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Abstract. In this paper we consider Jorgensen’s inequality for classical Schottky
groups of real types, that is, the third, sixth and eighth types. The infimum of
Jorgensen’s numbers for the groups of the third, sixth and eighth types are 4, 16 and 16,
respectively.

0. Introduction.

Jorgensen’s inequality gives a necessary condition for a non-elementary
Mobius transformation group G = {A4;,A4,) to be discrete (Jorgensen [2]): If
G =<A4;,A4,) is a non-elementary discrete group, then

J({A1, A2Y) o= [tr2(Ay) — 4] + [tr(A Ao AT A5 = 2] > 1,

where tr is the trace. The lower bound is the best possible. We call J({A4}, 4,))
Jorgensen's number for the marked two-generator group G = (A4, A>).

Here we will consider Jorgensen’s numbers for classical Schottky groups of
real type of genus two. In Sato [4] we classified the groups into eight types (see
§1). In we announced that Jergensen’s inequalities were given for all such
groups of eight types and that the lower bounds were all best possible (see
Appendices). Gilman [1] and Sato [6] gave Jorgensen’s inequalities and the best
lower bounds for the groups of the first and fourth types, that is, for Fuchsian
Schottky groups. Jergensen’s inequalities for the groups of the second, fifth and
seventh types were considered in [9]. Here we will give Jorgensen’s inequalities
and the lower bounds for the groups of the third, sixth and eighth types.

In §1 we will state notation and terminology. In §2 we will state Schottky
modular groups acting on the Schottky spaces of the third and sixth types and
represent their fundamental regions for the Schottky modular groups which are
given in Sato [8] In §3 we will state the main results in this paper. In §4 we
will list properties of Jorgensen’s numbers in a series of lemmas, which play
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important roles in the proofs of the main theorems. In §5 we will give a proof
of on Jargensen’s numbers for classical Schottky groups of the third
type. In §6 we will prove Theorems 2 and 3 on Jergensen’s numbers for classical
Schottky groups of the sixth and eighth types. In §7 we will give some examples
which guarantee that all of the lower bounds in the inequalities in Theorems
1, 2 and 3 are the best possible. In §8 we will make a summary of Jorgensen’s
inequalities for eight kinds of classical Schottky groups of real type.

Thanks are due to the referees for their careful reading and valuable
suggestions.

1. Notation and terminology.

We denote by Mob the group of all Mdbius transformations. We say two
marked subgroups G = {4i,...,4,) and G={A,,... ,Ag> of Mo6b to be equiv-
alent if there exists a Mobius transformation 7 such that AA]- =TA;, T~ for
j=1,2....,9. The Schottky space (resp. the classical Schottky space) of genus
g, denoted by S, (resp. S_(?), is the set of all equivalence classes of marked
Schottky groups (resp. marked classical Schottky groups) of genus g > I.

We denote by M, the set of all equivalence classes [{A4,4,)] of marked
groups (A4, A,y generated by loxodromic transformations 4; and 4, whose fixed
points are all distinct. Let [{Aj,42p] e My. For j=1,2, let 4; (|4] > 1), p;
and p,,; be the multipliers, the repelling and the attracting fixed points of 4,
respectively. We define ¢ by setting ¢, = 1/4;. Thus t;e D* ={z|0 < |z| < 1}.
We define p by setting p = 1/(py, p3, p2,p4), Where (py,ps,p2,pa) is the cross-ratio
of py,p3,p» and py, that is, (py,p3,p2,pa) = ((py — p2)(ps —p4))/((p1 — Pa)-
(p3 —p2)). Thus pe C—{0,1}. We can define a mapping « of the space M,
into (D*)? x (C —{0,1}) by setting a([<A1, 42)]) = (t1,12,p). Then we say that
[(Ay, Ay)] or (A1, A>) represents (11,12, p) and (¢, t2, p) corresponds to [{A;, A2))]
or {(Aj,A,). Conversely, 4,4, and p, are uniquely determined from a given
point 7= (11,15, p) € (D*)> x (C = {0, 1}) under the normalization condition p, =0,
p3 =00 and p, =1; we define 4; (j =1,2) and p, by setting 4; = 1/t; and p, = p,
respectively. We determine 4;(z), A>(z) e M6b from t as follows: the multi-
plier, the repelling and the attracting fixed points of 4;(z) are 4;, p; and p,
respectively. Thus we obtain a mapping f of (D"‘)2 x (C —{0,1}) into M, by
setting fi(t) = [(41(z),42(z))]. Then we note that fo = of = id. Therefore we
identify M, with «(M;). Similarly we can define the mapping o* of S, or Sg
into (D*)* x (C —{0,1}) by restricting « to this space, and identify S (resp. S9)
with a*(S,) (resp. a*(83)). From now on we denote a(M,),«*(S,) and a*(S9)
by M,, S, and Sg, respectively.

We call G ={41,4,> a marked group of real type if (t1,1,,p) € R* N M,
that is, 71,7, and p are all real numbers in M»,, where (¢1,,p) corresponds to
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G ={Ay,A,). Then there are eight kinds of marked groups of real type as
follows.

DeriNiTION 1.1 (cf. [4]). Let G =<A4;,42) be a marked two-generator
group in M, and let (z1,t,p) correspond to {Ay, 4y).
G is of the first type (Type I) if 4, >0, 1, >0, p>0.

)
(2) G is of the second type (Type II) if #; >0, b <0, p>0.
(3) G is of the third type (Type II) if t; >0, £, <0, p<O.
(4) G is of the fourth type (Type IV) if 4 >0, >0, p<0.
(5) G is of the fifth type (Type V) if #; <0, >0, p>0.
(6) G is of the sixth type (Type VI) if 11 <0, 1, <0, p>0.
(7) G is of the seventh type (Type VII) if #; <0, b <0, p <O.
(8)

G is of the eighth type (type VIII) if #; <0, £, >0, p <O.

