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Abstract. Let KO(CP™) be the KO-ring of the complex projective space CP™.
By means of methods of rational D-series [4], a formula for the J-orders of elements of
KO(CP™) is given. Explicit formulas are given for computing the J-orders of the
canonical generators of KO(CP™) and the J-order of any complex line bundle over
cp™,

1. Introduction.

Let X be a connected finite-dimensional CW complex. Let KO(X) be the
KO-ring of X and KO(X) (resp. KSO(X)) be the subgroup of KO(X) of ele-
ments (resp. orientable elements) of virtual dimension zero. For a real vector
bundle E over X, let S(E) be the sphere bundle associated to E with respect
to some inner product on E. Let JO(X) = KO(X)/TO(X) be the J-group of
X, where TO(X) = {E - F e KO(X) : S(E @n) is fibre homotopy equivalent to
S(F @n) for some ne N}. Then by Adams [1] and Quillen [9], it is shown that

TO(X) = {x e KSO(X) : there exists u e KSO(X) such that

k
() =¥ 1(1++uu)

in 1 +KSO(X)® Q, for all keN} (1)
where 0 : KSO(X) — 1 + KSO(X) ® Q, is the Bott exponential map, ¥~ is the
Adams operation, Q, = {n/k” :n,me Z}, and 1+ KSO(X) ® Q, is the multi-
plicative group of elements 1+ w with we KSO(X) ® Q,.

Now, X is connected implies that KO(X)=KO(X)® Z. So, JO(X) =
JO(X)® Z where JO(X)=KO(X)/TO(X). For xeKO(X), the J-order of
x is the order of x+ TO(X) in JO(X). By Atiyah [3], JO(X) is a finite
group. Hence, x € KO(X) has a finite J-order if and only if x € KO(X). Let
Y = 1En(C) —2 where &,,(C) is the complex Hopf line bundle over the
complex projective space CP™. Every element of KO(CP™) has the form
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Pu(ypimi,...,mg) =my,, +---+mgy; for some mje Z and se N. The pur-
pose of this paper is to compute the J-order of P, (y,;mi,...,m;) which we
denote by b, (Pu(y,,;mi,...,ms)). In addition to their self importance, these
orders are of great importance in geometric topology, for instance, it is well-
known that the Stiefel fibration U(n)/U(n —m — 1) — $?"~! has a cross-section if
and only if n is a multiple of b,,(P,(y,,;1,0,...,0)), computed by Adams-Walker
[2]. Dibag [5] has used (1) to give another proof of Lam’s results [6], we redis-
cover his proof as a special case of Example 2 below.

In section 2, we first obtain a useful formula for 6,(y)) for n=1,...,s.
Then we use (1) and some facts of rational D-series [4] to give, in [Theorem 2.3, a
formula for b,,(P,(y,,;m1,...,my)). The formula given in involes
many difficulties and one can obtain a little information about the range of the J-
orders of elements of KO(CP"). So instead, we use a well-known computations
of the J-order of y,, to obtain, in [Theorem 2.6, upper and lower bounds for
b (Po(y,smi, - .. my)).

There are two important examples in mind, namely the J-orders of the
canonical generators of KO(CP™) and the J-orders of complex line bundles over
CP™. In section 3 we first obtain an explicit formula for the p-component of
the J-order of y,’; for k =2,3, or 4. For k > 5, we show that the formula is true
if p=23or p>k. Then, we give an explicit formula for the J-order of any
complex line bundle over CP™.

2. The J-order of P, (y,;my,...,ms) e KO(CP™).

Let L be a non-trivial complex line bundle over CP™. Then L = ¢&,(C)",

or L~¢,(C)" for some ne N, where &, (C) denotes the conjugate bundle to
Eq(C). Let KU(CP™) be the KU-ring of CP™. In [Lemma 2.1, we find the
image of ¢&,,(C)" under the realification homomorphism

r: KU(CP™) — KO(CP™).

