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Abstract. For a semialgebraic mapping between semialgebraic sets, we consider
the set of points at which the fibre is not smooth. In this paper we discuss whether the
singular set is itself semialgebraic, when it has codimension bigger than or equal to 2 in the
domain of f and whether the mapping is semialgebraically trivial along the smooth part of
the fibre, giving several examples which show optimality of those results. In addition, we
give an example of a polynomial function f such that even the (ay) condition in the weak
sense fails in a neighbourhood of a smooth fibre, but f is semialgebraically trivial along it.

Introduction

A semialgebraic set of R" is a finite union of sets of the form
{reR"| filz) == filx) =0, i(x) >0,---,gs(x) > 0}

where f1,---, fr,91, -+, 9gs are polynomial functions on R". Let r=1,2,---,00,w. A
semialgebraic set M C R™ is called a C" Nash manifold, if it is a C" (regular)
submanifold of R™. Let M C R™ and N C R" be C" Nash manifolds. A C* mapping
f:M— N, s<r,is called a C* Nash mapping, if the graph of f is semialgebraic in
R™ x R". A mapping f: M — N, where M C R™ and N C R" are semialgebraic sets, is
called a semialgebraic mapping, if the graph of f is semialgebraic in R™ x R". (We don’t
assume the continuity of f.)
Here we make one remark on C*° Nash and C* Nash.

REMARK 0.1 (B. Malgrange [10]).
(1) A C* Nash manifold is a C* Nash manifold.
(2) A C°° Nash mapping between C* Nash manifolds is a C¥ Nash mapping.

After this, we call a C*° Nash manifold a Nash manifold and a C*° Nash mapping a Nash
mapping. Now we observe the fibres of a C" Nash mapping.

OBSERVATION 0.2. Let r < co. Then it is easy to construct a C" Nash function f
from the 2 dimensional sphere S? to R such that
(i) the fibre of the star point x is C" Nash diffeomorphic to a closed disk,
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(ii) the fibre of each point e is C" Nash diffeomorphic to a circle, and
(iii) the fibre of the circle point o is a point.

L
=

In fact, we can construct such a function as follows. Define g : R* — R by

_x2+y2_1 2r x2+y2§1
glz,y) = ( ) (2 ) :
0 (z+y* > 1).

Let p:S?> — {N} — R be the stereographic projection from the north pole N of S2.
Define f: S? —{N} - Rby f=gopand f(N)=0.

Observe that for a € R, dimf!(a) =2,1,0,—1 where dim() = —1. We next
consider the set of points at which the fibre is not smooth. In this case it is a circle
which is the boundary of the closed disk. This example suggests such a set is a
semialgebraic subset of M of codimension > 1.

Suppose we are given a semialgebraic mapping between semialgebraic sets. In this
paper we give some results on semialgebraicity, codimension 2 property and closedness
of the set of points x at which the fibres f~!(f(x)) are not C¥ Nash manifolds. We discuss
also semialgebraic triviality of a C' Nash mapping along the smooth part of the fibre
in the last section.

The authors would like to thank Karim Bekka and Krzysztof Kurdyka for useful
communications about the proof of Theorem 2.2.

1. Semialgebraic properties.

We first recall some important properties of semialgebraicity.

THEOREM 1.1 (Tarski-Seidenberg Theorem [15]). Let A be a semialgebraic set in
RF, and let f: R* — R™ be a semialgebraic mapping. Then f(A) is semialgebraic
in R™.

THEOREM 1.2 (Lojasiewicz’s Semialgebraic Triangulation Theorem [8],[9]). Given
a finite system of bounded semialgebraic sets X, in R", there exist a simplicial
decomposition R" = U,C, by open simplexes and a semialgebraic automorphism 7 of R"
such that

(1) each X, is a finite union of some of the 7(C,),
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(2) 7(C,) is a Nash manifold in R" and 7 induces a Nash diffeomorphism
C, — 7(C,), for every a.

REMARK 1.3. There is a Nash embedding of R" into R"™' via R" C S”. Then
every semialgebraic set in R" can be considered as a bounded semialgebraic set in R".

THEOREM 1.4 (Hardt’s Semialgebraic Triviality Theorem [5]). Let B be a semi-
algebraic set, and letI1 : R™ x B — B be the projection. For any semialgebraic subset X
of R™ x B, there is a finite partition of B into semialgebraic sets N;, and for any i, there
are a semialgebraic set F; C R™ and a semialgebraic homeomorphism

th . Fi X Ni — XﬁHil(Ni)
compatible with the projection onto N;.