For each k=1,1I,..., VIII, we call the set of all equivalence classes of
marked Schottky groups (resp. marked classical Schottky groups) of Type k the
real Schottky space (resp. the real classical Schottky space) of Type k, and denote
them by RS, (resp. RkSS).

2. Fundamental regions and Schottky modular groups.

In this section we will state Schottky modular groups acting on the real
Schottky spaces of the third and sixth types and represent their fundamental
regions for the Schottky modular groups, which are obtained in [8§].

THEOREM A (Neumann [3]). The group @, of automorphisms of a marked
two-generator group G = (A, Ay) has the following presentation:

@y = (Ny, Ny, N3 | (NaN i NaN3)* = 1,
N;'NyN3Ny Ny N3Ny No Ny = 1, N{N3N{ N3 = N3N N3N, ),

where N1 : (AI,AQ) — (Al,Az_l), Nz : (Al,Az) — (Az,Al) and N3 : (A],Az) =
(Al,AlAz).

We call the mappings Ni, N, and N3 the Nielsen transformations.

Let (11,t,p) be the point corresponding to a marked Schottky group G =
(A1, A2>. Let (t1()),t2(j),p(j)) be the images of (¢1,%,p) under the Nielsen
transformations N; (j=1,2,3). Weset X =p—t, —ptib +tyand Y =p— 1+
ptit, — t;. Then by straightforward calculations, we have the following.

LemMa 2.1 (Sato [4, Lemma 2.1]). (i) #;(1) =11, t2(1) = to and p(1) =1/p.
i) 11(2) =t, b(2) =1 and p(2) =p. (i) 11(3) =11, (3) + (1/t,(3)) = Y?/
ti(p—1)* =2 and p(3) + (1/p(3)) = X*/(tip(1 = 1)) - 2.

DerINITION 2.1. Let @, be the group of automorphisms of G = <{A4;, 4,).
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Let ¢, ¢, € @,. We say ¢, and ¢, are equivalent if ¢,(G) is equivalent to ¢,(G)
and we denote it by ¢, ~ ¢,. We denote by [¢] the equivalence class of ¢ in @,.

ReEMARKS. (1) We can regard N; (j=1,2,3) and so ¢ € @, as automor-
phisms of the Schottky space of genus two.

(2) From the above (1) and [Definition 2.1, we have the following: If
(A1, A2y ~ (A, A2y and ) ~ §, (¢, 4, € ), then ¢, (<A1, A2)) ~ $5(<A1, A2)).

The Schottky modular group of genus two, which is denoted by Mod(S>),
is the set of all equivalence classes of orientation preserving automorphisms of
the Schottky space of genus two. We denote by Mod(RkS(Z) ) the restriction of
Mod(S,) to the classical Schottky space of real type RiS5 for k = I,1I,..., VIIL
We denote by Fi(Mod(S))) fundamental regions in R;S5 for Mod(R.S)).

We define functions #, = t;(¢#1,p : k) (k =11, VI) as follows:

(1) t(t,p: 1) is t, satisfying the equation

L+ 0)((=p)?+1/(=p)"P) = (1= )((=2) * + 1/(=0)'*) (0 <11 <1).
() t(t,p: VD) =—(1+6p"2)/(p"? +1) A <p< 1/, -1<t<0).

ProposiTION 2.1 (Sato [5]).

(M)

Fi(Mod(89)) = {(11,12,p) € RS | p*(T1, Ta) < p < —1,
HLit,p: 1) <t <0,0<1 <1},

where p*(Ty, Ty) ={4— T\ Ty +((4— T2 (4—T2))/*})2(T, = T)), T\ =1+1/1,
T, = 12—{—1/12.
(i)
Fy1(Mod(8Y)) = {(t1,12,p) € RyiSY | ta(t1,p : VI) < 1 < 0,
l<p<l/8 th<t, —1<t <0}

PROPOSITION 2.2 (Sato [8]). The modular group Mod(RyiSY) is generated
by [N3] and [N\N,], where Ny, N, and N3 are the Nielsen transformations defined
in Theorem A.

ProposITION 2.3 (Sato [8, Theorem 1]). Let N3 be the Nielsen transformation
deﬁned in Theorem A. Then N3(RVIS3) = RVIIISg and N3(RVHIS3) = RVISg.
3. Theorems.

In this section the main theorems in this paper will be stated. Let G =
(A1, Ay be a marked two-generator group generated by Mobius transformations
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Ay and A4,. We remember that the number
J(<A1,A2>) = |tI‘2(A1) — 4‘ + ‘tl’(AlAzAl_lAz_l) — 2’
is called Jorgensen's number for (Ay, A>).

THEOREM 1. If G = {Aj, A2y € RSy, then J({Aj,A)) >4. The lower
bound is the best possible.

THEOREM 2. If G = <A1,A2>eRVISg, then J({Ay,Ay)) > 16. The lower
bound is the best possible.

THEOREM 3. If G = (A}, 42> € RymS), then J({Ay,A>>) > 16. The lower
bound is the best possible.

4. Lemmas.

In this section we will give some lemmas which are necessary to prove the
theorems stated in the previous section. We introduce two regions as follows:

My = {t=(t1,t,p) e R® | ta(ty,p : TII) < 1, < 0,0 < £; < 1},
Myp = {t=(t1,t,p) e R’ | t(t1,p: V) < t2 < 0,1 < p < 1/1},—1 < 1; < 0},

where #,(t1,p: k) (k =11, VI) are the functions defined in §2.
We can easily see the following lemma by in [8] and we omit the
proof.

Lemma 4.1. For each k =111, VI
Fi.(Mod(S9)) € My < R.S).

THEOREM B (Jorgensen [2]). Suppose that the Mobius transformations A, and
A, generate a non-elementary discrete group G = (A, A). Then

J(<A1,A2>) = |tr2(A1) — 4| + |U’(A1A2A1_1A2_1) — 2| > 1.
The lower bound is the best possible.

