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Abstract. For a semialgebraic mapping between semialgebraic sets, we consider

the set of points at which the fibre is not smooth. In this paper we discuss whether the

singular set is itself semialgebraic, when it has codimension bigger than or equal to 2 in the

domain of f and whether the mapping is semialgebraically trivial along the smooth part of

the fibre, giving several examples which show optimality of those results. In addition, we

give an example of a polynomial function f such that even the ðaf Þ condition in the weak

sense fails in a neighbourhood of a smooth fibre, but f is semialgebraically trivial along it.

Introduction

A semialgebraic set of Rn is a finite union of sets of the form

fx 2 Rn j f1ðxÞ ¼ � � � ¼ fkðxÞ ¼ 0; g1ðxÞ > 0; � � � ; gsðxÞ > 0g

where f1; � � � ; fk; g1; � � � ; gs are polynomial functions on Rn. Let r ¼ 1; 2; � � � ;1; !. A

semialgebraic set M � Rm is called a Cr Nash manifold, if it is a Cr (regular)

submanifold of Rm. Let M � Rm and N � Rn be Cr Nash manifolds. A Cs mapping

f :M ! N, s � r, is called a Cs Nash mapping, if the graph of f is semialgebraic in

Rm �Rn. A mapping f :M ! N, whereM � Rm and N � Rn are semialgebraic sets, is

called a semialgebraic mapping, if the graph of f is semialgebraic inRm �Rn. (We don’t

assume the continuity of f .)

Here we make one remark on C1 Nash and C! Nash.

REMARK 0.1 (B. Malgrange [10]).

(1) A C1 Nash manifold is a C! Nash manifold.

(2) A C1 Nash mapping between C! Nash manifolds is a C! Nash mapping.

After this, we call a C1 Nash manifold a Nash manifold and a C1 Nash mapping a Nash

mapping. Now we observe the fibres of a Cr Nash mapping.

OBSERVATION 0.2. Let r <1. Then it is easy to construct a Cr Nash function f

from the 2 dimensional sphere S2 to R such that

(i) the fibre of the star point ? is Cr Nash diffeomorphic to a closed disk,
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(ii) the fibre of each point � is Cr Nash diffeomorphic to a circle, and

(iii) the fibre of the circle point � is a point.

R◦

◦

�• •

S2

f

�

�

�
�

�
�

�
�

In fact, we can construct such a function as follows. Define g : R2 ! R by

gðx; yÞ ¼ �ðx2 þ y2 � 1Þ2r ðx2 þ y2 � 1Þ
0 ðx2 þ y2 � 1Þ.

(

Let p : S2 � fNg ! R be the stereographic projection from the north pole N of S2.

Define f : S2 � fNg ! R by f ¼ g � p and fðNÞ ¼ 0.

Observe that for a 2 R, dim f�1ðaÞ ¼ 2; 1; 0;�1 where dim ; ¼ �1. We next

consider the set of points at which the fibre is not smooth. In this case it is a circle

which is the boundary of the closed disk. This example suggests such a set is a

semialgebraic subset of M of codimension � 1.

Suppose we are given a semialgebraic mapping between semialgebraic sets. In this

paper we give some results on semialgebraicity, codimension 2 property and closedness

of the set of points x at which the fibres f�1ðfðxÞÞ are not Ck Nash manifolds. We discuss

also semialgebraic triviality of a C1 Nash mapping along the smooth part of the fibre

in the last section.

The authors would like to thank Karim Bekka and Krzysztof Kurdyka for useful

communications about the proof of Theorem 2.2.

1. Semialgebraic properties.

We first recall some important properties of semialgebraicity.

THEOREM 1.1 (Tarski-Seidenberg Theorem [15]). Let A be a semialgebraic set in

Rk, and let f : Rk ! Rm be a semialgebraic mapping. Then fðAÞ is semialgebraic

in Rm.

THEOREM 1.2 (Lojasiewicz’s Semialgebraic Triangulation Theorem [8],[9]). Given

a finite system of bounded semialgebraic sets X� in Rn, there exist a simplicial

decomposition Rn ¼ [aCa by open simplexes and a semialgebraic automorphism � of Rn

such that

(1) each X� is a finite union of some of the �ðCaÞ,
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(2) �ðCaÞ is a Nash manifold in Rn and � induces a Nash diffeomorphism

Ca ! �ðCaÞ, for every a.

REMARK 1.3. There is a Nash embedding of Rn into Rnþ1 via Rn � Sn. Then

every semialgebraic set in Rn can be considered as a bounded semialgebraic set in Rnþ1.

THEOREM 1.4 (Hardt’s Semialgebraic Triviality Theorem [5]). Let B be a semi-

algebraic set, and let � : Rm � B! B be the projection. For any semialgebraic subset X

of Rm � B, there is a finite partition of B into semialgebraic sets Ni, and for any i, there

are a semialgebraic set Fi � Rm and a semialgebraic homeomorphism

hi : Fi �Ni ! X \ ��1ðNiÞ

compatible with the projection onto Ni.

REMARK 1.5. By the Semialgebraic Triangulation Theorem, we can assume that

the Ni’s are Nash manifolds taking a finite subdivision again if necessary.

Let M � Rm and N � Rn be semialgebraic sets, let A �M be a semialgebraic

subset and let f :M ! N be a semialgebraic mapping. For Q 2 fðAÞ, set

�kðf�1ðQÞÞ ¼ fx 2 f�1ðQÞ j f�1ðQÞ is not a Ck Nash manifold in Rm at xg;

k ¼ 1; 2; � � � ;1 ð!Þ. Then we can easily see the following lemma by the Semialgebraic

Triangulation Theorem.