REMARK 1.5. By the Semialgebraic Triangulation Theorem, we can assume that
the N;’s are Nash manifolds taking a finite subdivision again if necessary.

Let M C R™ and N C R" be semialgebraic sets, let A C M be a semialgebraic
subset and let f: M — N be a semialgebraic mapping. For @ € f(A), set

e(fHQ) ={z € £1(Q) | f1(Q) is not a C* Nash manifold in R™ at x},

k=1,2,---,00 (w). Then we can easily see the following lemma by the Semialgebraic
Triangulation Theorem.

LEMMA 1.6. For Q € f(A), dimZx(f~1(Q)) < dim f~1(Q).
Using the Semialgebraic Triviality Theorem, we can show the following:

LEMMA 1.7. Let f: M — N be a continuous, semialgebraic mapping, and let
be N. Ifdim AN f~1(Q) +b < dim f~1Q) for any Q € f(A), then dim A + b < dim M.

PROOF OF LEMMA 1.7.  Let II : R™ x R" — R" be the canonical projection. Then
we can identify M, A, and f with graphf, graphf|,, and H|gmphf s graphf — R",
respectively. By the Semialgebraic Triviality Theorem, there is a finite partition of
f(M) into semialgebraic sets R;, and for any i there are a semialgebraic set D; C R™ and
a semialgebraic homeomorphism ¢; : D; x R; — f~(R;) compatible with the projection
onto R;. In addition, there is a finite partition of f(A) into semialgebraic sets S;, and for
any j there are a semialgebraic set £; C R™ and a semialgebraic homeomorphism ; :
E;x S; — AN f71(S;) compatible with the projection onto S;. By the Semialgebraic
Triangulation Theorem, there is a finite partition of f(A) into Nash manifolds Ny which
is compatible with R;’s and S;’s, namely, Ny C R;y) and Nj, C Sj for some i(k) and
j(k). For any k,

Dith) | D,y v, Dity X N — FHNR), Vi) gy, * By X N = AN SN NR)

are semialgebraic homeomorphisms compatible with the projections. Then it follows
that
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dim f7'(Q) + dim Ny, = dim D) + dim N = dim f~'(N;) < dim M, Q € Nj.

In addition, there is kg such that

dim AN f7(Q) + dim Ny, = dim Ej;,) + dim Ny,
=dimANfY(N,) =dimA, Q€ N,

Assume that dim A + b > dim M. Then
dim AN f71(Q) + dim Ny, + b > dim f~1(Q) + dim Ny,, Q € Ny,.

Thus we have dim AN f~1(Q) + b > dim f1(Q), Q € Ny,. This contradicts the hypoth-
esis. Therefore dim A + b < dim M. O

2. Main results.

Let M C R™ and N C R" be semialgebraic sets, and let f: M — N be a
semialgebraic mapping. For k=1,2,---, 00 (w), set

Y ={x € M| f~}(f()) is not a C* submanifold of R™ at x}.
In case we need specify the mapping f for Xy, we denote it by 3;[f]. By definition,
X1 CYC- C Yo (21)

Since f~1(f(z)) — 1 is a regular submanifold of R and f is a semialgebraic mapping,
we can replace a C* submanifold of R™ in the definition of ¥, by a C* Nash manifold in
R™ or a C* Nash submanifold of M for k > 0. Then we can express L,(f~1(Q)) in the
previous section as follows:

Ek(fil(Q)):kafil(Q% k:].,Q,"',OO.

THEOREM 2.1. Fork=1,2,---, ¥} is semialgebraic.

We shall give the proof of this theorem in the next section. In the case k < oo, we
can write down the conditions of ¥ using finitely many words related to semi-
algebraicity. How is the case k = oo 7 If we try to write down the conditions in a similar
way to the finite case, they must be infinitely many. Therefore it makes sense to consider
the stabilisation property of (2.1).

THEOREM 2.2 (Stabilisation). There is k € N such that X = Xp11 = -+ = T

EXAMPLE 2.3. Let f:R?> — R be a polynomial function defined by f(z,y) =
23— 8. Then 1 =%y =0, X3 =%, =--- =3 = {(0,0)}.

As a corollary of Theorems 2.1, 2.2 and Lemmas 1.6 and 1.7, we have

COROLLARY 2.4. X, k=1,2,---,00, are semialgebraic subsets of M of codim > 1.
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By this corollary, we can see Observation 0.2 in the introduction. On the other
hand, we have the following stronger result in the C*° Nash case.

THEOREM 2.5. Let M, N be Nash manifolds withdim M > 1, andlet f : M — N be
a Nash mapping. Then Xy is a semialgebraic subset of M of codimension > 2.