Let 1= (11,1, p) correspond to G=<{A;,A>>. Since |tr2(4;)—4|=|1—1|*/
1] and [tr(di A" 45 1) = 2| = (L=t *[L =1 |p]) /(|01 | 2]l p— 1]%), we have the
following proposition from B.

PROPOSITION 4.1. Let G = {Ay,A,) be a non-elementary discrete group and
let © = (t1,t,p) be the point corresponding to {Ay,Ay. Then

2 2 2
1—ul” [1-4]"1 -0 |P|>1

J({Ay, 42>) =
T nllalle — 177
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Let 7 = (#1,t2,p) correspond to G = (A1,A4;). We set
J1({A1, A2)) = |r2(4y) — 4] = [1 — 1, */ |,
and

11— 471 — 6)’|p]
.
it t2llp = 1

L ({A, AyY) = |tr(A1 Ay A7 471 — 2| =

Lemma 4.2 ([9, Lemma 5.2]). Jo,({A1,A42)) is @y-invariant, that is,
D2 (§({A1, A2))) = J2({A1, A2)) for any ¢ € ;.

We ecasily see the following lemma and so we omit the proof.

Lemma 4.3. Ji(A1,A42)) and J({A1,A>)) are invariant under the Nielsen
transformations N, and N3, that is,

(1)  Ji(Ni(K41,42))) = Ji1({41,42)) and Ji(N3({A41, 42))) = J1({A41, 42)).
(i) J(N1(KA1, A27)) = J((Ar, 42)) and J(N3({Ay, 42))) = J ({41, 42)).
The following lemma follows from Lemma 4.1.
LemmA 4.4, For k=111, VI
inf{J({A1,42)) | (A1, A2 € Fr(Mod §3)}
> inf{J({A1, 42))| (A1, 42> € My}
> inf{J({41, 42)) | {41, 42> € Ri.SY}.

LemMa 4.5. For each k =111, VL, if © = (t1,t2,p) € My and ty = (11, tr0, p) €
OMy. (0 #0), then J({ Ao, Axy) <J({A1,A2)) and J({A1, A20)) < J2({A1,A2))
where {Ayy, Ay y and {Ay, Ay ) represent 1y and t, respectively, and My are the regions
defined in the beginning of this section.

ProOF. Since the function (1 —1,)?/f, is negative and monotonously de-
creasing in the interval —1 < 7, < 0, we have the desired result by the definition
of the space M. ]

5. Proof of Theorem 1.

In this section we will prove [Theorem 1. Let G = {4y, 4>) be a marked
two-generator group and let © = (¢1,%,p) correspond to G = {4, A2).

LemMa 5.1. If ©=(t1,t2,p) is a point on the boundary surface of My
defined by the equation
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1+0)(=p) P+ 1/(=p)"?) = 1 =) ((~0) " + 1/(~12)"/?) (*)
(p<0,0< <1,
then Jy({A1,A42)) = (1 + 11)2/11 > 4, where {Ai,Ay) represents t.

PROOF. By substituting the identity (x) for Ja(<Ay, 42>) = {|1 —|*]1 —
L2l {lnlallp — 117}, we have the desired result J((Ap,A2>) = (14 1)%/
> 4. L]

Proor orF THEOREM 1. Let G:<A1,A2>eRmS§’ and let 7= (#1,5,p)
correspond to {A;,4,>. By Proposition 2 (i) there exists ¢ € Mod(Ryy;S5) such
that ¢(7) € Fir(Mod(SY)). By we have ¢(t) e M. Let (B, By)
represent ¢(7). By Lemma 4.2 we have

J({A1, 42)) = J1({A1, A2)) + Ja (KA1, Ax)) = Jr(KAy, o)) = Jo(<B1, Ba)).
By Lemmas 4.3 and we have
J2(<B1,B2>) > 4.

It is seen by Example 1 in §7 that the lower bound is the best possible. []

6. Proofs of Theorems 2 and 3.

In this section we will prove Theorems 2 and 3. Let N;,N, and N;3 be
the Nielsen transformations defined in §2. We set ¢ = N7 and y = N Na.
We set Myy(1) := My; and Myi(—1) := N;(My;). We remember that ¢; ~ ¢,
(4,0, € Dr) means ¢, is equivalent to ¢,. We easily see the following Lemmas
6.1, 6.2 and 6.3 (cf. [8]). We omit the proofs.

Lemma 6.1. Let N; (j=1,2,3) be the Nielsen transformations defined in
§2 and let 9 = N7 and y = N1N,. Then
(1) le = 1, N22 = 1, N1N2 ~N2N1 and N1N2N1N2 ~ 1.
(i1)
, NN, if nis odd
z 1 if nis even.
(i) 7'~
(IV) ){N] = N])(fl.
(V)  @N; ~ Nyjp\.
LeEMMA 6.2.  Let ¢ and y be the transformations in Lemma 6.1 and let My;(1)
and Mvyi(—1) be the regions defined in the above. Then

(1) ex(Mvyi(1)) = Myi(1).
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i) o~ (Mvi(1)) = Myi(1).
i) No(Myi(1) = Myi(1).

(
(
(iv)  @Ni(Mvi(1)) = Mvi(1).
(

Mvyi(—=1) if nis odd.

7" (Myi(1)) = {MVI(I) if n is even.

We can easily see the following lemma and we omit the proof.
LemMMA 6.3. Let ¢, e ®,. If ¢~V then J(¢(<A1,A2>)):J(l//(<A1,A2>)).
By Lemmas and we have the following lemma.

Lemma 6.4. Let G={A|,A4A) € RVng be a marked two-generator group and

G* = ¢(G) = (A}, 45> (¢ € Mod(Ry1SY)). Let (1(G), t2(G), p(G)) and (t,(G*),
1(G*), p(G*)) correspond to G and G*, respectively. Then the following four in-
equalities are equivalent.

J(p

(i) JKA],45)) > J (A1, 42)).

(i)  Ji(K4], 45)) > Ji1(K41, 42)).

