
J. Math. Soc. Japan
Vol. 59, No. 2 (2007) pp. 301–321

Teichmüller spaces for pointed Fuchsian groups

and their modular groups

By Yuliang Shen
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Abstract. It is known that the modular group Mod(X) acts discontinuously
(but not freely) on the Teichmüller space T (X) for a finite type Riemann surface X,
while it does not necessarily act discontinuously on T (X) when X is of infinite type.
The primary purpose of the paper is to discuss those subgroups of Mod(X) acting
discontinuously and freely on T (X) and to discuss the properties of the correspond-
ing quotient complex manifolds as well. Actually, we will discuss some generalized
Teichmüller spaces, the Teichmüller spaces for pointed Riemann surfaces and pointed
Fuchsian groups, and their modular groups, generalizing and completing some results
of Bers [Be1], Kra [Kr1] and Nag ([Na1], [Na3], [Na4]).

1. Introduction.

A basic question in the theory of Riemann surfaces is to investigate the moduli
spaces of the complex structures on a Riemann surface. The Teichmüller space T (X) of
a Riemann surface X is the biggest of such spaces. It is a contractible complex manifold
and is also a branched covering of the classical Riemann moduli space R(X) when the
surface X is of finite type. Actually, when the surface X is of finite type, that is, X is
a compact surface with at most finitely many points removed, the Teichmüller modular
group Mod(X) acts discontinuously on T (X) as a group of biholomorphic automorphisms
and gives R(X) as the quotient space, namely, R(X) = T (X)/ Mod(X). However, this
action is not fixed point free and so the Riemann space R(X) is a normal complex space
but in general not a complex manifold. Now, as pointed out by Nag (see [Na4, p. 167]),
it is an important problem to classify all the subgroups of the modular group Mod(X)
acting freely on T (X), and correspondingly all the complex quotient manifolds which are
intermediate moduli spaces between the Teichmüller space T (X) and the Riemann space
R(X). Both Kra [Kr1] and Nag ([Na1], [Na3], [Na4]) have introduced some classes of
such subgroups and discussed the corresponding quotient manifolds.

When the Riemann surface X is of infinite type, the Teichmüller modular group
Mod(X) does not necessarily act discontinuously on T (X) (see [Fu1], [Fu2], [FST]).
Thus, in this case it is a much complicated problem to classify the intermediate complex
manifolds between the Teichmüller space T (X) and the Riemann space R(X). We need to
find the subgroups of the Teichmüller modular group Mod(X) which act discontinuously
and freely on the Teichmüller space T (X). The primary purpose of this paper is to
investigate such a problem for all Riemann surfaces, not necessarily of finite type. In fact,
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we will discuss a somewhat general problem in the setting of Fuchsian groups. Actually,
Kra [Kr1] (see also [Be1], [Na1], [Na3], [Na4]) has introduced and discussed some
moduli spaces of deformations of Fuchsian groups. He outlined his approach without
proofs for Fuchsian groups of finite type. We will investigate these spaces and complete
the proofs for general Fuchsian groups, not necessarily of finite type, along the lines of
Kra [Kr1].

2. Preliminaries.

In this section, we shall review some basic definitions, notations and fundamental
results from Teichmüller theory. For references, see the papers [Be2], [Be3], [Be4] and
the books [Ga1], [Le], [Na4].

2.1. Teichmüller spaces for Fuchsian groups.
Let G be a Fuchsian group acting on the upper half plane H and also on the lower

half plane L in the complex plane C, and HG be H with all of the fixed points of elliptic
elements of G removed. Then G is finitely generated and of the first kind if and only if
HG/G is of finite type, namely, it is a compact Riemann surface with at most finitely
many points removed. G is of type (g, n) if HG/G is a compact surface of genus g with
n points removed. G is said to be exceptional if it has type (g, n) with 2g + n ≤ 4.

Let L∞(G) denote the set of all Beltrami differentials for G on the upper half plane
H, namely,

L∞(G) =
{
µ ∈ L∞(H) : (µ ◦ g)g′/g′ = µ, for all g ∈ G

}
. (2.1)

The open unit ball M(G) of L∞(G) is the set of all Beltrami coefficients for G. The
Teichmüller distance between two points µ1 and µ2 in M(G) is defined as

σG(µ1, µ2) =
1
2

log
1 +

∥∥ µ1−µ2
1−µ1µ2

∥∥
∞

1− ∥∥ µ1−µ2
1−µ1µ2

∥∥
∞

. (2.2)

For any µ ∈ M(G), let wµ denote the unique quasiconformal mapping of the plane C

onto itself which fixes 0, 1 and ∞, is conformal in L, and satisfies the Beltrami equation
∂z̄w = µ∂zw in H. Two elements µ and ν in M(G) are said to be equivalent if wµ and
wν coincide on the real axis R. [µ] will denote the equivalence class of µ.

The Teichmüller space T (G) is the set of all the equivalence classes [µ] of the Beltrami
coefficients µ in M(G). T (G) is finite dimensional if and only if G is of finite type. We let
ΦG denote the natural projection of M(G) onto T (G), so that ΦG(µ) is the equivalence
class of µ. The Teichmüller distance between two points [µ1] and [µ2] in T (G) is defined
as

τG([µ1], [µ2]) = inf{σG(ν1, ν2) : [ν1] = [µ1], [ν2] = [µ2]}. (2.3)

Since it is an open set in the complex Banach space L∞(G), M(G) is a complex
manifold, and the Teichmüller distance is precisely the Kobayashi distance on M(G).
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Fundamental work of Ahlfors and Bers shows that T (G) is also a complex manifold.
Precisely, T (G) has a unique complex manifold structure so that the natural projection
ΦG : M(G) → T (G) is a holomorphic split submersion. It is also known that the Teich-
müller distance is precisely the Kobayashi distance on the Teichmüller space T (G).

2.2. Allowable mappings and modular groups for Fuchsian groups.
For any Fuchsian group G, let Q(G) denote the set of all quasiconformal mappings

w of H onto itself such that wGw−1 is again a Fuchsian group. Two elements w1 and
w2 are said to be equivalent if they coincide on the real line R. The equivalence class of
w will be denoted by [w]. Let Σ0(G) denote the set of all quasiconformal self-mappings
of H which are equivalent to the identity mapping.

For any µ ∈ M(G), let wµ denote the unique quasiconformal mapping of H onto
itself which fixes 0, 1 and ∞, and satisfies the Beltrami equation ∂z̄w = µ∂zw. Then
wµ and wν are equivalent if and only if [µ] = [ν]. The point [µ] will also be denoted by
[wµ] later. For any µ ∈ M(G), we denote Gµ = wµGw−1

µ = {gµ = wµgw−1
µ : g ∈ G},

Gµ = wµG(wµ)−1 = {gµ = wµg(wµ)−1 : g ∈ G}. Then Gµ is again a Fuchsian group,
while Gµ is a quasi-Fuchsian group.

Let w ∈ Q(G) be given. We consider the mapping

w∗(wµ) = α ◦ wµ ◦ w−1, (2.4)

where µ ∈ M(G), α is a Möbius transformation of H onto itself such that α◦wµ◦w−1 fixes
0, 1 and ∞. Since [w∗(wµ)] depends only on [w] and [wµ], w∗ induces a biholomorphic
isomorphism χ([w]) between T (G) and T (wGw−1).

For each µ ∈ M(G), the domain wµ(L), hence also wµ(H), depends only on ΦG(µ).
We may form the Bers fiber space

F (G) =
{
(ΦG(µ), ζ) ∈ T (G)×C : µ ∈ M(G), ζ ∈ wµ(H)

}
. (2.5)

It is known that F (G) is a complex manifold. Now χ([w]) can be extended to a biholo-
morphic isomorphism between the fiber spaces F (G) and F (wGw−1):

ρ([w])([wµ], z) =
(
[wν ], wν ◦ w ◦ (wµ)−1(z)

)
, (2.6)

where ν ∈ M(wGw−1) satisfies w∗(wµ) = wν . χ([w]) : T (G) → T (wGw−1) and ρ([w]) :
F (G) → F (wGw−1) are called allowable mappings.