In the C" Nash case where 7 is finite, the codimension 2 property of 3 does not hold
in general as seen in Observation 0.2. But, using similar arguments to the proof of the
theorem above, we can show the first statement in the following proposition. In
addition, we can easily see that the second statement holds under the same assumption.

PROPOSITION 2.6. Let M and N be C" Nash manifolds with dimM >1 and
dimN =1, and let f: M — N be a C°* Nash mapping (1 < s <r <o0). Assume that
k <s. Then,

(1) if codim f~1(Q) > 1 for any Q € f(3i), then Sy is a semialgebraic subset of M of
codim > 2, and

(2) Xy is closed in M.

In this proposition, the assumptions that dim V =1 and k < s are essential for the
codimension 2 property and closedness.

EXAMPLE 2.7. Let g: R — R be a C* function, s € N, defined by

{$S+1 (z > 0)

9(x) = 0 (z < 0)

(1) Define f: R* — R by f(z,y) =y — g(z). In the case k < s, ¥ = (). Therefore
codim ¥ = 3.

In the case k> s, ¥ = {y-axis}. Therefore codim ¥; = 1. Furthermore, for any
Q € f(31) = R, codim f~1(Q) = 1. Thus Proposition 2.6 (1) does not hold when k > s.

(2) Define f : R* — R by f(z,y) = (y,y — g(x)). For k= 1,2,---, 00, ¥} = {y-axis}.
Therefore codim Y; = 1. Furthermore, for any @Q € f(X;), codim f~'(Q) = 1. Thus
Proposition 2.6 (1) does not hold in the case dim N > 2.

(1) (2) y

2

N\ N\

<

Xk

NN
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EXAMPLE 2.8. (1) Let f:R®— R®> be a polynomial mapping defined by
f(z,y,2) = (x* — 2%, 2). Then, for k=1,2,---,00, ¥ = {(2,9,2) |z =y =0, z> 0},
which is not closed in R?®. Thus Proposition 2.6 (2) does not hold in the case dim N > 2.

(2) Let f: R*> — R be a C* function, s € N, defined by f(x,y) = |z| 3 + %> In the
case k < s, Xy = (). But, in the case k > s, X = {y-axis} — {(0,0)}, which is not closed in
R?. Thus Proposition 2.6 (2) does not hold when k > s.

(1) z

b

e

—

\)

~
<

P

= =N
o[ X Nt —

3. Proofs of the main results.

3.1. Proof of Theorem 2.1.

Let M C R™ and N C R" be semialgebraic sets and let f: M — N be a semi-
algebraic mapping. For a nonnegative integer k, let A; denote the set of points x € M at
which f~1(f(z)) is a C* submanifold of R™. Here a C” submanifold of R™ means a
topological manifold with the relative topology induced from R™.

Before beginning the proof of Theorem 2.1, we recall the following well-known fact:

A subset of M which is expressed by a sentence consisting of a finite number of
semialgebraic equalities, semialgebraic inequalities, implications (i.e., if - - - then ---) and
logical symbols ¥, 3 and # is semialgebraic.

For instance, the set M; of points in M at which f is continuous is semialgebraic
because

My={reM|Ve>0,36>0Vx € Mif |z — 2| < then |f(z) — f(z')] < €}.
Other instances are the set of points in M at which f is locally injective,
{xeM|Je>0Ve, 2" € Mif |vt—2'| <e |z —2"| <eand 2’ # 2" then f(z') # f(«")},

and the set of points in M at which f is locally surjective,
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Ve>0,36>0Vy e Nif |y — f(z)| <6
x e M| . , ) , .
then 32/ € M s.t. f(o') =9/, | — 2| <e

