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Abstract. We consider a quasi-linear second order elliptic di¨erential

equation on a euclidean domain. After developing necessary potential theory

for the equation which extends some part of the theories in the book by

Heinonen±KilpelaÈinen±Martio, we show that the ideal boundary of the Royden

type compacti®cation of the domain is resolutive with respect to the Dirichlet

problem for the equation.

Introduction.

Resolutivity of ideal boundaries of Riemann surfaces was systematically developed in

[CC]. An ideal boundary is the boundary of a compacti®cation R� of an open Riemann

surface R and R� is called a resolutive compacti®cation if every continuous function on

G � R�nR is resolutive with respect to the Dirichlet problem for harmonic functions.

Here, the Dirichlet problem is treated in the so called PWB (Perron-Wiener-Brelot)

method.

Such a theory can be readily extended to the case R is a domain in R
N �NV 3� or

more generally a Riemannian manifold, and to the case the Dirichlet problem is

considered with respect to a second order elliptic linear partial di¨erential equation on

R, or even to the case R is a harmonic space and the equation is semilinear ([M]).

The Dirichlet problem in the PWB-method has been discussed for nonlinear (or,

more precisely, quasilinear) elliptic equation of the form

ÿdivA�x;`u� � 0�E0�

in a series of papers [LM], [K], [KM], etc., and collectively in [HKM]. In [HKM], it is

assumed that A : R
N � R

N ! R
N satis®es the following conditions for a ®xed 1 < p <

y and a ``p-admissible weight'' w:

(1) x 7! A�x; x� is measurable on R
N for every x A R

N and x 7! A�x; x� is

continuous for a.e. x A R
N ;
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(2) A�x; x� � xV a1w�x�jxj
p for all x A R

N and a.e. x A R
N with a constant a1 > 0;

(3) jA�x; x�jU a2w�x�jxj
pÿ1 for all x A R

N and a.e. x A R
N with a constant a2 > 0;

(4) �A�x; x1� ÿA�x; x2�� � �x1 ÿ x2� > 0 whenever x1; x2 A R
N , x1 0 x2, for a.e.

x A R
N ;

(5) A�x; lx� � ljljpÿ2
A�x; x� for l A Rnf0g.

Further, resolutivity of the Royden and Kuramochi boundaries of a Riemannian

manifold with respect to the p-Laplacian has been investigated in [T], and the reso-

lutivity of the Royden boundary for the equation �E0� where A satis®es the above

conditions with w � 1, has been shown in [N].

The purpose of the present paper is to extend these resolutivity results to the

equation of the form

ÿdivA�x;`u� �B�x; u� � 0�E�

on a domain W in R
N �NV 2�. We assume that A : W� R

N ! R
N satis®es the

conditions (1) to (4) above, but not the homogeneity condition (5). B�x; t� is a function

W� R ! R which we assume to be nondecreasing in t (see §1 for other conditions). A

prototype of the equation (E) is

ÿdiv �w�x�j`ujpÿ2
`u� � b�x�jujpÿ2

u � 0

with a nonnegative measurable function b such that b�x�=w�x� is locally bounded in W.

In the case where there is no weight, namely the case w � 1, quasilinear equations

of the form (E) have been studied in the theory of partial di¨erential equations, e.g., in

[S ], [GZ], and the basis to develop some part of potential theory for (E) has been

established. In case w0 1, such basis for the equation �E0� is given in [HKM], and that

for (E) in [O]. Using the results in [O], we obtain potential theory for the equation (E)

in §1 and §2 as an extension of a part of the theory given in [HKM].

We discuss the Dirichlet problem with respect to ideal boundaries for the equation

(E) in §3 and state our main theorem as Theorem 3.2, which, generalizing the reso-

lutivity results given in [T] and [N], asserts that a Royden type compacti®cation of W is

resolutive for the solutions of (E). For its proof, we use obstacle problems with respect

to (E), which will be discussed in §4 and in the Appendix. Finally, the proof of Theorem

3.2 will be given in §5. One may see that the essential idea of the proof is already given

in [HKM]. We need, however, some deviations from the arguments in [HKM] due to

the existence of the term B�x; u� in (E).

Throughout this paper, we use some standard notation without explanation. One

may refer to [HKM] for most of such notation.
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§1. �A;B�-harmonic functions.

Let W be a domain in R
N �NV 2� and we consider a quasi-linear elliptic dif-

ferential equation

ÿdivA�x;`u� �B�x; u� � 0�E�

on W. Here, A : W� R
N ! R

N and B : W� R ! R satisfy the following conditions for

a ®xed 1 < p < y and a weight w which is p-admissible in the sense of [HKM]:

(A.1) x 7! A�x; x� is measurable on W for every x A R
N and x 7! A�x; x� is

continuous for a.e. x A W;

(A.2) A�x; x� � xV a1w�x�jxj
p for all x A R

N and a.e. x A W with a constant a1 > 0;

(A.3) jA�x; x�jU a2w�x�jxj
pÿ1 for all x A R

N and a.e. x A W with a constant

a2 > 0;

(A.4) �A�x; x1� ÿA�x; x2�� � �x1 ÿ x2� > 0 whenever x1; x2 A R
N , x1 0 x2, for a.e.

x A W;

(B.1) x 7! B�x; t� is measurable on W for every t A R and t 7! B�x; t� is con-

tinuous for a.e. x A W;

(B.2) For any open set DFW, there is a constant a3�D�V 0 such that jB�x; t�jU

a3�D�w�x��jtjpÿ1 � 1� for all t A R and a.e. x A D;

(B.3) t 7! B�x; t� is nondecreasing on R for a.e. x A W.