Note that r(&,,(C)") = r(&,(C)").
Recall that from [2], KO(CP™) is a truncated polynomial ring over the
integers generated by y, with the following relations:

yil =0 if m =2z

224 =0, pE2=0 if m=4t+1;

yI2 =0 if m=4r+3.
For each me N, let
dm:{t if m=2t
2t4+1 it m=4t+1 or m=4¢+3.
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For each r,s € N with r > s, let b, ; be the coefficient of (&, (C)° + &,,(C)*)
in (&,(C)+¢,(C)—2)". Using the fact that &, (C)¢E,(C) =1, we easily see

that:
b= 17, 2)

Further, b, is the constant term of (&,,(C) +&,,(C) —2)".
Let ne N. For each s=1,...,n, define d,, by the recurrence relation
dyny=1and for s=n—-1,n-2,...,1

dn,s = _(dn,s+1b5+l,s + dn,s+2bs+2,s + -+ dn,nbn,s)- (3)

CoNvenTION. Let f e Z[y,], where Z[y,] is the ring of formal power
series with coefficients in Z. If we consider f as an element of KO(CP™), then
we implicitly mean that f(mod ydnt1).

LemMA 2.1. Let nnmeN. Then
i) rEn(C)") = dn 1 Y + dnﬂ)’;%q +tdpnyy, + 2.

i) " (y) = du1 Yy +dn2y2 4+ dynyt, and for k=2,... dy,
V' (ye) = din 1 Yt i Y — e 0" (1) — - —di " (v,
(it) 1 = n>.

Proor. (i) Let ¢: KO(CP™) — KU(CP™) be the complexification homo-

morphism. ¢r(&,,(C)") = &,(C)" +&,(C)".  On the other hand, by (2) and (3),
we have

c(dp 1Y+ dunyy +2) = Eu(C)" + &, (C)
Using the fact that ¢ is a monomorphism for m =2t and m = 41+ 3, we get
r(n(C)") =dy1yy+ - +dpnyh+2.

To prove the case m =4t+1, let i: CPY*! — CP**? be the inclusion map.
Then i* : KO(CP**?) — KO(CP**!) is an epimorphism and maps r(y42(C)")
to r(&441(C)"). Hence,

’"(f4t+l(c)n) = i*(r(f4[+2(C)n)) = i*(dn,1y4t—|—2 +e dn.,nyflltﬂ +2)

= dn1 Yarp1 T dn72y4%z+1 +oe dn,nygwrl + 2.
(i) Let /e{l,...,dn}. By (i),

dln,lym + e+ dln,lnyrl,}; = r(ém(c)ln) —-2= rwn(ém(c)l) -2

=Y (1€, (C)) = 2 =" (dy1 9y + -+ dy syl
The result follows.
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dy,1 is the constant term of

ém(C) + ém(C) -2 ém(c) + fm(C) -2

= (En(C)" +E,(0)" P+ +E,(C) + 1)

X (En(C)" ™ +E,(C)" 2 4+ E,(C) + 1),

Hence,

dpg=n+2n—1)+2n—-2)+---+2

:n—|—2((n—1)+(n—2)+---—|—1):n+2<n(n2_ U) = n’.

This completes the proof of [Lemma 2.1. N

Now, we use the above lemma to find 6,(y") e 1+ KO(CP™) ® Q,. For
each n,m,pe N with n <d,,, let

lpp(dn,l + -+ dn,ny;’;q_l)
dn,l + .+ dn’ny’;;—l

1/2
A(p;n,m) = < ) el+KO(CP"® Q,,

and for n> 2, let

B(pin,m) = (0p(3,) ™" 0p(p2) @2 -+ 0,(y 1) 1) e 1 + KO(CP™) @ Q,.

THEOREM 2.2. Let p > 2 and m =2t for some t > 1. Then
U ())

) 0,(y,) = “ :

i 00 = (4:22))

(i) 0,(y)) = A(p;n,m)B(p;n,m), for each 2 <n <t

ProOF. (i) This is Lemma 5.4 of [7].