(iti) tr2(4}) < tr2(4)).

(iv) —n(G*) < —t1(G).

We easily see the following lemma by [Cemma 4.3.

Lemma 6.5. Let ¢ be the transformation in Lemma 6.1. Then

m(<A1;A2>)) = J(<A17A2>) (m € N) fOl" <A17A2> € RVISg-

LeMMA 6.6. Let y be the transformation in Lemma 6.1. Then

inf{J(1(CA1, 42))) | (A1, 42> € Myi(1)} = inf{J ({41, 42)) ] (A1, A2 € Mua(1)}.

Proor. By Lemmas 4.3 and we have
inf{J(x(<41, 42)) [ {41, 42) € Mvi(1)}
= Inf{J(N2({41, 427)) [ (A1, A2) € Myi(1)}
= inf{J ({41, 42)) | (A1, 42y € Myi(1)}. O

LeMMA 6.7. Let ¢ and y be the transformations in Lemma 6.1. Let G =

<A1,A2>GRVIS3 and let (t1,ty,p) correspond to G = <A, A>y. If p>1 and
m > 1, then J(yp™({Ay,A42))) > J({A41, A2)).
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In particular, if G = (A1, A2y € Myi(1) and m > 1, then J(yp"({A41,42))) >
J({A1,427).

ProoF. We set Gy = y¢p™(G). Then we have G, = <{A}"4,,A7'>. By
LCemma 6.4 J(yx¢p"({A1,A))) > J({A;,A>)) if and only if 0> tr?(4;) >

tr2(A2m 4,).
We set
1 0 p—t pltr—1)
A, =1/t d A, =1/ -1 .
=11 (0 h) nd =1/ (78 T
Then

— H—1
A?%z=1ﬁ%¥%p—w( L e )>'

(71— n) "(p—1)

Hence we have tr2(4,)=(1+1)"/t, and tr2(AP"Ay) = {p—tr +
2 (tp — 1)V /22" t(p — 1), Therefore tr2(4;) > tr2(4¥"4;) if and only if
{p—t+ " (t2p — 1)} - 2 (p — 1)*(14+1)*>0. By easy calculations we
have

{p—n+0"Lp- 1) - 3" 'nlp- 1)1 +n0)°
= (p—tr+0"6p— ") = {(=0)"" (=) P (p - (1 + 1)}
={p—tr+"p— 17" — (—=0)" (=) P (p = )(1 + 1)}
x{p =ty "tp — 1" + (=11)" 2 (=1) P (p = (1 + 1)},

Since 14127ty — (—1;)" 2 (=1) * 4 (=)™ (=1)/* >0, p>1 and m> 1,
we have

p—t+"p — " = (—10)" P (=0) P (p = 1)(1 = (=1))
=p{l+ 8" — (—0)"" P (=0) P 4 (=) P (=)'
+{(=t) = "+ (=) (=)' = (=) (=) ')
> {1 + tfmtz . (_tl)m—l/z(_t2)1/2 4 (—Zl)m+1/2(—f2)1/2}
+{(=t) = "+ (=) (=)' 2 = (=01)" P (=1n) 12}
=1 -6+ — 6"

=(1-8)(1-£m>0.
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Furthermore we have the following:

p—t+ " tp — 7" + (=) P (=12) P (p = 1)(1 = (—1))
>p—th+ "0 — "
> (1 —1)(1—1") > 0.
Therefore we have tr?(4;) > tr?(43"4,), which implies J(yp™({A1, 42))) >
J(41, 42)). []
COROLLARY 1. Let G = {Ay,Ayy € Myi(l) and m > 1. Then

inf{J(xp"(G))| G € Mvi(1)} = inf{J(G)|G € Myi(1)}.

COROLLARY 2. Let G=<{Aj, Ay) € RyiSY and let G, = yp"({A},A>)).
Let (t1,t2,p) and (t1(G2),t2(Ga), p(Gr)) correspond to G and G, respectively. If
p>1and m>1, then —t,(Gy) < —t2(Gy).

In particular, if G =<A1,42) € Myi(1) and m > 1, then —t,(G,) < —t2(Gy).

Proor. By Lemmas 6.4 and [6.7 we have —¢,(G,) < —1;. Since ©(Gy) = 11,
we have the desired result —¢;(G,) < —6(Ga). O

LemMMA 6.8. Let ¢ and y be the transformations in Lemma 6.1. Let G =
<A1,A2> € MVI(l) Then

inf{J(xp'(G))| G e Mvi(1)} = inf{J(G) | G € Mwi(1)}.

Proor. This follows from (i} O

LeMMA 6.9. Let ¢ and y be the transformations in Lemma 6.1. Let G =
(A1, 42) € Myi(1) and Gy = xp"(G) (m=-2,-3,-4,...). Let (t1(G2),12(G2),
p(Gr)) correspond to Gy. Then —t(Gy) < —t2(Gy).

PrROOF. By and (v) we have
Gy = 19" (G) = 9" NiN\(G) = N1y '97"Ni(G)
=Ny o N1 (G).

By we have G’ :=¢N;(G)e Myi(1). Thus G,
Ny lo ™ 1(G"). Weset Gy = Ni(Gy). Then Gy =y o 1 (G') ~ yo~" 1(G’
by Lemma 6.1 (11). Since (—m)—1>1 and G' € Myi(1), we have —#,(G3)
—lz(Gé) by to [Lemma 6.7. Since Zl(Gz) = Zl(Gé) and ZQ(GQ) =
,(G5), we have the desired result, —¢;(Gz) < —t2(Ga). O

~—

A
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LemMMA 6.10. Let ¢ and y be the transformations in Lemma 6.1. Let G =
(A1, A2y € Mvyy(1).  Then

inf{J (19" (G))| G € Mvi(1)} = inf{J(G)| G € Mvi(1)}
for m=-2,-3,—4,....

