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Abstract. We consider a quasi-linear second order elliptic differential
equation on a euclidean domain. After developing necessary potential theory
for the equation which extends some part of the theories in the book by
Heinonen—Kilpeldinen—Martio, we show that the ideal boundary of the Royden
type compactification of the domain is resolutive with respect to the Dirichlet

problem for the equation.

Introduction.

Resolutivity of ideal boundaries of Riemann surfaces was systematically developed in
[CC]. An ideal boundary is the boundary of a compactification R* of an open Riemann
surface R and R* is called a resolutive compactification if every continuous function on
I' = R*\R is resolutive with respect to the Dirichlet problem for harmonic functions.
Here, the Dirichlet problem is treated in the so called PWB (Perron-Wiener-Brelot)
method.

Such a theory can be readily extended to the case R is a domain in RY (N > 3) or
more generally a Riemannian manifold, and to the case the Dirichlet problem is
considered with respect to a second order elliptic linear partial differential equation on
R, or even to the case R is a harmonic space and the equation is semilinear ((M]).

The Dirichlet problem in the PWB-method has been discussed for nonlinear (or,

more precisely, quasilinear) elliptic equation of the form
(Eo) —div.e/(x,Vu) =0

in a series of papers [LM], [K], [KM], etc., and collectively in [HKM]. In [HKM], it is

assumed that .« : RY x RY — R" satisfies the following conditions for a fixed 1 < p <

oo and a “p-admissible weight” w:
(1) x— Z(x,&) is measurable on RY for every é¢e RV and &+ o/(x,&) is

continuous for a.e. xe R";

2000 Mathematics Subject Classification. Primary 31C45, Secondary 31B20
Key Words and Phrases. Resolutivity of ideal boundary, nonlinear Dirichlet problem



562 F-Y. MaepA and T. ONO

(2) o (x,&) - &= ow(x)|E]” for all ¢ e RY and a.e. x € RY with a constant a; > 0;

3) | #(x,8)] < oaw(x)|E|”" for all £ € RY and a.e. x e RY with a constant o, > 0;

@) (A(x,&1) — A (x,&)) - (&1 — &) >0 whenever &p,& eRY, & #&, for ae.

xeRY;

(5) o (x,AE) = A|A|P 2 (x, &) for A e R\{0}.

Further, resolutivity of the Royden and Kuramochi boundaries of a Riemannian
manifold with respect to the p-Laplacian has been investigated in [T], and the reso-
lutivity of the Royden boundary for the equation (Ej) where .o/ satisfies the above
conditions with w =1, has been shown in [N].

The purpose of the present paper is to extend these resolutivity results to the

equation of the form
(E) —div.o/(x,Vu) + B(x,u) =0

on a domain Q in RY (N >2). We assume that .o/ : Q x RY — R" satisfies the
conditions (1) to (4) above, but not the homogeneity condition (5). #4(x,¢) is a function
Q2 x R — R which we assume to be nondecreasing in ¢ (see §1 for other conditions). A

prototype of the equation (E) is
—div (w(x)|Vul? V) 4+ b(x)|ul” *u=0

with a nonnegative measurable function b such that b(x)/w(x) is locally bounded in Q.

In the case where there is no weight, namely the case w = 1, quasilinear equations
of the form (E) have been studied in the theory of partial differential equations, e.g., in
[S], [GZ], and the basis to develop some part of potential theory for (E) has been
established. In case w # 1, such basis for the equation (E) is given in [HKM], and that
for (E) in [O]. Using the results in [O], we obtain potential theory for the equation (E)
in §1 and §2 as an extension of a part of the theory given in [HKM].

We discuss the Dirichlet problem with respect to ideal boundaries for the equation
(E) in §3 and state our main theorem as [Theorem 3.2, which, generalizing the reso-
lutivity results given in and [N], asserts that a Royden type compactification of € is
resolutive for the solutions of (E). For its proof, we use obstacle problems with respect
to (E), which will be discussed in §4 and in the Appendix. Finally, the proof of
3.2 will be given in §5. One may see that the essential idea of the proof is already given
in [HKM]. We need, however, some deviations from the arguments in due to
the existence of the term %(x,u) in (E).

