to treat it as

similarly to H 2 �E2 as possible. So we will find a new representation of fSLSL2 �E

so that isometries act via an element of IsomðH 2Þ � IsomðEÞ2 plus a correction

term. Let � be the self-homeomorphism of H 2 �C defined by �ðz; wÞ ¼
ðz; w� lnð=ðzÞÞÞ. A new representation for the geometry fSLSL2 �E can then given
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by �. Namely, points get sent to their image by � and isometries get sent to their

conjugate by �. Note that fSLSL2 now becomes identified with the subspace H 2 � iR.

Translations and the map ðz; wÞ 7! ð��zz; �wwÞ are preserved. Reflection in fSLSL2 now

becomes the map ðz; wÞ 7! ðz;� �wwÞ. For �

 in PSL2R (�

ðzÞ ¼ ðazþ bÞ=ðczþ dÞ),
sð�

Þ now becomes the map ðz; wÞ 7! ð�

ðzÞ; w� 2 logððczþ dÞ=ðjczþ djÞÞÞ (plus a

purely imaginary translation if �

 is elliptic). Note 2 logððczþ dÞ=ðjczþ djÞÞ (plus
possibly the translation) is purely imaginary and (as before) corresponds to the

parallel translate corresponding to �

. Any isometry is a composition of these

maps. Therefore we can say that any isometry, � acts (under the new

representation) via an element of IsomðH 2Þ � IsomðEÞ2 plus a purely imaginary

correction term corresponding to the parallel translate of ��� (��� is the image of � in

IsomðH 2Þ). The IsomðEÞ � IsomðEÞ part of the isometry is given by ðOð�Þ; yð�ÞÞ
since conjugation by � preserves translations (Oð�Þ was defined by action on

translations by conjugation and yð�Þ was defined as the translation difference

from sð���Þ).
In summary, if � is an isometry of fSLSL2 �E, then �ðz; wÞ ¼ ð���ðzÞ;Oð�Þwþ

yð�Þ þ ð 0
cð�Þ ÞÞ where c is the correction term corresponding to the parallel translate

of ���. Note Oð�0Þð 0
cð�Þ Þ ¼ ð 0

wð���0Þcð�Þ Þ.

4. Geometric Seifert manifolds with hyperbolic bases.

In this section we will give necessary and sufficient conditions for Seifert

4-manifolds with hyperbolic base and T 2 fibre to be geometric.

Firstly, though we will give some results which are useful when describing

the group of monodromies and the conditions.

THEOREM 4.1. A subgroup G of GL2Z, is finite if and only if there is a

P 2 GL2R such that PGP�1 is a subgroup of O2R.

Moreover, G is conjugate (in GL2Z) to a subgroup of

1. O2Z ¼ hð 0 1
�1 0

Þ; ð 0 1
1 0

Þi ¼� D8.

OR

2. hð 1 1
�1 0

Þ; ð 0 1
1 0

Þi ¼� D12

PROOF. If G is finite, then by p. 85 of [14] it is conjugate in GL2Z to

a subgroup of O2Z or hð 1 1
�1 0

Þ; ð 0 1
1 0

Þi ¼ ð a b
b a

Þhð 1=2
ffiffiffi
3

p
=2

�
ffiffiffi
3

p
=2 1=2

Þ; ð 0 1
1 0

Þið a b
b a

Þ�1 (where

a ¼ 2þ
ffiffiffi
3

p
and b ¼ 1). Therefore G is conjugate to a subgroup of O2R.

Conversely suppose G is conjugate to an orthogonal group. Since G � GL2Z,

G is a discrete subgroup of GL2R. Since PGP�1 � O2R, PGP�1 is a

discrete subgroup of a compact space and consequently is finite. Therefore

G is finite. �
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LEMMA 4.2. If A 2 GLnR such that Am ¼ I, then

Im
Xm�1

j¼0

Aj

 !
¼ kerðA� IÞ ð11Þ

ImðA� IÞ ¼ ker
Xm�1

j¼0

Aj

 !
ð12Þ

PROOF. Suppose ðA� IÞv ¼ 0, then Av ¼ v and consequently, mv ¼Pm�1
j¼0 Ajv. Therefore kerðA� IÞ � Im

Pm�1
j¼0 Aj

� �
.

Next, ðA� IÞ
Pm�1

j¼0 Aj
� �

¼
Pm�1

j¼0 Aj
� �

ðA� IÞ ¼ Am � I ¼ 0. This shows

kerðA� IÞ 	 Im
Pm�1

j¼0 Aj
� �

and ker
Pm�1

j¼0 Aj
� �

	 ImðA� IÞ, which proves the

first equality.

By considering the dimensions of these spaces (and the rank-nullity

theorem), we get the second equality. �

Recall that (when the base is aspherical) there is a homomorphism

A : �1ðSÞ ! Autð�1ðF ÞÞ, which induces the monodromy map, �AA : �orb
1 ðBÞ !

Outð�1ðF ÞÞ. When the fibre is Tn the group of monodromies is contained in

Outð�1ðF ÞÞ ¼ GLnZ. In this case, the monodromy map gives a Z ½�orb
1 ðBÞ�-module

structure to Zn and hence to Qn. Let Iw ¼ h��� � wð���Þj��� 2 �orb
1 ðBÞi be the

w-twisted augmentation ideal, and let V ¼ IwQ
n be the submodule generated

by ðAð���Þ � wð���ÞIÞz for all ��� 2 �orb
1 ðBÞ and z 2 Qn. Thus sometimes we will write V

as
P

���2�orb
1

ðBÞ ImQnðAð���Þ � wð���ÞIÞ.

LEMMA 4.3. Let G be a finitely generated group with generators

fg1; . . . ; gmg. Then the augmentation ideal I ¼ hg� 1jg 2 Gi in Z ½G� is generated
as a two-sided ideal by fg1 � 1; . . . ; gm � 1g.

PROOF. For each g we need to prove g� 1 is in the ideal generated by

fg1 � 1; . . . gm � 1g. Since gh� 1 ¼ ðg� 1Þhþ ðh� 1Þ ¼ gðh� 1Þ þ ðg� 1Þ and

g�1 � 1 ¼ ðg� 1Þð�g�1Þ ¼ �g�1ðg� 1Þ, the result follows by induction on the

length of the shortest word that represents g in terms of the generators (and

their inverses). �

COROLLARY 4.4. Let G be a finitely generated group with generators

fg1; . . . ; gmg. Let R : G ! GLnR be a group homomorphism. Then,
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X
g2G

ImðRðgÞ � IÞ ¼
Xm
i¼1

ImðRðgiÞ � IÞ:

PROOF. The group homomorphism, R, gives a Z½G�-module structure on

Rn. Therefore
P

g2G ImðRðgÞ � IÞ ¼ IRn. By the lemma IRn ¼ fg1 � 1; . . . ;

gm � 1gRn ¼
Pm

i¼1 ImðRðgiÞ � IÞ, hence the corollary. �

COROLLARY 4.5. Let B be an orbifold, so that �orb
1 ðBÞ is generated by

fg1; . . . ; gmg. Let A : �orb
1 ðBÞ ! GLnZ and w : �orb

1 ðBÞ ! f�1g be group homo-

morphisms. ThenX
g2�orb

1
ðBÞ

ImðAðgÞ � wðgÞIÞ ¼
Xm
i¼1

ImðAðgiÞ � wðgiÞIÞ:

PROOF. Take RðgÞ ¼ wðgÞAðgÞ and apply the previous result. Note

ImðAðgÞ � wðgÞIÞ ¼ ImðwðgÞAðgÞ � IÞ. �

PROPOSITION 4.6. If S is a geometric manifold of type H 2 �E2 or fSLSL2 �E

then it is a Seifert manifold with a hyperbolic base. Furthermore if T 2 is the general

fibre then the group of monodromies is a finite subgroup of GL2Z.

PROOF. By Propositions 2.1 and 3.1 respectively, H 2 �E2 and fSLSL2 �E

manifolds are Seifert fibred with hyperbolic bases.