Proor. Noting that J(Niyp"(G)) = J(x¢™(G)), we can see this corollary
by the same method as in the proof of [Lemma 6.9. ]

By [Corollary 1 to [Lemma 6.7, Lemmas and we have the following.

LemMmA 6.11. Let ¢ and y be the transformations in Lemma 6.1. Let
G = (A1,A2) € Myy(1). Then for me Z,

inf{J (9" (G))| G € Myi(1)} = inf{J(G)[ G € Mv(1)}.

Let Gy = (A1,A4,) be a marked Schottky group in My(l). We remember
that 9 = N} and y = N{N,, where N; (j = 1,2,3) be the Nielsen transformations
defined in §2. We introduce some marked Schottky groups G;(Go) and G;(Go)
(j=1,2,3,...) in RyiS) as follows:

Gor1(Go) = "WV
G;.(Go) := (r,,M(k)X(pm(kfl) .. 'X(ﬂm(l)X(Go),

G (Go) := x(G-1(Go)) and G5, (Go) := x(G3(Go)), where m(j) e Z — {0}
(j=1,2,3,...). Wecall Gi(Gy) (resp. G/ (Gy)) a group of length j (resp. a group
of length j with an asterisk) for Gy.

Noting that Gy11(Go) = " (G (Go)) and G3(Go) = 9" (G5, _,(Go)),
we have the following lemmas by [Cemma 4.3.

LEMmA 6.12. J(G2k+1(G())) = J(sz(G())) (k = 0, 1, 2, 3, .. )
Lemma 6.13. J(G5.(Gy)) = J(G5,_(Gy)) (k=1,2,3,...).
By (i), we have the following.

LemmA 6.14. Let Gy (Go) = 10" By 0"y Vy(Gy) be a group of
length 2k + 1 with an asterisk for Gy, where Gy e My(1).
(i) If m(1) # 1, then

inf{J(Gy,1(Go)) | Go € Mvi(1)}

=inf{J (10" V- "Dy V7 (Gy)) | Gy € My1(1)}.
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(ii) If m(l) =1, then
inf{J(Gy11(Go)) | Go € Mvi(1)}
= inf{J (9" - 9" 1(Go)) | Gy € Mya(1)}.
Since by Lemmas 6.12 and
inf{J(G;(Gy)) | Go € Mvyi(1)} = inf{J(G»(Gy))| Go € Myi1(1)}
for some integer j with 0 <2j </, we have the following.

COROLLARY. Let Gy (resp. Gy) be groups of length k (resp. groups of length
k with an asterisk) for Go. Then for each k=1,2,3,..., if

inf{J(G(Gy)) | Go € Myi(1)} > inf{J(Gy)| Gy € Mvi1(1)}
holds for 0 <j <k, then

inf{J(G;(Gy)) | Go € Mvi(1)} > inf{J(Gy) | Go € Mvi(1)}
holds for each ¢ =2k + 1,2k + 2, where Gy(Gy) = Gy.

Thus it suffices to consider G;(Gy). For simplicity, we write G; for G;(Gy) if
there is no confusion.

Let (#1(G)), 12(G;)), p(G;)) correspond to G; = {Ay;, Ay;». Then by properties
of the Nielsen transformations N; (j=1,2,3), we easily see the following.

LemMMmA 6.15. Let Gj = {Ayj, As;) be the marked group defined in the above,
and let (t(G)), t2(G;)), p(G;)) correspond to G;. Then

(1)  t1(Gw) = t2(Gog—1).

(i)  1(Gu) = t1(Gru-1).

(111) l‘l(sz) = tl(GZk—}—l)-

LEMMA 6.16. Let Gayi1(Goy) = "% Ve ... o™V (Gy) be a group of
length 2k +1 for Gye Myi(1). Set Gy = yo"®) - 3"V (Gy). If m(1) # —1,
then @ """ V(N{(Gy)) is equivalent to a group of length 2k +1 for G} =
¢N1(Go) € Myy(1), where N is the Nielsen transformation defined in §2.

ProOF. By (i), and (v) we have
o "N (Gor)) = o " FTIN 9™ B - ™D (Go)
~ D) = gymm(k) -[Vp’m(l)Nl(Go)
29"V (9N (Go))

_ ¢—m(k+l)x(p—m(k) . '){(D_m(l)_l(Gé).

~ (ﬂ_m(k+1))(§0_m(k) .
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By Lemma 6.2(iv) we have G} = ¢N1(Gy) € Myi(1). Since m(1) # —1, we have
the desired result. [

LeEmMA 6.17.  Assume that —t)(Gay+1(Go)) > —t2(Gour1(Go)) holds for every
Go € Myi(1) and for every group Gi1(Go) = ¢"* Uy yp™V(Gy) of length
2k+1  with  p(Gu(Go)) >1 and m(1) #—1. Then —1;(Gus1(G))) >
—12(Ga+1(G))) holds for every Gye Myi(l) and every group Goyi1(G)) =
"kt )y 0" V(GY) of length 2k + 1 with 0 < p(Gu(G})) < 1 and n(1) # —1.

PROOF. Let Gai1(G)) = "D yp"®) ... yop"D(G!) be a group of length
2k 41 such that 0 < p(Gx(G))) <1, n(1) # —1 and Gje Myi(1). We easily
see that

Gopei1(GY) ~ N1 "6 (K)o =D (N (G}))).