We remark that if A and B satisfy the above conditions, then ~A and ~B which are

de®ned by

~A�x; x� � ÿA�x;ÿx� and ~B�x; t� � ÿB�x;ÿt�

also satisfy these conditions with the same constants a1, a2 and a3�D�.

For the nonnegative measure m : dm�x� � w�x� dx and an open subset D of W, we

consider the weighted Sobolev spaces H 1;p�D; m�, H 1;p
0 �D; m� and H

1;p
loc �D; m� (see [HKM]

for details).

u A H
1;p
loc �D; m� is said to be a (weak) solution of (E) in D if

�
D

A�x;`u� � `j dx�

�
D

B�x; u�j dx � 0
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for all j A Cy

0 �D�. u A H
1;p
loc �D; m� is said to be a supersolution (resp. subsolution) of (E)

in D if
�
D

A�x;`u� � `j dx�

�
D

B�x; u�j dxV 0 �resp:U 0�

for all nonnegative j A Cy

0 �D�.

The following proposition can be proved in the same way as [HKM; Lemma 3.18]

by using (B.3) as well as (A.4); see [O; Lemma 3.6] for details.

Proposition 1.1 (Comparison Principle I). Let D be an open set such that DFW

and let u A H 1;p�D; m� be a supersolution and v A H 1;p�D; m� a subsolution of (E) in D. If

min�uÿ v; 0� A H
1;p
0 �D; m�, then uV v a.e. in D.

Corollary 1.1. Let D be any open set in W. If u is a supersolution and v is a

subsolution of (E) in D and if u� eV v a.e. outside a compact set in D for any e > 0, then

uV v a.e. in D.

Proof. For e > 0, let u� eV v a.e. in DnKe with a compact set Ke and let G be an

open set such that Ke HGFD. By (B.3), u� e is a supersolution of (E). Since

min�u� eÿ v; 0� A H
1;p
0 �G; m�, it follows from Proposition 1.1 that u� eV v a.e. in G.

Therefore u� eV v a.e. in D. Since e is arbitrary, uV v a.e. in D.

Proposition 1.2. Let D be any open set in W and let fung be a nondecreasing

sequence of supersolutions of (E) in D. If there is g A H
1;p
loc �D; m� such that un U g a.e. for

all n, then u � limn!y un is a supersolution of (E) in D.

Proof. First we show that f
�
G
j`unj

p
dmg is bounded for any GFD. Choose

h A Cy

0 �D� such that 0U hU 1 in D and h � 1 on G. Since each un is a supersolution of

(E) in D,

�
D

A�x;`un� � `��gÿ un�h
p� dx�

�
D

B�x; un��gÿ un�h
p dxV 0:

It follows that

�
D

�A�x;`un� � `un�h
p dxU

�
D

�A�x;`un� � `g�h
p dx

� p

�
D

�A�x;`un� � `h�h
pÿ1�gÿ un� dx

�

�
D

B�x; un��gÿ un�h
p dx:
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Hence, by (A.2), (A.3), (B.2) and (B.3), we have

a1

�

D

j`unj
p
hp dmU a2

�

D

j`unj
pÿ1�j`gjhp � pj`hj�gÿ u1�h

pÿ1� dm

� a3�D
0�

�

D 0

�1� jgjpÿ1��gÿ u1� dm

U a2

�

D

j`unj
p
hp dm

� �� pÿ1�=p �

D

�j`gjh� pj`hj�gÿ u1��
p
dm

� �1=p

� a3�D
0�

�

D 0

�1� jgjpÿ1��gÿ u1� dm;

where D 0 is an open set such that Spt hHD 0FD. Noting that g, u1 A H 1;p�D 0; m�, we

deduce that f
�

D
j`unj

p
hp dmg, and hence f

�

G
j`unj

p
dmg is bounded.

Since u1 U un U g, f
�

G
junj

p
dmg is also bounded. Thus, by [HKM; Theorem 1.32],

u A H 1;p�G; m� and `un ! `u weakly in Lp�G; m�.

The rest of the proof can be carried out by suitably modifying the proof of [HKM;

Theorem 3.75]; we may use Lebegue's convergence theorem to treat the terms involving

B�x; un�.

A continuous solution of (E) in D will be called �A;B�-harmonic in D. Note that if

h is �A;B�-harmonic in D, then ÿh is � ~A; ~B�-harmonic in D.

The following three theorems can be proved by suitably modifying the arguments in

[S ] (see [O] for details).

Theorem 1.1. Any solution of (E) in D is equal a.e. to an �A;B�-harmonic function.

Theorem 1.2 (Harnack Inequality). Given an open set DFW and R0 > 0, there

exists a constant c � c�p; cm; a1; a2; a3�D�;R0� > 0 such that whenever 0 < RUR0 and

B�x; 3R�HD

sup
B�x;R�

hU c inf
B�x;R�

h� R

� �

for any nonnegative �A;B�-harmonic function h in B�x; 3R�.

Here, cm denotes a constant depending only on those constants which appear in the

conditions for w to be p-admissible.

Theorem 1.3. A locally uniformly bounded family of �A;B�-harmonic functions in

D is equi-continuous at each point of D.
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We say that an open set D in W is �A;B�-regular, if DFW and for any

y A H
1;p
loc �W; m� which is continuous at each point of qD, there exists a unique h A C�D�V

H 1;p�D; m� such that h � y on qD and h is �A;B�-harmonic in D.

Theorem 1.4. Let D be a bounded open set such that DHW. If R
NnD is �p; m�-

thick in the sense of [HKM] at each point of qD, then D is �A;B�-regular.