Let Σ(G) denote the set of all mappings w in Q(G) such that wGw−1 = G. The
extended modular group mod(G) = Σ(G)/Σ0(G) for G is the set of all equivalence classes
[w] of all elements w in Σ(G). Then each element [w] in mod(G) acts on F (G) by ρ([w])
as a biholomorphic fiber-preserving automorphism, and the action of mod(G) on F (G) is
always effective. The normal subgroup G of Σ(G) can be considered as a normal subgroup
of mod(G). Since the action χ([g]) on T (G) is trivial for each g ∈ G, we define naturally
the modular group Mod(G) = mod(G)/G for G. The element of Mod(G) induced by
w ∈ Σ(G) will be denoted by 〈w〉. Then each element 〈w〉 of Mod(G) acts on T (G) by
χ(〈w〉) as a biholomorphic automorphism. However, the action of Mod(G) on T (G) is
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not always effective. Mod(G) acts on T (G) non-effectively if and only if G is exceptional
(see [EGL], [Ep1], [Mat]).

2.3. Teichmüller spaces and modular groups for Riemann surfaces.
Let X be a Riemann surface with possibly empty ideal boundary ∂X. We denote

by Q(X) the set of all quasiconformal mappings defined on X. Two mappings f and
g from X to Y are said to be homotopic (rel ∂X) if there exists a homotopy ft : (X ∪
∂X)× [0, 1] → Y ∪ ∂Y between f and g such that ft = f = g at each point of ∂X for all
t ∈ [0, 1]. The homotopy class of a mapping f is denoted by 〈f〉. Now let Σ(X) denote
the set of all quasiconformal self-mappings of X, and Σ0(X) the set of all quasiconformal
self-mappings of X homotopic to the identity rel ∂X. Then, Mod(X) = Σ(X)/Σ0(X),
which is the group of homotopy classes of all quasiconformal self-mappings of X, is known
as the modular group of X.

Two mappings f and g are said to be equivalent if there exists a conformal mapping
c from f(X) onto g(X) such that g−1 ◦ c◦f ∈ Σ0(X). The Teichmüller space T (X) of X

is the set of all equivalence classes [f ] of all mappings f on X. The Teichmüller distance
between two points [f1] and [f2] in T (X) is defined as

τX([f1], [f2]) = inf
{

1
2

log K[f ] : f−1
2 ◦ f ◦ f1 ∈ Σ0(X)

}
, (2.7)

where K[f ] is the maximal dilatation of a mapping f from f1(X) onto f2(X).
Now let X be a Riemann surface of hyperbolic type, namely, there exists a torsion

free Fuchsian group G such that H/G = X. Let π : H → X denote the natural
projection. It is known that f ∈ Σ0(X) if and only if there exists some w ∈ Σ0(G) such
that π ◦w = f ◦π, which implies that Mod(X) is isomorphic to Mod(G). It is also known
that T (X) has a natural complex manifold structure so that T (X) is biholomorphically
and isometrically equivalent to T (G).

A homotopy class 〈g〉 of a mapping g : X → Y induces a biholomorphic isomorphism
χ(〈g〉) sending [f ] to [f ◦ g−1] from T (X) onto T (Y ). In particular, an element 〈g〉 of
the modular group Mod(X) induces a biholomorphic automorphism χ(〈g〉) of T (X). An
important fact is that except in some special cases the converse is also true. This is a
combination of results in a series of papers (see [EG], [EK1], [EMa], [La], [Mar], [Ro]).
We state it in the setting of Fuchsian groups. Recall that the classical Riemann moduli
space is R(X) = T (X)/ Mod(X).

Theorem A. Let G and G′ be two Fuchsian groups, each of which is torsion free
and not exceptional, and F : T (G) → T (G′) be a biholomorphic isomorphism. Then
there exists some w ∈ Q(G) such that G′ = wGw−1 and F = χ([w]). Particularly, each
biholomorphic automorphism of T (G) is induced by an element of the modular group.

3. Subgroups of modular groups.

In this section, we will introduce some classes of subgroups of modular groups which
act freely and discontinuously on corresponding Teichmüller spaces. The corresponding
quotient manifolds will be discussed and be generalized to the setting of Fuchsian groups
in the following sections.
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We first recall some basic definitions and facts on the action of a group on some
metric space. Suppose H acts on a metric space S as a group of isometric homeomor-
phisms. H is said to act freely on S if for any p ∈ S, Hp = {h ∈ H : h(p) = p} consists
only of the identity element. H is said to act discontinuously on S if for any p ∈ S,
there exists some r > 0 such that the set {h ∈ H : h(B(p, r)) ∩B(p, r) 6= ∅} consists of
only finitely many elements, where B(p, r) is the open ball centered at p with radius r.
Now a classical result of Cartan [Ca] says that if H acts discontinuously on a complex
manifold S as a group of biholomorphic automorphisms, then S/H is a normal complex
space; furthermore, if H also acts freely on S, then S/H is a complex manifold with S

as a normal covering space.
Now let X be a hyperbolic Riemann surface, and x1, x2, . . . , xn be n (n ≥ 1) distinct

points on X. Set Xn = X−{xi : 1 ≤ i ≤ n}. We introduce three classes of quasiconformal
mappings of Xn onto itself:

Σ1(Xn) is the set of restrictions to Xn of all quasiconformal mappings f of X which
are homotopic (rel ∂X) to the identity map by a homotopy ft : (X∪∂X)×[0, 1] → X∪∂X

such that ft(xi) = xi for all t ∈ [0, 1] and 1 ≤ i ≤ n;
Σ2(Xn) is the set of restrictions to Xn of all quasiconformal mappings f of X which

are homotopic (rel ∂X) to the identity map such that f(xi) = xi for all 1 ≤ i ≤ n;
Σ3(Xn) is the set of restrictions to Xn of all quasiconformal mappings f of X

which are homotopic (rel ∂X) to the identity map such that f keep the set of points
{xi : 1 ≤ i ≤ n} fixed.

Clearly, Σ0(Xn) ⊂ Σ1(Xn) ⊂ Σ2(Xn) ⊂ Σ3(Xn) ⊂ Σ(Xn). For j = 1, 2, 3, set
Modj(Xn) = Σj(Xn)/Σ0(Xn), then Mod1(Xn) ⊂ Mod2(Xn) ⊂ Mod3(Xn) ⊂ Mod(Xn).
Recall that Σ1(Xn) has been introduced and investigated by Kra [Kr1] and Nag [Na3]
when X is of finite type. Note also that when n = 1, a well known result of Epstein
[Ep2] implies that Σ1(X1) = Σ0(X1) and so Mod1(X1) is the trivial group, while it
trivially holds that Σ2(X1) = Σ3(X1) and so Mod2(X1) = Mod3(X1). We will show that
each subgroup Modj(Xn) of Mod(Xn) acts freely and discontinuously on the Teichmüller
space T (Xn).

Lemma 3.1. Each group Modj(Xn) (j = 1, 2, 3) acts freely on T (Xn).

Proof. It is sufficient to show that if χ(〈g〉)([f ]) = [f ◦ g−1] = [f ] for some
〈g〉 ∈ Mod3(Xn) and [f ] ∈ T (Xn), then 〈g〉 = id. In fact, from [f ◦g−1] = [f ] we conclude
that there exists some conformal map c from f(Xn) onto itself such that f−1◦c◦f ◦g−1 ∈
Σ0(Xn). Since g ∈ Σ3(Xn), g keeps the set of points {xi : 1 ≤ i ≤ n} fixed. Thus c keeps
the set of points {f(xi) : 1 ≤ i ≤ n} fixed and can be extended to a conformal mapping
of f(X) onto itself, and f−1 ◦ c ◦ f ◦ g−1 ∈ Σ0(X). Since g ∈ Σ3(Xn), so g ∈ Σ0(X), we
obtain that f−1 ◦ c ◦ f ∈ Σ0(X) and consequently that c ∈ Σ0(f(X)), which implies that
c = id. Consequently, g ∈ Σ0(Xn), that is, 〈g〉 = id. ¤

In order to prove the discontinuity of the groups Modj(Xn) on T (Xn), we will make
use of an isomorphism theorem of Bers [Be3]. Bers isomorphism theorem establishes
biholomorphic isomorphisms between the Bers fiber spaces and Teichmüller spaces for
torsion free Fuchsian groups. Let G and Γ be torsion free Fuchsian groups such that
H/G = X, H/Γ = X1 = X − {x1}, π : H → H/G and π1 : H → H/Γ the natural
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projections. Choose z1 ∈ H with π(z1) = x1 and a universal covering mapping h :
H → H − π−1(x1) with π1 = π ◦ h. Then h induces a norm-preserving isomorphism
h∗ : M(Γ) → M(G) by

(h∗µ) ◦ h = µh′/h′, µ ∈ M(Γ). (3.1)

h∗ : M(Γ) → M(G) induces a biholomorphic isomorphism between T (Γ) and F (G)
sending ΦΓ(µ) to (ΦG(h∗µ), wh∗µ(z1)), known as the Bers isomorphism. We denote by
B the Bers isomorphism.