LEMMA 1.6. For Q 2 fðAÞ, dim�kðf�1ðQÞÞ < dim f�1ðQÞ.

Using the Semialgebraic Triviality Theorem, we can show the following:

LEMMA 1.7. Let f :M ! N be a continuous, semialgebraic mapping, and let

b 2 N . If dimA \ f�1ðQÞ þ b � dim f�1ðQÞ for any Q 2 fðAÞ, then dimAþ b � dimM.

PROOF OF LEMMA 1.7. Let � : Rm �Rn ! Rn be the canonical projection. Then

we can identify M, A, and f with graphf , graphf jA, and �jgraph f : graphf ! Rn,

respectively. By the Semialgebraic Triviality Theorem, there is a finite partition of

fðMÞ into semialgebraic sets Ri, and for any i there are a semialgebraic set Di � Rm and

a semialgebraic homeomorphism �i : Di �Ri ! f�1ðRiÞ compatible with the projection

onto Ri. In addition, there is a finite partition of fðAÞ into semialgebraic sets Sj, and for

any j there are a semialgebraic set Ej � Rm and a semialgebraic homeomorphism  i :

Ej � Sj ! A \ f�1ðSjÞ compatible with the projection onto Sj. By the Semialgebraic

Triangulation Theorem, there is a finite partition of fðAÞ into Nash manifolds Nk which

is compatible with Ri’s and Sj’s, namely, Nk � RiðkÞ and Nk � SjðkÞ for some iðkÞ and

jðkÞ. For any k,

�iðkÞjDiðkÞ�Nk
: DiðkÞ �Nk ! f�1ðNkÞ;  jðkÞjEjðkÞ�Nk

: EjðkÞ �Nk ! A \ f�1ðNkÞ

are semialgebraic homeomorphisms compatible with the projections. Then it follows

that
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dim f�1ðQÞ þ dimNk ¼ dimDiðkÞ þ dimNk ¼ dim f�1ðNkÞ � dimM; Q 2 Nk:

In addition, there is k0 such that

dimA \ f�1ðQÞ þ dimNk0 ¼ dimEjðk0Þ þ dimNk0

¼ dimA \ f�1ðNk0Þ ¼ dimA; Q 2 Nk0 :

Assume that dimAþ b > dimM. Then

dimA \ f�1ðQÞ þ dimNk0 þ b > dim f�1ðQÞ þ dimNk0 ; Q 2 Nk0 :

Thus we have dimA \ f�1ðQÞ þ b > dim f�1ðQÞ, Q 2 Nk0 . This contradicts the hypoth-

esis. Therefore dimAþ b � dimM. �

2. Main results.

Let M � Rm and N � Rn be semialgebraic sets, and let f :M ! N be a

semialgebraic mapping. For k ¼ 1; 2; � � � ;1 ð!Þ, set

�k ¼ fx 2M j f�1ðfðxÞÞ is not a Ck submanifold of Rm at xg:

In case we need specify the mapping f for �k, we denote it by �k½f 	. By definition,

�1 � �2 � � � � � �1: ð2:1Þ

Since f�1ðfðxÞÞ � �k is a regular submanifold of Rm and f is a semialgebraic mapping,

we can replace a Ck submanifold of Rm in the definition of �k by a Ck Nash manifold in

Rm or a Ck Nash submanifold of M for k > 0. Then we can express �kðf�1ðQÞÞ in the

previous section as follows:

�kðf�1ðQÞÞ ¼ �k \ f�1ðQÞ; k ¼ 1; 2; � � � ;1:

THEOREM 2.1. For k ¼ 1; 2; � � �, �k is semialgebraic.

We shall give the proof of this theorem in the next section. In the case k <1, we

can write down the conditions of �k using finitely many words related to semi-

algebraicity. How is the case k ¼ 1 ? If we try to write down the conditions in a similar

way to the finite case, they must be infinitely many. Therefore it makes sense to consider

the stabilisation property of (2.1).

THEOREM 2.2 (Stabilisation). There is k 2 N such that �k ¼ �kþ1 ¼ � � � ¼ �1.

EXAMPLE 2.3. Let f : R2 ! R be a polynomial function defined by fðx; yÞ ¼
x3 � y8. Then �1 ¼ �2 ¼ ;, �3 ¼ �4 ¼ � � � ¼ �1 ¼ fð0; 0Þg.

As a corollary of Theorems 2.1, 2.2 and Lemmas 1.6 and 1.7, we have

COROLLARY 2.4. �k, k ¼ 1; 2; � � � ;1, are semialgebraic subsets ofM of codim � 1.
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By this corollary, we can see Observation 0.2 in the introduction. On the other

hand, we have the following stronger result in the C1 Nash case.

THEOREM 2.5. LetM, N be Nash manifolds with dimM � 1, and let f :M ! N be

a Nash mapping. Then �k is a semialgebraic subset of M of codimension � 2.

In the Cr Nash case where r is finite, the codimension 2 property of �k does not hold

in general as seen in Observation 0.2. But, using similar arguments to the proof of the

theorem above, we can show the first statement in the following proposition. In

addition, we can easily see that the second statement holds under the same assumption.