Outline of the proof. Given y A H
1;p
loc �W; m� which is continuous at each point of

qD, by using the theory of monotone operators (cf. [KS ]), we can show as in Appendix I

of [HKM] the existence of h A H 1;p�D; m� such that hÿ y A H
1;p
0 �D; m� and h is a solution

of (E) in D (see [O] for details). By Theorem 1.1 above, we can take h to be continuous

in D. We can prove that h assumes the values y on qD by modifying the arguments in

[GZ] (again, see [O] for details). The uniqueness follows from the comparison principle

(Corollary 1.1 above).

From [HKM; Corollary 6.32], we obtain the following

Corollary 1.2. For any compact set K and an open set D such that KHDHW,

there exists an �A;B�-regular open set G such that KHGHD.

The following theorem can be proved in the same way as in the proof of

Proposition 1.2; we may take hnh
p instead of �gÿ un�h

p:

Theorem 1.5. If fhng is a locally uniformly convergent sequence of �A;B�-harmonic

functions in D, then h :� limn!y hn is �A;B�-harmonic in D.

Corollary 1.3. If D is an �A;B�-regular open set in W, then for any c A C�qD�,

there exists a unique h A C�D� such that h � c on qD and h is �A;B�-harmonic in D.

Proof. Choose cn A Cy�W� such that cn ! c uniformly on qD. Put en �

supqDjcÿ cnj. Since D is an (A, B)-regular open set, there exists hn A C�D� such that

hn � cn on qD and hn is (A, B)-harmonic in D. Thus hn U hm � en � em on qD. Since

hm � en � em is a supersolution of (E) in D, by Corollary 1.1, we have hn U hm � en � em

in D. Similarly hm U hn � en � em in D. Therefore fhng converges uniformly on D.

Hence the existence follows from Theorem 1.5. The uniqueness follows from Corollary

1.1.

Theorem 1.6 (Harnack principle). If fhng is a nondecreasing or nonincreasing

sequence of �A;B�-harmonic functions in a domain D and if fhn�x0�g is bounded for some

x0 A D, then h :� limn!y hn is �A;B�-harmonic in D.
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Proof. Suppose ®rst that fhng is nondecreasing. Let G be any domain such that

x0 A GFD and let a � infG h1. Let B1�x; t� � B�x; t� a�. Then, B1 satis®es conditions

(B1)±(B3) (with possibly di¨erent a3�D�). Each hn ÿ a is nonnegative �A;B1�-harmonic

in G.

Let x1 be any point in G such that fhn�x1�g is bounded and let B�x1; 3R�FG. By

the Harnack inequality applied to �A;B1�, we have

hn�x� ÿ aU sup
B�x1;R�

�hn ÿ a�U c inf
B�x1;R�

�hn ÿ a� � R

� �

U c�hn�x1� ÿ a� R�

for each x A B�x1;R�. Therefore fhng is uniformly bounded on B�x1;R� whenever

B�x1; 3R�FG. From this, we infer that fhng is locally uniformly bounded in G. Thus

fhng is equi-continuous by Theorem 1.3. Hence it follows from Ascoli-Arzela's theorem

that fhng has a locally uniformly convergent subsequence, and hence h is �A;B�-

harmonic in G by Theorem 1.5. Since G is arbitrary, it is �A;B�-harmonic in D.

If fhng is nonincreasing, then we apply the above result to fÿhng, which is a

nondecreasing sequence of � ~A;
~B�-harmonic functions in D.

§2. �A;B�-superharmonic functions.

Let D be an open subset of W. A function u : D ! RU fyg is said to be �A;B�-

superharmonic in D if it is lower semicontinuous, ®nite on a dense set in D and, for

each open set GFD and for h A C�G� which is �A;B�-harmonic in G, uV h on qG

implies uV h in G. �A;B�-subharmonic functions are similarly de®ned. v is �A;B�-

subharmonic in D if and only if ÿv is � ~A;
~B�-superharmonic in D.

By Corollary 1.1, we see that a continuous supersolution (resp. subsolution) of (E)

in D is �A;B�-superharmonic (resp. �A;B�-subharmonic).

The following proposition is clear.

Proposition 2.1. If u, v are �A;B�-superharmonic in D, then so is min�u; v�.

Theorem 2.1 (Comparison Principle II). Let u be �A;B�-superharmonic in D and v

be �A;B�-subharmonic in D. If

lim inf
x!x

fu�x� ÿ v�x�gV 0

for all x A qaD, then uV v in D, where qaD is the boundary of D in the one point

compacti®cation of R
N .
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Proof. Fix x A qaD and e > 0. There is a compact set KHD such that u� eV v

in DnK . Choose an �A;B�-regular open set G such that KHGFD. We can ®nd

c A C�qG� such that u� 2eVcV v on qG. Then there exist �A, B�-harmonic functions

h1 A C�G� and h2 A C�G� such that h1 � cÿ 2e on qG and h2 � c on qG. Since h1 � 2e

is a supersolution and h2 is a subsolution,

h1 � 2eV h2 in G

by Corollary 1.1. On the other hand uV h1 on qG implies uV h1 in G and vU h2 on

qG implies vU h2 in G. Consequently u� 2eV v in G. Hence u� 2eV v in D. Since e

is arbitrary, the theorem follows.

Corollary 2.1. If u is �A;B�-superharmonic (resp. �A;B�-subharmonic) in D and

a > 0 is a constant, then u� a (resp. uÿ a) is �A;B�-superharmonic (resp. �A;B�-

subharmonic) in D.

Proof. Let GFD be an open set and let h A C�G� be �A;B�-harmonic in G such

that u� aV h on qG. Then hÿ a is a continuous subsolution of (E), so that it is

�A;B�-subharmonic in G. Further,

lim inf
x!x

fu�x� ÿ �h�x� ÿ a�gV 0

for all x A qG. Therefore, by Theorem 2.1, u� aV h in G. Hence u� a is (A;B)-

superharmonic in D. The proof for uÿ a is similar.

We can easily prove the following proposition.