Throughout this paper, we use some standard notation without explanation. One

may refer to [HKM] for most of such notation.
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§1. (.7, %)-harmonic functions.

Let Q be a domain in RY (N >2) and we consider a quasi-linear elliptic dif-

ferential equation
(E) —div o/ (x,Vu) + #(x,u) =0

on Q. Here, o/ : Q2 x RY — R" and % : Q x R — R satisfy the following conditions for
a fixed 1 < p < oo and a weight w which is p-admissible in the sense of [HKM]:

(A1) x> o/(x,&) is measurable on Q for every ée RV and & .o/(x,&) is

continuous for a.e. x € Q;
(A.2) oA(x,&) &= aw(x)|¢|” for all £ e RY and a.e. x € Q with a constant a; > 0;

(A3) |Z(x,8)] <oow(x)[E]”" for all ¢eRY and ae. xeQ with a constant
0y > 0;

(Ad) (A(x, &) — A(x,E)) - (& — &) >0 whenever &,& e RY, & # &, for ae.
X € £;

(B.1) x+~— %(x,t) is measurable on Q for every te R and t— %(x,t) is con-

tinuous for a.e. x € Q;

(B.2) For any open set D € Q, there is a constant o3(D) > 0 such that |%4(x, )| <
a3(D)w(x)(|f]F " +1) for all re R and a.e. x e D;

(B.3) ¢+ #(x,t) is nondecreasing on R for a.e. x € Q.

We remark that if .«/ and % satisfy the above conditions, then ./ and % which are
defined by

oA (x,8) = —of(x,—¢) and HB(x,t) = —B(x,—1)
also satisfy these conditions with the same constants o, o, and o3(D).

For the nonnegative measure u: du(x) = w(x)dx and an open subset D of Q, we
consider the weighted Sobolev spaces H?(D; u), Hy”(D;u) and HL?(D; i) (see

loc
for details).

ue H-P(D;u) is said to be a (weak) solution of (E) in D if

loc

J o (x,Vu) 'Vgpdx—i—J B(x,u)pdx =0
D D
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for all pe C°(D). ue ngcp (D; u) is said to be a supersolution (resp. subsolution) of (E)
in D if

J o (x,Vu) -Vodx + J AB(x,u)pdx >0 (resp. <0)

D D
for all nonnegative ¢ € C;°(D).

The following proposition can be proved in the same way as [HKM; Lemma 3.18]
by using (B.3) as well as (A.4); see [O; Lemma 3.6] for details.

ProposITION 1.1 (Comparison Principle 1). Let D be an open set such that D € Q2
and let ue H'?(D;u) be a supersolution and v e H'“P(D;u) a subsolution of (E) in D. If
min(u — v,0) € Hol’p(D;,u), then u>v ae. in D.

COROLLARY 1.1. Let D be any open set in Q. If u is a supersolution and v is a
subsolution of (E) in D and if u+ ¢ > v a.e. outside a compact set in D for any ¢ > 0, then

u>v ae in D.

ProOF. For e >0, let u+¢ > v a.e. in D\K, with a compact set K, and let G be an

open set such that K, c GED. By (B.3), u+¢ is a supersolution of (E). Since

min(u+&—v,0) € Hol”’(G; u), it follows from [Proposition 1.1 that u+¢>v a.e. in G.

Therefore u+ &> v a.e. in D. Since ¢ is arbitrary, u > v a.e. in D.

PROPOSITION 1.2. Let D be any open set in Q and let {u,} be a nondecreasing
sequence of supersolutions of (E) in D. If there is g € HIL’CP (D; ) such that u, < g a.e. for

all n, then u=1im,_ ., u, is a supersolution of (E) in D.

Proor. First we show that {|.|Vu,|”du} is bounded for any GED. Choose
neCy(D)suchthat 0 <y <1in D andy=1on G. Since each u, is a supersolution of
(E) in D,

J o (x,Vuy) -V[(g — u,)n’] dx + J B(x,uy)(g — uy)npf dx > 0.
D D

It follows that

J [/ (x,Vu,) - Vuun? dx < J [/ (x,Vu,) - Vygln? dx
D D
e LW(% Vi) - Viln”™! (g — un) dx

+ J B(x,u,)(g — up)n? dx.
D
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Hence, by (A.2), (A.3), (B.2) and (B.3), we have

% J Vil "n” dpe < Oczj Vun| "~ Vgln” + plVnl(g — w)n"" dp
D D

+a3<D/>j (1+ 19" (g - w) dp

!