If we set Go=¢N(G)), then Gye My(l) by [iv]. Since
0" g™ W g7 D7 (Go)) ~ gD (N1 - g™V (Gp)) s a group of
length 2k +1 by and

Pl " DGY)) = p(re ™ ) - "V N (GY))
= p(xp™" 0 - 2o "VN|(G}))
= p(N1yp"® - - 59"V (Gy))
> 1,
we have

— 11 (7" ("8 o DGy ))) > — 1 ("D (370 -y (D71(Gy) ) )

by the assumption.
By (i) we have

—1 (Nl w_n(k"’l)x(p_n(k) .. 'X(P_n(l)_l(GO)) > _[2(N1 (p_n(k"’l)x(p_n(k) o 'X(P_n(l)_l(GO))-
Thus —ll(G2k+1(G6)) > —Z2(G2k+1(G(/))) holds for 0 < p(GZk(G(/))) < 1. ]

LemMMA 6.18.  Let G = {Ay;, Ay;) € Myi(1) be the marked groups of length
J defined in the above, and let (t,(G;),t2(G;),p(G;)) correspond to Gj. Then

(1) _tl(GZk—l) > _IZ(GZk—l) (k =1,2,3,.. ) if m(l) # —1.
(11) _tl(GZk) < —tQ(sz) (k = 1,2,3,...) if m(l) # —1.

Proor. First we will show that (i) holds if and only if holds. Since

(A ok, Aok ) = { A ok-1, A7y 0, we have (11(Gax), 22(Gak), p(Gax)) = (12( Gax1),
11(Ga—1),1/p(Ga_1)). Hence we have the desired result.
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Now we will prove (i) by induction. We consider two cases: (1) k =1 and
(2) k=2

(1) The case of k=1. By to Lemmas and we have
—11(G2) < —IQ(GQ) for Wl(l) # —1. Since I1(G1) = ZQ(GZ) and tz(Gl) = tl(Gz),
we have —£(G1) < —41(Gy) for m(1) # —1.

(2) The case of k>2. Assume that —7(Gy_1) > —t2(Gy—1) holds for
every Gy € My(1). Then it suffices to show that —#(Gax+1) > —t2(Gak+1) holds.
We only prove —t1(Gaxy1) > —t2(Gax11) for the case of p(Gy) > 1 by
6.17. Therefore we only prove that if p(Gy) > 1 and —1(Gay—1) > —t2(Ga—1),
then —#(Gaxy1) > —t2(Gak+1). We will show this for the following two cases:
case l.m(k +1)>1;case 2. m(k + 1) <—1. For simplicity, we set Gy, := (Bj, By
and £ := tl(sz), lH == ZQ(sz) and p = p(sz). Then Gy = <Bl,Blzm(k+1)Bz>.

Case I: m(k+1)>1. By the same method as in the proof of [Lemma 6.7,
we have J (o™ ) (Gy)) > J(Gu).  Let (11(G)), t2(G)), p(G;)) correspond to G;
(j=2k,2k+1,2k+2). By we have —1;(x(Gaus+1)) < —t1(Ga) where
Gor1 = 9" "D (Gy).  Since 11 (x(Gari1)) = t2(Gary1) and #(Gy) = t1(Gar1) by
Cemma 6.13, we have the desired result, —t2(Gayy1) < —t1(Gair1).

Case 2: m(k+1)<—-1. We set

o p—t p—1)
B =1/4" d By =1/1)" .
=1/ (0 zl) and By =1/6"0 =D\ ) o1
For simplicity, we set m = —m(k +1). Then m > 1. We have
2m( , _ 2m _
Bfm(kH)Bz BBy = /17 t1/2( 1)<t1 (p—t) t"p(tr l))
l1—1 thy — 1

We note that the following two inequalities are equivalent: (i) —#(Gay1) >
—t2(Gagy1), 0 > tr?(By) > tr’(B{*"B,). Therefore we only show that the
following inequality holds:

(B7(p— )+ top = 112 > Uiy (p— 1)(1 +17)
We set

f(p)=(6"p ="+ op = 1) = 7" (p— 1)*(1+ 1), (%)
By the assumption —¢; < —t, , the coefficient of p? in the above equation (x) is
y
positive, that is
(" 4+ 1) = 2" (14 1) > 0.

Thus it suffices to show that the axis of the quadratic equation (x) in p is less
than one and f(1) > 0. The axis of the equation (x) is less than one if and only
if f'(1) > 0. By simple calculations we have
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S (1) =2(1 = )1 = ") (~t2 — 1)
>2(1 — 1) (1 — 8™ (~t, +11) > 0.
Furthermore substituting p = 1 for the equation (x), we have
F() = (2" ="ty + 1, — 1)* > 0.
Thus we have tr?(By) > tr?(B;*"B,). Therefore we have the desired result,
—11(Gaxs1) > —12(Gopey1). O
CoOROLLARY. If Gy e Myi(1) and m(1) # —1, then
J(Gar(Go)) > J(Gar—2(Go))
for k=1,2,3,....
Proor. This corollary follows from Lemmas [6.4, [6.13 and [6.18. O

By this corollary we have the following.

LemMA 6.19. If Gy e Myi(1) and m(1) # —1, then J(Gyu(Go)) > J(Gy) for
k=1,23,....

Next we consider the case of m(l) = —1. Let

G (Gy) = X(ﬂm(k)x- .. (/,m(2)wm(l) (Go)

be a group of length 2k for Gy € Mvyi(1). Since m(1) = —1, we have Gy (Gy) =
10" By 0" y971(Gy). By we have Gj := yp~'(Gp) € Myi(1).
Thus

inf{J (G2 (Go)) | Go € Mvi(1)} = inf{J (Ga—1)(Gp)) | Gy € Mvi(1)}.

If m(1) = —1 and m(2) # —1, then by the same method as the proof in the
above lemmas we have

inf{J(Ga(Go)) | Go € Myi(1)} = inf{J(Go) | Go € My1(1)}

for k=1,2,3,....
If m(1) = —1 and m(2) = —1, then by the same reason as above we have

1nf{J(G2k(G0)) ’ G() € MVI(I)} = inf{J(Gz(k_z)(G()) ’ G() € MVI(I)}
By continuing this procedure we have the following.

LeMMA 6.20. Let Gy (Go) (k=1,2,3,...) be a group of length 2k for G, €
MVI(I)I

Gor(Go) =y Wy -y yp" D (Gy).
Then
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inf{J(Gx(Gy)) | Go € My1(1)} > inf{J(Gy) | Gy € My(1)}.
By Lemmas and we have the following.