Proposition 2.2. Let fung be a sequence of �A;B�-superharmonic functions in D.

(1) If fung converges locally uniformly in D, then u :� limn!y un is �A;B�-

superharmonic in D.

(2) If fung is nondecreasing and u :� limn!y un is ®nite on a dense set in D, then u

is �A;B�-superharmonic in D.

The following proposition can be shown in the same manner as [HKM, Lemma

7.14].

Proposition 2.3. Let D be an open set in W and let G be an �A;B�-regular open

set such that GHD. For an �A;B�-superharmonic function u on D, we de®ne

uG � supfh A C�G� j hU u on qG and h is �A;B�-harmonic in Gg:
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Then

P�u;G� :�
u in DnG

uG in G

�

is �A;B�-superharmonic in D, �A;B�-harmonic in G and P�u;G�U u in D.

Remark 2.1. If u A H
1;p
loc �W; m�VC�G�, then uG coincides with the �A;B�-

harmonic function h in G such that hÿ ujG A H
1;p
0 �G; m�.

§3. Dirichlet problems with respect to an ideal boundary.

Let W� be a compacti®cation of W and let q�W � W�nW. Given a bounded function

c on q�W, let

Uc � u :

�A;B�-superharmonic in W and

lim infx!x u�x�Vc�x� for all x A q�W

( )

and

Lc � v :
�A;B�-subharmonic in W and

lim supx!x v�x�Uc�x� for all x A q�W

( )

:

Theorem 3.1. If both Uc and Lc are nonempty, then

H�c;W�� :� infUc and H�c;W�� :� supLc

are �A;B�-harmonic in W and H�c;W��UH�c;W��.

Proof. By the comparison principle Theorem 2.1, we see that H�c;W��U

H�c;W��. Since we have Propositions 2.1 and 2.3 as well as Theorem 1.6, we can carry

out the Perron's method to obtain the �A;B�-harmonicity of H�c;W�� and H�c;W��

(cf. [HKM; Theorem 9.2]).

We say that c is �A;B�-resolutive if both Uc and Lc are nonempty and H�c;W��

� H�c;W��. W� is called an �A;B�-resolutive compacti®cation, if all c A C�q�W� are

�A;B�-resolutive.

Proposition 3.1. If fcng is a uniformly convergent sequence of �A;B�-resolutive

functions on q�W, then c :� limn!y cn is �A;B�-resolutive.

Proof. Let en � supx A q �Wjcn�x� ÿ c�x�j. By assumption, en ! 0. Since cn � en V

c, u� en A Uc for any u A Ucn
. It follows that H�cn;W

�� � en VH�c;W��. Similarly,
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H�cn;W
�� ÿ en UH�c;W��. Since cn is �A;B�-resolutive, it follows that H�c;W��ÿ

H�c;W��U 2en for all n. Hence, H�c;W�� � H�c;W��.

We consider the following condition:

(C0) There exist a lower bounded �A;B�-superharmonic function on W and an

upper bounded �A;B�-subharmonic function on W.

Lemma 3.1. If condition (C0) is satis®ed, then both Uc and Lc are nonempty for

any bounded function c on q�W.

Proof. Let v1 be an �A;B�-superharmonic function on W such that v1 V c1 and v2

be an �A;B�-subharmonic function on W such that v2 U c2. Given a bounded c on

q�W, v1 � c 01 A Uc whenever c 01 V 0 and c1 � c 01 V supc as well as v2 ÿ c 02 A Lc whenever

c 02 V 0 and c2 ÿ c 02 U inf c.

Remark 3.1. If B satis®es the following condition (B.4), then condition (C0) is

satis®ed:

(B.4) There exist t� and tÿ such that B�x; t��V 0 and B�x; tÿ�U 0 a.e. in W.

In fact, the constant function t� is �A;B�-superharmonic and tÿ is �A;B�-subharmonic

on W.

Now we consider the following spaces:

D
p�W; m� :� f f A H

1;p
loc �W; m� j j`f j A Lp�W; m�; f is bounded continuousg;

D
p
0 �W; m� :� f A D

p�W; m�

�

�

�

�

bjn A Cy
0 �W� s:t: jn ! f a:e:; fjng is

uniformly bounded; `jn ! `f in Lp�W; m�

( )

:

We say that W is �p; m�-hyperbolic if 1 B D
p
0 �W; m�.

Examples. (1) Any bounded domain is �p; m�-hyperbolic. This fact follows from

the PoincareÂ inequality ([HKM; 1.4]).

(2) For d > ÿN, R
N is �p; jxjd dx�-hyperbolic if and only if p < N � d.

To show that RN is not �p; jxjd dx�-hyperbolic if pVN � d, it is enough to consider

the functions

jn�x� �

1; jxjU 1

1ÿ
logjxj

log n
; 1 < jxj < n

0; jxjV n.

8

>

>

>

>

<

>

>

>

>

:

; n � 2; 3; . . .
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We see that
�

R
N j`jn�x�j

pjxjd dx ! 0 �n ! y� if pVN � d, while fjng is uniformly

bounded and jn ! 1, so that 1 A D
p
0 �R

N
; m�.

On the other hand, if p < N � d, then we can show that

�

1UjxjU2

jj�x�jp dxUC�N; p; d�

�

jxjV1

j`j�x�jpjxjd dx

for any j A Cy

0 �RN�. From this it follows that R
N is �p; jxjd dx�-hyperbolic if p <

N � d.

Now we state our main theorem.

Theorem 3.2. Suppose W is �p; m�-hyperbolic and the following conditions (C1) and

(B.5) are satis®ed:

(C1) There exist a bounded supersolution of (E) in W and a bounded subsolution of

(E) in W.

(B.5)
�

W
jB�x; t�j dx < y for any t A R.