PROPOSITION 2.6. Let M and N be Cr Nash manifolds with dimM � 1 and

dimN ¼ 1, and let f :M ! N be a Cs Nash mapping ð1 � s � r � 1Þ. Assume that

k � s. Then,

(1) if codim f�1ðQÞ � 1 for any Q 2 fð�kÞ, then �k is a semialgebraic subset ofM of

codim � 2, and

(2) �k is closed in M.

In this proposition, the assumptions that dimN ¼ 1 and k � s are essential for the

codimension 2 property and closedness.

EXAMPLE 2.7. Let g : R ! R be a Cs function, s 2 N , defined by

gðxÞ ¼
xsþ1 ðx � 0Þ
0 ðx � 0Þ

(

(1) Define f : R2 ! R by fðx; yÞ ¼ y� gðxÞ. In the case k � s, �k ¼ ;. Therefore
codim �k ¼ 3.

In the case k > s, �k ¼ fy-axisg. Therefore codim �k ¼ 1. Furthermore, for any

Q 2 fð�kÞ ¼ R, codim f�1ðQÞ ¼ 1. Thus Proposition 2.6 (1) does not hold when k > s.

(2) Define f : R2 ! R2 by fðx; yÞ ¼ ðy; y� gðxÞÞ. For k ¼ 1; 2; � � � ;1, �k ¼ fy-axisg.
Therefore codim �k ¼ 1. Furthermore, for any Q 2 fð�kÞ, codim f�1ðQÞ ¼ 1. Thus

Proposition 2.6 (1) does not hold in the case dimN � 2.

x

y

x

y(1)

00

(2)
ΣkΣk
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EXAMPLE 2.8. (1) Let f : R3 ! R2 be a polynomial mapping defined by

fðx; y; zÞ ¼ ðx2 � zy2; zÞ. Then, for k ¼ 1; 2; � � � ;1; �k = {ðx; y; zÞ j x ¼ y ¼ 0, z > 0},

which is not closed in R3. Thus Proposition 2.6 (2) does not hold in the case dimN � 2.

(2) Let f : R2 ! R be a Cs function, s 2 N , defined by fðx; yÞ ¼ jxj
3sþ1
3 þ y2. In the

case k � s, �k ¼ ;. But, in the case k > s, �k ¼ fy-axisg � fð0; 0Þg, which is not closed in

R2. Thus Proposition 2.6 (2) does not hold when k > s.
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3. Proofs of the main results.

3.1. Proof of Theorem 2.1.

Let M � Rm and N � Rn be semialgebraic sets and let f :M ! N be a semi-

algebraic mapping. For a nonnegative integer k, let Ak denote the set of points x 2M at

which f�1ðfðxÞÞ is a Ck submanifold of Rm. Here a C0 submanifold of Rm means a

topological manifold with the relative topology induced from Rm.

Before beginning the proof of Theorem 2.1, we recall the following well-known fact:

A subset of M which is expressed by a sentence consisting of a finite number of

semialgebraic equalities, semialgebraic inequalities, implications (i.e., if � � � then � � �) and
logical symbols 8, 9 and 6¼ is semialgebraic.

For instance, the set M1 of points in M at which f is continuous is semialgebraic

because

M1 ¼ fx 2M j 8� > 0, 9� > 0 8x0 2M if jx� x0j < � then jfðxÞ � fðx0Þj < �g:

Other instances are the set of points in M at which f is locally injective,

fx 2M j 9� > 0 8x0; x00 2M if jx� x0j < �, jx� x00j < � and x0 6¼ x00 then fðx0Þ 6¼ fðx00Þg;

and the set of points in M at which f is locally surjective,
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x 2M j
8� > 0; 9� > 0 8y0 2 N if jy0 � fðxÞj < �

then 9x0 2M s.t. fðx0Þ ¼ y0; jx� x0j < �

( )
:

Now we start the proof. It is easy to see that A0 is semialgebraic as follows. Let

� : Rm �Rn ! Rn be the canonical projection. We consider the map F :M ! Rm �
Rn defined by F ðxÞ ¼ ðx; fðxÞÞ. Since continuous is the restriction of F to any level set of

f :M ! N, the level set of f is homeomorphic to the corresponding level set of

�jgraph f : graphf ! N . If we can show that semialgebraic is the set of points ðx; fðxÞÞ 2
graphf at which �j�1

graph fð�jgraph fðx; fðxÞÞÞ ¼ �j�1
graph fðfðxÞÞ is a C0 submanifold of

Rm � ffðxÞg, then it follows from the Tarski-Seidenberg Theorem that A0 is semi-

algebraic. Therefore it suffices to show the statement for �jgraph f : graphf ! N. Let us

replace M and f with graph f and �jgraph f respectively. We then can assume that f is

continuous. By the Hardt Theorem we have a finite semialgebraic stratification fNig of

N and a semialgebraic homeomorphism �i ¼ ð�0i; fÞ : f�1ðNiÞ ! f�1ðaiÞ �Ni for each Ni

and some ai 2 Ni. Hence for the proof that A0 is semialgebraic we can suppose that

M ¼ N1 �N for a semialgebraic set N1 � Rm and f : N1 �N ! N is the projection. Let

us denote by A1
0 the set of points of N1 at which N1 is a topological submanifold of

Rm � Sm. Then we only need to show that A1
0 is semialgebraic. That is clear. Indeed, by

the Semialgebraic Triangulation Theorem we can regard ðSm;N1Þ as ðjKj;[�2K0Intð�ÞÞ
for a finite simplicial complex K and a subset K0 of K, where jKj denotes the underlying
polyhedron of K. Then A1

0 is a union of some Intð�Þ, � 2 K because for a1, a2 2 Intð�Þ,
a1 2 A1

0 if and only if a2 2 A1
0. Thus A0 is semialgebraic.