LemMA 6.21. Let Gj be a group of length j for Gye Mvyi(l). Then
inf{J(G;(Gy)) | Go € Mvyi(1)} > inf{J(Gy)| Gy € Mvyi(1)}
(j=1,2,3,...).

By [Corollary] to [Lemma 6.14 and we have the following.

LEMMA 6.22.  Let G/ be a group of length j with an asterisk for Gy € Myi(1).
Then

inf{J(G;(Go)) | Go € Myi(1)} > inf{J(Go) | Gy € Mvi(1)}
(j=1,2,3,...).

By Lemmas [6.21 and 16.22 we have the following.
PROPOSITION 6.1. Let ¢ € Mod(Ry1SY). Then

inf{J(4(Gp)) | Go € Myi(1)} = inf{J(Gy) | Go € Mvi1(1)}.
COROLLARY. inf{J(Gy) |Gy e RyiSY} > inf{J(Gy)| Gy € Myi(1)}.
Combining the above corollary with Lemma 4.4 we have the following.
PrROPOSITION 6.2.

inf{J(Gy)| Go € Ry1S5} = inf{J(Gy) | Gy € Myi(1)}.

LEmMMA 6.23. Let (t1,t,p) correspond to a marked group G = (A, Ar).
Let My (1) ={t=(1,0,p) e R’ |a==(1+0p'?) | (p'? +11), 1<p<1/d,
-1 <t <0}, Then J({A1,A2)) =16 on M (1). The lower bound is the best
possible.

PrROOF. Let 7= (t1,1,p) € My (1). We set x=—t; and y=p'/2. Then
the equation 1, = —(1+1p'/?)/(p">+ 1) turns into 1, = —(1—xy)/(y — x).
By substituting #; = —x, p=3? and t, = —(1 — xy)/(y — x) for

11— Z1|2 11— f1|2|1 - f2|2\P|
1 ] |2 Ip = 117

J(<A1 ) A2>) =

we have

(1+x)° L+ X)7(1 - x)%y?

J({A41,42)) = X x(y—x)(1=xp)(y = 1)*
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Setting X =x+1/x and Y =y +1/y, we have
J({AL,AD)) =X +2+ (X*—4)/(X = Y)(Y -2).
By calculus we have that J({4;, A>)) attains the minimum value 16 at X =6,

Y =4, that is, at the point 7 = (11,1,p) = (—(3 — 2v2), —(5 — 2V/6), (2 + v/3)?)
on My (1). O

Since My, = 0Mvy \ {t = (t1,t2,p) € IMv1 | 1 = 0}, we have the following by
Lemmas and 6.23.

PROPOSITION 6.3. If (Aj, 42> € Myi(1), then J({Ay,Ay)) > 16.

PrOOF OF THEOREM 2. We can prove Theorem 2 by Propositions and
6.3. We can see by Example 2 in §7 that the lower bound 16 is the best
possible. ]

PROOF OF THEOREM 3. follows from [Theorem 2|, [Proposition 2.3
and Lemma 4.3. Example 3 in §7 shows that the lower bound 16 is the best
possible. ]

7. Examples.

In this section we will give some examples which guarantee that all of the
lower bounds in the inequalities in Theorems 1, 2 and 3 are the best possible.

Let {1, = (tin, tan, p,)} (n=1,2,3,...) be a sequence of points in R> and let
G, = {Ay,, A2, be the groups representing 7,. Here we will give sequences of
marked classical Schottky groups {G,} whose Jorgensen’s numbers J(G,) tend to
the lower bounds in the inequalities in Theorems 1, 2 and 3.

ExampLE 1 (Type III). Let 11, = ((n—1)/(n+1))% t2s = —1/(n+1)* and
py=—1 (n=2,3,4,...). Then (i) G, e RSy and (ii) lim, ., J(G,) = 4.

We easily see that 7 = (1, ta, p,) € M (n=1,2,3,...) and so G, € RHISS,
where My is the region defined in §4. Furthermor we can see lim,_., J(G,) = 4
by simple calculations.

ExampLE 2 (Type VI). Let t;,=—(3—-2v2)+1/(n+10), t,=—(5-26)
+1/(n+10) and p,=7+44V3 (n=1,2,3,...). Then (i) G, e RyS) and (i)
lim, .., J(G,) = 16.

We ecasily see that t = (t1,,tm,p,) € Myi(1) (n=1,2,3,...) and so G, €
RVISS. Furthermor we can see lim, .., J(G,) = 16 by simple calculations.

ExampLe 3 (Type VII). Let t, =—(3—2v2)+1/(n+10), ts, =3—

2v2—1/(n+10) and p,=—1 (n=1,2,3,...). Then (i) G, e RyyS; and (i)
lim,_.., J(G,) = 16.
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{(=p)" = (=0)""H{1 = (=1)"*(=p)"”
=)'+ () PHI+ (=0) P (=p)

My (0) = {(fl,lz,P)€R3|0<lz< ?

l/h<p<t, —1<t <0}.

Then we note that My(0) RVIHS(Z) (cf. [8]). We ecasily see that 7=
(tin, ton, p,,) € Mym(0) (n=1,2,3,...) and so G, eRVIHSg. We can see in
Example 3 by [Proposition 2.3, [Lemma 4.3 and Example 2.

Though we have just seen that the group G, = <{A;,,4»,» in Examples
1, 2 and 3 are classical Schottky group of types III, VI and VIII, respectively,
we will show this fact by drawing explicitely defining circles for the groups
G, = {Ain, A2ny. Namely, we draw four circles C;, (j =1,2,3,4) satistying the
following two conditions:

(1) Aln(Cln) — C3n and A2n(C2n) - C4n-

(2) Ciy, Cyy, C3, and Cy, comprise the boundary of a 4-ply connected

region.

ExampLE 1. If we can choose circles Cy,, Cy,, C3, and Cy, satisfying the
following two conditions, then we easily see that G, = (A4, A2,» € My < RmSg .