Bers isomorphism establishes a biholomorphic isomorphism between T (Γ) and F (G),
meanwhile it conjugates the action of modG on F (G) to (a subgroup of) Mod(Γ) on T (Γ).
Precisely, we denote by Σ(Γ, z1) the class of all mappings w ∈ Σ(Γ) whose projections to
X1 can be completed to quasiconformal self-mappings f of X, or equivalently, w can be
projected to a mapping w∗ : H−π−1(x1) → H−π−1(x1) such that h◦w = w∗◦h. We also
denote by Σ0(Γ, z1) the class of all mappings w ∈ Σ(Γ, z1) such that f are homotopic
to the identity rel ∂X, that is, f ∈ Σ2(X1). Set Mod0(Γ, z1) = (Σ0(Γ, z1)/Σ0(Γ))/Γ,
Mod(Γ, z1) = (Σ(Γ, z1)/Σ0(Γ))/Γ. Clearly, Mod0(Γ, z1) ' Mod2(X1). Then there is
an isomorphism I from mod(G) onto Mod(Γ, z1) such that for any [w] ∈ mod(G), B ◦
χ(I([w])) = ρ([w]) ◦ B, and I(G) = Mod0(Γ, z1). For more details, see [Be3], [Kr3],
[Ri] and [Sh1]. Since T (X1) is biholomorphically equivalent to T (Γ), Bers isomorphism
implies that F (G) is also biholomorphically equivalent to T (X1). We denote by B̃ the
isomorphism from T (X1) to F (G). Then there is an isomorphism Ĩ from mod(G) into
Mod(X1) such that for any [w] ∈ mod(G), B̃ ◦ χ(Ĩ([w])) = ρ([w]) ◦ B̃, and Ĩ(G) =
Mod2(X1).

Lemma 3.2. Mod2(X1) acts freely and discontinuously on the Teichmüller space
T (X1).

Proof. It is well known that G acts freely and discontinuously on the Bers fiber
space F (G). Since the Bers isomorphism B̃ conjugates the action of Mod2(X1) on the
Teichmüller space T (X1) to the action of G on F (G), we conclude that Mod2(X1) acts
freely and discontinuously on the Teichmüller space T (X1). ¤

Now we can prove our main result in this section. It will play an important role in
our later discussion.

Theorem 3.1. Each group Modj(Xn) (j = 1, 2, 3) acts freely and discontinuously
on the Teichmüller space T (Xn).

Proof. By Lemma 3.1, we only need to show that Modj(Xn) acts discontinuously
on T (Xn). Noting that Mod1(Xn) ⊂ Mod2(Xn) ⊂ Mod3(Xn), and Mod2(Xn) is a sub-
group of Mod3(Xn) with index n!, we need to show that Mod2(Xn) acts discontinuously
on T (Xn). By definition, we need to show that for any point p ∈ T (Xn), there exists
some r > 0 such that the set {〈f〉 ∈ Mod2(Xn) : χ(〈f〉)(B(p, r)) ∩B(p, r) 6=∅} consists
of only finitely many elements, where B(p, r) is the open ball centered at p with radius
r.

Suppose to the contrary that for some point [f ] ∈ T (Xn) and for any r > 0 the
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set {〈g〉 ∈ Mod2(Xn) : χ(〈g〉)(B([f ], r)) ∩ B([f ], r) 6= ∅} consists of infinitely many
elements. Then there exists some sequence of quasiconformal mappings fj (j ≥ 1)
such that fj ∈ Σ0(X), fj(xi) = xi (1 ≤ i ≤ n), fj represent distinct elements 〈fj〉
in Mod2(Xn), and τXn([f ◦ f−1

j ], [f ]) → 0 as j → ∞. Now for 1 ≤ i ≤ n, fj also
represent a sequence of elements 〈fj〉 in Mod2(Xi), f represents a point [f ] in T (Xi),
and τXi

([f ◦ f−1
j ], [f ]) ≤ τXn

([f ◦ f−1
j ], [f ]) → 0 as j →∞.

By Lemma 3.2, Mod2(X1) acts freely and discontinuously on the Teichmüller space
T (X1). With i = 1 we conclude that when j is sufficiently large all mappings fj represent
the same identity element in Mod2(X1), that is, fj ∈ Σ0(X1). Repeating this procedure
n times, we conclude that when j is sufficiently large all mappings fj represent the same
identity element in Mod2(Xn). This is a contradiction, however. ¤

An immediate consequence of Theorem 3.1 is

Corollary 3.1. Each quotient space T (Xn)/ Modj(Xn) is a complex manifold
with T (Xn) as a universal covering space.

Now we point out that the quotient manifolds T (Xn)/ Modj(Xn) (j = 1, 2) can be
identified with the Teichmüller spaces of pointed Riemann surfaces in the sense of Kra
[Kr1]. Recall that for a hyperbolic Riemann surface X and n (n ≥ 1) distinct points
x1, x2, . . . , xn on X, Xn = X − {xi : 1 ≤ i ≤ n}. We say X = {X;x1, . . . , xn} is an
n-pointed Riemann surface. Two quasiconformal mappings f and g on X are respectively
said to be Teichmüller equivalent, weakly Teichmüller equivalent and most weakly Teich-
müller equivalent if there exists some conformal mapping c from f(Xn) to g(Xn) such
that g−1 ◦ c ◦ f ∈ Σ1(Xn), g−1 ◦ c ◦ f ∈ Σ2(Xn) or g−1 ◦ c ◦ f ∈ Σ3(Xn). We denote
respectively by T1(X ), T2(X ) and T3(X ) to be the set of Teichmüller equivalence classes
[f ]1, weakly Teichmüller equivalence classes [f ]2 or most weakly Teichmüller equivalence
classes [f ]3 of quasiconformal mappings f of X. Kra [Kr1] called T1(X ) and T2(X ) the
Teichmüller space and the weak Teichmüller space of the n-pointed Riemann surface X ,
respectively. We can define the Teichmüller distance on Tj(X ) in a way similar to (2.7).
Namely, for any two points [f1]j and [f2]j in Tj(X ), the Teichmüller distance between
them is

τX ,j([f1]j , [f2]j) = inf
{

1
2

log K[f ]|f : f1(Xn) → f2(Xn), f−1
2 ◦ f ◦ f1 ∈ Σj(Xn)

}
. (3.2)

On the other hand, the Kobayashi-Teichmüller distance τXn on T (Xn) induces the quo-
tient metric on T (Xn)/ Modj(Xn), which is precisely its Kobayashi metric. We have the
following obvious result.

Proposition 3.1. For 1 ≤ j ≤ 3, Tj(X ) is isometrically isomorphic to the quo-
tient manifold T (Xn)/ Modj(Xn) and thus is a complex manifold.

4. Teichmüller spaces and modular groups for pointed Fuchsian groups.

In a fundamental paper [Kr1], Kra introduced and discussed some some new kinds of
Teichmüller spaces for Fuchsian groups of finite type, the Teichmüller spaces for pointed
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Fuchsian groups. In the rest part of the paper, we will continue to discuss these Teich-
müller spaces for general Fuchsian groups, not necessarily of finite type. As will be
seen, these Teichmüller spaces contain as specific examples the complex manifolds we
discussed in section 3, and Theorem 3.1 in the last section will play an important role in
our discussion. For completeness, in this section we recall the basic definitions of these
Teichmüller spaces and their modular groups following Kra [Kr1]. However, we will
define the modular groups in a different manner from Kra’s paper.

We say that G = {G; z1, . . . , zn} is an n-pointed Fuchsian group, if G is a Fuchsian
group acting on the upper half plane H and z1, . . . , zn are n-inequivalent points of HG,
n ≥ 1. Let HG = {z ∈ HG : z 6= g(zi), g ∈ G, 1 ≤ i ≤ n}. We say that two n-pointed
Fuchsian groups G = {G; z1, . . . , zn} and G ′ = {G′; z′1, . . . , z′n} conjugate if there exist
some Möbius transformation α of H onto itself and some permutation σ of {1, . . . , n}
such that G′ = αGα−1, and for 1 ≤ i ≤ n, z′i = α(gizσ(i)) for some gi ∈ G.