Let X be the geometry. Then S ¼ X=� for some discrete subgroup � of

IsomðXÞ. In both cases there is a projection p : IsomðXÞ ! IsomðH 2Þ. Now for

the fibre F , �1ðF Þ is isomorphic to � \ kerðpÞ. Suppose the fibre is T 2, then � \
kerðpÞ is isomorphic to Z2. However kerðpÞ is contained in IsomðE2Þ
(kerðpÞ ¼ IsomðEÞ �E when X ¼ fSLSL2 �E) and so � \ kerðpÞ must consist of

translations.

Now � acts on � \ kerðpÞ by conjugation. The group IsomðXÞ acts on

translations via orthogonal matrices (when X ¼ fSLSL2 �E they will furthermore

act via matrices of the form ð � 0
0 	

Þ where � and 	 are �1: see Section 3 for details),

so � acts on � \ kerðpÞ via a subgroup of O2R. However the group of monodromies

(a subgroup of GL2Z) is the action of �1ðSÞ ¼ � on �1ðF Þ (since F ¼ T 2).

Therefore the group of monodromies is a subgroup of GL2Z conjugate to a

subgroup of O2R (the conjugation is via the isomorphism �1ðF Þ ¼� � \ kerðpÞ),
and so by Corollary 4.1 is finite. �

We will now show that the condition that group of monodromies is finite,

is not only necessary for a Seifert manifold with T 2 fibres to be geometric,

but is also sufficient.
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THEOREM 4.7. Let S be a Seifert manifold over a hyperbolic base, with

general fibre T 2. Let the base, B, have k0 cone points, so that m0j is the order of the

jth cone point, and l reflector curves, such that the ith reflector curve has ki corner

reflectors so that mij is the order of the jth corner reflector on the ith reflector

curve. Let A be standard map which induces the monodromy map and let ~aa, ~bbi, ~ee0j,
~ffi, and ~ggij be the standard parts of the presentation of �1ðSÞ.

Then S is geometric if and only if the group of monodromies is finite, ie it is

conjugate in GL2Z to a subgroup of O2Z or hð 1 1
�1 0

Þ; ð 0 1
1 0

Þi.

Let e ¼ ~aaþ
Pk0

j¼1 ~ee0j=m0j þ 1
2

Pl
i¼1

~bbi þ
Pki

j¼1 ~eeij=mij

� �
and V ¼ IwQ

2.

More precisely, S is geometric of type H 2 �E2 if and only if the group of

monodromies is finite and

e 2 V :

S is geometric of type fSLSL2 �E if and only if the group of monodromies is

finite and

e =2 V ;

which implies the group fwð���ÞAð�Þj� 2 �orb
1 ðBÞg is conjugate in GL2Z to a subgroup

of hð 1 0
0 �1

Þi or hð 0 1
1 0

Þi.

The proof of the complete result is technical in places. Therefore, we do this

in stages. In this section we first prove the result for the H 2 �E2 case of the

theorem while deferring the details of how to handle the reflector curves. Then we

explain how the proof differs in the fSLSL2 �E case. Lastly in the next section, we

examine the details associated with reflector curves.

LEMMA 4.8 (H 2 �E2
CASE OF THEOREM 4.7). Let S be a Seifert manifold

over a hyperbolic base, with general fibre T 2. Let the base, B, have k0 cone points,

so that m0j is the order of the jth cone point, and l reflector curves, such that the

ith reflector curve has ki corner reflectors so that mij is the order of the jth corner

reflector on the ith reflector curve. Let A be standard map which induces the

monodromy map and let ~aa, ~bbi, ~ee0j, ~ffi, and ~ggij be the standard parts of the

presentation of �1ðSÞ.

Let e ¼ ~aaþ
Pk0

j¼1 ~ee0j=m0j þ 1
2

Pl
i¼1

~bbi þ
Pki

j¼1 ~eeij=mij

� �
and V ¼ IwQ

2.

Then S is geometric of type H 2 �E2 if and only if the group of monodromies

is finite and e 2 V :
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PROOF. Note for M 2 Z ½GL2Z �, ImQ2ðMÞ ¼ Q2 \ ImR2ðMÞ, hence V ¼
Q2 \IwR

2. So to prove a rational number e is contained in V , it is sufficient to

prove e 2 IwR
2. Therefore for the purpose of this proof, we can replace V by

IwR
2 ¼

P
���2�orb

1
ðBÞ ImR2ðAð���Þ � wð���ÞIÞ and write Im to mean ImR2 .

Assume first S is geometric of type H 2 �E2, so �1ðSÞ is a lattice in

IsomðH 2 �E2Þ. Since the fibre is T 2, �1ðF Þ ¼ hh1; h2j½h1; h2� ¼ 1i ¼� Z2 and so the

hi act on H 2 �E2 by translations: ðz; wÞ 7! ðz; wþ yðhiÞÞ, for some complex

numbers yðhiÞ. Let P be the matrix with yðhiÞ as the columns (considering

C ¼ R2). The yðhiÞ are linearly independent over R (since �1ðF Þ is a free abelian

group), and P is invertible. The other generators, � say, project to isometries

of H 2 which are denoted as ���. They act on C as ðOð�Þ; yð�ÞÞ.
We shall consider the consequences of the defining relations of �1ðSÞ for

the actions of the generators of �1ðSÞ on the ‘‘Euclidean factor’’, C ¼ R2. The

monodromy relations �hi�
�1 ¼ Að�Þhi determine equations:

Oð�Þ ¼ PAð�ÞP�1 ð13Þ

in GL2R, where P is the matrix with columns yðhiÞ. This implies the subgroup

fAð�Þj� 2 �1ðSÞg of GL2Z ¼ AutðT 2Þ is conjugate to a subgroup of O2R, and

so we may apply Theorem 4.1. Note this provides a more explicit proof of

Proposition 4.6.

The next relations are of the type s
m0j

0j ~ee0j ¼ 1, where s0j corresponds to the jth

cone point which has order m0j. Now �ss0j is elliptic of order m0j, so s
m0j

0j acts

trivially on the H 2 factor and acts via the map ðOðs0jÞ; yðs0jÞÞm0j on the C factor.

By looking at just the C factor we see ðOðs0jÞ; yðs0jÞÞm0j ¼ ðI; P ~ee0jÞ�1 or

equivalently ðAðs0jÞ; P�1yðs0jÞÞm0j ¼ ðI; ~ee0jÞ�1. By expanding, we see Aðs0jÞm0j ¼

I and
Pm0j�1

p¼0 Aðs0jÞp
� �

P�1yðs0jÞ ¼ �~ee0j. Then Aðs0jÞ~ee0j ¼ ~ee0j. So,Pm0j�1
p¼0 Aðs0jÞp

� �
ðP�1yðs0jÞ þ ~ee0j=m0jÞ ¼ 0. Therefore P�1yðs0jÞ þ ~ee0j=m0j is in

ker
Pm0j�1

p¼0 Aðs0jÞp
� �

which equals ImðAðs0jÞ � IÞ by Lemma 4.2. So

P�1yðs0jÞ þ ~ee0j=m0j ¼ ðAðs0jÞ � IÞzðs0jÞ; for some zðs0jÞ 2 R2: ð14Þ

By considering the relations connected to the reflector curves we can

obtain the following equations for i ¼ 1; . . . ; l (the details of this are deferred

to Lemma 5.1):

P�1yð@iÞ þ
1

2
~bibi þ

Xki
j¼1

~eeij=mij

 !
¼
X
�

ðAð�Þ � wð���ÞIÞzð�Þ; ð15Þ
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where the sum on the right is taken over the following generators:

f@i; ri; si1; . . . ; sikig.
The last relations to consider are

Yg
p¼1

½tp; up�
Yk0
j¼1

s0j
Yl
i¼1

@i ¼ ~aa

when the base is orientable, and

Yg
p¼1

v2p
Yk0
j¼1

s0j
Yl
i¼1

@i ¼ ~aa

when the base is non-orientable. [To simplify expressions below, let d ¼Qg
p¼1½tp; up� when the base is orientable and d ¼

Qg
p¼1 v

2
p when the base is non-

orientable.]