If QHD
p�W; m�, then the Q-compacti®cation W�

Q of W (see [CC]) is an �A;B�-resolutive

compacti®cation.

Remark 3.2. Condition (C1) implies condition (C0) (cf. Corollary 4.1 in the next

section). As in Remark 3.1, condition (B.4) implies (C1). The following example shows

that (C1) is satis®ed even when (B.4) does not hold.

Example. In the case A�x; x� � jxjpÿ2
x, if W is a bounded domain and B�x; 0� is

bounded on W, then (C1) is satis®ed.

Proof. Let q � p=�pÿ 1�. Suppose WH fjxj < Rg and jB�x; 0�jUM on W. Put

a �
1

q

M

N

� �1=�pÿ1�

and v�x� � a�Rq ÿ jxjq�:

Since vV 0 on W,

B�x; v�x��VB�x; 0�VÿM � ÿN�aq�pÿ1:

Now, `v�x� � ÿaqjxjqÿ2
x, so that v A H 1;p�W; dx� and

A�x;`v�x�� � ÿ�aq�pÿ1
x:

Thus,
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ÿdivA�x;`v�x�� �B�x; v�x�� � N�aq�pÿ1 �B�x; v�x��V 0:

Therefore, v is a bounded supersolution of (E) in W. Similarly, we see that ÿv is a

bounded subsolution of (E).

For the proof of Theorem 3.2, we need discussions on obstacle problems which will

be given in the next section. The theorem will be proved in §5.

Corollary 3.1. If DFW, then the closure D is an �A;B�-resolutive compacti-

®cation of D.

Proof. Choose an �A;B�-regular open set G containing D and let u0 be the

�A;B�-harmonic function in G assuming values 0 on qG. Then condition (C1) is

satis®ed with the function u0jD. Condition (B.5) for D follows from (B.2). If we take

Q � Cy�D�, then the Q-compacti®cation coincides with D. Since Cy�D�HD
p�W; m�,

this corollary is a consequence of Theorem 3.2.

Corollary 3.2. Suppose w�x�1 1, W is p-hyperbolic (i.e., �p; dx�-hyperbolic) and

conditions (C1) and (B.5) are satis®ed. Then the p-Kuramochi compacti®cation (see [T]) of

W is �A;B�-resolutive.

§4. Obstacle problems.

Let D be an open set such that DFW, f be a �ÿy;y�-valued function on D and

y A H 1;p�D; m�. As in [HKM], let

Kf ;y�D� � fv A H 1;p�D; m� j vV f a:e: in D; vÿ y A H
1;p
0 �D; m�g:

We shall say that u A H 1;p�D; m� is a solution to the obstacle problem

OBP�A;B; f ; y;D�, if u A Kf ;y�D� and

�
D

A�x;`u� � `j dx�

�
D

B�x; u�j dxV 0

for all j A H
1;p
0 �D; m� such that u� jV f a.e. in D (i.e., u� j A Kf ;y�D�).

A solution to OBP�A;B; f ; y;D� is a supersolution of (E) in D.

If u is a solution to OBP�A;B; f ; y;D�, then ujD 0 is a solution to

OBP�A;B; f ; u;D 0� for any open set D 0
HD.

Lemma 4.1. Suppose u is a solution to OBP�A;B; f ; y;D�. If v A H 1;p�D; m� is a

supersolution of (E) in D and min�u; v� A Kf ;y�D�, then vV u a.e. in D.
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This lemma can be proved by suitably modifying the proof of [HKM; Lemma 3.22]

(cf. [O; Lemma 3.7]).

Theorem 4.1. If Kf ;y�D�0q, then the obstacle problem OBP�A;B; f ; y;D�

admits a unique solution. Furthermore, if f is locally bounded above, then the solution has

a representative u which satis®es

u�x� � lim
r!�0

1

m�B�x; r��

�
B�x;r�

u dm � lim inf
y!x

u�x��4:1�

for all x A D.

The existence of a solution in Theorem 4.1 can be shown by using the theory of

monotone operators as in Appendix I of [HKM] and the uniqueness follows from

Lemma 4.1 (see [O] for details). We give an outline of the proof of the last half of

Theorem 4.1 as well as that of the next theorem in the Appendix. In case w � 1, these

results have been shown in a more general setting, e.g. in [MZ; pp. 1439±1441]. A

straightforward extension of the arguments in [MZ] to the weighted case seems to be

invalid.

Theorem 4.2. If Kf ;y�D�0q and f is continuous, then the solution u of

OBP�A;B; f ; y;D� which satis®es (4.1) is continuous in D. Furthermore, it is �A;B�-

harmonic in the open set fx A D j u�x� > f �x�g.

As a consequence of Theorem 4.1, we obtain the following (cf. [HKM; Theorem

7.16 and Corollary 7.18]):

Corollary 4.1. Any supersolution of (E) has an �A;B�-superharmonic represen-

tative.

Proof. Let u be a supersolution of (E) in an open set GHW and let û�x� �

ess lim infy!xu�y� for all x A G. If we can show that û � u a.e. on G, then we see that û

is �A;B�-superharmonic in G as in the proof of [HKM; Theorem 7.16].

Let G0FG be an arbitrary �A;B�-regular open set. Then there is a bounded

�A;B�-harmonic function h0 in G0. For any n A N , h0 � n is a supersolution of

(E). Thus we see by Lemma 4.1 that un :� min�u; h0 � n� is the solution of

OBP�A;B; un; un;D� for any DFG0 (cf. the proof of [HKM; Theorem 3.23]). Hence,

un has a representative ~un satisfying (4.1) for all x A G0 by Theorem 4.1. Then,

~u :� limn!y ~un is equal to u a.e. and is lower semicontinuous in G0. It then follows that

~u � û a.e. in G0 (see the last half of the proof of [HKM; Theorem 3.63]), so that û � u

a.e. on G0. Since G0 is arbitrary, û � u a.e. on G.
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§5. Proof of Theorem 3.2.