Let K be a normal subgroup of G. Two elements µ and ν in M(G) are said to
be (G ,K)-equivalent if they are equivalent (in M(G)) and for each i = 1, . . . , n there
exists some ki ∈ K such that wµ(zi) = wν(ki(zi)). Of course, the pair (G , {id}) will
be abbreviated as G . The set of all (G ,K)-equivalence classes [µ]G ,K of elements µ of
M(G) is called the Teichmüller space of G modulo K, T (G ,K). We denote by ΦG ,K the
natural projection from M(G) to T (G ,K). Note that if G and G ′ conjugate with α = id,
then two pairs (G ,K) and (G ′,K) give the same Teichmüller space T (G ,K) = T (G ′,K).
Clearly, we have the natural projections:

M(G) → T (G ) → T (G ,K) → T (G , G) → T (G). (4.1)

The Teichmüller distance between two points [µ1]G ,K and [µ2]G ,K in T (G ,K) is defined
as

τG ,K([µ1]G ,K , [µ2]G ,K) = inf
{
σG(ν1, ν2) : [νi]G ,K = [µi]G ,K , i = 1, 2

}
. (4.2)

Two elements w1 and w2 in Q(G) are said to be (G ,K)-equivalent if they coincide
on the real line R, and for each i = 1, . . . , n there exists some ki ∈ K such that w1(zi) =
w2(ki(zi)). The (G ,K)-equivalence class of w will be denoted by [w]G ,K . Let Σ0(G ,K)
denote the set of all quasiconformal self-mappings of H which are (G ,K)-equivalent to
the identity mapping. It is not difficult to see that two elements µ and ν in M(G) are
(G ,K)-equivalent if and only if wµ and wν are (G ,K)-equivalent. The point ΦG ,K(µ)
will also be denoted by [wµ]G ,K later.

Let w ∈ Q(G) be given. Then w induces an isometric isomorphism w∗ by (2.4).
For G = {G; z1, . . . , zn}, set wG w−1 = {wGw−1;w(z1), . . . , w(zn)}. It is not difficult to
prove that [w∗(wµ)]wG w−1,wKw−1 depends only on [w]G ,K and [wµ]G ,K . So w∗ induces an
isometric isomorphism χ([w]G ,K) between T (G ,K) and T (wG w−1, wKw−1). χ([w]G ,K)
are called allowable mappings.

Let Σ(G ,K) denote the set of all elements w ∈ Σ(G) such that wKw−1 = K,
w(HG ) = HG . Mod(G ,K) = (Σ(G ,K)/Σ0(G ,K))/G is called the modular group of
(G ,K). The element of Mod(G ,K) induced by w will be denoted by 〈w〉G ,K . For each
w ∈ Σ(G ,K), the pairs (G ,K) and (wG w−1, wKw−1) determine the same Teichmüller
space, so w∗ induces a self-mapping χ(〈w〉G ,K) of the Teichmüller space T (G ,K).
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Finally, we point out that the (weak) Teichmüller spaces for pointed Riemann
surfaces are special kinds of Teichmüller spaces for pointed Fuchsian groups. Let
G = {G; z1, . . . , zn} be an n-pointed Fuchsian group with G torsion free. Let π : H →
X = H/G be the natural projection. Set xi = π(zi) (1 ≤ i ≤ n), Xn = X−{x1, . . . , xn},
and X = {X;x1, . . . , xn}.

Proposition 4.1. T1(X ) is isometrically isomorphic to T (G ), and T2(X ) is
isometrically isomorphic to T (G , G).

Proposition 4.1 follows immediately from the following lemma.

Lemma 4.1. Let f ∈ Σ(X). Then f ∈ Σ1(Xn) if and only if there exists some
w ∈ Σ0(G ) with π ◦w = f ◦π; f ∈ Σ2(Xn) if and only if there exists some w ∈ Σ0(G , G)
with π ◦ w = f ◦ π.

Proof. Let f ∈ Σ1(Xn). Then there exists some homotopy ft : (X∪∂X)×[0, 1] →
X ∪∂X between f1 = f and f0 = id such that ft(xi) = xi for all t ∈ [0, 1] and 1 ≤ i ≤ n.
Lifting the homotopy ft to H to obtain a homotopy wt with w0 = id and π ◦wt = ft ◦π.
It is easy to see that w = w1 ∈ Σ0(G ). Conversely, let w ∈ Σ0(G ) with π ◦ w = f ◦ π.
Consider the Ahlfors homotopy wt between w1 = w and w0 = id (see [Ah]). Then wt

can be projected to a homotopy ft between f1 = f and f0 = id. For each 1 ≤ i ≤ n,
since wt(zi) = zi, ft(xi) = xi. Thus f ∈ Σ1(Xn).

The second assertion follows from the facts that f ∈ Σ0(X) if and only if there exists
some w ∈ Σ0(G) such that π ◦ w = f ◦ π, and that f(xi) = xi if and only if there exists
some gi ∈ G such that w(zi) = gi(zi). ¤

Remark 4.1. Propositions 3.1 and 4.1 imply that both T (G ) and T (G , G) are
complex manifolds when G is torsion free. In the following sections, we will show that
T (G ,K) is always a complex manifold for every Fuchsian group G and every normal
subgroup K.

5. Complex structures on Teichmüller spaces for pointed Fuchsian
groups: I.

In this section, we will prove the following theorem, which says that for any n-
pointed Fuchsian group G = {G; z1, . . . , zn}, the Teichmüller space T (G ) carries a natural
complex structure.

Theorem 5.1. For any n-pointed Fuchsian group G = {G; z1, . . . , zn}, there exists
a unique complex manifold structure on the Teichmüller space T (G ) so that the natural
projection ΦG : M(G) → T (G ) is a holomorphic split submersion.

Proof. Choose some torsion free Fuchsian group Γ such that H/Γ = HG /G. Let
π : H → H/G and π1 : H → H/Γ be the natural projections. Then there exists some
holomorphic universal covering mapping h : H → HG such that π1 = π ◦h. Hence there
exists some homomorphism θ : Γ → G such that

h ◦ γ = θ(γ) ◦ h, γ ∈ Γ. (5.1)



310 Y. Shen

Lemma 5.1. θ : Γ → G is surjective.

Proof. Any g ∈ G fixes HG and so g|HG can be lifted to a Möbius transformation
γ : H → H, that is, h ◦ γ = g ◦ h. Thus we obtain g = θ(γ). ¤

Using h, we may define the norm-preserving isomorphism h∗ : M(Γ) → M(G) by

(h∗µ) ◦ h = µh′/h′, µ ∈ M(Γ). (5.2)

We will show that h∗ can project to a mapping from T (Γ) onto T (G ).
A direct computation will show

Lemma 5.2. Let µ ∈ M(Γ) and σ ∈ M(G). Then σ = h∗(µ) if and only if
there exists some holomorphic universal covering mapping h̃ : H → wσ(HG ) such that
wσ ◦ h = h̃ ◦ wµ.

For µ ∈ M(Γ) and σ = h∗(µ), set hµ = wσ ◦ h ◦ w−1
µ . Lemma 5.2 implies that hµ is

a holomorphic universal covering mapping from H to wσ(HG ).

Lemma 5.3. For any w ∈ Σ0(Γ), there is a unique map w∗ ∈ Σ0(G ) such that
w∗ ◦ h = h ◦ w.

Proof. For any Fuchsian group Γ, let Λ(Γ) denote the limit set of Γ, and D(Γ) =
R−Λ(Γ). Since w ∈ Σ0(Γ), it can be projected to a quasiconformal mapping w∗ : HG →
HG via the universal covering h : H → HG such that w∗ is homotopy to the identity rel
the ideal boundary ∂HG = D(G). w∗ can be completed to a mapping by the identity
on H −HG , which is still denoted by w∗ : H → H, such that w∗ ◦ h = h ◦ w and w∗ is
identity on HG and D(G). We need to show that w∗ ∈ Σ0(G). It is sufficient to show
that w∗ ◦ g = g ◦w∗ for all g ∈ G, which will imply that w∗ is also the identity on Λ(G).