Now we start the proof. It is easy to see that Aj is semialgebraic as follows. Let
II: R x R" — R" be the canonical projection. We consider the map F': M — R™ x
R" defined by F(z) = (z, f(z)). Since continuous is the restriction of F to any level set of
f: M — N, the level set of f is homeomorphic to the corresponding level set of
4 - graphf — N. If we can show that semlalgebralc is the set of points (z, f(z)) €
graphf at which H|gmphf(H|qmphf(x f(x))) = H|gmphf( (z)) is a C° submanifold of
R" x {f(x)}, then it follows from the Tarski-Seidenberg Theorem that A, is semi-
algebraic. Therefore it suffices to show the statement for I, ; : graphf — N. Let us
replace M and f with graph f and IIf .,
continuous. By the Hardt Theorem we have a finite semialgebraic stratification {N;} of
N and a semialgebraic homeomorphism m; = (7}, f) : f~1(N;) — f~'(a;) x N; for each N;
and some a; € N;. Hence for the proof that Aj is semialgebraic we can suppose that
M = N; x N for a semialgebraic set Ny C R™ and f: N; x N — N is the projection. Let
us denote by A the set of points of N; at which N; is a topological submanifold of
R™ C S™. Then we only need to show that A} is semialgebraic. That is clear. Indeed, by
the Semialgebraic Triangulation Theorem we can regard (S™, Ny) as (| K|, UserInt(o))
for a finite simplicial complex K and a subset K’ of K, where |K| denotes the underlying
polyhedron of K. Then A} is a union of some Int(c), o € K because for a;, as € Int(o),
a1 € A} if and only if ay € AL. Thus Ay is semialgebraic.

For 0 <j<m, let A;; C A;, denote the set of points z € M at which p‘f*l(f(r)) :
f~Y(f(z)) — R is a C* diffeomorphism (a homeomorphism if k = 0) locally at x, where
p: R™ — R is a projection. Let pi, ps, . .. denote all the projections R™ — R’ forgetting

¢ respectively. We then can assume that f is

some factors. Assume k > 0. Since ¥, is the complement of the union of A ;’s for some
p=p, 0< 7 <min M, it suffices to show that each A ; is semialgebraic.

First consider Ag;. Clearly, Aj; is the set of points x € M such that p\f )
Y (f(x)) — R is injective and surjective locally at = and (Pl -1(s )>)71 is of class CO at
p(z). Hence

Ayj={xeM|Ie>0Ve, 2" e Mif |z —2'| <e¢ |z —2"| <e 2/ #2" and f(z) =
f(@') = f(z") then p(z') # p(z"); Ve > 0 36 > 0 Va' € R’ if |p(x) — /| < 6 then 3z’ € M
stz —2a| <e flz)=f(a'), p(2')=d; Ye>036 >0V >038 >0Vd, a" € R if
Ip(z) —a'| <8, |p(z) —a"| <6 and |’ —a”"| <& then T/, 2" € M st. |z —2'| <e,
[z —a"| <€ [of —a"[ <€, fx) = f(2') = f(«"), p(a') = &, p(a) = a"}.

Therefore Ay ; is semialgebraic.

Next we simplify the claim that A, ; is semialgebraic. The sets B = {(z,2’) € Agﬁj |
f(z) = f(2)} and B, = BN {xz} x Ay; for z € Ay ; are semialgebraic, and the map B, >
(z,2') — p(a') € R’ for each z € Ay is a local homeomorphism. Hence there exists a
semialgebraic open neighbourhood U of the diagonal of Ay, in B such that the map
UNB, > (z,2') — p(z') € R’ is a homeomorphism onto an open set V, in R’. For each
x € Ay, let ¢, : V; — R™ denote the composite of the inverse map : V, — B, and the
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projection B, > (z,2') — 2’ € Ag; C R™, and set V =J, {z} x V; C Ap; x R where
the union is taken over Ay ; and ¢(z,a) = g,(a) for (z,a) € V. Then V and ¢: V — R™
are semialgebraic, ¢, is a homeomorphism onto its image which contains x, and

Ayj={x € Ap;| q is a C' embedding at p(z)}.

Thus it suffices to show the following statement.

STATEMENT 1.  Let C and D C C x R’ be semialgebraic sets, and let ¢ : D — R™
be a semialgebraic map. Assume that for each x € C, D, = DN {x} x R’ is open in
{} x R and ¢|,, is a homeomorphism onto its image. Then the set

D' ={(z,y) €D | ¢|p, is a C' embedding at (z,y)}

is semialgebraic.

Set
D= {(z,y,9/,t) € D x R’ x (0,1] | Vs € [0,1], (z,y + sy) € D},
¢z, 4,9/, t) = (p(z,y+ ty) — ¢(x,y))/t for (z,y,y/,t) € D,
G =D x R’ x {0} x R™ N graph ¢,
Gy ={(z,9)} x R x {0} x R" NG for (z,y) € D,

and let p; : G — R’ and p; : G — R™ denote the projections. Then D, ¢: D — R™, G,
Gy, p1 and py are semialgebraic, and

D' ={(z,y) € D | p

G, @and po|, —~are homeomorphisms onto R/ and py(G,,) resp.}.
Hence we see D' is semialgebraic in the same way as the first arguments.