(ii) If # is a complex 4n-dimensional vector bundle over a finite CW com-
plex X such that /\4”;7 =1, then ¢0,(rn) = 0,(n). Let n=2¢,(C)" +2&,(C)".
Then # is a 4-dimensional complex vector bundle over CP” with

A ) = N 20" N (28,0 =1.
Hence, c0,(rq) = 0,(n). By [Lemma 2.1,

ém(C)n + ém(c)n -2= Cr(ém(c)n) -2= C(dn,lym +oo dnny;};z)
Also,
rn = 2r(er(&n(C)")) = 2re(r(&n(C)"))
= 4r(£m(c)n) = 4dn,1ym T+t 4dn,nyrnn + 8.
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Thus,

cOp(rn) = ((POp(3,0) ™ Op(2) 2 - Op (i) ™10, (y1))*)-
On the other hand,

o g (P _ 2 p n " 2
Mn)(ém(C) +<n(0) 2) (w (En(C)" + E(C) 2))

En(€)" +&n(C)" =2 En(C)" +Eu(C)" =2

2

(C(Wp(ym))c(lﬁp(dn,1 +dy2y, + -+ duayp )
c(yp)e(dnt +dn2y, +---+ dn,nygq_l)

c(%) = (PP Op(ym)°)-

Hence

>

2
_ 4 (W (dn,y ‘|'dn,2J’m+""|‘dn,nyz:lq_l)
0p(n) = C<(p9p(ym)) ( Dot + 2y ot dygyi] '

Now, ¢ is a monomorphism implies that

PO (1) 1 0p(92) 2 - 0,y 10, (1)

= p0,(y )(l//l’(dn,l +dp2y, ++ dn,ny;l,l_l))l/z.
"N dn oYyt dya i
Hence,
0p (1) B(pin,m)™" = A(p;n,m).
This completes the proof of Theorem 2.2 ]

REMARK. By Using a method similar to that used in proving [Lemma 2.1
when m = 4¢+ 1, we easily obtain a similar formula for 6,(y;,) when m is an odd
integer.

COROLLARY 2.3. 0,0y" =" 00, on KO(CP™) for all m,n,pe N.

Proor. Clearly, we only need to show that 6,0 y"(y%) =y" o 0,(y) for
each k=1,...,d,. By induction on k, if k=1 then by [Iheorem 2.2 and

C (11),
Hp(‘pn(ym)) = Hp(dn,lym +o Tt dn,ny;zq)

— <wp(dn,l + dl’l,zym + -4 dn,ny,’;_l)>1/20 (y )
dn,l +d”72ym+"'+dn,ny,’}[1 '\ Vm

) <wp($—8>))>l/z =V <%)1/2 AU
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Now, suppose 0,()"(y))) =" (0,(y])) for I=1,...,k—1. Then

m

GP(Wn(yr];)) = Qp(dkn,lym + -+ dkn,kny,]f,” — dk,llpn(ym) e dk,kfllﬂn(yr];_l))
= Oy G0 () G )

On the other hand, ¥"(0,(y%)) = y"(A4(p; k,m)B(p;k,m)). So, we only need to
show that

Hp(ym)dkn,l .. Gp(y’l;l’l)dkn,kn — wn(A(p, k, m)ep(ym))
0y (3,) 1 - - 0, (ko dm

_ 1/2
- (W(dkm t i 2V + -+ iV 1))/ O0p (V)
dkn,l +dk”)2ym+"'+dkn,kny}/1€1n_1 prsm

12 - 1/2
_ <lpp(dkn,1ym + dkn,Zygq + -4 dkn,knyrlfzn)> / _ W)(lﬁk (ym))
P2 in1 Yy + in 22, + A A V) P (3)

Py k 1/2
i <¢<W>> = V" (Ap ke m)0y ()

The result follows. ]
Let s=d, and P, (y,;mi,...,ms) =myy, +---+mgy. eIZO(CP’”). Let
b (Pp(y,;ma, ..., my)) be the J-order of P, (y,;mi,...,ms), that is the order

of Py(y,;mi,...,ms)+TO(CP™) in JO(CP™). By using the same method of
Proposition 5.7 of [7], we easily see that

b4t+3(P4t+3(y4z+3§ mi,...,Myy1)) = b4t+2(P4t+2(y4t+23 mi,...,Myq1)),
and b4z+1(P4,+1(y4,+1;m1, M),
_ { bay(Pay(yas;m, ..., my)) if my1 =0
lem{bay(Pay(ya;;mi,...,my)), 2} if my = 1.