For 0 � j � m, let Ak;j � Ak denote the set of points x 2M at which pjf�1ðfðxÞÞ :

f�1ðfðxÞÞ ! Rj is a Ck diffeomorphism (a homeomorphism if k ¼ 0Þ locally at x, where

p : Rm ! Rj is a projection. Let p1; p2; . . . denote all the projections R
m ! Rj forgetting

some factors. Assume k > 0. Since �k is the complement of the union of Ak;j’s for some

p ¼ pl, 0 � j � m in M, it suffices to show that each Ak;j is semialgebraic.

First consider A0;j. Clearly, A0;j is the set of points x 2M such that pjf�1ðfðxÞÞ :

f�1ðfðxÞÞ ! Rj is injective and surjective locally at x and ðpjf�1ðfðxÞÞÞ
�1 is of class C0 at

pðxÞ. Hence

A0;j = {x 2M j 9� > 0 8x0, x00 2M if jx� x0j < �, jx� x00j < �, x0 6¼ x00 and fðxÞ ¼
fðx0Þ ¼ fðx00Þ then pðx0Þ 6¼ pðx00Þ; 8� > 0 9� > 0 8a0 2 Rj if jpðxÞ � a0j < � then 9x0 2M

s.t. jx� x0j < �, fðxÞ ¼ fðx0Þ, pðx0Þ ¼ a0; 8� > 0 9� > 0 8�0 > 0 9�0 > 0 8a0, a00 2 Rj if

jpðxÞ � a0j < �, jpðxÞ � a00j < � and ja0 � a00j < �0 then 9x0, x00 2M s.t. jx� x0j < �,

jx� x00j < �, jx0 � x00j < �0, fðxÞ ¼ fðx0Þ ¼ fðx00Þ, pðx0Þ ¼ a0, pðx00Þ ¼ a00}.

Therefore A0;j is semialgebraic.

Next we simplify the claim that A1;j is semialgebraic. The sets B ¼ fðx; x0Þ 2 A2
0;j j

fðxÞ ¼ fðx0Þg and Bx ¼ B \ fxg � A0;j for x 2 A0;j are semialgebraic, and the map Bx 3
ðx; x0Þ ! pðx0Þ 2 Rj for each x 2 A0;j is a local homeomorphism. Hence there exists a

semialgebraic open neighbourhood U of the diagonal of A0;j in B such that the map

U \ Bx 3 ðx; x0Þ ! pðx0Þ 2 Rj is a homeomorphism onto an open set Vx in Rj. For each

x 2 A0;j, let qx : Vx ! Rm denote the composite of the inverse map : Vx ! Bx and the
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projection Bx 3 ðx; x0Þ ! x0 2 A0;j � Rm, and set V ¼
S
xfxg � Vx � A0;j �Rj where

the union is taken over A0;j and qðx; aÞ ¼ qxðaÞ for ðx; aÞ 2 V . Then V and q : V ! Rm

are semialgebraic, qx is a homeomorphism onto its image which contains x, and

A1;j ¼ fx 2 A0;j j qx is a C1 embedding at pðxÞg:

Thus it suffices to show the following statement.

STATEMENT 1. Let C and D � C �Rj be semialgebraic sets, and let � : D! Rm

be a semialgebraic map. Assume that for each x 2 C, Dx ¼ D \ fxg �Rj is open in

fxg �Rj and �jDx
is a homeomorphism onto its image. Then the set

D1 ¼ fðx; yÞ 2 D j �jDx
is a C1 embedding at ðx; yÞg

is semialgebraic.

Set

~DD ¼ fðx; y; y0; tÞ 2 D�Rj � ð0; 1	 j 8s 2 ½0; 1	; ðx; yþ sy0Þ 2 Dg;
~��ðx; y; y0; tÞ ¼ ð�ðx; yþ ty0Þ � �ðx; yÞÞ=t for ðx; y; y0; tÞ 2 ~DD;

G ¼ D�Rj � f0g �Rm \ graph ~��;

Gx;y ¼ fðx; yÞg �Rj � f0g �Rm \G for ðx; yÞ 2 D;

and let �1 : G! Rj and �2 : G! Rm denote the projections. Then ~DD, ~�� : ~DD! Rm, G,

Gx;y, �1 and �2 are semialgebraic, and

D1 ¼ fðx; yÞ 2 D j �1jGx;y
and �2jGx;y

are homeomorphisms onto Rj and �2ðGx;yÞ resp.g:

Hence we see D1 is semialgebraic in the same way as the first arguments.

By the same reason as above, the claim that Ak;j, k > 1, is semialgebraic follows

from Statement k, which is similarly defined by replacing D1 in Statement 1 by

Dk ¼ fðx; yÞ 2 Dk�1 j �jDk�1
x

is a Ck embedding at ðx; yÞg:

Statement 2 is reduced to Statement 1 as follows. Set E ¼ D1 �Rj and

 ðx; y; y0Þ ¼ ð�ðx; yÞ; dð�jD1
x
Þyy0Þ 2 Rm �Rm for ðx; y; y0Þ 2 D�Rj;

where d denotes differential operator. Then E and  : E ! Rm �Rm are semialgebraic,

and for each x 2 C, Ex ¼ E \ fxg �Rj �Rj is open in fxg �Rj �Rj and  jEx is a

homeomorphism onto its image. Hence, by Statement 1, the set

E1 ¼ fðx; y; y0Þ 2 E j  jEx is a C1 embedding at ðx; y; y0Þg
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is semialgebraic. On the other hand,

D2 ¼ fðx; yÞ 2 D1 j 8y0 2 Rj,  jEx is a C1 embedding at ðx; y; y0Þg:

Therefore, it follows that D2 is semialgebraic.