By considering how these relations act on the C factor we obtain the

following equations which respectively correspond to the orientable and non-

orientable base cases:

Xg
i¼1

Y
1�j<i

½OðtjÞ;OðujÞ�
 !

yðtiÞ þOðtiÞyðuiÞ �Oðtiuit
�1
i ÞyðtiÞ � Oð½ti; ui�ÞyðuiÞ

� �
þ

OðdÞ
Xk0
j¼1

Y
1�p<j

Oðs0pÞ
 !

yðs0jÞ þ OðdÞ
Yk0
j¼1

Oðs0jÞ
Xl
i¼1

Y
1�p<i

Oð@pÞ
 !

yð@iÞ ¼ P ~aa

ð16Þ

Xg
i¼1

Y
1�j<i

OðvjÞ2
 !

OðviÞyðviÞ þ yðviÞð Þþ

OðdÞ
Xk0
j¼1

Y
1�p<j

Oðs0pÞ
 !

yðs0jÞ þ OðdÞ
Yk0
j¼1

Oðs0jÞ
Xl
i¼1

Y
1�p<i

Oð@pÞ
 !

yð@iÞ ¼ P ~aa

ð17Þ

We can substitute for yðs0jÞ and yð@iÞ using equations (14) and (15). To

convert to monodromies, we premultiply the equations by P�1. In order to

simplify these expressions it is best to look at these results from the perspective of

a different set of generators. In light of this, we make the following definitions:
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t0i ¼
Y
1�j<i

½tj; uj�
 !

tiuit
�1
i u�1

i t�1
i

Y
1�j<i

½tj; uj�
 !�1

zðt0iÞ ¼ �A
Y
1�j<i

½tj; uj�
 !

AðtiÞP�1yðuiÞ

u0
i ¼

Y
1�j<i

½tj; uj�
 !

tiuit
�1
i

Y
1�j<i

½tj; uj�
 !�1

zðu0
iÞ ¼ �A

Y
1�j<i

½tj; uj�
 !

P�1yðtiÞ

v0i ¼
Y
1�j<i

v2j

 !
vi

Y
1�j<i

v2j

 !�1

zðv0iÞ ¼ A
Y
1�j<i

v2j

 !
P�1yðviÞ

s00j ¼ d
Y

1�p<j

s0p

 !
s0j

Y
1�p<j

s0p

 !�1

d�1

zðs00jÞ ¼ AðdÞA
Y

1�p<j

s0p

 !
zðs0jÞ

�0i ¼ d
Yk0
j¼1

s0j

 ! Y
1�p<i

@p

 !
�i

Y
1�p<i

@p

 !�1 Yk0
j¼1

s0j

 !�1

d�1

zð�0iÞ ¼ AðdÞ
Yk0
j¼1

Aðs0jÞ
 ! Y

1�p<i

Að@pÞ
 !

zð�iÞ for �i 2 f@i; ri; si1; . . . ; sikig:

Notice that vi and v0i are orientation reversing and they are the only generators

of either set that are so.

Let e0 ¼ ~aaþAðdÞ
Xk
j¼1

Y
1�p<j

Aðs0pÞ
 !

~ee0j=m0j

þ AðdÞ
Yk0
j¼1

Aðs0jÞ
 !Xl

i¼1

Y
1�p<i

Að@pÞ
 !

1

2
~bbi þ

Xki
j¼1

~eeij=mij

 !
;
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We can then rearrange equations (16) and (17) to both have the form:

e0 ¼
X

ðAð�Þ � wð���ÞIÞzð�Þ ð18Þ

where the sum is over these new generators, namely t0i; u
0
i, s

0
ij, r

0
i and @0

i when the

base is orientable and v0i, s
0
ij, r

0
i and @0

i when non-orientable. By Corollary 4.5

which precedes this proof, the sum can be taken over all elements of �orb
1 ðBÞ and so

e0 2 V . Note e0 can be replaced by e (as defined in the statement of this theorem)

because they are equal modulo V ¼
P

ImðAð�Þ � wð���ÞIÞ. As stated earlier the

group of monodromies is finite. Thus the necessity of this lemma.

To establish sufficiency of the conditions we will show that the groups

can be realised by geometric Seifert manifolds and then invoke Theorem 1.8.

Suppose (conversely) that the group of monodromies is finite and e 2 V . Then by

Theorem 4.1, Að�Þ ¼ P�1Oð�ÞP for some P 2 GL2R and some group of orthogonal

matrices fOð�Þj� 2 �1ðSÞg and we then can choose some zð�Þ to satisfy (18). Next,

reverse the process to get a faithful representation of �1ðSÞ as isometries of H 2 �
E2 defined (on the generators) by � 7! ð���; ðOð�Þ; yð�ÞÞÞ (by construction the map

will be well-defined). Therefore �1ðSÞ is isomorphic to the fundamental group of a

geometric Seifert manifold. Then Theorem 1.8 implies S is homeomorphic to a

Seifert geometric manifold of type H 2 �E2, hence the lemma. [Let us be more

explicit how to choose the zð�Þ: If for some �0, ðAð�0Þ � wð���0ÞIÞ is invertible then

choose the zð�Þ so that zð�0Þ ¼ ðAð�0Þ � wð���0ÞIÞ�1e0 while all the others are 0.

Otherwise wð���ÞAð�Þ is I or conjugate in GL2R to ð 1 0
0 �1

Þ. If for all generators

wð���ÞAð�Þ is I or A for some A conjugate to ð 1 0
0 �1

Þ then let all zð�Þ ¼ 0 except for

one generator, �0 (if there is one that is) such that wð���0ÞAð�0Þ ¼ A, let zð�0Þ ¼
�wð���0Þð1=2Þe0 (note in this case e0 2 ImðA� IÞ). If none of the previous cases arise,
then there are two generators, �0 and �00 say, such that wð���0ÞAð�0Þ and wð���00ÞAð�00Þ
are not equal but both conjugate to ð 1 0

0 �1
Þ while for the rest of the generators

wð���ÞAð�Þ is either I or conjugate to ð 1 0
0 �1

Þ. Let zð�0Þ ¼ �wð���0Þð1=2Þp, zð�00Þ ¼
�wð���00Þð1=2Þðe0 � pÞ where p is the intersection point of the lines ðe0 þ ImðAð�00Þ �
wð���00ÞIÞÞ and ImðAð�0Þ � wð���0ÞIÞ (therefore p 2 ImðAð�0Þ � wð���0ÞIÞ and

ðe0 � pÞ 2 ImðAð�00Þ � wð���00ÞIÞ). For the other generators let zð�Þ ¼ 0.] �

LEMMA 4.9 (fSLSL2 �E case of Theorem 4.7). Let S be a Seifert manifold over

a hyperbolic base, with general fibre T 2. Let the base, B, have k0 cone points, so

that m0j is the order of the jth cone point, and l reflector curves, such that the ith

reflector curve has ki corner reflectors so that mij is the order of the jth

corner reflector on the ith reflector curve. Let A be standard map which induces

the monodromy map and let ~aa, ~bbi, ~ee0j, ~ffi, and ~ggij be the standard parts of the

presentation of �1ðSÞ.
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Let e ¼ ~aaþ
Pk0

j¼1 ~ee0j=m0j þ 1
2

Pl
i¼1

~bbi þ
Pki

j¼1 ~eeij=mij

� �
and V ¼ IwQ

2.

Then S is geometric of type fSLSL2 �E if and only if the group of monodromies

is finite and e =2 V :

PROOF. The proof of this lemma is very similar to the previous lemma. So

instead of repeating the proof we will explain the differences. Assume first S is

geometric of type fSLSL2 �E. Then as in the H 2 �E2 case, the model space may be

identified with H 2 �C (see Section 3). The generators again act via translations,

while the other generators � act on C as ðOð�Þ; yð�ÞÞ plus a correction term which

corresponds to the parallel translation of ���, as discussed in Section 3. As before

we look at how each of the relations act on the C factor. The differences all arise

from these correction terms. The monodromy and cone point relations again give

equations (13) and (14).