Therefore, in the remainder of this paper we shall assume that m = 2¢ for some
t > 1, unless othewise indicated.

To compute b,,(P,(y,,;m1,-..,m;)), we use the notion of rational D-series
introduced and developed in [4]. Let Q[x] be the ring of formal power series
with coefficients in @ and Q*[x] = {f(x) € Q[x]: f(0) = +1}. Let

f(x)=+1+ Za,-xi e Q[ x].

i>1

For each k> 1, let ex(f) denote the smallest positive integer e; such that
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(f(x)* € Z[x](mod x*1). Let Si(f) be the set of all primes dividing the
denominators of the coefficients a; for i =1,...,k. For a rational number ¢, let
vp(q) be the exponent of p in the prime factorization of ¢ and let D(gq) be the
denominator of ¢ in its lowest term. For convenience, we assume that v,(0) =
—oo and D(0) = 1. It follows from Lemma 1.3 [4] that p € Sk(f) if and only if
vp(ex(f)) > 0.

For each prime p, let ocp,ﬁpeZ+, and let o= (ap,03,05,...), and f =
(By: B3 Ps,...). Aseries f =41+, ,ax" € Q"[x] is called a rational D-series
of type (,f) if vy(ay,) = =B, and v,(ax) = —p,lk/a,] for each k with a; +0. A
rational D-series [ is called strict at a prime p if v,(ax) > —f,(k/a,) for each
k o, with a; +0. If f is strict at p then, by Theorem 3.5 of [4],

vpler(f)) = max{O,ﬁpr+ v(r):0<r< Lﬂ }

With these facts on hand, we return to our problem.
Let Z(,) = {r/s:r,s € Z with v,(s) = 0} be the localization of Z at p. The
following lemma is (5.2) and Lemma 5.5 of with minor changes.

LeMMA 2.4. (i) Let 1 +u be an element of Q*[y,](mod y'r'). Then

Y1 +u ‘
% € Z(p)[[ym](m()d y,Z’l)

if and only if ue Z [y, (mod yit) with u(0) = 0.

m

(i) (0(y))" € Z{,)[vl(mod yi) if and only if

Vp(h) = vp(bi(y)) = maX{O,S—I- Vp(5): 0 < s < l - 11 }
p J—
Now, we compute by, (P (y,;mi1,...,m;)). For each n=1,....1 let 0,(y) =
14 o 1(p)yy + -+ o (p)yl where o, ;(p) is the coefficient of y! given by
Theorem 2.2 According to (1) by (Pu(y,y;mi,...,my)) is the smallest positive

integer h such that

YP (1 +u)
1 +u

Op (P (Vs ma, ... my)) = in KO(CP")® Q

for some u e KO(CP") and all primes p. Let

ﬁm(p;mh oo aml) = QP(PWI(ymamla cee 7mt)) = ep(ym)rm ot 'ep(yrln)nh
:1+ocl(p;m1,...,m,)ym+-~-+oc,(p;m1,...,m[)y,tn,
for some o;(p;my,...,m;) € Q. Then

O,(hPp(yyimi,...,my)) = B,(p;mi,. .. ,mt)h.
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Let
w1 4u)
Bu(pimi,...,my)" = T1tu
for some u € KO(CP™). Then B, (p;mi, ..., m;)" has integer coefficients. Hence

v]’(h) = vp(el(ﬁm(p;mb s ,Wl;))).
On the other hand, if b =e/(f,,(p;m1,...,m;)) then

Bulpimi,....m)" = (M)b/h_m

l+u l+w
for some we Q*[y,](mod y). B, (pimy,....m)" € Z*[y,](mod y!) implies
that
Yl +w 5
VI ¢ 270y, mod ).