Since w ∈ Σ0(Γ), w ◦ γ = γ ◦ w for all γ ∈ Γ. So

w∗ ◦ θ(γ) ◦ h = w∗ ◦ h ◦ γ = h ◦ w ◦ γ = h ◦ γ ◦ w = θ(γ) ◦ h ◦ w = θ(γ) ◦ w∗ ◦ h.

Since θ : Γ → G is surjective, we conclude that w∗ ◦ g = g ◦ w∗ for all g ∈ G. ¤

Corollary 5.1. If µ and ν are equivalent in M(Γ), then σ = h∗(µ) and τ = h∗(ν)
are G -equivalent in M(G).

Proof. Since µ and ν are equivalent in M(Γ), there exists some w ∈ Σ0(Γ) such
that wν = wµ ◦w. By Lemma 5.3, there exists some w∗ ∈ Σ0(G ) such that w∗ ◦h = h◦w.
Since σ = h∗(µ), Lemma 5.2 implies that hµ = wσ ◦ h ◦ w−1

µ is a holomorphic universal
covering mapping from H to wσ(HG ). Since

hµ ◦ wν = hµ ◦ wµ ◦ w = wσ ◦ h ◦ w = wσ ◦ w∗ ◦ h,

we conclude by Lemma 5.2 that wτ = wσ ◦ w∗, so σ = h∗(µ) and τ = h∗(ν) are G -
equivalent in M(G). We also obtain
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hν = wτ ◦ h ◦ (wν)−1 = wσ ◦ w∗ ◦ h ◦ w−1 ◦ (wµ)−1 = wσ ◦ h ◦ (wµ)−1 = hµ. ¤

Corollary 5.1 implies that h∗ : M(Γ) → M(G) can project to a mapping from T (Γ)
to T (G ), which is denoted by P . Then ΦG ◦ h∗ = P ◦ ΦΓ, so P is continuous and
surjective. Next we will show that P is a universal covering mapping. To do so, we
denote by Σ0(Γ,G ) the set of all quasiconformal mappings w in Σ(Γ) such that there
exists some quasiconformal mapping w∗ ∈ Σ0(G ) with h◦w = w∗ ◦h. Lemma 5.3 implies
that Σ0(Γ) ⊂ Σ0(Γ,G ). Set Mod0(Γ,G ) = (Σ0(Γ,G )/Σ0(Γ))/Γ. Then we have

Lemma 5.4. P (ΦΓ(µ1)) = P (ΦΓ(µ2)) if and only if there exists some 〈w〉 ∈
Mod0(Γ,G ) such that χ(〈w〉)(ΦΓ(µ1)) = ΦΓ(µ2).

Proof. Suppose P (ΦΓ(µ1)) = P (ΦΓ(µ2)), then ΦG ◦ h∗(µ1) = ΦG ◦ h∗(µ1). So
there exists some w∗ ∈ Σ0(G ) such that wσ2 = wσ1 ◦ w∗, where σi = h∗(µi) (i = 1, 2).
w∗ can be lifted to a mapping w ∈ Σ0(Γ,G ) such that h ◦ w = w∗ ◦ h. Thus, wσ2 ◦ h =
wσ1 ◦ w∗ ◦ h = wσ1 ◦ h ◦ w, which implies that hµ2 ◦ wµ2 = hµ1 ◦ wµ1 ◦ w. Comparing
the Beltrami coefficients of both sides of the equation, we conclude that wµ1 = w∗(wµ2),
that is, χ(〈w〉)(ΦΓ(µ2)) = ΦΓ(µ1).

Reversing the procedure above we can obtain the proof of the other direction. ¤

Now let P1 denote the natural projection from T (Γ) to T (Γ)/ Mod0(Γ,G ). Lemma
5.4 implies that P : T (Γ) → T (G ) can project to a mapping from T (Γ)/ Mod0(Γ,G ) to
T (G ). We denote this map by P2, then P = P2 ◦ P1.

Lemma 5.5. P2 : T (Γ)/ Mod0(Γ,G ) → T (G ) is a homeomorphism.

Proof. Lemma 5.4 implies that P2 is injective. Since P2 ◦ P1 = P is continuous
and surjective, P2 is continuous and surjective. Since P−1

2 ◦ ΦG = P1 ◦ ΦΓ ◦ h∗−1 is
continuous, P−1

2 is continuous. So P2 : T (Γ)/ Mod0(Γ,G ) → T (G ) is a homeomorphism.
¤

Now we consider the action of the subgroup Mod0(Γ,G ) of Mod(Γ) on the Teich-
müller space T (Γ). Set XG = HG/G, XG = HG /G = H/Γ, xi = π(zi) (1 ≤ i ≤ n).
Then XG = XG − {x1, . . . , xn}, or under the notations in section 3, XG = (XG)n.
Let w ∈ Σ0(Γ,G ). Then there exists some quasiconformal mapping w∗ ∈ Σ0(G ) with
h ◦ w = w∗ ◦ h. Now w∗ can be restricted to a self-mapping of HG and then projects
to a quasiconformal mapping f of XG onto itself under the covering π : HG → XG .
It is easy to see that f is also the projection of w under the covering mapping π1 :
H → H/Γ. w∗ ∈ Σ0(G ) implies that w∗(zi) = zi, which implies that f(xi) = xi.
w∗ ∈ Σ0(G ) also implies that w∗ ∈ Σ0(G). Now an important result in Teichmül-
ler theory, known as Bers-Greenberg Theorem (see [BG], [EK1], [EMc], [Ga2], [HS],
[Kr1], [Ma]), implies that f ∈ Σ0(XG). Consequently, under the notations in section
3, f ∈ Σ2((XG)n). Now, since Γ is torsion free, T (Γ) is biholomorphically equivalent to
T (XG ) = T ((XG)n), and Mod(Γ) is isomorphic to Mod(XG ) = Mod((XG)n). We have
already obtained that Mod0(Γ,G ) is isomorphic to some subgroup of Mod2((XG)n). By
Theorem 3.1, Mod2((XG)n) acts freely and discontinuously on T ((XG)n). We conclude
that Mod0(Γ,G ) acts freely and discontinuously on T (Γ). We state this as a lemma.
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Lemma 5.6. Mod0(Γ,G ) acts freely and discontinuously on T (Γ).

An immediate consequence of Lemma 5.6 is

Corollary 5.2. T (Γ)/ Mod0(Γ,G ) is a complex manifold, and the natural pro-
jection P1 : T (Γ) → T (Γ)/ Mod0(Γ,G ) is a holomorphic universal covering.

Corollary 5.3. T (G ) has a complex structure such that P2 : T (Γ)/ Mod0(Γ,G ) →
T (G ) is a biholomorphic homeomorphism, and P : T (Γ) → T (G ) is a holomorphic
universal covering with covering group χ(Mod0(Γ,G )).

Proof. We can push the complex structure on T (Γ)/ Mod0(Γ,G ) by the homeo-
morphism P2 to obtain a complex structure on T (G ). The rest of the Corollary follows
immediately. ¤

Lemma 5.7. Under the complex structure of T (G ) obtained in Corollary 5.3, ΦG :
M(G) → T (G ) is a holomorphic split submersion.

Proof. Under the complex structure of T (G ) in Corollary 5.3, P : T (Γ) → T (G ) is
a holomorphic universal covering. Since h∗ : M(Γ) → M(G) is an isometric isomorphism,
and ΦΓ : M(Γ) → T (Γ) is a holomorphic split submersion, ΦG = P ◦ΦΓ ◦ h∗−1 is also a
holomorphic split submersion. ¤

Finally, Lemma 5.7 says that there exists some complex manifold structure on the
Teichmüller space T (G ) so that the natural projection ΦG : M(G) → T (G ) is a holo-
morphic split submersion. The uniqueness of such a complex structure is obvious. This
completes the proof of Theorem 5.1. ¤

In order to give a good description of T (G ), we introduce some fiber spaces. First
note that the natural projections ΦG : M(G) → T (G ) and ΦG : M(G) → T (G) induce
a natural projection Φ : T (G ) → T (G). Since Φ ◦ ΦG = ΦG is a holomorphic split
submersion, Φ : T (G ) → T (G) is also a holomorphic split submersion. We state this as

Proposition 5.1. Φ : T (G ) → T (G) is a holomorphic split submersion so that
T (G ) is a holomorphic fiber space over T (G).