We can show Statement k in the same way by induction on k.

3.2. Proof of Theorem 2.2.

We first recall some results of Ramanakoraisina on complexity of semialgebraicity

and the Poly-Raby Theorem on characterisation of a Ck submanifold of Rm.

Let U be an open semialgebraic subset of Rm, and let f : U ! R be a semialgebraic

function. In this subsection, a semialgebraic function means a continuous function

whose graph is semialgebraic. Then there is a polynomial function P : Rm �R ! R

such that P ðX; fðXÞÞ ¼ 0 for any X 2 U. We call the minimum degree of such

polynomials the complexity of f. Concerning this complexity, we have

THEOREM 3.1 (R. Ramanakoraisina [13], [2]). Let F : U � T ! R be a family of

semialgebraic functions parametrised by a semialgebraic set T . Then there is a positive

integer d 2 N such that for any t 2 T , Ft ¼ F jU�ftg has complexity � d.

THEOREM 3.2 (R. Ramanakoraisina [13], [2]). Let f : U ! R be a semialgebraic

function with complexity � d. Then there is a positive integer 	ðd;mÞ 2 N such that if f

is of class C	ðd;mÞ, then f is of Nash class.

REMARK 3.3. The integer 	ðd;mÞ depends only on the complexity d and

dimension m. It is independent of the choice of an open semialgebraic set U of Rm.

Let Y be a closed set of Rm. Define g : Rm ! R by gðxÞ ¼ dist2ðx; Y Þ. For

k ¼ 1; 2; � � � ;1, set

�kðY Þ ¼ fy 2 Y j Y is not a Ck submanifold of Rm at yg;
SkðgÞ ¼ fx 2 Rm j g is not of class Ck at xg:

THEOREM 3.4 (J. B. Poly - G. Raby [14]). For k ¼ 2; 3; � � � ;1, �kðY Þ ¼ Y \ SkðgÞ.

Let us show Theorem 2.2 using the above theorems. Let � : Rm �Rn ! Rn be

the canonical projection. Similarly to the proof of Lemma 1.6, we identify M and f :

M ! N with graphf � Rm �Rn and �jgraphf : graphf ! Rn, respectively.

For a semialgebraic subset A �M, set

�ðAÞ ¼ fx 2 A j A is not locally closed in Rm at xg:

Then, by the Semialgebraic Triangulation Theorem, we see that �ðAÞ is semialgebraic

in Rm, and for Q 2 fðMÞ and k ¼ 1; 2; � � � ;�ðf�1ðQÞÞ � �0ðf�1ðQÞÞ � �kðf�1ðQÞÞ.
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Note that for k ¼ 1; 2; � � � ;1,

�k ¼
[

Q2fðMÞ
�kðf�1ðQÞÞ:

By the Semialgebraic Triviality Theorem, there is a finite partition of fðMÞ into Nash

manifolds fNig such that each fjM\��1ðNiÞ :M \ ��1ðNiÞ ! Ni is semialgebraically

trivial over Ni. Thanks to the remark in this paragraph, we can regard f jM\��1ðNiÞ as f

for the proof of Theorem 2.2. Therefore there is a semialgebraic homeomorphism h :

f�1ðQÞ �N !M (Q 2 N) such that PN � h�1 ¼ f where PN is the canonical projection

onto N. (Here, N is one of Ni.) In addition, we may assume that �ðMÞ is

semialgebraically homeomorphic to �ðf�1ðQÞÞ �N through h�1. Then, for any Q 2 N

and k ¼ 1; 2; � � �, we have

�ðf�1ðQÞÞ � �kðf�1ðQÞÞ � �1ðf�1ðQÞÞ; �ðMÞ � �k � �1:

Therefore, the removal of �ðMÞ from the domain of f has no effect on the proof of

Theorem 2.2. After this, we assume that �ðMÞ ¼ ; that is M is locally closed in Rm.

By the local closedness ofM and the Semialgebraic Triangulation Theorem, we see

that there is a finite covering fUig of M by open semialgebraic sets in Rm such that for

each i, there is a Nash diffeomorphism �i : Ui ! Rm and M \ Ui is closed in Ui. Let us

recall the above identificationsM ¼ graph f and f ¼ �jgraphf again. ThenM \ ðUi �RnÞ
is closed in Ui �Rn and for y 2 N, f�1ðyÞ \ ðUi � fygÞ is closed in Ui � fyg.