(p=1)/p 1/p
< (jD VPP dﬂ) (jDUng T pVal(g — ) dﬂ)

(D) | (1l g - )
where D’ is an open set such that Spty = D’ € D. Noting that g, u; € H'"?(D'; ), we
deduce that { [, |Vu,|"n” du}, and hence {||Vu,|” du} is bounded.

Since u; <u, < g, {;us|” du} is also bounded. Thus, by [HKM; Theorem 1.32],
ue H'?(G;u) and Vu, — Vu weakly in L?(G;p).

The rest of the proof can be carried out by suitably modifying the proof of [HKM;
Theorem 3.75]; we may use Lebegue’s convergence theorem to treat the terms involving
B(x, uy).

A continuous solution of (E) in D will be called (.7, #)-harmonic in D. Note that if
h is (<7, %)-harmonic in D, then —h is (<7, %)-harmonic in D.
The following three theorems can be proved by suitably modifying the arguments in

(see [O] for details).

THEOREM 1.1.  Any solution of (E) in D is equal a.e. to an (<, B)-harmonic function.

THEOREM 1.2 (Harnack Inequality). Given an open set D € Q2 and Ry > 0, there
exists a constant ¢ = c(p,c,, o1,02,03(D),Ryg) > 0 such that whenever 0 < R < Ry and
B(x,3R)c D

sup h < c( inf h—i—R)
B(x,R) B(x, R)

for any nonnegative (.</,B)-harmonic function h in B(x,3R).

Here, ¢, denotes a constant depending only on those constants which appear in the

conditions for w to be p-admissible.

THEOREM 1.3. A locally uniformly bounded family of (.</,%)-harmonic functions in

D is equi-continuous at each point of D.
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We say that an open set D in Q is (o/,%)-regular, if DECQ and for any
0 e H,""(Q; 11) which is continuous at each point of dD, there exists a unique 1 € C(D) N

loc

H'?(D;u) such that h=0 on 0D and h is (.7, %)-harmonic in D.

TuEOREM 1.4. Let D be a bounded open set such that D < Q. If R¥\D is (p, u)-
thick in the sense of [HKM] at each point of 0D, then D is (</,%)-regular.

OUTLINE OF THE PROOF. Given 0 € HIL’C” (2; 1) which is continuous at each point of
dD, by using the theory of monotone operators (cf. [KS]), we can show as in Appendix I
of [HKM] the existence of 1 € H"?(D; x) such that h — 0 € Hy'”(D; ) and 4 is a solution
of (E) in D (see [O] for details). By above, we can take & to be continuous
in D. We can prove that & assumes the values 6 on dD by modifying the arguments in
(again, see [O] for details). The uniqueness follows from the comparison principle

(Corollary 1.1 above).
From [HKM; Corollary 6.32], we obtain the following

COROLLARY 1.2. For any compact set K and an open set D such that K < D < Q,

there exists an (</,%)-regular open set G such that K < G < D.

The following theorem can be proved in the same way as in the proof of

Proposition 1.2; we may take /,n” instead of (g — u,)n’:

THEOREM 1.5.  If {h,} is a locally uniformly convergent sequence of (.o/ , B)-harmonic

functions in D, then h:=lim, . h, is (<, %B)-harmonic in D.

COROLLARY 1.3. If' D is an (</,%)-regular open set in £, then for any € C(0D),

there exists a unique h e C(D) such that h = on 0D and h is (</,%)-harmonic in D.

Proor. Choose ¥, € C*(Q2) such that W, — ¢ uniformly on JD. Put ¢, =
supaply — ¥, |. Since D is an (of, 4)-regular open set, there exists 4, € C(D) such that
hy =, on dD and h, is («/, #)-harmonic in D. Thus h, < h,, + &, + ¢, on dD. Since
T + & + &n 1s a supersolution of (E) in D, by [Corollary 1.1, we have h, < hy, + &, + &
in D. Similarly %, <h,+é&, + &, in D. Therefore {,} converges uniformly on D.