In order to prove Theorem 3.2, we prepare two lemmas.

Lemma 5.1. Let fung be a uniformly bounded sequence of functions in H
1;p
0 �W; m�

such that f
�
W
j`unj

p
dmg is bounded and un ! u a.e. in W. If u is continuous, then

u A D
p
0 �W; m�.

Proof. By [HKM; Lemma 1.33], we see that u A H
1;p
loc �W; m�,

�
W
j`ujp dm < y and

`un ! `u weakly in Lp�W; m�. Obviously, u is bounded continuous in W. Hence,

u A D
p�W; m�.

Now, let junjUM for all n and choose hn A Cy

0 �W� such that jhnjUM and

�
W

j`hn ÿ `unj
p
dm�

�
W

jhn ÿ unj
p
dm <

1

2n
; n � 1; 2; . . . :

Then, `hn ! `u weakly in Lp�W; m�. Thus, using Mazur's lemma, we can ®nd a

sequence fjkg such that each jk is a convex combination of functions in fhngnVk and

`jk ! `u strongly in Lp�W; m�. Then jk A Cy

0 �W� and jjkjUM for each k. Since

un ! u in Lp�D; m� for any DFW by Lebegue's convergence theorem, hn ! u in

Lp�D; m�, and hence jk ! u in Lp�D; m� for any DFW. Hence, taking a subsequence,

we may assume that jk ! u a.e. in W. Therefore, u A D
p
0 �W; m�.

Lemma 5.2. Let f A D
p�W; m� and suppose there is a bounded supersolution g of (E)

in W such that gV f in W and suppose

�
W

B�x; f �ÿ dx < y:�5:1�

Then there exists an �A;B�-superharmonic function u in W such that uV f in W and

uÿ f A D
p
0 �W; m�.

Proof. Let fDng be an exhaustion of W by domains DnFW and let un be the

solution to the obstacle problem OBP�A;B; f ; f ;Dn�. Then, by Theorem 4.2, we may

assume that un is continuous in Dn and by Lemma 4.1, un U g a.e. in Dn.

Now, let n < m. Let v � umjDn
. Since vV f on Dn,

0Umin�v; un� ÿ f U un ÿ f in Dn:

Hence, min�v; un� ÿ f A H
1;p
0 �Dn; m�, so that min�v; un� A Kf ; f �Dn�. Since v is a super-

solution of (E) in Dn, Lemma 4.1 implies that vV un, namely, um V un in Dn. Let

u0 � limn!yun. Then, u0 V f on W. Since un U g a.e. in Dn, u0 is a supersolution of (E)

in W by Proposition 1.2.
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Next, let D be any open set such that DFW and let uD be the continuous

solution to the obstacle problem OBP�A;B; f ; u0;D� (cf. Theorems 4.1 and 4.2). Since

u0 is a supersolution of (E) in D and min�u0; uD� A Kf ;u0�D�, we have u0 V uD a.e. on

D by Lemma 4.1. On the other hand, if Dn ID, then un, being the solution of

OBP�A;B; f ; f ;Dn�, is also the solution of OBP�A;B; f ; un;D�. Since uD is a super-

solution of (E) in D and min�un; uD� A Kf ;un�D� (note that 0U un ÿmin�un; uD�U

max�u0 ÿ uD; 0� A H
1;p
0 �D�), uD V un in D by Lemma 4.1 again. Letting n ! y, we

have uD V u0, and hence u0 � uD a.e. on D. Thus, there is a continuous function u in W

such that u � u0 a.e. on W. Then uV f and, being a continuous supersolution of (E), u

is �A;B�-superharmonic in W.

Since un is the solution to the obstacle problem OBP�A;B; f ; f ;Dn�,

�
Dn

A�x;`un� � `� f ÿ un� dx�

�
Dn

B�x; un�� f ÿ un� dxV 0;

so that

a1

�
Dn

j`unj
p
dmU a2

�
Dn

j`unj
pÿ1j`f j dm�

�
Dn

B�x; un�� f ÿ un� dx:�5:2�

Now, since f U un U g a.e.,

�
Dn

B�x; un�� f ÿ un� dxU

�
Dn

B�x; f �� f ÿ un� dxU

�
W

B�x; f �ÿ�gÿ f � dx < y

by assumption (5.1).

Therefore, from (5.2), we deduce that f
�
Dn

j`unj
p
dmg is bounded. Extend each un

by f on WnDn and denote the extended function again by un. Then un ÿ f A H
1;p
0 �W; m�,

fun ÿ f g is uniformly bounded on W, un ÿ f ! uÿ f a.e. in W and f
�
W
j`un ÿ `f jp dmg

is bounded. Hence, by Lemma 5.1, uÿ f A D
p
0 �W; m�.

Proof of Theorem 3.2. We may assume that Q is a linear subspace of D
p�W; m�

containing constant functions and closed under max and min operations. Let v1 (resp.

v2) be a bounded supersolution (resp. subsolution) of (E) in W. We may assume that v1

is �A;B�-superharmonic and v2 is �A;B�-subharmonic in W (Corollary 4.1). For

simplicity, let G � W�
QnW. Let f A Q and let c be the continuous extension of f to G .

Since f is bounded, there is a constant cV 0 such that g :� v1 � cV f on W and by

condition (B.5), (5.1) is satis®ed. Hence, by the above lemma, there is an �A;B�-

superharmonic function u in W such that uV f and uÿ f A D
p
0 �W; m�. Choose

an exhaustion fDng of W by �A;B�-regular open sets and put un � P�u;Dn� in the

notation in Proposition 2.3. Then, un A Uc, so that un VH�c;W�
Q� for each n. On the
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other hand, by the comparison principle, uV un V un�1. Thus, by Theorem 1.6, u :�

limn!y un is �A;B�-harmonic in W and uV uVH�c;W�
Q�.