Now we introduce some fiber space over T (G) which can be identified with T (G ).
Let

Fn(G) =
{
(ΦG(µ), ζ) ∈ T (G)×Cn : µ ∈ M(G), ζ = (ζ1, . . . , ζn) ∈ (wµ(H))n

}
, (5.3)

and

Fn
0 (G) =

{
(ΦG(µ), ζ) ∈ Fn(G) : ζ = (ζ1, . . . , ζn) ∈ (wµ(HG))n, ζi 6= gµ(ζj), i 6= j

}
.

(5.4)

Clearly, both Fn(G) and Fn
0 (G) are complex manifolds. Let Ψ : Fn(G) → T (G),

Ψ(ΦG(µ), ζ) = ΦG(µ), be the natural projection. It is clear that Ψ is a holomorphic
split submersion.
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For an n-pointed Fuchsian group G = {G; z1, . . . , zn} and for any µ ∈ M(G), set
R(µ) = (ΦG(µ), (wµ(z1), . . . , wµ(zn))). Then R is a holomorphic mapping from M(G) to
Fn

0 (G). It is not difficult to verify that R is a surjective mapping. Since ΦG : M(G) →
T (G) is a holomorphic split submersion, it is easy to see that R is also a holomorphic
split submersion.

By definition of T (G ) and R we conclude that ΦG (µ1) = ΦG (µ2) if and only if
R(µ1) = R(µ2). So R can project to an isomorphism from T (G ) onto Fn

0 (G), which is
denoted by Q. Then R = Q ◦ ΦG . Thus Q is an injective holomorphic split submersion
and consequently a biholomorphic isomorphism. We have proved

Theorem 5.2. Q : T (G ) → Fn
0 (G), Q(ΦG (µ)) = (ΦG(µ), (wµ(z1), . . . , wµ(zn))),

is a biholomorphic isomorphism.

Remark 5.1. Without knowing the existence of a complex structure on T (G ), we
conclude from the above discussion that there exists a unique complex manifold structure
on the Teichmüller space T (G ) so that the natural projection ΦG : M(G) → T (G ) is a
holomorphic split submersion. Actually, we have proved that there exists an isomorphism
Q : T (G ) → Fn

0 (G) such that R = Q ◦ΦG . Since R is a holomorphic split submersion, Q

is continuous with local continuous sections, which implies that Q is a homeomorphism.
We can pull back the complex structure on Fn

0 (G) by Q to obtain a complex structure
on T (G ). Then Q becomes a biholomorphic isomorphism, and ΦG = Q−1 ◦R becomes a
holomorphic split submersion. This gives an alternative approach of the proof of Theorem
5.1.

An immediate consequence of Corollary 5.3 and Theorem 5.2 is

Corollary 5.4. Q ◦ P : T (Γ) → Fn
0 (G) is a universal covering mapping with

covering group χ(Mod0(Γ,G )).

Remark 5.2. Corollaries 5.3 and 5.4 imply that P : T (Γ) → T (G ) and Q ◦ P :
T (Γ) → Fn

0 (G) are biholomorphic isomorphisms if and only if T (G ) = Fn
0 (G) is simply

connected, which happens precisely when G is a 1-pointed Fuchsian group (G; z1) with
G torsion free. When G is actually a 1-pointed Fuchsian group (G; z1) with G torsion
free, F 1

0 (G) = F 1(G) is precisely the Bers fiber space F (G), and the biholomorphic
isomorphism Q ◦ P is precisely the Bers isomorphism B : T (Γ) → F (G), which we have
introduced in section 3. In this case, Mod0(Γ,G ) is the trivial group, which is precisely
Epstein’s result ([Ep2]) we stated before Lemma 3.1.

6. Complex structures on Teichmüller spaces for pointed Fuchsian
groups: II.

In the last section, we showed that for any pointed Fuchsian group G the Teichmüller
space T (G ) is a complex manifold. Now we show that for any pointed Fuchsian group G
and any normal subgroup K of G the Teichmüller space T (G ,K) is a complex manifold.

We begin with the isomorphism Q : T (G ) → Fn
0 (G). Recall that each 〈w〉G ∈

Mod(G ) acts on T (G ) by the biholomorphic isomorphism

χ(〈w〉G )([wµ]G ) =
[
w∗(wµ)

]
wG w−1 . (6.1)
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By the isomorphism Q we consider the action of Mod(G ) on Fn
0 (G) by defining

ρ(〈w〉G ) = Q ◦ χ(〈w〉G ) ◦Q−1. (6.2)

First we determine the precise expression of ρ(〈w〉G ). We let w−1(zi) = gi(zσ−1(i)),
where σ is a permutation of {1, 2, . . . , n}, gi ∈ G for 1 ≤ i ≤ n. This follows from
the condition w(HG ) = HG . Now for any point (ΦG(µ), ζ), ζ = (ζ1, ζ2, . . . , ζn), in
Fn

0 (G), ζi = wµ(zi). Then, with wν = w∗(wµ) = α ◦ wµ ◦ w−1, ρ(〈w〉G )(ΦG(µ), ζ) =
(ΦG(ν), (wν(z1), wν(z2), . . . , wν(zn))). Now

wν(zi) = wν ◦ w−1
ν ◦ wν(zi) = wν ◦ w−1

ν ◦ α ◦ wµ ◦ w−1(zi)

= wν ◦ w−1
ν ◦ α ◦ wµ ◦ gi(zσ−1(i))

= wν ◦ w−1
ν ◦ α ◦ wµ ◦ (wµ)−1 ◦ wµ ◦ gi(zσ−1(i))

= wν ◦ w−1
ν ◦ α ◦ wµ ◦ (wµ)−1 ◦ gµ

i ◦ wµ(zσ−1(i))

= wν ◦ w−1
ν ◦ α ◦ wµ ◦ (wµ)−1 ◦ gµ

i (ζσ−1(i))

= wν ◦ w ◦ gi ◦ (wµ)−1(ζσ−1(i)).

Consequently, when w−1(zi) = gi(zσ−1(i)),

ρ(〈w〉G )(ΦG(µ), (ζi)1≤i≤n) =
(
ΦG(ν), (wν ◦ w ◦ gi ◦ (wµ)−1(ζσ−1(i)))1≤i≤n

)
. (6.3)

We consider several special cases. Firstly, when w(zi) = zi for all i, we have

ρ(〈w〉G )(ΦG(µ), ζ) =
(
ΦG(ν), wν ◦ w ◦ (wµ)−1(ζ)

)
. (6.4)

Secondly, when w ∈ Σ0(G), then wν = wµ ◦ w−1, wν = wµ ◦ w−1, so with w−1(zi) =
gi(zσ−1(i)),

ρ(〈w〉G )(ΦG(µ), (ζi)1≤i≤n) =
(
ΦG(µ), (gµ

i (ζσ−1(i)))1≤i≤n

)
. (6.5)

Especially, if w satisfies the further condition that w−1(zi) = gi(zi) for some gi ∈ G,
1 ≤ i ≤ n, then

ρ(〈w〉G )(ΦG(µ), (ζi)1≤i≤n) =
(
ΦG(µ), (gµ

i (ζi))1≤i≤n

)
. (6.6)

Now Gn may be considered as a subgroup of Mod(G ). Actually, for any element
g = (g1, g2, . . . , gn) ∈ Gn, choose w ∈ Σ0(G) such that w(zi) = g−1

i (zi), or equivalently,
w−1(zi) = gi(zi), 1 ≤ i ≤ n. Then the mapping g → 〈w〉G determines a well-defined
and injective homomorphism from Gn into Mod(G ). The action of Gn on Fn

0 (G) is
determined by (6.6). More generally, let Pn denote the permutation group on n letters,
and G(n) the twisted product of Pn and Gn, where for σ, τ ∈ Pn and g = (g1, g2, . . . , gn),
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γ = (γ1, γ2, . . . , γn) in Gn we define

(σ; g1, g2, . . . , gn) · (τ ; γ1, γ2, . . . , γn) =
(
στ ; g1 ◦ γσ−1(1), . . . , gn ◦ γσ−1(n)

)
.

Gn may be consider as a subgroup of G(n) via the inclusion sending g ∈ Gn to (1, g)
in G(n). Now G(n) may also be considered as a subgroup of Mod(G ). In fact, for
any (σ; g1, g2, . . . , gn) ∈ G(n), choose w ∈ Σ0(G) such that w(zi) = g−1

σ(i)(zσ(i)), or
equivalently, w−1(zi) = gi(zσ−1(i)), 1 ≤ i ≤ n. Then the mapping (σ, g) → 〈w〉G
determines a well-defined and injective homomorphism from G(n) into Mod(G ). The
action of G(n) on Fn

0 (G) is determined by (6.5).
An immediate consequence of the expression (6.3) is the following result.