Hence the existence follows from Theorem 1.5, The uniqueness follows from [Corollary]
1.1.

THEOREM 1.6 (Harnack principle). If {h,} is a nondecreasing or nonincreasing
sequence of (o , B)-harmonic functions in a domain D and if {h,(x¢)} is bounded for some

Xo € D, then h:=lim,_ h, is (o, B)-harmonic in D.



Resolutivity of ideal boundary 567

PrOOF. Suppose first that {/,} is nondecreasing. Let G be any domain such that
X0 € GED and let « = infghy. Let %)(x,t) = B(x,t+ o). Then, %, satisfies conditions
(B1)—(B3) (with possibly different o3(D)). Each h, — « is nonnegative (<7, %4))-harmonic
in G.

Let x; be any point in G such that {/,(x;)} is bounded and let B(x;,3R) € G. By
the Harnack inequality applied to (<7,%,), we have

hy(x) —a < sup (h, —a) < c( inf (h, — o) —I—R) < c(hy(x)) — o+ R)
B(Xl,R) B(XUR)

for each xe B(x;,R). Therefore {h,} is uniformly bounded on B(x;,R) whenever
B(x1,3R) € G. From this, we infer that {,} is locally uniformly bounded in G. Thus
{h,} is equi-continuous by Theorem 1.3. Hence it follows from Ascoli-Arzela’s theorem
that {h,} has a locally uniformly convergent subsequence, and hence 4 is (.7, %)-
harmonic in G by [Theorem 1.5. Since G is arbitrary, it is (.7, %4)-harmonic in D.
If {h,} is nonincreasing, then we apply the above result to {—Ah,}, which is a

nondecreasing sequence of (.7, %)-harmonic functions in D.

§2. (<, %#)-superharmonic functions.

Let D be an open subset of Q. A function u: D — RU{o0} is said to be (o, %)-
superharmonic in D if it is lower semicontinuous, finite on a dense set in D and, for
each open set G ED and for h e C(G) which is (<7, #)-harmonic in G, u>h on 0G
implies u > h in G. (</,%)-subharmonic functions are similarly defined. v is (<7, %)-
subharmonic in D if and only if —v is (.27, %)-superharmonic in D.

By [Corollary 1.1, we see that a continuous supersolution (resp. subsolution) of (E)
in D is (<, %)-superharmonic (resp. (.«/,%)-subharmonic).

The following proposition is clear.
PropoSITION 2.1. If u, v are (o/,%R)-superharmonic in D, then so is min(u,v).

THEOREM 2.1 (Comparison Principle I1). Let u be (.o, #)-superharmonic in D and v
be (of,B)-subharmonic in D. If

liminf{u(x) —v(x)} =0

x—¢&

for all £€ 0D, then u>v in D, where 0“D is the boundary of D in the one point

compactification of R".
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Proor. Fix &€ 0D and ¢ > 0. There is a compact set K = D such that u +¢ > v
in D\K. Choose an (.7, %)-regular open set G such that K < G € D. We can find
€ C(0G) such that u+ 2¢ > > v on dG. Then there exist (.«/, #)-harmonic functions
hy € C(G) and hy € C(G) such that h; = — 2¢ on 0G and h, = on 0G. Since hy + 2¢

is a supersolution and /4, is a subsolution,
hi+2>h, inG

by [Corollary 1.1. On the other hand u > /; on 0G implies u > h; in G and v < hy on
0G implies v < hy in G. Consequently u + 2¢ > v in G. Hence u+ 2¢ > v in D. Since ¢

is arbitrary, the theorem follows.

COROLLARY 2.1. If u is (o/, B)-superharmonic (resp. (.<Z,R)-subharmonic) in D and
oo>0 is a constant, then u+ o (resp. u— o) is (o, B)-superharmonic (resp. (/,R)-
subharmonic) in D.

ProoF. Let G € D be an open set and let 4 € C(G) be (o7, #)-harmonic in G such
that u+a>h on 0G. Then h— o is a continuous subsolution of (E), so that it is
(o/, #B)-subharmonic in G. Further,

liminf{u(x) — (h(x) —a)} =0

x—¢&

for all £ e dG. Therefore, by [Theorem 2.1, u+a>h in G. Hence u+ o is (o, B)-

superharmonic in D. The proof for u — o is similar.
We can easily prove the following proposition.