For each i, we define �i : Ui �Rn ! Rm �Rn by �iðx; yÞ ¼ ð�iðxÞ; yÞ. Let �i;y ¼
�jUi�fyg : Ui � fyg ! Rm � fyg for y 2 Rn. Then �i;y, y 2 Rn, and � are Nash diffeo-

morphisms. Define Fi : R
m � fðM \ ðUi �RnÞÞ ! R by

Fiðx; yÞ ¼ dist2ðx� fyg;�i;yðf�1ðyÞ \ ðUi � fygÞÞÞ;

and Fi;y ¼ FijRm�fyg for y 2 fðM \ ðUi �RnÞÞ. By Theorem 3.4, for any y 2 fðM \ ðUi �
RnÞÞ and k ¼ 2; 3; � � � ;1,

SkðFi;yÞ \ �i;yðf�1ðyÞ \ ðUi � fygÞÞ ¼ �kð�i;yðf�1ðyÞ \ ðUi � fygÞÞÞ:

Therefore we have[
y2fðM\ðUi�RnÞÞ

ðSkðFi;yÞ \ �i;yðf�1ðyÞ \ ðUi � fygÞÞÞ ¼ �k½f � ��1
i j�iðM\ðUi�RnÞÞ	

¼ �ið�k½f jM\ðUi�RnÞ	Þ:

On the other hand, by Theorem 3.1, fFi;yg has a bounded complexity. Thus Theorem 2.2

follows from Theorem 3.2.

REMARK 3.5. In [7], K. Kurdyka proves that the regular points set of a

subanalytic subset of an analytic manifold is also subanalytic, using a certain type of

stabilisation property and the Poly-Raby Theorem.
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3.3. Proof of Theorem 2.5.

We first prepare lemmas. Let M, N be Cr Nash manifolds and let f :M ! N be a

Cs Nash mapping where 1 � s � r � 1. We denote by SðfÞ the singular points set of f.
Then we can easily see the following lemma by the implicit function theorem.

LEMMA 3.6. For k � s, �k � SðfÞ.

In the function case, we have

LEMMA 3.7. Let dimN ¼ 1. For P 2 SðfÞ, there is an open semialgebraic

neighbourhood U of P in M such that U \ SðfÞ � f�1ðfðP ÞÞ.

PROOF OF LEMMA 3.7. This lemma is obvious in the case where f is constant over

a neighbourhood of P inM. Therefore it suffices to show the case where f is nonconstant

in any small neighbourhood of P inM. Suppose that Lemma 3.7 does not hold. Then, by

the curve selection lemma, there is an analytic curve 
 : ½0; �Þ !M such that


ð0Þ ¼ P and 
ðtÞ 2 ðM � f�1ðfðP ÞÞÞ \ SðfÞ for t > 0:

Then it is easy to see that f is constant along 
. This is a contradiction. �

Now we start the proof of Theorem 2.5. Therefore, let f :M ! N be a Nash

mapping between Nash manifolds with dimM � 1. By (2.1) and Corollary 2.4, it suffices

to show that �1 is a (semialgebraic) subset of M of codimension � 2. In addition, it

follows from Remark 0.1 that �1 ¼ ; in the case where dimM ¼ 1. Therefore we assume

that dimM � 2.

Recall that N is a subset of Rn. Since we are considering a problem of fibres of a

mapping, we may regard f as a mapping from M to Rn. Let f ¼ ðf1; � � � ; fnÞ :M ! Rn.

For 1 � i � n, define Fi :M ! Ri by Fi ¼ ðf1; � � � ; fiÞ. Then F1 ¼ f1 and Fn ¼ f . For

each Fi :M ! Ri, 1 � i � n, set

�1ðFiÞ ¼ fx 2M j F�1
i ðFiðxÞÞ is not a C1 submanifold of Rm at xg:

By Corollary 2.4, �1ðFiÞ, 1 � i � n, are semialgebraic subsets ofM. For Q 2 FiðMÞ, we
define �1ðF�1

i ðQÞÞ similarly.

By induction on i, we show that codim �1ðFiÞ � 2. We first consider the case i ¼ 1.

The analycity of F1 implies that over each connected component of M, dimF�1
1 ðQÞ <

dimM or F1 is constant. In the constant case, �1ðF1Þ ¼ ; on the connected component.

We next consider the nonconstant case. By Lemma 1.6, dim�1ðF�1
1 ðQÞÞ < dimF�1

1 ðQÞ
for Q 2 F1ðMÞ. In addition, by Lemmas 3.6 and 3.7, �1ðF1Þ is contained locally in

one fibre. It follows that codim �1ðF1Þ � 2 on the connected component. Therefore the

case i ¼ 1 is shown.

Next suppose that �1ðFiÞ is a semialgebraic subset of M of codimension � 2. Then

Ci ¼ �1ðFiÞ is also a semialgebraic subset of M of codimension � 2. Set Li ¼M � Ci
and A ¼ �1ðFiþ1Þ \ Li. Note that A is a semialgebraic subset of M and
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A ¼
[

Q2FiðAÞ
�1ðfiþ1jFij�1

Li
ðQÞÞ:

If dimFij�1
Li
ðQÞ � 1 for Q 2 FiðLiÞ, then �1ðfiþ1jFij�1

Li
ðQÞÞ ¼ ;. Therefore if Q 2 FiðAÞ,

then dimFij�1
Li
ðQÞ � 2. Similarly to the case i ¼ 1, it follows from Remark 0.1 and

Lemmas 1.6, 3.6 and 3.7 that

dimFij�1
Li
ðQÞ \ Aþ 2 � dimFij�1

Li
ðQÞ for any Q 2 FiðAÞ:

By Lemma 1.7, we have codim A � 2 in Li and also in M. Since �1ðFiþ1Þ � A [ Ci, we
have codim �1ðFiþ1Þ � 2.

This completes the proof of Theorem 2.5.