Proposition 6.1. Mod(G ) acts effectively on T (G ) and Fn
0 (G).

Proof. We only need to show that Mod(G ) acts effectively on Fn
0 (G). Let w ∈

Σ(G ) satisfy ρ(〈w〉G ) = id. Then, with w−1(zi) = gi(zσ−1(i)),

(
ΦG(ν), (wν ◦ w ◦ gi ◦ (wµ)−1(ζσ−1(i)))1≤i≤n

)
= (ΦG(µ), (ζi)1≤i≤n). (6.7)

In particular, for any µ ∈ M(G), [wν ] = [α ◦ wµ ◦ w−1] = [wµ]. Letting µ = 0 we get
[α0 ◦ w−1] = [id]. Thus [wν ] = [α ◦ wµ ◦ α−1

0 ] = [wµ]. On the other hand, (6.7) also
implies that wν ◦ w ◦ gi ◦ (wµ)−1(ζσ−1(i)) = ζi for 1 ≤ i ≤ n. Letting µ = 0 again we get
that ν = 0 and so w ◦ gi(ζσ−1(i)) = ζi, 1 ≤ i ≤ n. So σ = id, w ◦ gi = id. Consequently,
w = α0 = g−1

i is the same element in G, that is, 〈w〉G = id. ¤

Next we discuss the discontinuity on T (G ) and Fn
0 (G) of G(n) as a subgroup of

Mod(G ). To do so, set

(Hn
G)0 =

{
ζ = (ζ1, ζ2, . . . , ζn) ∈ (HG)n : ζi 6= g(ζj) for all g ∈ G, i 6= j

}
. (6.8)

G(n) acts on (Hn
G)0 as a group of biholomorphic automorphisms by

(σ; g1, g2, . . . , gn)(ζ1, ζ2, . . . , ζn) =
(
g1(ζσ−1(1)), g2(ζσ−1(2)), . . . , gn(ζσ−1(n))

)
. (6.9)

Clearly, the action is free and discontinuous.
Since ΦG : M(G) → T (G) is a holomorphic split submersion, for any point ΦG(µ) ∈

T (G) there is a holomorphic map φ from a neighborhood U of ΦG(µ) to M(G) such that
ΦG ◦ φ = id. Consider the mapping

ψ(u, ζ) =
(
u,wφ(u)(ζ)

)
, (u, ζ) ∈ U × (Hn

G)0 (6.10)

from U × (Hn
G)0 to Ψ−1(U). Recall Ψ : Fn

0 (G) → T (G) is the natural projection.
Clearly, ψ : U × (Hn

G)0 → Ψ−1(U) is a bijective mapping. From the well known results
of Ahlfors-Bers [AB], ψ is continuous and is holomorphic for u for fixed ζ. It is also a
homeomorphism for ζ for fixed u. Consequently, ψ is a homeomorphism.
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Now we consider the action of G(n) on (Hn
G)0 and the one on Fn

0 (G) as a subgroup
of Mod(G ). Let (σ, g) = (σ; g1, g2, . . . , gn) ∈ G(n) correspond to 〈w〉G ∈ Mod(G ). For
any (u, ζ) ∈ U × (Hn

G)0, from (6.5), (6.9) and (6.10) we get

ρ(〈w〉G )(ψ(u, ζ)) = ρ(〈w〉G )
(
u,wφ(u)(ζ)

)
=

(
u, g

φ(u)
i (wφ(u)(ζσ−1(i)))

)

=
(
u,wφ(u)(gi(ζσ−1(i)))

)
=

(
u,wφ(u)((σ, g)(ζ)) = ψ(u, (σ, g)(ζ)

)
.

(6.11)

Since G(n) acts freely and discontinuously on (Hn
G)0, we conclude from (6.11) that G(n)

also acts freely and discontinuously on Fn
0 (G). We state it as

Proposition 6.2. G(n) acts freely and discontinuously on T (G ) and Fn
0 (G).

Remark 6.1. Proposition 6.2 implies that T (G )/G(n) is a complex manifold.
Let G = {G; z1, . . . , zn} be an n-pointed Fuchsian group with G torsion free. Let
π : H → X = H/G be the natural projection. Set xi = π(zi) (1 ≤ i ≤ n),
Xn = X − {x1, . . . , xn}, and X = {X;x1, . . . , xn}. Then, under the notations in sec-
tion 3, T (G )/G(n) is biholomorphically isomorphic to T3(X ) ' T (Xn)/ Mod3(Xn), a
supplement to Propositions 3.1 and 4.1.

Now we can prove

Theorem 6.1. For any pointed Fuchsian group G = {G; z1, z2, . . . , zn} and any
normal subgroup K of G, the Teichmüller space T (G ,K) has a unique complex manifold
structure such that the natural projection ΦG ,K : M(G) → T (G ,K) is a holomorphic
split submersion. Furthermore, under this natural complex structure, T (G ,K) is biholo-
morphically isomorphic to T (G )/Kn.

Proof. As a subgroup of Gn, Kn is also a subgroup of G(n). Proposition 6.2
implies that Kn acts freely and discontinuously on T (G ) so that T (G )/Kn is a complex
manifold, and T (G ) → T (G )/Kn is a holomorphic covering. We denote this covering by
Φ1.

By definition, it is obvious that there is a bijective map from T (G ,K) to T (G )/Kn,
say Φ2, such that Φ1 ◦ ΦG = Φ2 ◦ ΦG ,K . Since ΦG : M(G) → T (G ) is a holomorphic
split submersion, Φ2 is a homeomorphism. Now we can pull back the complex structure
on T (G )/Kn by Φ2 to obtain a complex structure on T (G ,K). Then Φ2 becomes a
biholomorphic isomorphism, and ΦG ,K becomes a holomorphic split submersion. ¤

Remark 6.2. We also have T (G ,K) ' Fn
0 (G)/Kn. When G = {G; z1} is a 1-

pointed Fuchsian group, T (G ) ' F 1
0 (G) is the punctured fiber space F0(G) of G, and

T (G , G) ' F 1
0 (G)/G is the punctured Teichmüller curve F0(G)/G = V0(G). If G is

also torsion free, T (G ) ' F0(G) is the Bers fiber space F (G), and T (G , G) ' V0(G) is
the Teichmüller curve V (G). These spaces are very important in the moduli theory of
Riemann surfaces and in the theory of holomorphic families of Riemann surfaces. They
have been much investigated in the literature (see [Be3], [CS], [EF], [EK1], [EK2],
[Gr], [HS], [Kr2], [Kr3], [Na2], [Ri], [Sh1], [Sh2], [Zh]).
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Remark 6.3. As usual, let Tg denote the Teichmüller space of marked closed
Riemann surfaces of genus g, g ≥ 2, and Tg,n the Teichmüller space of marked closed
Riemann surfaces of genus g with n points removed. In a fundamental paper [Be1], Bers
introduced two other spaces of Riemann surfaces, one is T

(n)
g , the space of marked closed

Riemann surfaces of genus g on each of which one has distinguished an ordered n-tuple of
points, another is T̂

(n)
g , the set of points of T

(n)
g corresponding to the choice of n distinct

points on a surface. He also proved, among other things, Tg,n is the universal covering
of T̂

(n)
g . We have generalized these spaces and results in our discussion. Actually, let

G = {G; z1, . . . , zn} be an n-pointed Fuchsian group with G torsion free such that H/G

is a closed Riemann surface of genus g ≥ 2. Choose Γ as before such that H/Γ =
HG /G. It is known that Tg

∼= T (G), Tg,n
∼= T (Γ). We also have T

(n)
g

∼= Fn(G)/Gn,
T̂

(n)
g

∼= Fn
0 (G)/Gn ∼= T (G , G). Note that we have proved in the last section that P :

T (Γ) → T (G ) is a universal covering mapping. From the proof of Theorem 6.1 we find
that Φ−1

2 ◦ Φ1 ◦ P : T (Γ) → T (G , G) is a universal covering mapping.

7. Modular groups for pointed Fuchsian groups.

We have obtained that T (Γ) is a universal covering of T (G ), while T (G ) is a holomor-
phic fiber space over T (G). In this section, we will discuss the modular group Mod(G )
and show how it is related to the modular groups Mod(Γ) and Mod(G).