By the same reason as above, the claim that Aj;, k> 1, is semialgebraic follows
from Statement k, which is similarly defined by replacing D' in Statement 1 by

D" = {(z,y) € D*' | ¢|pis is a C* embedding at (z,y)}.
Statement 2 is reduced to Statement 1 as follows. Set E = D' x R’ and
(a,y,9) = (6(z,y),d(¢|p),y) € R™ x R" for (,y,4) € D x R/,

where d denotes differential operator. Then F and ¢ : E — R™ x R™ are semialgebraic,
and for each x € O, E, = EN{z} x R/ x R’ is open in {2} x R’ x R/ and Ylp, is a

homeomorphism onto its image. Hence, by Statement 1, the set

E'={(z,y,y) € E| |, is a C' embedding at (z,y,y)}
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is semialgebraic. On the other hand,
D? = {(z,y) € D' | Yy € R/, Y|p, is a C' embedding at (z,y,1/)}.

Therefore, it follows that D? is semialgebraic.
We can show Statement k in the same way by induction on k.

3.2. Proof of Theorem 2.2.

We first recall some results of Ramanakoraisina on complexity of semialgebraicity
and the Poly-Raby Theorem on characterisation of a C* submanifold of R™.

Let U be an open semialgebraic subset of R™, and let f : U — R be a semialgebraic
function. In this subsection, a semialgebraic function means a continuous function
whose graph is semialgebraic. Then there is a polynomial function P: R™ x R — R
such that P(X, f(X)) =0 for any X € U. We call the minimum degree of such
polynomials the complexity of f. Concerning this complexity, we have

THEOREM 3.1 (R. Ramanakoraisina [13], [2]). Let F: U xT — R be a family of
semialgebraic functions parametrised by a semialgebraic set T. Then there is a positive
integer d € N such that for anyt € T, F; = F|U><{t} has complezity < d.

THEOREM 3.2 (R. Ramanakoraisina [13], [2]). Let f:U — R be a semialgebraic
function with complexity < d. Then there is a positive integer v(d, m) € N such that if f
is of class C"'™)  then f is of Nash class.

REMARK 3.3.  The integer ~(d,m) depends only on the complexity d and
dimension m. It is independent of the choice of an open semialgebraic set U of R™.

Let Y be a closed set of R™. Define g: R™ — R by g(v) = dist*(z,Y). For
k=1,2,---,00, set

Y(Y) ={y € Y |Y is not a C* submanifold of R™ at y},
Si(g9) = {z € R™ | g is not of class C* at z}.

THEOREM 3.4 (J. B. Poly - G. Raby [14]). Fork=2,3,---,00, X;x(Y) =Y N Si(9).

Let us show Theorem 2.2 using the above theorems. Let II: R™ x R" — R" be
the canonical projection. Similarly to the proof of Lemma 1.6, we identify M and f:

M — N with graphf ¢ R™ x R" and H|gmphf : graphf — R", respectively.

For a semialgebraic subset A C M, set
T'(A) = {z € A| A is not locally closed in R™ at x}.

Then, by the Semialgebraic Triangulation Theorem, we see that I'(A) is semialgebraic

in R™, and for Q € f(M) and k=1,2,--- ., T(f71(Q)) € Xo(f (@) C Zi(f(Q))-
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Note that for K =1,2,---, 00,

Se= U S 1Q)).
Qef(M)

By the Semialgebraic Triviality Theorem, there is a finite partition of f(M) into Nash
manifolds {N;} such that each f|)/ 1y, M0 OY(N;) — N; is semialgebraically
trivial over V;. Thanks to the remark in this paragraph, we can regard f|MﬂH*1(N;) as f
for the proof of Theorem 2.2. Therefore there is a semialgebraic homeomorphism A :
Q) x N — M (Q € N) such that Py o h™! = f where Py is the canonical projection
onto N. (Here, N is one of N;.) In addition, we may assume that I'(M) is
semialgebraically homeomorphic to I'(f~}(Q)) x N through A~!. Then, for any Q € N

and k=1,2,---, we have
L(fHQ)) C Z(f1(Q)) C Zwe(f7H(Q)), T(M) C Ty C s

Therefore, the removal of I'(M) from the domain of f has no effect on the proof of
Theorem 2.2. After this, we assume that T'(M) = () that is M is locally closed in R™.

By the local closedness of M and the Semialgebraic Triangulation Theorem, we see
that there is a finite covering {U;} of M by open semialgebraic sets in R™ such that for
each i, there is a Nash diffeomorphism ¢; : U; — R™ and M NU; is closed in U;. Let us
recall the above identifications M = graph f and f =11|,, , » again. Then M N (U; x R")
is closed in U; x R™ and for y € N, f~'(y) N (U; x {y}) is closed in U; x {y}.