Let �AA i be an annular neighbourhood of the ith reflector curve. By

considering the relations connected to the reflector curves (or more precisely

these neighbourhoods) we can obtain the following equations for i ¼ 1; . . . ; l which

are similar to (15) (the details of this are also deferred to Lemma 5.1):

P�1yð@iÞ þ
1

2
~bibi þ

Xki
j¼1

~eeij=mij

 !
� P�1

0

ci

 !
¼
X
�

ðAð�Þ � wð���ÞIÞzð�Þ; ð19Þ

where ci is 2� multiplied by the orbifold euler characteristic of �AA i, ie

ci ¼ 2�
orbð �AA iÞ, and (as before) the sum on the right is taken over the following

generators: f@i; ri; si1; . . . ; sikig. The term involving ci is the only difference and

arises due to the correction terms and is connected to the holonomy of �AA i which

we will explain in Lemma 5.1.

By considering how the last relations (the ones connected to the global

information) act on the C factor, we can get equations similar to equations (16)

and (17). The only difference is that we get an extra term ( 0
c0
Þ on the left hand

side. Suppose S has no reflector curves. Then c0 corresponds to the parallel

translation connected to this last relation, namely it is the parallel translation

around a fundamental domain of the base. This is the total holonomy of the

base which equals 2�
orbðBÞ. In general, c0 is the total holonomy of the base

with the neighbourhoods of the reflector curves taken out, which has value

2�
orb B n
Sl

i¼1
�AA i

� �� �
. See Proof of Theorem B (1) for X ¼ fSLSL2 �E in [10]

(cases I and III in particular) for an explanation of this in the orientable case.

We can simplify all cases as before (using the same generators and same

expression for e0) to the following equation (analogous to (18)):
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e0 � P�1
0

c

 !
¼
X

ðAð�Þ � wð���ÞIÞzð�Þ ð20Þ

where the sum is over all elements of �orb
1 ðBÞ (by Corollary 4.5) and c ¼

c0 þ
Pl

i¼1 ci ¼ 2�
orbðBÞ which is nonzero. Note e0 (as before) can be replaced by

e. Furthermore fwð���ÞOð�Þg is contained in the group hð�1 0
0 1

Þi (from Section 3,

Oð�Þ ¼ wð�Þ 0

0 wð���Þ

� �
, so fwð���ÞOð�Þg ¼ wð���Þwð�Þ 0

0 1

� �n o
). Remember Oð�Þ ¼

PAð�ÞP�1. So the group fwð���ÞAð�Þg is contained in a group hAi � GL2Z where

PAP�1 ¼ ð�1 0
0 1

Þ for some P 2 GL2R. There are two cases, either fwð���ÞAð�Þg is

fIg or hAi. In the former case, e ¼ P�1ð 0
c
Þ, which is nonzero, and so e =2P

ImðAð�Þ �wð���ÞIÞ ¼ 0. In the latter case, we have e� P�1ð 0
c
Þ 2 ImðA� IÞ. Now

if P�1ð 0
c
Þ ¼ ðA� IÞw for some w 2 R2 then ð 0

c
Þ ¼ ðPAP�1 � IÞPw ¼ ð


0
Þ, which

contradicts c 6¼ 0 and so in both cases e =2 V ¼
P

ImðAð�Þ � wð���ÞIÞ. Hence the

necessity of this lemma.

We shall now show these conditions are not only necessary but sufficient.

Suppose the group of monodromies is finite and e =2
P

ImðAð�Þ � wð���ÞIÞ. For this
to happen dimð

P
ImðAð�Þ � wð���ÞIÞÞ < 2. This implies wð���ÞAð�Þ all have 1 as an

eigenvalue and so are either I or a reflection. Since Að�Þ 2 GL2Z , all the

reflections will be the same since ImðAð�Þ � wð���ÞIÞ will be the common �1-

eigenspace. So fwð���ÞAð�Þg will be conjugate in GL2R to a subgroup of hð�1 0
0 1

Þi.
Suppose fwð���ÞAð�Þg ¼ fIg and e 6¼ 0, then let zð�Þ ¼ 0 for all generators and

choose P so that e� P�1ð 0
c
Þ ¼ 0 (possible since e and c ¼ 2�
orbðBÞ are nonzero).

Then we can reverse the process (as in the previous lemma) to show �1ðSÞ is

isomorphic to the fundamental group of fSLSL2 �E Seifert manifold. Then by

Theorem 1.8, S is geometric of type fSLSL2 �E. Alternatively suppose fwð���ÞAð�Þg
is conjugate to hð�1 0

0 1
Þi and e =2

P
ImðAð�Þ � wð���ÞIÞ. Choose a matrix Q

such that Qfwð���ÞAð�ÞgQ�1 ¼ hð�1 0
0 1

Þi. Then Qe =2
P

ImðQAð�ÞQ�1 � wð���ÞIÞ ¼
fðx

0
Þjx 2 Rg. Therefore Qe ¼ ð


a
Þ for some nonzero number a. Let P ¼ c

a Q

(c ¼ 2�
orbðBÞ). Then Pfwð���ÞAð�ÞgP�1 ¼ hð�1 0
0 1

Þi and e� P�1ð 0
c
Þ 2P

ImðAð�Þ � wð���ÞIÞ. Choose a generator �0 such that wð���0ÞAð�0Þ ¼ A. Then let

zð�0Þ ¼ �wð���0Þð1=2Þðe� P�1ð 0
c
ÞÞ and let zð�Þ ¼ 0 for all the other generators.

Consequently, equation (20) is satisfied. Again we can reverse the process to

show S is geometric of type fSLSL2 �E. Hence the lemma. �

REMARK 4.10. Let � : S ! B be a Seifert fibration with fibre F and

aspherical base. Let M be Z ð�1ðF ÞÞ �Z Q considered as a Z ½�orb
1 ðBÞ�-module with

the action determined by the monodromy map. Let eQð�Þ 2 H2ð�orb
1 ðBÞ;MÞ be the

class corresponding to �1ðSÞ as an extension of �1ðSÞ=Z ð�1ðF ÞÞ by Z ð�1ðF ÞÞ
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[note �1ðSÞ=Z ð�1ðF ÞÞ ¼� �orb
1 ðBÞ when the general fibre is a torus]. Then eQð�Þ is

called the rational euler class of the fibration. When the general fibre is the torus,

it can be shown that H2ð�orb
1 ðBÞ;MÞ ¼� M=IwMð¼ Q2=V Þ and via this isomor-

phism eQð�Þ gets mapped to emod V .

At the end of Section 13.4 in [7] the rational euler class for a Seifert

3-manifold is defined as the obstruction to the existence of a rational section. Can

the rational euler class be similarly defined for 4-manifolds? In [4], Neumann

and Raymond construct the rational euler class for 3-manifolds more explicitly

and prove a naturality result for finite covers (see especially their Theorem 1.2).

The definition of the e used in the above theorem is derived from this latter

construction.

5. Reflector curves.

In order to complete Theorem 4.7 we will consider what is happening in the

neighbourhood of a reflector curve. Consider a Seifert bundle � : �RR ! �AA with T 2

general fibre, above an annulus neighbourhood of a reflector curve. We are trying

to determine if there is, and if so what is the nature of, any injective

homomorphism �1ð �RRÞ ! IsomðXÞ which preserves the bundle structure (where

X is H 2 �E2 or fSLSL2 �E). More precisely, given an injection i : �orb
1 ð �AA Þ !

IsomðH 2Þ, we would like to determine all injections ~ii : �1ð �RRÞ ! IsomðXÞ which

makes the following diagram commute:

π1(R̄)
ĩ� Isom(X)

πorb
1 (Ā )

π1(η)

�

i
� Isom(H2),

p

�

Fix a presentation of �1ð �RRÞ as given in Lemma 1.5. Then as we saw in

Lemmas 4.8 and 4.9, if ~ii exists, ~iiðhjÞðz; wÞ ¼ ðz; wþ pjÞ for some linearly

independent pj 2 R2. As before let P be the matrix in GL2R whose columns are

these pj. Also from before ~iið@Þðz; wÞ ¼ ðið �@@ÞðzÞ; ðPAð@ÞP�1; yð@ÞÞðwÞ þ ð 0
cð@Þ ÞÞ for

some yð@Þ 2 R2, where Að@Þ is the monodromy and where cð@Þ ¼ 0 if X ¼
H 2 �E2 and cð@Þ corresponds to the parallel translate of ið �@@Þ if X ¼ fSLSL2 �E.