To show how Mod(G ) is related to Mod(Γ), we consider the set Σ(Γ,G ) consisting
of all mappings w ∈ Σ(Γ) for which there exist w∗ ∈ Σ(G ) such that h ◦ w = w∗ ◦ h.
Recall P : T (Γ) → T (G ) is the universal covering mapping.

Lemma 7.1. P ◦ χ(〈w〉) = χ(〈w∗〉G ) ◦ P .

Proof. For any µ ∈ M(Γ), let σ = h∗(µ), ν ∈ M(Γ) be such that wν = w∗(wµ),
and τ ∈ M(G) be such that wτ = w∗∗(wσ). Then hµ ◦ wµ = wσ ◦ h, wν = α ◦ wµ ◦ w−1,
and wτ = β ◦wσ ◦w−1

∗ , where α and β are Möbius transformations of H onto itself. So

wτ ◦ h = β ◦ wσ ◦ w−1
∗ ◦ h = β ◦ wσ ◦ h ◦ w−1 = β ◦ hµ ◦ wµ ◦ w−1 = β ◦ hµ ◦ α−1 ◦ wν .

Lemma 5.2 implies that τ = h∗(ν). Then,

P ◦ χ(〈w〉)(ΦΓ(µ)) = P ◦ ΦΓ(ν) = ΦG ◦ h∗(ν) = ΦG (τ)

= χ(〈w∗〉G )(ΦG (σ)) = χ(〈w∗〉G )
(
ΦG (h∗(µ))

)

= χ(〈w∗〉G ) ◦ P (ΦΓ(µ)).

Consequently, P ◦ χ(〈w〉) = χ(〈w∗〉G ) ◦ P . ¤

Now the mapping w → w∗ related by h◦w = w∗◦h determines a surjective homomor-
phism from Σ(Γ,G ) to Σ(G ). If 〈w〉 = 〈id〉, Lemma 7.1 implies that χ(〈w∗〉G ) = id. Since
Mod(G ) acts effectively on T (G ), 〈w∗〉G = 〈id〉G . Set Mod(Γ,G ) = (Σ(Γ,G )/Σ0(Γ))/Γ.
Then, we have a well-defined surjective homomorphism from Mod(Γ,G ) to Mod(G ),
which we denote by Θ1, such that P ◦χ(〈w〉) = χ(Θ1(〈w〉))◦P for any 〈w〉 ∈ Mod(Γ,G ).
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Clearly, the kernel of the homomorphism Θ1 is precisely the subgroup Mod0(Γ,G ), which
plays an important role in section 5. We state these as the following theorem.

Theorem 7.1. There is a surjective homomorphism Θ1 : Mod(Γ,G ) → Mod(G )
with kernel Mod0(Γ,G ) such that for any 〈w〉 ∈ Mod(Γ,G ), P ◦χ(〈w〉) = χ(Θ1(〈w〉))◦P .

We also have the following counterpart of Theorem 7.1.

Theorem 7.2. For the surjective homomorphism Θ1 : Mod(Γ,G ) → Mod(G ) and
for any 〈w〉 ∈ Mod(Γ,G ), Q ◦ P ◦ χ(〈w〉) = ρ(Θ1(〈w〉)) ◦Q ◦ P .

Remark 7.1. Θ1 : Mod(Γ,G ) → Mod(G ) is injective if and only if Mod0(Γ,G ) is
the trivial group, which happens precisely when G is a 1-pointed Fuchsian group (G; z1)
with G torsion free. When G is actually a 1-pointed Fuchsian group (G; z1) with G torsion
free, F 1

0 (G) = F 1(G) = F (G), Q ◦ P = B : T (Γ) → F (G) is the Bers isomorphism. In
this case, Mod(Γ,G ) is the group Mod(Γ, z1) which we introduced in section 3. Now
there is an isomorphism I ′ : mod(G) → Mod(G ) such that Θ−1

1 ◦ I ′ is the isomorphism
I : mod(G) → Mod(Γ, z1), which we also introduced in section 3.

We proceed to discuss the relation between Mod(G ) and Mod(G). There is a natural
mapping from Mod(G ) to Mod(G) sending 〈w〉G to 〈w〉. The mapping is surjective, since
for any w ∈ Σ(G) there is some w̃ ∈ Σ(G) such that [w̃] = [w], and w(zi) = zi, 1 ≤ i ≤ n.
Consequently, we have a surjective homeomorphism Θ2 : Mod(G ) → Mod(G). Clearly,
the kernel of Θ2 is precisely G(n) as a subgroup of Mod(G ).

We consider the natural projection Φ : T (G ) → T (G). For any ΦG (µ) ∈ T (G ), with
wν = w∗(wµ),

Φ ◦ χ(〈w〉G )(ΦG (µ)) = Φ ◦ ΦG (ν) = ΦG(ν) = χ(〈w〉) ◦ ΦG(µ) = χ(〈w〉) ◦ Φ ◦ ΦG (µ).

Thus, Φ ◦ χ(〈w〉G ) = χ(〈w〉) ◦ Φ. We have proved

Theorem 7.3. There is a surjective homomorphism Θ2 : Mod(G ) → Mod(G) with
kernel G(n) such that for any 〈w〉G ∈ Mod(G ), Φ ◦ χ(〈w〉G ) = χ(Θ2(〈w〉G )) ◦ Φ.

Similarly, we can prove the following result. We omit the details here.

Theorem 7.4. There exists a surjective homomorphism Θ3 : (Σ(G ,K)/Σ0(G ))/G

→ Mod(G ,K) with kernel Kn such that Φ−1
2 ◦Φ1 ◦χ(〈w〉G ) = χ(Θ3(〈w〉G ))◦Φ−1

2 ◦Φ1 for
any 〈w〉G ∈ (Σ(G ,K)/Σ0(G ))/G. In particular, when K = G, Θ3 is a homomorphism
from Mod(G ) to Mod(G , G) with kernel Gn.

8. Kobayashi metric on T (G ,K).

In this last section, we point out that the Kobayashi metric and the Teichmüller
metric coincide on the Teichmüller space T (G ,K), as it should. We give a complete
proof for completeness.

Theorem 8.1. The Kobayashi metric and the Teichmüller metric coincide on the
Teichmüller space T (G ,K).
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Proof. Let kM(G), kT (G) and kG ,K denote the Kobayashi distance on M(G),
T (G) and T (G ,K), respectively. Then kM(G) = σG, kT (G) = τG. Since ΦG ,K : M(G) →
T (G ,K) is holomorphic, for any σ, τ ∈ M(G) we have

kG ,K([σ]G ,K , [τ ]G ,K) ≤ kM(G)(σ, τ) = σG(σ, τ),

which implies

kG ,K([σ]G ,K , [τ ]G ,K) ≤ inf
{
σG(σ′, τ ′) : [σ′]G ,K = [σ]G ,K , [τ ′]G ,K = [τ ]G ,K

}

= τG ,K([σ]G ,K , [τ ]G ,K).

On the other hand, since Φ̂ .= Φ−1
2 ◦Φ1 ◦P : T (Γ) → T (G ,K) is a universal covering

map, and Φ̂ ◦ ΦΓ = ΦG ,K ◦ h∗, we obtain

kG ,K([σ]G ,K , [τ ]G ,K) = inf
{
kT (Γ)([µ], [ν]) : Φ̂([µ]) = [σ]G ,K , Φ̂([ν]) = [τ ]G ,K

}

= inf
{
τΓ([µ], [ν]) : [h∗µ]G ,K = [σ]G ,K , [h∗ν]G ,K = [τ ]G ,K

}

= inf
{

inf{σΓ([µ′], [ν′]) : [µ′] = [µ], [ν′] = [ν]} : [h∗µ]G ,K = [σ]G ,K , [h∗ν]G ,K = [τ ]G ,K

}

≥ inf
{
σΓ([µ′], [ν′]) : [h∗µ′]G ,K = [σ]G ,K , [h∗ν′]G ,K = [τ ]G ,K

}

= inf
{
σG([h∗µ′], [h∗ν′]) : [h∗µ′]G ,K = [σ]G ,K , [h∗ν′]G ,K = [τ ]G ,K

}

= τG ,K([σ]G ,K , [τ ]G ,K).

Consequently, kG ,K([σ]G ,K , [τ ]G ,K) = τG ,K([σ]G ,K , [τ ]G ,K). ¤
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