For each i, we define ®; : U; x R" — R" x R" by ®(z,y) = (¢i(x),y). Let &;,, =
Pl wpyy 2 Ui x {y} — R™ x {y} for y € R". Then ®;,, y € R", and ® are Nash diffeo-
morphisms. Define F; : R" x f(M N (U; x R")) — R by

Fi(w,y) = dist*(z x {y}, @i, (f ' () 0 (Ui x {y}))),

and Fjy = Fi|gnq,y fory € f(M N (U; x R")). By Theorem 3.4, for any y € f(M N (U; x
R") and k=2,3,---, 00,

Sk(Fiy) N @iy (f () 0 (Ui x {y})) = Sa(@iy (f () N (Ui x {y}))).
Therefore we have

(Sk(Fi) N @1y (F(4) 0 (T x () = ZhlF 0 85 gy (o)
yef(MN(U;x R"))

= @i(Zk[fIme,xR")])'

On the other hand, by Theorem 3.1, {F; ,} has a bounded complexity. Thus Theorem 2.2
follows from Theorem 3.2.

REMARK 3.5. In [7], K. Kurdyka proves that the regular points set of a
subanalytic subset of an analytic manifold is also subanalytic, using a certain type of
stabilisation property and the Poly-Raby Theorem.
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3.3. Proof of Theorem 2.5.

We first prepare lemmas. Let M, N be C" Nash manifolds and let f: M — N be a
C* Nash mapping where 1 < s < r < co. We denote by S(f) the singular points set of f.
Then we can easily see the following lemma by the implicit function theorem.

LEMMA 3.6. Fork<s, X, C S(f).
In the function case, we have

LEMMA 3.7. Let dimN =1. For P € S5(f), there is an open semialgebraic
neighbourhood U of P in M such that UNS(f) C f1(f(P)).

PRrROOF OF LEMMA 3.7.  This lemma is obvious in the case where f is constant over
a neighbourhood of P in M. Therefore it suffices to show the case where f is nonconstant
in any small neighbourhood of P in M. Suppose that Lemma 3.7 does not hold. Then, by
the curve selection lemma, there is an analytic curve A : [0,6) — M such that

A0) = P and \(t) € (M — f~1(f(P))) N S(f) for t > 0.

Then it is easy to see that f is constant along A. This is a contradiction. O

Now we start the proof of Theorem 2.5. Therefore, let f: M — N be a Nash
mapping between Nash manifolds with dim M > 1. By (2.1) and Corollary 2.4, it suffices
to show that ¥, is a (semialgebraic) subset of M of codimension > 2. In addition, it
follows from Remark 0.1 that ¥, = 0 in the case where dim M = 1. Therefore we assume
that dim M > 2.

Recall that N is a subset of R". Since we are considering a problem of fibres of a
mapping, we may regard f as a mapping from M to R". Let f = (f1, -+, fa) : M — R".
For 1 <i<mn, define F; : M — R’ by F; = (fi, -+, fi). Then F} = f; and F,, = f. For
eachFi:M—>Ri’, 1 <i<n,set

Yoo(F) = {x € M | F7'(Fi(2)) is not a C* submanifold of R™ at x}.

By Corollary 2.4, ¥ (F;), 1 <14 < n, are semialgebraic subsets of M. For Q € F;(M), we
define ¥, (F;1(Q)) similarly.

By induction on 7, we show that codim X, (F;) > 2. We first consider the case i = 1.
The analycity of F} implies that over each connected component of M, dim F; }(Q) <
dim M or Fj is constant. In the constant case, X (F;) = () on the connected component.
We next consider the nonconstant case. By Lemma 1.6, dim X (F;1(Q)) < dim F; }(Q)
for Q € Fi(M). In addition, by Lemmas 3.6 and 3.7, X (F1) is contained locally in
one fibre. It follows that codim X (F1) > 2 on the connected component. Therefore the
case ¢ = 1 is shown.

Next suppose that X (F;) is a semialgebraic subset of M of codimension > 2. Then
C; = X (F;) is also a semialgebraic subset of M of codimension > 2. Set L; = M — C;
and A = ¥ (Fi41) N L;. Note that A is a semialgebraic subset of M and
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A= U Zoo(fir1lp-1(0))-
QEF;(A) /

If dimFZ—E}(Q) <1 for Q € F;(L;), then Zoo(fi+1‘E‘Zl(Q>) = (). Therefore if Q € F;(A),
then dimFiE}(Q) > 2. Similarly to the case i =1, it follows from Remark 0.1 and
Lemmas 1.6, 3.6 and 3.7 that

dim F;|;'(Q) N A +2 < dim | (Q) for any Q € F;(A).