The following lemma determines necessary and sufficient conditions on P

and yð@Þ for ~ii to exist.
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LEMMA 5.1. Let �AA be an annulus neighbourhood of a reflector curve and

suppose � : �RR ! �AA is a Seifert bundle with general fibre T 2. Suppose the reflector

curve has k corner reflectors, so that the jth corner reflector has ordermj. Then an

injection i : �orb
1 ð �AA Þ ! IsomðH 2Þ, lifts to an injection ~ii : �1ð �RRÞ ! IsomðXÞ (where

X is either H 2 �E2 or fSLSL2 �E) defined as above if and only if

1. PfAð�Þj� 2 �1ð �RRÞgP�1 � O2R when X ¼ H 2 �E2 and Pfwð���ÞAð�Þj� 2
�1ð �RRÞgP�1 � hð 1 0

0 �1
Þi when X ¼ fSLSL2 �E, and

2.

P�1yð@Þ þ
1

2
~bbþ

Xk
j¼1

~eej=mj

 !
� P�1

0

c

 !
2

X
���2�orb

1
ð �AA Þ

ImðAð�Þ � wð���ÞIÞ;

where c ¼ 0 when X ¼ H 2 �E2 and c ¼ 2�
orbð �AA Þ when X ¼ fSLSL2 �E.

PROOF. The first condition (connected to P ) in the statement of this lemma

was proved to be necessary in part of Lemmas 4.8 and 4.9. So we will first show

that the above condition on yð@Þ is necessary. Then we will show that all steps are

reversible and hence show the condition is sufficient.

Thus firstly, suppose i : �1ð �AA Þ ! IsomðH 2Þ does lift to a homomorphism
~ii : �1ð �RRÞ ! IsomðXÞ. By the way ~ii was defined above, the induced map �1ðT 2Þ !
ker p is injective (where p is the projection IsomðXÞ ! IsomðH 2Þ). It follows that ~ii
is injective.

Since ~iið�Þ is an isometry of X for � 2 �1ð �RRÞ, we have ~iið�Þðz; wÞ ¼
ðið���ÞðzÞ; ðPAð�ÞP�1; yð�ÞÞðwÞ þ ð 0

cð�Þ ÞÞ for some yð�Þ 2 R2, where ��� ¼ �1ð�Þð�Þ and

where cð�Þ ¼ 0 if X ¼ H 2 �E2 and cð�Þ corresponds to the parallel translate of

ið���Þ if X ¼ fSLSL2 �E.

By considering the relations ð�j�
�1
jþ1Þ

mj~eej ¼ 1 which are more neatly expressed

as s
mj

j ~eej ¼ 1, as we did in Section 4, we see equation (14)) is satisfied, and so

P�1yðsjÞ þ ~eej=mj ¼ ðAðsjÞ � IÞzðsjÞ for some zðsjÞ 2 R2. Similarly, P�1yðrÞ þ
~ff=2 ¼ ðAðrÞ � IÞzðrÞ, for some zðrÞ 2 R2.

Recall �j ¼
Qk

p¼j sp. Let Ej ¼
Pk

p¼j Að��1
p Þ~eep=mp. By combining the expres-

sions for P�1yðsjÞ it can be shown that P�1yð�jÞ þAð�jÞEj ¼ �Að�jÞxð�jÞ
for some xð�jÞ ¼ �

Pk
p¼j Að��1

p ÞðAðspÞ � IÞzðspÞ ¼ �
Pk

p¼jðAð��1
pþ1�pÞ �

IÞAð��1
p ÞzðspÞ 2

Pk
p¼j ImðAð��1

pþ1�pÞ � IÞ. However the group generated by

��1
pþ1�p, p ¼ j; . . . ; k is also generated by �p, p ¼ j; . . . ; k (since �p ¼Qk

q¼pð��1
qþ1�qÞ�1

� ��1
and �kþ1 ¼ 1), so by Corollary 4.5, xð�jÞ 2

P
ImðAð�Þ � IÞ

where the sum is over � 2 h�j; . . . ; �ki.
Next by considering the relation @�1�1r@r

�1 ¼ ~bb in a similar way to getting

equation (16), we get:
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Að�1rÞ ¼ Að@ÞAðrÞAð@�1Þ ð21Þ

ðI � Að�1rÞÞP�1yð@Þ þ ðI � Að@ÞÞAðrÞP�1yðrÞ

þ Að�1rÞP�1yð�1Þ þ Að�1r@ÞP�1
0

c

 !
¼ Að�1r@Þ~bb

ð22Þ

Here c is 0 when X ¼ H 2 �E2 and c is a correction term corresponding to the

holonomy of the loop projected to the base whenX ¼ fSLSL2 �E. By considering the

double cover of �RR induced by doubling the base along the reflector curve, we see

the above relation is preserved (except r@r�1 is now a loop corresponding to a lift

of the other boundary). Projecting the relation to the base, we see it corresponds

to traversing the base, thus the correction is the holonomy of the base: A , that is

c ¼ 2�
orbðA Þ. By definition of the Euler characteristic, c ¼ 4�
orbð �AA Þ.
We can rewrite (22) by using the expressions for P�1yðrÞ, P�1yð�1Þ,

equations (8), (9) and (10) and the equation Að�ÞP�1ð 0
c
Þ ¼ P�1ð 0

wð���Þc Þ. Therefore,
we get:

ðI � Að�1rÞÞ
�
P�1yð@Þ þ Að@Þ~bb=2�AðrÞE1=2� P�1

0

c=2

 !

� ~ff=4� AðrÞxð�1Þ=2� Að@ÞzðrÞ � ðAðrÞ � IÞzðrÞ=2
�

¼ ðI þ Að�1rÞÞ ~GG1=4þ AðrÞE1=2þ AðrÞxð�1Þ=2þ ðAðrÞ � IÞzðrÞ=2
� �

ð23Þ

By multiplying both sides by ðI �Að�1rÞÞ we see that both sides are equal to

zero. Therefore

�
P�1yð@Þ þ Að@Þ~bb=2�AðrÞE1=2� P�1

0

c=2

 !

� ~ff=4�AðrÞxð�1Þ=2� Að@ÞzðrÞ � ðAðrÞ � IÞzðrÞ=2
�

2 kerðI � Að�1rÞÞ;

and

~GG1=4þAðrÞE1=2þ AðrÞxð�1Þ=2þ ðAðrÞ � IÞzðrÞ=2
� �

2 kerðI þAð�1rÞÞ:
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However, kerðI � Að�1rÞÞ ¼ ImðI þAð�1rÞÞ and kerðI þ Að�1rÞÞ ¼ ImðI �
Að�1rÞÞ. So by rearranging and using equation (8), we get the following

equations:

P�1yð@Þ þAð@Þ~bb=2� AðrÞE1=2� P�1
0

c=2

 !
¼ AðrÞxð�1Þ=2þ ðAð@Þ � IÞzðrÞ þ ðAðrÞ þ IÞðzðrÞ=2þ ~ff=8Þ þ ðAð�1rÞ þ IÞzð@Þ

ð24Þ

~GG1=4þAðrÞE1=2þ AðrÞxð�1Þ=2þ ðAðrÞ � IÞzðrÞ=2 ¼ ðI � Að�1rÞÞzðdÞ; ð25Þ

for some zð@Þ and zðdÞ 2 R2.