14+w

So, by w e KO(CP™) and hence v,(h) < v,(b). By Corollary 1.3 of

[4], e, (p;mi,...,m)))=D(b,1)---D(by,) where b, =o(p;mi,...,m;) and
for k=2,...,t, b, is the coefficient of y* in

ﬂ (p; m17 e 7m[) D(bPVI)MD(bp’kil)

So far, we have proved:
THEOREM 2.5. v, (b (Pu( Vs mi, ... .my))) = vp(D(bp1)) + -+ vp(D(bp.1))-

Although gives b, (P (y,,;m1, - . ,my)) by a formula, it is difficult
to use this formula to find b,,(P,(y,,;mi,...,m,)) for specific values of my,...,m,,
because one needs first to find the coefficients of y* in 0,(y,,)™ -+ 0,(»%)™ and
then to find e,(f,,(p;mi,...,m,)) which involves tedious calculations. So, alter-
natively, we next try to obtain information about b,,(P,(y,;mi,...,m;)) by
using what we know about b, (y,,).

By [Theorem 2.2, we directly obtain

P 1/2
Tarnt) M

Xk
0,(yk) = ——"—  where o, = <
g gp(ym)Nk

and for k=3,...,1,

_ 1/2
(VP (dey Fdiay o derykTh / R
M=\ d L d k] I N
k1 + Ak 2V T+ Ak Yy,

Nk = (dk71 — 1) - dek,z — Nk—ldk,k—l-
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For each my,... . m; e Z, let
E(my,...,m;) =lem{e, ("), .., e/ (o/")},
N(my,...,m) =my —myNy — -+« —mN,,
L(pimy,...,m) = vy(bm(y,) = vp(N(my, ... ,my)) — vy (E(my, ..., my)),
and
U(p;mi,...,m) =max{v,(by(y,,)) — vp(N(m1,...,my)),v,(E(my,...,my))}.

THEOREM 2.6. Let P (y,;mi,...,m) =miy,, +---+my! e KO(CP™).
Then

L(p;mla s 7ml) < vp(bM(Pm(ym;mla o ,Wl[))) < U(p,WI1, v 7ml)'
Proor. Let h = by, (Pp(y,;m,...,m;)). Then

h WJ(I +u)
ep(mlym +-+ mtyy[n) = 17_“{

for some ue KO(CP™) and all primes p. So,

N(my,...,m))h lpp(l—l_u) —myh —m;
O () M = I

Thus,

has integer coefficients. Hence, by (ii)
VP(N(m17 s 7mt)) + VP(E(mla e 7mt)) + vl?(h) = Vl’(bm(ym))7

namely v,(h) > L(p;mi,...,m;). On the other hand, let b € NV such that v,(b) =
U(p;my,...,m;). Then

WP (1 + )\
Hp(Pm(ym;ml,...,m,))b = <% )
So,
ey (VAN
Qp(ym)N( b )b:< T o, Zb...(xz b,
Let

Yy + )\ Y1+ w)
( 1—{—u> 14w
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for some we Q*[y,,](mod yit!) with w(0) =0. Now,

m

—myb —my;b

Uy - 0y and Hp(ym)N(ml’""mf)b

have integer coefficients. Hence,

Yo (1 +w)

14+w

has integer coefficients, which implies that w e Z*[y,,](mod y:F1). Hence,
() < vy (b).
This completes the proof of [Theorem 2.6l H

COROLLARY 2.7. Let Py(y,;mi,...,m;) =myy, +---+my. € KO(CP™).
Let s be the smallest positive integer such that m; =0 for all i > s, if m, =0, let
s=1t. Then

Vp(bm(Pm(ym;ml’ <. ,Wl[))) = max{O, vp(bm(ym)) - vP(N(mla <. aml))}
for all p > s.

Proor. Using [Cemma 2.1 [(iii], we easily see that S,(o™*) = {2,3,...,k}
for each k =2,...,¢t. So, if p > s then v,(E(my,...,m;)) =0. Now, the result
follows from [Theorem 2.6. O

3. Two important examples.

Let m =2¢t. Then

JO(CP™) =<y =y, + TO(CP™),...,0, =y} + TO(CP™)).
In Example 1, we give a simple formula for the J-orders of a,,a3, and 4.
Let L ~¢,(C)" for some ne N. By the J-order of L we mean the order
of ré,(C)" =2+ TO(CP™) in JO(CP™). Lam [6] has used complex K-theory
to find the J-order of L when #n is a prime power. Also, Dibag [5] has used (1)

to give another proof of Lam’s results. In Example 2, we give a simple formula
for the J-order of L for each ne N.