By Lemma 1.7, we have codim A > 2 in L; and also in M. Since X (Fi11) C AU C;, we
have codim X (Fj1) > 2.
This completes the proof of Theorem 2.5.

4. Semialgebraic triviality along the fibre.

In this section, we discuss triviality of a C' Nash mapping along the smooth part of
the fibre. Let M C R™ and N C R" be C' Nash manifolds, and let f: M — N be a C*
Nash mapping. Then we consider the following question:

QUESTION 4.1. Let P€ M — X where k=1,2,---,00. Is there an open semi-
algebraic neighbourhood U of P in M with U C M — 3 such that a family of map-germs
{f:(M,Q) — (N, F(P))}ges1(s(p)nv is semialgebraically trivial ?

The answer is No! There is a negative example in the mapping case to this question.

EXAMPLE 4.2. Let R® — R? be a polynomial mapping defined by
fla,y,2) = (@ + o7, (@ + 7)2).

Then ¥; = (). For P = (z,y,2) with (z,y) # (0,0) and z # 0, f~1(f(P)) consists of two
circles. But, for P = (z,y,2) with (z,y) # (0,0) and z=0, f~*(f(P)) consists of one
circle. (See the figure in the next page.) Thus f is not locally semialgebraically %Z.Z-
trivial along f~1(f(0)) = {z-axis} at O = (0,0,0).

REMARK 4.3. There are negative examples also in polynomial mappings from R?
to R*. Actually, we can see f(z,y) = (22, xy) is such an example.

On the other hand, we have the following positive answer in the function case to
Question 4.1.

THEOREM 4.4. Let M and N be C' Nash manifolds with dim N =1, and let f :
M — N be a semialgebraic mapping. Let P € M — %), where k= 1,2,---,00. Then f is
locally semialgebraically %-trivial along f~1(f(P)) around P.
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.

L

We recall the following fact on semialgebraic equivalence of semialgebraic
functions.

LEMMA 4.5 ([16]). Let F C M C R™ be semialgebraic sets, and let f, g: M — R
be semialgebraic functions such that

FH0)=g7(0) = F, {f >0} ={g>0} and {f <0} = {g < 0}.

Then the germs of f and g at F' are semialgebraically %-equivalent. Here we can choose
the semialgebraic homeomorphism of the equivalence to be the identity map on F.

PROOF OF THEOREM 4.4. We show this theorem using the above lemma. Since we
consider the local problem around P € M — ¥, we can assume that M = R!, N = R,
P=0€R! f(P)=0€R, F=f1P)=R° x{0} CR? and f: R’ — R is a semi-
algebraic function. The theorem is obvious in the case where s = 0 or ¢q. Therefore, let
0 < s < q. Then, by Lemma 4.5, f is semialgebraically %-equivalent to one of the
following functions as germs at F:

(i) in the case s = ¢ — 1, z,, .

(i) in the case 1 <5 < q—2, +(22,, + -+ 7).
We denote by g such a function semialgebraically Z-equivalent to f. Remark that g is
independent of the variables x1,- -, x;.
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Let a, b, A, B: (R!x F,F x F) — (R,0) be semialgebraic functions defined by

a(m,t) = f(x)»b(xvt) = f('T + t)7
A(z,t) = g(z), B(z,t) = g(z + t).

Then there are germs of ¢-level preserving semialgebraic homeomorphisms
¢, (RIXF,FxF)— (R!'xF,FxF)
such that A =ao ¢ and B=bo. In addition, ¢|p, p = V| p.p = id|pyp. For r >0, let

Cr={(z1, -, zg,t1, -, t5,0,---,0) e RTx F | |zy] <7 (1 <1 <ygq),
bl <r<i<s),

D, ={(x1, -+, zg, t1, - ,t5,0,---,0) e RIX F | |z; —t;] <r (1 <i<s),
ol <7 (s+1<usa)ltl<r(1<i<s)

Then there is a positive number v > 0 such that C, and D, are contained in the domains
of ¢ and 1, respectively. Since g is independent of the variables x1,---,x,, there is a
t-level preserving semialgebraic homeomorphism

H:(C,,C,NF x F,C,n{0} x F) = (D,,D,NF x F,D,N{0} x F)

such that A\CU = B|DU o H. Therefore f is locally semialgebraically %-trivial along F
around 0 € F. ]

REMARK 4.6. (1) In the above theorem, we can replace C' Nash manifolds
M C R™ and N C R" by semialgebraic regular submanifolds.