By writing Að@Þ~bb�AðrÞE1 as ~bbþ E1 þ ðAð@Þ � IÞ~bb� ðAðrÞ þ IÞE1, ðAðrÞ þ
IÞ as ðAð�1rÞ þ IÞAð�1Þ þ ðI � Að�1ÞÞ and for all j, AðrÞðAð�jÞ � IÞ as ðI �
Að�jÞÞAð��1

j rÞ we see (24) becomes

P�1yð@Þ þ
1

2
~bbþ E1

� �
� P�1

0

c=2

 !
2
X

ImðAð�Þ � wð���ÞIÞ; ð26Þ

where the sum is over a set of generators: f�1; . . . ; �k; @; �1rg, and so by Corollary

4.5 can be taken to be over �orb
1 ð �AA Þ. Observe, when X ¼ fSLSL2 �E, 1

2 c ¼
2�
orbð �AA Þ. Also E1 and

Pk
j¼1 ~eej=mj are equal modulo

P
�ðAð�Þ � wð���ÞIÞ.

This shows the necessity of the lemma. To show sufficiency we will show this

method is reversible. The only step which does not immediately seem to be

reversible is the last step. So to complete the lemma, we need to show that for any

yð@Þ which satisfies equation (26), there are some xð�1Þ 2
Pk

j¼1 ImðAð�jÞ � IÞ,
zðrÞ, zð@Þ and zðdÞ which satisfy both equation (24) and equation (25). That is,

for all v 2 S ¼
P

ImðAð�Þ � wð���ÞIÞ, there are some xð�1Þ, zðrÞ, zð@Þ and zðdÞ
such that

AðrÞxð�1Þ=2þ ðAð@Þ � IÞzðrÞ þ ðAðrÞ þ IÞzðrÞ=2þ ðAð�1rÞ þ IÞzð@Þ ¼ v ð27Þ
AðrÞxð�1Þ=2þ ~GG1=4þ AðrÞE1=2þ ðAðrÞ � IÞzðrÞ=2þ ðAð�1rÞ � IÞzðdÞ ¼ 0 ð28Þ

In �1ð �RRÞ, @�1�1r@r
�1 ¼ ~bb. By considering its image by the monodromy map

we see Að�1Þ is the commutator ½Að@Þ; AðrÞ� (and we also derive equation (21)).

Since fAð�Þj� 2 �1ðSÞg is a dihedral group (by Theorem 4.1), Að�1Þ 6¼ I implies

ðAð�1Þ � IÞ is invertible (Lemma 5.2).
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Suppose
Pk

j¼1 ImðAð�jÞ � IÞ ¼ R2. Let zðrÞ ¼ 0, and zðdÞ ¼ zð@Þ ¼
ð1=2Þ vþ ~GG1=4þ AðrÞE1=2

� �
and then choose xð�1Þ to satisfy equation (28) (note

xð�1Þ can take any value). Equation (27) is then satisfied and so the result is

proved in this case.

Instead suppose
Pk

j¼1 ImðAð�jÞ � IÞ 6¼ R2, so in particular Að�1Þ ¼ I.

Notice zðrÞ is independent of (25) since we can absorb it into zðdÞ. IfPk
j¼1 ImðAð�jÞ � IÞ � ImðAð@Þ � IÞ þ ImðAðrÞ þ IÞ, first we choose xð�1Þ and

zðdÞ to satisfy (28), then choose zðrÞ and zð@Þ to get (27) and the result. [Note a

choice for xð�1Þ and zðdÞ is always possible. To see this consider equation (7)

divided by 4mj and taken mod ImðAðrÞ � IÞ þ
Pk

p¼1 ImðAð�pÞ � IÞ. By summing

the set of equations over j, we see ~GG1=4þ AðrÞE1=2 is in ImðAðrÞ � IÞ þPk
p¼1 ImðAð�pÞ � IÞ.]
Alternatively suppose

Pk
j¼1 ImðAð�jÞ � IÞ 6� ImðAð@Þ � IÞ þ ImðAðrÞ þ IÞ.

Then firstly ImðAð@Þ � IÞ þ ImðAðrÞ þ IÞ 6¼ R2. Therefore AðrÞ 6¼ I and so AðrÞ ¼
Qð 1 0

0 �1
ÞQ�1 for some Q 2 GL2R [Suppose (aiming for contradiction) that AðrÞ �

I ¼ P�1ðOðrÞ � IÞP is invertible. Then ðOðrÞ; yðrÞÞ has a fixed point

ðI � OðrÞÞ�1yðrÞ. However ðOðrÞ; yðrÞÞ cannot have a fixed point since �RR is a

manifold and so r : ðz; wÞ 7! ðið�rrÞzÞ; ðOðrÞ; yðrÞÞw must act freely, hence the

contradiction]. Also ImðAð@Þ � IÞ � ImðAðrÞ þ IÞ ¼ Qfð x
0
Þjx 2 Rg. However

since Að�1Þ ¼ I, Að@Þ commutes with AðrÞ and so Að@Þ ¼ I or �AðrÞ. In either

case, the expression ðAð@Þ � IÞzðrÞ þ ðAðrÞ þ IÞzðrÞ=2þ ðAð�1rÞ þ IÞzð@Þ from

equation (27) is contained in ImðAðrÞ þ IÞ so we may as well take zðrÞ ¼ 0. Also

we have assumed
Pk

j¼1 ImðAð�jÞ � IÞ 6� ImðAðrÞ þ IÞ ¼ Qfðx
0
Þjx 2 Rg.

Suppose
Pk

j¼1 ImðAð�jÞ � IÞ 	 ImðAðrÞ � IÞ. Hence S ¼ R2 andPk
j¼1 ImðAð�jÞ � IÞ ¼ ImðAðrÞ � IÞ because of our earlier assumption thatPk
j¼1 ImðAð�jÞ � IÞ 6¼ R2. We choose xð�1Þ and zð@Þ to satisfy equation (27)

and then choose zðdÞ to satisfy equation (28) [which is again possible since ~GG1=4þ
AðrÞE1=2 is in ImðAðrÞ � IÞ þ

Pk
p¼1 ImðAð�pÞ � IÞ ¼ ImðAðrÞ � IÞ]. Lastly sup-

pose (aiming for a contradiction)
Pk

j¼1 ImðAð�jÞ � IÞ does not contain ImðAðrÞ �
IÞ and is not contained in ImðAðrÞ þ IÞ. Then

Pk
j¼1 ImðAð�jÞ � IÞ is 1-dimesional

and does not equal ImðAðrÞ � IÞ or ImðAðrÞ þ IÞ. Therefore there is a p such that

Að�pÞ 6¼ I. Choose p to be the largest such number. Then Að�pÞ ¼ AðspÞAð�pþ1Þ ¼
AðspÞ which is conjugate in GL2R to ð 1 0

0 �1
Þ (for the same reason AðrÞ is, in

the previous paragraph). However AðrÞAð�pÞAðrÞ�1 ¼ Að�pÞ�1, and therefore

Að�pÞ ¼ �AðrÞ. Both cases give the desired contradiction.

To completely show the representation of ~ii it is desirable to show how to

obtain xð�jÞ for j > 2. From earlier, we defined xð�jÞ via the equation:
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xð�jÞ ¼ �
Xk
p¼j

ðAð��1
pþ1�pÞ � IÞAð��1

p ÞzðspÞ: ð29Þ

In all the above cases we have xð�1Þ. Choose values for zðspÞ, p ¼ 1 . . . k to satisfy

equation (29) (there are no restrictions on the zðspÞ so a choice is always possible).

To conclude, define xð�jÞ for j > 2 using these values and equation (29). �

LEMMA 5.2. Suppose G is a dihedral group of order 2n, with presentation

hr; sjrsr�1 ¼ s�1; r2 ¼ 1 ¼ sni. The commutator subgroup G0 is then hs2jsn ¼ 1i
which is cyclic of order n=2 if n even, or cyclic of order n if n odd. Incidentally,

G=G0 is then Z2 � Z2 or Z2 when n is even or odd respectively.

In particular, if G ¼ PO2ZP�1 ¼� D8, then G0 ¼ f�Ig, also if G ¼
P hð 1 1

�1 0
Þ; ð 0 1

1 0
ÞiP�1 ¼� D12, then G0 ¼ P hð 0 1

�1 �1
ÞiP�1.

PROOF. Direct calculation will quickly get the result. Alternatively, the

abelianisation of G can be seen to have the extra relation s2 ¼ 1, therefore G0 is

generated by s2. �

6. Geometric Klein bottled fibred 4-manifolds.

In this section, we will consider the case when the fibres are Klein bottles.