Since un is �A;B�-harmonic in Dn, un ÿ u A H
1;p
0 �Dn; m� and un � u on WnDn, we

have

�
W

A�x;`un� � �`un ÿ `u� dx�

�
W

B�x; un� �un ÿ u� dx � 0:�5:3�

Now, u A D
p�W; m�, so that

�
W
j`ujp dm < y. If c 0 V 0 is so chosen that v2 ÿ c 0 U f in

W, then by the comparison principle, v2 ÿ c 0 U un U u, so that fuÿ ung is uniformly

bounded. Hence, by condition (B.5), f
�
W
B�x; un��uÿ un� dxg is bounded. It then

follows from (5.3) that f
�
W
j`unj

p
dmg is bounded, and hence f

�
W
j`�uÿ un�j

p
dmg is

bounded. Since uÿ un A H
1;p
0 �W; m� and uÿ u is continuous in W, uÿ u A D

p
0 �W; m� by

Lemma 5.1, and hence uÿ f A D
p
0 �W; m�.

Similarly, applying the above arguments to � ~A; ~B� and ÿ f , we obtain a bounded

�A;B�-harmonic function u in W such that uUH�c;W�
Q� and f ÿ u A D

p
0 �W; m�.

Therefore, uÿ u A D
p
0 �W; m�, so that there is a uniformly bounded sequence fjng in

Cy
0 �W� such that jn ! uÿ u a.e. in W and `jn ! `uÿ `u in Lp�W; m�. By the �A;B�-

harmonicity of u and u,

�
W

A�x;`u� � `jn dx�

�
W

B�x; u�jn dx � 0;

�
W

A�x;`u� � `jn dx�

�
W

B�x; u�jn dx � 0:

Subtracting these two equations and letting n ! y, we have

�
W

�A�x;`u� ÿA�x;`u�� � �`uÿ `u� dx�

�
W

�B�x; u� ÿB�x; u���uÿ u� dx � 0:

By (A.4) and (B.3), we deduce that `u � `u a.e. in W, and hence u � u� c. By the

assumption that W is �p; m�-hyperbolic, we see that c � 0, namely, u � u, which implies

that H�c;W�
Q� � H�c;W�

Q�, that is, c is �A;B�-resolutive.

Since the set of continuous extensions of functions in Q is dense in C�G �

with respect to the uniform convergence, we conclude that every c A C�G� is �A;B�-

resolutive by Proposition 3.1. r

Appendix: Continuity of solutions to obstacle problems.

In this appendix, we give an outline of the proof of the last half of Theorem 4.1 and

Theorem 4.2, namely the continuity of solutions to obstacle problems. For the most
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part, we follow the discussions in [MZ], in which the case w�x� � 1 is treated. However,

we cannot completely follow [MZ] due to the fact that our weight w is not necessarily

translation invariant.

Let D0q be an open set in W and C > 0 be a constant. Let e denote the symbol

� or ÿ. If v A H 1;p�D; m� is nonnegative and satis®es

�
D

j`�vÿ k�ejphp dmUC

�
D

f�vÿ k�egpfhp � j`hjpg dm� Ck p

�
f�vÿk� e>0g

hp dm

for all kV 0 and h A Cy
0 �D� with 0U hU 1, then we write v A S e

p;m�D;C�.

The following is the key lemma (cf. [MZ; Theorems 2.2, 2.3, 2.4]).

Lemma A.1. Let DFW, M0 V 0 and u be a solution to the obstacle problem

OBP�A;B; f ; y;D�. Then there is a constant C > 0 depending only on p, cm, a1, a2 and

a3�D� such that whenever B�x0; r�FD the following holds:

(i) for every constant M with jMjUM0 and f UM in B�x0; r�,

�uÿM�� � 2�M0 � 1�r1=�pÿ1� A S�
p;m�B�x0; r�;C�;

(ii) for every constant M with jMjUM0,

�uÿM�ÿ � 2�M0 � 1�r1=�pÿ1� A S�
p;m�B�x0; r�;C�;

(iii) for every constant M with jMjUM0 and uVM a.e. in B�x0; r�,

uÿM � 2�M0 � 1�r1=�pÿ1� A Sÿ
p;m�B�x0; r�;C�:

Proof. We give a sketch of the proof of (i), the ®rst half of which is analogous to

the proof of [MZ; Theorem 2.2]. Namely put v � �uÿM�� and let g � �vÿ k�� for

kV 0. For h A Cy
0 �B�x0; r�� with 0U hU 1, we take

j�x� � ÿg�x�h�x�p; x A B�x0; r�:

Then u� j A Kf ;y�D�, and hence

�
B�x0;r�

A�x;`u� � `j dx�

�
B�x0;r�

B�x; u�j dxV 0:

Let B� � fx A B�x0; r� : u�x� > M � kg. Then j � 0 on B�x0; r�nB
� and `g � `u on