(2) At about the same time as we proved the above result several years ago, Karim
Bekka announced that he has shown the corresponding result in the o-minimal
structure.

To continue we consider the function case. Namely, M and N are C' Nash
manifolds with dim N =1, and f: M — N is a C' Nash mapping. Let P € M — %, and
F = f7Y(f(P)) — 3. As stated above, f is locally semialgebraically %-trivial along F'
around P. From the viewpoint of stratification theory (e.g. [18], [11], [4], [1], [6], [17]),
it is natural to ask if there are a local C" retraction IT : M — ¥, — F at P and an open
semialgebraic neighbourhood U of P in M — ¥, such that for any Q € U — F,

dTlg : ker df(Q) — Ty F (4.1)

is surjective. The answer to this question is also No.

EXAMPLE 4.7. Let f: R> — R be a polynomial function defined by

. 21
f(z,t) = 22" — 223> + %x‘l.
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Since f(z,t) = 22{(t> —z)* + 55 2%}, f7H0) = {z =0}
)

Now d—f =2zt" — 62> + 2 2® = Za(x — at?)(x — ft?) where a= 1571/T57 8=

15;1/E’ % = 42°% — 42t = 42°t(t? — x).

Therefore S(f) = {z =0} and ), = 0.

t
r = at?
x = Bt
x =12
0 x

level curve of f

Take 0 € f~1(f(0)) and let F = f~1(f(0)) = {x = 0}. Since g—ﬁ =0 and % # 0 over
{o = at?} U{z = Bt*} outside F, dwq : ker df(Q) — T F is not surjective along {z =
at®} or {x = pt*}, where @ : R?> — F is the canonical projection.

Let IT : R?> — F be an arbitrary local C" retraction at 0 € R%. Then there is a local
C" diffeomorphism o : (R?,0) — (R?,0) such that I o 0~! = . Here we can assume that
o has the following form:

o (z,t) = (2, 6(z,1))
where ¢(x,t) = ax +t + g(x,t) and g is of class C' such that j'g(0) = 0. Then
foo (x,t) =a*(ax +t+g)' — 22 (ax + t + g)° + %x‘l.

Therefore we have
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—W;;*l = 2z(azx +t + g)* + 42? (a + %) (ax +t+g)°

—6:02(a:r+t+g)2—4w3(a ag)(az+t+g)+ z?
= 2zh(z,t),

where h(x,t) = (az +t + g)* + 2z (a + dq) (ax +t+g)°

—3w(ax+t+g)2—2x2(a ag)(ax+t—|—g)+21 2

=t' — 3at® + 2a® + k(z,1).

Let v(x,t) =t* — 3at? + :c which is a weighted homogeneousl polynomial of type
p=(3,1) with an 1solated singularity. Set |(z,1)], = (Jz|> + [y|")T. Then k is of class
C" and

k(1) = O(|(z, D). (4.2)

Since v(z,t) = 3§ (x — at®)(x — Bt*), we have the following:

(i) If0<x < at?, then v > 0.
(i) If at? < z < Bt2, then v < 0.
(iii) If z > Bt2, then v > 0.

It follows from (4.2) that there are positive numbers C' > 0 and K1, Ky, K3, K; > 0 with
0 < Kj <a< Ky <Kj<f<Kjsuch that over any curve |(z,1)[, = s for 0 < s < C,

(i) if 0 <z < Kjt?, then h >0,
(i) if Kot? < 2 < K3t?, then h < 0,
(iii) if z > K,#*, then h > 0.

Therefore, over any curve |(x,t)|# = s for 0 < s < C, there are at least two points in
{z > 0} at which h = 0. Thus there is an arbitrarily close point Q in R*> — F to the origin
such that (Q) = 0. This implies that dzwg : ker d(f o 07')(Q) — Ti(g)F is not surjective
at @ arbitrarily close to the origin. It follows that dllg : ker df(Q) — Ty F' is not
surjective at @) arbitrarily close to the origin.

REMARK 4.8. As seen in the above example, there is a real polynomial function
such that for any C! retraction Il : M — %, — F at P, map (4.1) is not surjective in any
neighbourhood of P. This phenomenon is in contrast to the complex situation. In the
complex analytic function case, Whitney (b)-regularity implies Thom condition (ay) (see
A. Parusinski [12] or J. Briangon, P. Maisonobe and M. Merle [3]). Therefore, for any
C! retraction II, map (4.1) is surjective in a neighbourhood of P.
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