4. Semialgebraic triviality along the fibre.

In this section, we discuss triviality of a C1 Nash mapping along the smooth part of

the fibre. Let M � Rm and N � Rn be C1 Nash manifolds, and let f :M ! N be a C1

Nash mapping. Then we consider the following question:

QUESTION 4.1. Let P 2M � �k where k ¼ 1; 2; � � � ;1. Is there an open semi-

algebraic neighbourhood U of P inM with U �M � �k such that a family of map-germs

ff : ðM;QÞ ! ðN;F ðP ÞÞgQ2f�1ðfðP ÞÞ\U is semialgebraically trivial ?

The answer is No! There is a negative example in the mapping case to this question.

EXAMPLE 4.2. Let R3 ! R2 be a polynomial mapping defined by

fðx; y; zÞ ¼ ðx2 þ y2; ðx2 þ y2Þz2Þ:

Then �k ¼ ;. For P ¼ ðx; y; zÞ with ðx; yÞ 6¼ ð0; 0Þ and z 6¼ 0, f�1ðfðP ÞÞ consists of two

circles. But, for P ¼ ðx; y; zÞ with ðx; yÞ 6¼ ð0; 0Þ and z ¼ 0, f�1ðfðP ÞÞ consists of one

circle. (See the figure in the next page.) Thus f is not locally semialgebraically RL -

trivial along f�1ðfðOÞÞ = {z-axis} at O ¼ ð0; 0; 0Þ.

REMARK 4.3. There are negative examples also in polynomial mappings from R2

to R2. Actually, we can see fðx; yÞ ¼ ðx2; xyÞ is such an example.

On the other hand, we have the following positive answer in the function case to

Question 4.1.

THEOREM 4.4. Let M and N be C1 Nash manifolds with dimN ¼ 1, and let f :

M ! N be a semialgebraic mapping. Let P 2M � �k where k ¼ 1; 2; � � � ;1. Then f is

locally semialgebraically R-trivial along f�1ðfðP ÞÞ around P .
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We recall the following fact on semialgebraic equivalence of semialgebraic

functions.

LEMMA 4.5 ([16]). Let F �M � Rm be semialgebraic sets, and let f, g :M ! R

be semialgebraic functions such that

f�1ð0Þ ¼ g�1ð0Þ ¼ F; ff > 0g ¼ fg > 0g and ff < 0g ¼ fg < 0g:

Then the germs of f and g at F are semialgebraically R-equivalent. Here we can choose

the semialgebraic homeomorphism of the equivalence to be the identity map on F .

PROOF OF THEOREM 4.4. We show this theorem using the above lemma. Since we

consider the local problem around P 2M � �k, we can assume that M ¼ Rq, N ¼ R,

P ¼ 0 2 Rq, fðP Þ ¼ 0 2 R, F ¼ f�1ðP Þ ¼ Rs � f0g � Rq and f : Rq ! R is a semi-

algebraic function. The theorem is obvious in the case where s ¼ 0 or q. Therefore, let

0 < s < q. Then, by Lemma 4.5, f is semialgebraically R-equivalent to one of the

following functions as germs at F :

(i) in the case s ¼ q � 1, xq, 
x2q .
(ii) in the case 1 � s � q � 2, 
ðx2sþ1 þ � � � þ x2qÞ.

We denote by g such a function semialgebraically R-equivalent to f . Remark that g is

independent of the variables x1; � � � ; xs.
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Let a, b, A, B : ðRq � F; F � F Þ ! ðR; 0Þ be semialgebraic functions defined by

aðx; tÞ ¼ fðxÞ; bðx; tÞ ¼ fðxþ tÞ;
Aðx; tÞ ¼ gðxÞ; Bðx; tÞ ¼ gðxþ tÞ:

Then there are germs of t-level preserving semialgebraic homeomorphisms

�;  : ðRq � F; F � F Þ ! ðRq � F; F � F Þ

such that A ¼ a � � and B ¼ b �  . In addition, �jF�F ¼  jF�F ¼ idjF�F . For r > 0, let

Cr ¼ fðx1; � � � ; xq; t1; � � � ; ts; 0; � � � ; 0Þ 2 Rq � F j jxij < r ð1 � i � qÞ;
jtjj < r ð1 � j � sÞg;

Dr ¼ fðx1; � � � ; xq; t1; � � � ; ts; 0; � � � ; 0Þ 2 Rq � F j jxi � tij < r ð1 � i � sÞ;
jxuj < r ðsþ 1 � u � qÞ; jtjj < r ð1 � j � sÞg:

Then there is a positive number v > 0 such that Cv and Dv are contained in the domains

of � and  , respectively. Since g is independent of the variables x1; � � � ; xs, there is a

t-level preserving semialgebraic homeomorphism

H : ðCv; Cv \ F � F;Cv \ f0g � F Þ ! ðDv;Dv \ F � F;Dv \ f0g � F Þ

such that AjCv ¼ BjDv
�H. Therefore f is locally semialgebraically R-trivial along F

around 0 2 F . �

REMARK 4.6. (1) In the above theorem, we can replace C1 Nash manifolds

M � Rm and N � Rn by semialgebraic regular submanifolds.

(2) At about the same time as we proved the above result several years ago, Karim

Bekka announced that he has shown the corresponding result in the o-minimal

structure.