(i) Cju (j=1,2,3,4) are the circles perpendicular to the real axis such that
Aln(Cln) = C3n and AZn(C2n) = C4n-

For j=1,2,3,4, the points a; and bj, satisfy the inequality

sy < dap < p, < bay < ay, <0< by < azy <1< by < by,

where a;, and b;, (j=1,2,3,4) are the intersection points of the circles Cj, with
the real axis.

Now we take a; and by, (j=1,2,3,4) as follows: aj, = —(n*-3)/
(n*4+2n+2), by, =m*=3)/(N®+2n+2); ay=n*—-2)/(n*+2n+2), by =
(2 +4n+2)/(n® +2n+2); azn = -2 =3)(n+ D/ +2n+2)(n— 1)%, by, =
(> =3+ 12/ (2 +2n+2)(n—1)%; agy = —(n* +4n+2)/(n® +2n+2), by =
—(n?=2)/(n* +2n+2).

Then we can easily see that these points a; and b, and the circles C;
(j=1,2,3,4), which have aj, and b;, as the intersection points of the circles Cj,
with the real axis, satisfy the above conditions (i) and for sufficiently large n.
Thus G, = {Ay,, A,y are classical Schottky groups of type III.

ExampLE 2. If we can choose circles Cy,, Cs,, C3, and Cy, satisfying the
following two conditions, then we easily see that G, = (A, A2y € Myi(l)
Ry1SY.
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(1) Cn (j=1,2,3,4) are the circles perpendicular to the real axis such that
Aln(Cln) - C3n and AZn(CZn) - C4n-
For j=1,2,3,4, the points a; and b; satisfy the inequalities

/l

s, < ay <0< by <ay <1< by <agy <p, <bay <bsy,

where a;, and b;, (j=1,2,3,4) are the intersection points of the circles C;, with
the real axis.

We take 11,13,p and t1,, ta,p, as follows:
n=—03-2V2), n=—5-2/6), p=T+4/3;
th=—03=2V2)+1/(n+10), tr,=—(5-2V6)+1/(n+10), p,=7+4V3.

Let G=<A4,,4,) and G, =<{Ay,, A2,y be the groups representing 7=
(t1,t2,p) and 1, = (t1n, t2n, p,), respectively. We take aj, and b;, (j=1,2,3,4)
as follows:

aip = _(2+ \/g); b3n :Aln(aln)> b4n =4, (aln); b2n = Az_nl (b4n); 4y :Az_l(b4n);
oy = Az_nl (a4n); bln = Az_l(a4n); asy = Aln(bln)

Then we can easily see that these points aj,,b;,, and the circles Cj,
(j=1,2,3,4), which have a;, and bj, as the intersection points of the circles Cj,
with the real axis, satisfy the above conditions (i) and [ii]. Thus G, = {A,, A2)
are classical Schottky groups of type VI

ExampLE 3. If we can choose circles Cy,, Cy,, C3, and Cy, satisfying the
following two conditions, then we easily see that G, = {A4i,, A2,y € Mym(0) <
RymS5.

(1) Cn (j=1,2,3,4) are the circles perpendicular to the real axis such that
Aln(Cln) = C3n and A2n(C2n) = C4n-

For j=1,2,3,4, the points a;, and b, satisfy the inequalities

sy < gy < p, < bay < ay, <0< by < axy <1< by, < bay,

where g, and b;, (j=1,2,3,4) are the intersection points of the circles Cj, with
the real axis.

We take #,t,p and ty,, ty,, p, as follows:
h=-3-2V2), n=3-2V2, p=—1;
th=—03-2V2)+1/(n+10), 1, =(3-2V2)=1/(n+10), p,=—1.

Let G=<A4,,4,) and G, ={Ay,, A2,y be the groups representing 7=
(t1,t2,p) and 1, = (tin, ton, p,), respectively. We take aj, and b;, (j=1,2,3,4)
as follows:
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ay, = —(—ll)l/z(—p)l/2 =1-V2, by, =Aulan), bu=A(an)=vV2+1;
gy = Az (b2n), aan = Az(b) = —(V2+1); by = A7 azn), az = A7 (az,) =V2—1;
ban = Aop(az,).

Then we can easily see that these points aj,,b;,, and the circles Cj,
(j=1,2,3,4), which have a;, and b;, as the intersection points of the circles Cj,
with the real axis, satisfy the above conditions (i) and [ii]. Thus G, = {Ain, A2
are classical Schottky groups of type VIII.

8. Appendices.

We will make a summary of Jorgensen’s inequalities for classical Schottky
groups of real type obtained in [I], [6], [9] and the present paper.

Tueorem [ (Gilman [1], Sato [6]). If G =<A,42) eRISg, then
J({Ay,A2)) > 16.  The lower bound is the best possible.

THeorem II (Sato [9]). If G:<A1,A2>ERHSS, then J({Ay,Ay)) > 16.
The lower bound is the best possible.

THEOREM III (Theorem 1 in the present paper). If G =<A4;,42)¢€ RIHSQ,
then J({Ay,Ay)) > 4. The lower bound is the best possible.

TueoreM IV (Gilman [1], Sato [6]). If G =<{Ay,4>> € RySY, then
J({Ay,A2)) > 4. The lower bound is the best possible.

TuroreM V (Sato [9]). If G =<{Aj, 42> € RySY, then J({A1,Ay)) >
4(1+v2)%.  The lower bound is the best possible.

THEOREM VI (Theorem 2 in the present paper). If G={A;,A4>) € RVISQ,
then J({Ay,A2)) > 16. The lower bound is the best possible.

THEOREM VII (Sato [9]) If G:<A1,A2>€RVI1S§), then J(<A1,A2>)>
4(1+v2)2.  The lower bound is the best possible.

THEOREM VIII (Theorem 3 in the present paper). If G =<A,A) € Rvmsg ,
then J({Ay,Az)) > 16. The lower bound is the best possible.
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