ExampLE 1. For each k =2,...,t, the J-order of o = y* + TO(CP™) is

b (Pi( 3,30, ..., 0,my = 1,0,...,0)).

So, by |Corollary 2.7, if p > k then

Vp(On(¥3,)) = Vp(bin () = vp(Nic).




J-orders of elements of KO(CP™) 929

According to (2) and (4),

_ o1 2k—=1Y e 2k —1
- (30 )= (D))
Hence, if p > k then v,(Ny) = [2(k—1)/(p —1)].
In [8], we proved that if p =2, or 3, then

st =mfor A= [ cr2 )

for each k=1,...,¢. So, we have:

THEOREM 3.1. If k=23, or 4, then

vy (b (¥E)) = max{O,r— [2(;__11)] +vp(r) : [pz—fl] <r< [%H

for each p > 2. Further, this formula is true if p=2,3 and k=15,...,t or if
p>k.

REMARK. If p 2,3 and p <k, then [Theorem 3.1 is not necessarily true for
k > 5. For instance, by the method of [8],

vs(bao(y3)) =3 while max{0,r —2 —vs(r) : 2 <r <5} =4.

Now, we compute the J-order of any complex line bundle over CP™.



930 M. OBIEDAT

ExaMPLE 2. Let ne N. Then the J-order of &,(C)" is b, (ré,(C)" —2).
By Theotem 2.3, 1y (b(rEn(C) — 2)) = vy(ed(0y(ré,(C€)" — 2)).

En(C)" =2 =rp"(&u(C) = 1) =" (rEu(C) = 2) = Y (30)-
So, by |Corollary 2.3,
Op(rém(€)" = 2) = 0p(¥" (y)) = ¥"(0p(¥n))-

Let n=pi' - pisp? where r; >0 for i=1,...,s, and d >0. Let p=2¢g+1 be
any odd prime number. By, Lemma 5.4 [7],

q—1

1

Op(y) =1+ Y_ my)+ S
=

where m; € Z with v,(m;) =0 for j=1,...,4—1. Hence,
g—1 ) 1
U Op()) = T D" () 0" ()
=1

Using Lemma 3.6 of [7], we easily obtain that

d -1
ym Zn]ym+ym

with v,(n;) >0 for j=1,...,p? —1. Now, by using [Lemma 2.1 [iii] and the
fact that Adams operations are ring homomorphisms with Yoy =y for
each [, e Z, we get

=1
with v,(a;) >0 for j < p? and vy(a,«) =0. Hence,
nq .
V' (Op(yn)) =14+ by,

J=1

with v, (b,a,) = —1, v,(b;) > 0 for j < pq, and v,(b;) > —1 for j > p?q. Hence,

0,(W"(y,y)) 1s a strict D-series at p of type («, ) where

d I 1 I _—
O(p,:{pqp P ﬁp,:{ p'=p

w pFp, w p'Fp.
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Hence,

1y (bn(FEn(C)" = 2)) = max{o,r+ b(r) 0 <r< [#(p_l)l }

If p=2, then

L2

Op (V) = (1 +Zym) -

So
1 12
V00 = (143970m)

Let n=pfl -+ py2?. Then 1+ (/400" () = 1+ S0y ) with wy(ess) = -2,

vy(¢;) >0 for j <29 and v,(¢;) > -2 for j> 29 Hence, 1+ (1/4)y"(y,,) is a
strict D-series at 2 of type («,f) where

2d ] 2 ]
OCp/:{ p ﬁp/:{ p
00)

pE2, o p'+2

" <el<l +%W"(ym))) - max{0,2r+ H(r):0<r< lz—’d} }

VZ(bm(rém(C)n - 2))

)

- max{0,2r+ 1(2r) 0 <r< lz_td] } - max{O,r—l— 1) :0<r< lﬁ] }

So,

Hence,

So, we have:
THEOREM 3.2. Let ne N and p be any prime number then
n _ . m
Vp (b (r(C)" = 2)) = max{O,r +v,(r): 0<r< l—pvv(”)(p — 1)] }

REMARK. A similar proof of when 7 is a power of a prime p
has been obtained independently by Dibag [5].
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