This means the base has no corner reflectors [a singular fibre above a corner

reflector is covered by the general fibre with dihedral covering group, however the

only manifold which Kb covers is itself and the covering group is cyclic].

In the following, we suppose �1ðKbÞ ¼ hh1; h2jh1h2h
�1
1 h2 ¼ 1i.

THEOREM 6.1. Let S be a Seifert manifold over a hyperbolic base B, with

general fibre Kb. Then S is geometric. Suppose that the base has l reflector curves

and k cone points, so that mi is the order of the ith cone point. Let Að�Þ be the

automorphisms from the presentation of �1ðSÞ which send h1 to h
�ð�Þ
1 h

cð�Þ
2 and h2 to

h
	ð�Þ
2 and let ~eei ¼ hei1

1 hei2
2 , ~bbi ¼ hbi1

1 hbi2
2 and ~aa ¼ ha1

1 h
a2
2 be the standard parts of the

presentation of �1ðSÞ.
Let e ¼ a1 þ

Pk
i¼1 ei1=mi þ 1

2

Pl
i¼1 bi1 and let V ¼

P
���2�orb

1
ðBÞ Imð�ð�Þ � wð���ÞÞ.

More precisely, S is geometric of type H 2 �E2 if and only if

e 2 V :

S is geometric of type fSLSL2 �E if and only if
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e =2 V ;

ie �ð�Þ ¼ wð���Þ and e 6¼ 0.

This can be proved by repeating the method used in the T 2 fibre case

(Theorem 4.7). However we will prove it a different way using the orientation

cover.

PROOF. The basic idea is to first show that the orientation cover is

geometric. We will then add one more isometry to show that �1ðSÞ is isomorphic

to a group of isometries thus showing S is geometric, by Theorem 1.8.

Let S0 be the orientation cover of S, which will also be a Seifert manifold.

Since D2 �Kb is non-orientable, S0 cannot have Kb as the general fibre, and so

has T 2 fibres. Let B0 be the base of S0. Then the degree of the covering of S0 ! S

equals the product of the degrees of the coverings T 2 ! Kb and B0 ! B. However

S0 is an orientation cover, thus the product is 2, so the first is 2 and the second is 1,

which means B0 ¼ B.

For each � 2 �1ðSÞ, let Að�ÞT be the restriction of Að�Þ to the unique maximal

abelian subgroup (which corresponds to the T 2 which covers Kb). Then Að�ÞT ¼
ð �ð�Þ 0

0 	ð�Þ Þ. Note Aðh1ÞT ¼ ð 1 0
0 �1

Þ and Aðh2ÞT ¼ I.

Now if � in �1ðSÞ preserves orientation, it must preserve orientation

on both fibre and base, or it must reverse the orientation of both. In general,

wð�Þ ¼ wð���ÞwðAð�ÞÞ ¼ wð���Þ detðAð�ÞT Þ ¼ wð���Þ�ð�Þ	ð�Þ. Therefore �1ðS0Þ ¼ f� 2
�1ðSÞj	ð�Þ ¼ wð���Þ�ð�Þg and �1ðSÞ ¼ h�1ðS0Þ; h1i. The group of monodromies of

�1ðS0Þ equals the image of Að�ÞT which is contained in the finite group

hð 1 0
0 �1

Þ;�Ii. Therefore, by Theorem 4.7 S0 is geometric and so �1ðS0Þ is isometric

to a group of isometries. Notably �1ðF Þ acts via the following isometries:

h2
1ðw; zÞ ¼ ðw; zþ P ð 1

0
ÞÞ and h2ðw; zÞ ¼ ðw; zþ P ð 0

1
ÞÞ for some P 2 GL2R such

that P ImAð�ÞTP�1 is in O2R (more precisely, when the geometry is fSLSL2 �E,

PAð�ÞTP�1 ¼ ð 1 0

0 wð���Þ Þ). We claim that by adjusting P as necessary, the map

ðw; zÞ 7! ðw;P ð 1 0
0 �1

ÞP�1zþ P ð 1=2
0
ÞÞ is an isometry whose square equals the action

of h2
1. Thus we can define the action of h1 by this map and so �1ðSÞ is isomorphic

to a group of isometries. By Theorem 1.8 this means S is geometric.

Before proving the claim, we will find conditions to separate the two

geometries. The presentation of �1ðS0Þ, in particular the standard relations,

determine the geometry of S. To make these relations easier to find, we will

consider a different presentation of �1ðSÞ. Now for each generator, �, of �1ðSÞ
which corresponds to a generator of �orb

1 ðBÞ, either � or �h1 is in �1ðS0Þ. By
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changing sections if necessary (and thus getting an isomorphic presentation), we

can suppose � 2 �1ðS0Þ for each of these generators. [Suppose �ð�Þ ¼ wð���Þ for all

� 2 �1ðSÞ. Note changing vp to vph1, tp to tph1, up to uph1 or ri to rih1 does not

change a1, ei1 or bi1. Changing si to sih1 adds 1 to a1 and subtracts mi from ei1.

Changing @i to @ih1 adds 1 to a1 and subtracts 2 from bi. So e and emodV

are invariant by these changes of section. If �ð�Þ 6¼ wð���Þ for some �, then V ¼ R

and so emodV is invariant by changes of section. Therefore changing the

section, does not alter the conditions e 2 V and e =2 V .]

Next, consider a relation in �orb
1 ðBÞ: ���1 ���2 . . . ���p ¼ 1. This lifts to a relation in

�1ðSÞ of the form �1�2 . . . �p ¼ h
1

1 h
2

2 . Now the �i were chosen to be in �1ðS0Þ,
therefore �ð�1�2 . . . �pÞ ¼ 	ð�1�2 . . . �pÞwð���1 ���2 . . . ���pÞ ¼ 	ð�1�2 . . . �pÞ. This implies 1 ¼
�ðh
1

1 h
2

2 Þ ¼ 	ðh
1

1 h
2

2 Þ ¼ ð�1Þ
1 , and so 
1 is even. So relations of this type, are

also relations of �1ðS0Þ. Consequently, for each standard part of the presentation

of �1ðSÞ: ~aa; ~eei; ~bbi etc., ~

 ¼ ð
1


2
Þ in general, the corresponding part of �1ðS0Þ is

given by ~

0 ¼ ð
1=2

2

Þ. Let e0 ¼ ð a1=2
a2

Þ þ
Pk

i¼1ð ei1=2mi

ei2=mi
Þ þ ð1=2Þ

Pl
i¼1ð bi1=2bi2

Þ and V 0 ¼P
�2�1ðS0Þ ImðAð�ÞT � wð���ÞIÞ ¼

P
�2�1ðS0Þ Imð�ð�Þ � wð���ÞÞ �

P
�2�1ðS0Þ Imð�ð�Þ � 1Þ.

We will now show e02 ¼ a2 þ
Pk

i¼1 ei2=mi þ ð1=2Þ
Pl

i¼1 bi2 2 V 0
2 ¼P

�2�1ðS0Þ Imð�ð�Þ � 1Þ. It is sufficient to show e02 ¼ 0 when �ð�Þ ¼ 1 for all �,

so suppose �ð�Þ ¼ 1 and so for � 2 �1ðS0Þ, 	ð�Þ ¼ wð���Þ. Recall Að�Þh1 ¼ h
�ð�Þ
1 h

cð�Þ
2 .