B�. Thus,

�
B�

�A�x;`u� � `u�hp dxUÿp

�
B�

�A�x;`u� � `h�ghpÿ1 dxÿ

�
B�

B�x; u�ghp dx:
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By (A.2), (A.3) and (B.2), it follows that

a1

�

B�

j`ujphp dmU pa2

�

B�

j`ujpÿ1j`hjghpÿ1 dm� a3

�

B�

�jujpÿ1 � 1�ghp dm;��1�

where a3 � a3�D�. By Young's inequality, we have

pa2

�

B�

j`ujpÿ1j`hjghpÿ1 dmU
a1

3

�

B�

j`ujphp dm� C1

�

B�

gpj`hjp dm��2�

with C1 � C1�p; a1; a2�. On the other hand, since jujU g�M0 � k on B�, again by

Young's inequality

�jujpÿ1 � 1�gUC2�p� gp � k p � �er�p
0

l0 �
g

er

� �p� �

:

for e > 0, where p 0 � p=�pÿ 1� and l0 � �M0 � 1�p. By the PoincareÂ inequality

1

rp

�

B�

�gh�p dm �
1

rp

�

B�x0;r�

�gh�p dmUC3

�

B�x0;r�

j`�gh�jp dm

UC32
pÿ1

�

B�

j`ujphp dm�

�

B�

gpj`hjp dm

� �

with C3 � C3�cm�. Choose e � e�cm; p; a1; a3� > 0 so that eÿpa3C2�p�C32
pÿ1 � a1=3.

Then

a3

�

B�

�jujpÿ1 � 1�ghp dm��3�

U a3C2�p�

�

B�

gphp dm� k p

�

B�

hp dm

� �

� C4r
p 0

l0

�

B�

hp dm�
a1

3

�

B�

j`ujphp dm�

�

B�

gpj`hjp dm

� �

with C4 � C4�cm; p; a1; a3�. Thus, from ��1�, ��2� and ��3� we obtain

�

B�

j`ujphp dmUC5

�

B�

gp�hp � j`hjp� dm� �k p � rp 0

l0�

�

B�

hp dm

� �

with C5 � C5�p; cm; a1; a2; a3�. Then we can show that

v� 2l
1=p
0 r1=�pÿ1�

A S�
p;m�B�x0; r�; 2C5�

in the same manner as [MZ; Lemma 2.7].
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To prove assertion (ii) (resp. (iii)), we let v � �uÿM�ÿ, g � �vÿ k�� (resp. v �

uÿM, g � �vÿ k�ÿ) and j � ghp. The rest of the proof proceeds just as above (cf.

[MZ; Theorem 2.4 (resp. 2.5)]).

The next two lemmas can be proved in the same way as in [MZ] by using the

Moser iteration technique and the John-Nirenberg lemma (cf. [MZ; Lemmas 2.8, 2.9,

2.10, 2.13 and Theorems 2.11, 2.12, 2.14]; we should suitably use conditions on the p-

admissibility for m).

Lemma A.2. Let C > 0, g A �0; p� and r A �0; 1�. If v A S�
p;m�B�x0; r�;C�, then there

is a constant K > 0 depending only on p, cm, C and g such that

ess sup
B�x0;r=2�

vUK
1

m�B�x0; r��

�

B�x0;r�

vg dm

 !1=g

:

Lemma A.3. Let C > 0 and r A �0; 1�. If v A Sÿ
p;m�B�x0; 2r�;C� with v > 0 a.e. in

B�x0; r�, then there are constants K > 0 and g A �0; 1� depending only on N, p, cm and C

such that

ess inf
B�x0;r=2�

vVK
1

m�B�x0; r��

�

B�x0;r�

vg dm

 !1=g

:

Lemma A.1 (i) (ii) and Lemma A.2 yield

Proposition A.1. Let DFW, M0 V 0, g A �0; p�, x0 A D, r A �0; 1� with B�x0; r�H

D and u be a solution to the obstacle problem OBP�A;B; f ; y;D�. Then there is a

constant C > 0 depending only on p, a1; a2; a3�D�, cm, g and M0 such that

(i) for every constant M with jMjUM0 and f UM in B�x0; r�,

ess sup
B�x0;r=2�

�uÿM�� UC
1

m�B�x0; r��

�

B�x0;r�

f�uÿM��gg
dm

 !1=g

�Cr1=�pÿ1�;

(ii) for every constant M with jMjUM0,

ess sup
B�x0;r=2�

�uÿM�ÿ UC
1

m�B�x0; r��

�

B�x0;r�

f�uÿM�ÿgg
dm

 !1=g

�Cr1=�pÿ1�:

Lemma A.1 (iii) and Lemma A.3 yield

Proposition A.2. Let DFW, M0 V 0, x0 A D, r A �0; 1� with B�x0; r�HD and u be

a solution to the obstacle problem OBP�A;B; f ; y;D�. Then there are constants C, C 0
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and g A �0; 1� such that, for every constant M with jMjUM0 and uVM a.e. in B�x0; r�,

ess inf
B�x0;r=2�

�uÿM�VC
1

m�B�x0; r��

�

B�x0;r�

�uÿM�g dm

 !1=g

ÿC 0r1=� pÿ1�:

Here C and g depend only on N, p, a1; a2; a3�D�, cm and M0, and C 0 depends only on p

and M0.

Now, suppose that f is locally bounded above and u is a solution to the obstacle

problem OBP�A;B; f ; y;D�. Then from Proposition A.1 it follows that u is essentially

locally bounded in D. Furthermore, by Proposition A.2 and HoÈlder's inequality, setting

~u�x0� � lim
r!�0

1

m�B�x0; r��

�

B�x0;r�

u dm

for each x0 A D, we can show that ~u satis®es (4.1) (cf. the proof of [MZ; Lemma 3.4]).

Thus we obtain the last half of Theorem 4.1.

To prove Theorem 4.2, suppose f is continuous. Then we can show that u satisfying

(4.1) is continuous in D in the same way as the proof of [MZ; Theorem 3.6], using

Proposition A.1 (i).

Finally, if j A Cy

0 �fu > f g�, then by the continuity of uÿ f there exists l0 > 0 such

that u� ljV f in D for jlj < l0. It then follows that u is �A;B�-harmonic in fu > f g,

namely the last half of Theorem 4.2.
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