To continue we consider the function case. Namely, M and N are C1 Nash

manifolds with dimN ¼ 1, and f :M ! N is a C1 Nash mapping. Let P 2M � �k and

F ¼ f�1ðfðP ÞÞ � �k. As stated above, f is locally semialgebraically R-trivial along F

around P . From the viewpoint of stratification theory (e.g. [18], [11], [4], [1], [6], [17]),

it is natural to ask if there are a local C1 retraction � :M � �k ! F at P and an open

semialgebraic neighbourhood U of P in M � �k such that for any Q 2 U � F ,

d�Q : ker dfðQÞ ! T�ðQÞF ð4:1Þ

is surjective. The answer to this question is also No.

EXAMPLE 4.7. Let f : R2 ! R be a polynomial function defined by

fðx; tÞ ¼ x2t4 � 2x3t2 þ
21

20
x4:
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Since fðx; tÞ ¼ x2fðt2 � xÞ2 þ 1
20 x

2g, f�1ð0Þ ¼ fx ¼ 0g.

Now @f
@x ¼ 2xt4 � 6x2t2 þ 21

5 x
3 ¼ 21

5 xðx� �t2Þðx� �t2Þ where � ¼ 15�
ffiffiffiffi
15

p

21 , � ¼
15þ

ffiffiffiffi
15

p

21 , @f@t ¼ 4x2t3 � 4x3t ¼ 4x2tðt2 � xÞ.

Therefore SðfÞ ¼ fx ¼ 0g and �k ¼ ;.

t

x0

x = αt2

x = βt2

x = t2

level curve of f

Take 0 2 f�1ðfð0ÞÞ and let F ¼ f�1ðfð0ÞÞ ¼ fx ¼ 0g. Since @f
@x ¼ 0 and @f

@t 6¼ 0 over

fx ¼ �t2g [ fx ¼ �t2g outside F , d$Q : ker dfðQÞ ! T$ðQÞF is not surjective along fx ¼
�t2g or fx ¼ �t2g, where $ : R2 ! F is the canonical projection.

Let � : R2 ! F be an arbitrary local C1 retraction at 0 2 R2. Then there is a local

C1 diffeomorphism � : ðR2; 0Þ ! ðR2; 0Þ such that � � ��1 ¼ $. Here we can assume that

� has the following form:

��1ðx; tÞ ¼ ðx; �ðx; tÞÞ

where �ðx; tÞ ¼ axþ tþ gðx; tÞ and g is of class C1 such that j1gð0Þ ¼ 0. Then

f � ��1ðx; tÞ ¼ x2ðaxþ tþ gÞ4 � 2x3ðaxþ tþ gÞ2 þ 21
20x

4:

Therefore we have
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@f���1

@x
¼ 2xðaxþ tþ gÞ4 þ 4x2 aþ @g

@x

� �
ðaxþ tþ gÞ3

� 6x2ðaxþ tþ gÞ2 � 4x3 aþ @g
@x

� �
ðaxþ tþ gÞ þ 21

5 x
3

¼ 2xhðx; tÞ;

where hðx; tÞ ¼ ðaxþ tþ gÞ4 þ 2x aþ @g
@x

� �
ðaxþ tþ gÞ3

� 3xðaxþ tþ gÞ2 � 2x2 aþ @g
@x

� �
ðaxþ tþ gÞ þ 21

10x
2

¼ t4 � 3xt2 þ 21
10x

2 þ kðx; tÞ:

Let vðx; tÞ ¼ t4 � 3xt2 þ 21
10 x

2 which is a weighted homogeneous polynomial of type

� ¼ ð1
2
; 1
4
Þ with an isolated singularity. Set jðx; tÞj� ¼ ðjxj2 þ jyj4Þ

1
4 . Then k is of class

C0 and

kðx; tÞ ¼ Oðjðx; tÞj4�Þ: ð4:2Þ

Since vðx; tÞ ¼ 21
10 ðx� �t2Þðx� �t2Þ, we have the following:

(i) If 0 < x < �t2, then v > 0.

(ii) If �t2 < x < �t2, then v < 0.

(iii) If x > �t2, then v > 0.

It follows from (4.2) that there are positive numbers C > 0 and K1; K2; K3; K4 > 0 with

0 < K1 < � < K2 < K3 < � < K4 such that over any curve jðx; tÞj� ¼ s for 0 < s < C,

(i) if 0 < x < K1t
2, then h > 0,

(ii) if K2t
2 < x < K3t

2, then h < 0,

(iii) if x > K4t
2, then h > 0.

Therefore, over any curve jðx; tÞj� ¼ s for 0 < s < C, there are at least two points in

fx > 0g at which h ¼ 0. Thus there is an arbitrarily close point Q in R2 � F to the origin

such that hðQÞ ¼ 0. This implies that d$Q : ker dðf � ��1ÞðQÞ ! T$ðQÞF is not surjective

at Q arbitrarily close to the origin. It follows that d�Q : ker dfðQÞ ! T�ðQÞF is not

surjective at Q arbitrarily close to the origin.

REMARK 4.8. As seen in the above example, there is a real polynomial function

such that for any C1 retraction � :M � �k ! F at P , map (4.1) is not surjective in any

neighbourhood of P . This phenomenon is in contrast to the complex situation. In the

complex analytic function case, Whitney (b)-regularity implies Thom condition (af) (see

A. Parusiński [12] or J. Briançon, P. Maisonobe and M. Merle [3]). Therefore, for any

C1 retraction �, map (4.1) is surjective in a neighbourhood of P .
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[12] A. Parusiński, Limits of tangent spaces to fibres and the wf condition, Duke Math. J., 72 (1993), 99–

109.
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