Note cðh1Þ ¼ 0, cðh2Þ ¼ �2, cð��0Þ ¼ cð�Þ þ 	ð�Þcð�0Þ and cð��1Þ ¼ �	ð�Þcð�Þ. By

considering the image of c of the relation, smi

i hei1
1 hei2

2 ¼ 1, we see micðsiÞ � 2ei2 ¼ 0,

or equivalently

ei2=mi ¼ cðsiÞ=2:

By instead taking the relation @�1
i ri@ir

�1
i ¼ hbi1

1 hbi2
2 , we see �cð@iÞ þ cðriÞ � cð@iÞ �

cðriÞ ¼ �2bi2 (note 	ðriÞ ¼ wð�rriÞ ¼ �1) which reduces to

1

2
bi2 ¼ cð@iÞ=2:

Lastly we will look at the image of c of the relation connected to the global

information; d
Qk

j¼1 sj
Ql

i¼1 @i ¼ ha1
1 ha2

2 , where d ¼
Qg

p¼1½tp; up� when the base is

orientable and d ¼
Qg

p¼1 v
2
p when the base is non-orientable. Note cðdÞ ¼ 0,

so we get
Pk

j¼1 cðsjÞ þ
Pl

i¼1 cð@iÞ ¼ �2a2 which can rearrange and then use

the above equations to get:

0 ¼ a2 þ
Xk
j¼1

cðsjÞ=2þ
Xl
i¼1

cð@iÞ=2
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¼ a2 þ
Xk
j¼1

ei2=mi þ
1

2

Xl
i¼1

bi2

¼ e02:

Theorem 4.7 states, S0 is geometric of type H 2 �E2 (fSLSL2 �E respectively) if

and only if e0 2 V 0 (e0 =2 V 0) which is satisfied if and only if e ¼ 2e01 2 V 0
1 ¼ V

(e =2 V ), since e02 2 V 0
2 . From above S is geometric and it will have the same

geometry as S0, so S is geometric of type H 2 �E2 (fSLSL2 �E respectively) if and

only if e 2 V (e =2 V ), hence the theorem.

We now return to prove the claim: by adjusting P as necessary, the map

ðw; zÞ 7! ðw;P ð 1 0
0 �1

ÞP�1zþ P ð 1=2
0
ÞÞ is an isometry whose square equals the action

of h2
1. To prove the claim we must consider a few cases. If the geometry is H 2 �E2

then we need to prove P ð 1 0
0 �1

ÞP�1 is in O2R. Suppose Að�ÞT ¼ �ð 1 0
0 �1

Þ for some

�, then P ð 1 0
0 �1

ÞP�1 ¼ �PAð�ÞTP�1 2 O2R. Therefore suppose ImAð�ÞT � f�Ig.
Then we can conjugate the isometries by ðP�1; 0Þ to get an isomorphic group

of isometries. That is, we can suppose P ¼ I, hence the claim. If the geometry

is fSLSL2 �E, then we need to prove P has the form ð 0 �
� 0

Þ for some nonzero real

numbers � and �. However for this geometry, PAð�ÞTP�1 ¼ ð 1 0

0 wð���Þ Þ for � 2 �1ðS0Þ
(since � is orientable), and from above Að�ÞT ¼ ð �ð�Þ 0

0 �ð�Þwð���Þ Þ. If �ð�Þ ¼ �1 and

wð���Þ ¼ 1, then Að�ÞT ¼ �I but PAð�ÞTP�1 ¼ I which is a contradiction. There-

fore, if �ð�Þ ¼ �1, then wð���Þ ¼ �1. In this case, Að�ÞT ¼ ð�1 0
0 1

Þ and PAð�ÞTP�1 ¼
ð 1 0
0 �1

Þ and so P ¼ ð 0 �
� 0

Þ as desired. Instead, suppose �ð�Þ ¼ 1 for all � 2 �1ðS0Þ
(indeed since �ðh1Þ ¼ 1, we are assuming this for all � 2 �1ðSÞ). If wð���Þ ¼ �1 for

some � 2 �1ðS0Þ, then ImðAð�ÞT � wð���ÞIÞ ¼ fðx
0
Þjx 2 Rg and so V 0 	 fð x

0
Þjx 2 Rg

and V ¼ R. However this is impossible since from above S0 being geometric of

type fSLSL2 �E implies e =2 V and so V 6¼ R. Therefore wð���Þ ¼ 1 for all �, which

means B is orientable. As a result Að�ÞT ¼ I for all � 2 �1ðS0Þ. In this situation, P

may not have desired form, however by choosing an isomorphic group of

isometries, we can change P to have the desired form. Let � ¼ ð2�
orbðBÞÞ=ðe01Þ.
An isomorphic action of �1ðS0Þ is defined by h2

1ðw; zÞ ¼ w; zþ ð 0
�
Þ

� �
,

h2ðw; zÞ ¼ w; zþ ð 1
0
Þ

� �
, s0iðw; zÞ ¼ sð�ss0iÞ w; z� ð ei2=mi

�ei1=2mi
Þ

� �
, tiðw; zÞ ¼ sð�ttiÞðw; zÞ

and uiðw; zÞ ¼ sð�uuiÞðw; zÞ, where s : IsomðH 2Þ ! IsomðfSLSL2 �EÞ is the section

defined in Section 3. For this group of isometries, P ¼ ð 0 1
� 0

Þ hence the claim. �

REMARK 6.2. In Remark 4.10, we defined M to be Z ð�1ðF ÞÞ �Z Q and

eQð�Þ 2 H2ð�orb
1 ðBÞ;MÞ to be the rational euler class. When the general fibre is the

Klein bottle, it can be shown that H2ð�orb
1 ðBÞ;MÞ ¼� M=IwMð¼ Q=V Þ and via this

isomorphism eQð�Þ gets mapped to emodV .
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Thus Proposition 4.6, and Theorems 4.7 and 6.1 can be summarised by the

following:

THEOREM 6.3. A manifold is geometric of type H 2 �E2 if and only if it is a

Seifert 4-bundle with finite group of monodromies, zero rational euler class and

hyperbolic base.

A manifold is geometric of type fSLSL2 �E if and only if it is a Seifert 4-bundle

with finite group of monodromies, nonzero rational euler class and hyperbolic base.

7. Virtually Geometric Seifert Manifolds.

It is easily shown that if a non-orientable manifold is geometric then its

orientation cover is also geometric and of the same type. However, the converse is

not so clear. We will show that in our case a much stronger result is true: that

Seifert manifolds with hyperbolic base which are finitely covered by a geometric

manifold are themselves geometric. We call manifolds which are finitely covered

by a geometric manifold, virtually geometric.

THEOREM 7.1. Let S be a Seifert 4-manifold over a hyperbolic base B, and

let ŜS be a finite cover of S.

Then S is geometric if and only if ŜS is.

That is, virtually geometric Seifert 4-manifolds over a hyperbolic base are

geometric.

PROOF. Note ŜS is also a Seifert 4 manifold. If F denotes the fibre of S, and

F̂F and B̂B denote the fibre and base of ŜS respectively, then F̂F (finitely) covers F and

B̂B (finitely) covers B.

Suppose first that F ¼ T 2 and that ŜS is geometric. We may assume without

loss of generality that �1ðŜSÞ is normal in �1ðSÞ. Hence �1ðF̂F Þ is also normal in

�1ðSÞ, since it is characteristic in �1ðŜSÞ. If � 2 �1ðSÞ acts trivially on �1ðF̂F Þ then it

acts trivially on �1ðF Þ, since the action of an automorphism of �1ðF Þ is

determined by its action on any subgroup of finite index.

Since the group of monodromies of ŜS is finite then so is the group of

monodromies of S and therefore S is geometric by Theorem 4.7.

If F ¼ Kb there is nothing to prove, since Outð�1ðF ÞÞ is finite and so the

theorem follows from Theorem 6.1.

The necessity of the condition is clear. �

COROLLARY 7.2. Let S be a non-orientable Seifert 4-manifold over a

hyperbolic base B and let its orientation cover be ŜS.

Then S is geometric if and only if ŜS is.
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COROLLARY 7.3. A Seifert 4-manifold S over a hyperbolic base is geometric

if and only if it has a finite cover diffeomorphic to ~BB� T 2 or M3 � S1 where ~BB is a

hyperbolic surface and M3 is a fSLSL2 3-manifold.

PROOF. The manifolds ~BB� T 2 are geometric of type H 2 �E2 and the

manifolds M3 � S1 are geometric of type fSLSL2 �E. So by the theorem, if S is

finitely covered by one of these it is geometric. Conversely suppose S is geometric.

Then it is finitely covered by such a manifold by Theorem 9.3 in [2]. �
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