PROPOSITION 2.2.  Let {u,} be a sequence of (o/,RB)-superharmonic functions in D.

(1) If {u,} converges locally uniformly in D, then u:=lim,_,u, is (</,%)-
superharmonic in D.

(2) If {u,} is nondecreasing and u = lim,_,, u, is finite on a dense set in D, then u

is (o/,B)-superharmonic in D.

The following proposition can be shown in the same manner as [HKM, Lemma
7.14].

PROPOSITION 2.3. Let D be an open set in Q and let G be an (</,R)-regular open
set such that G = D. For an (<f,2)-superharmonic function u on D, we define

ug =sup{he C(G)|h <u on 0G and h is (o/,R)-harmonic in G}.
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Then

P(u, G) = {” in D\G
ug in G
is (o, B)-superharmonic in D, (o, B)-harmonic in G and P(u,G) <u in D.

RemaArRk 2.1. If ueHIL’Cp(Q;u)ﬂC((_;), then ug coincides with the (<7, %)-

harmonic function /4 in G such that & —u|; € H(}’p(G;ﬂ).

§3. Dirichlet problems with respect to an ideal boundary.

Let Q" be a compactification of Q and let 0°Q = Q*\Q. Given a bounded function
Yy on 0°Q, let

u (o/, #)-superharmonic in Q and
=q Uu:
' liminfy_: u(x) > y(&) for all &eo*Q

and

P (o7, %)-subharmonic in Q and
y = U .
’ limsup, .- v(x) < y(&) for all {ed™Q

THEOREM 3.1.  If both U, and ¥, are nonempty, then
H(; Q%) :=inf%;, and H();Q"):=sup.¥y
are (of , B)-harmonic in Q and H(y; Q") < H(\y; Q%).

PrOOF. By the comparison principle [Theorem 2.1, we see that H(y; Q%) <
H(y; Q7). Since we have Propositions 2.1 and 2.3 as well as [Theorem 1.6, we can carry
out the Perron’s method to obtain the (.7, %)-harmonicity of H(y;Q*) and H(y; Q")
(cf. [HKM; Theorem 9.2]).

We say that y is (o7, #)-resolutive if both %, and %, are nonempty and H(; Q")
= H(y; Q%). Q" is called an (.7, %)-resolutive compactification, if all y € C(0*Q) are
(o, B)-resolutive.

ProposiTiON 3.1. If {y,} is a uniformly convergent sequence of (of, RB)-resolutive
functions on 0°Q, then W :=1lim,_ ., , is (</,B)-resolutive.

PROOF. Let ¢, = sup;.o|¥, (&) —¥(&)|. By assumption, &, — 0. Since y, +¢&, >

Y, u+e, €Uy for any ue U, . It follows that H(\,; Q%) +¢&, > H(\y; 2*). Similarly,
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H,; Q%) —e, < H(;2%). Since , is (o7, %B)-resolutive, it follows that H(y; Q%) —
H(y; Q%) < 2¢, for all n. Hence, H(y; Q%) = H(y; Q%).

We consider the following condition:

(Cyp) There exist a lower bounded (.7, #)-superharmonic function on Q and an

upper bounded (.o7, #)-subharmonic function on Q.

Lemma 3.1.  If condition (Cy) is satisfied, then both Uy and &%, are nonempty for
any bounded function  on 0*Q.

ProOOF. Let v; be an (o7, #)-superharmonic function on @ such that v; > ¢; and v,
be an (.7, %)-subharmonic function on 2 such that v; < ¢;. Given a bounded ¥ on
0°Q, v1 + ¢| € U, whenever c¢; >0 and ¢; + ¢| > supy as well as v, — ¢; € £, whenever

¢, >0 and ¢; — ¢) <infy.

REmMARK 3.1. If # satisfies the following condition (B.4), then condition (Cy) is
satisfied:

(B.4) There exist #; and 7 such that #(x,7;) >0 and %(x,7_) <0 a.e. in Q.

In fact, the constant function 7, is (.«/, %)-superharmonic and 7_ is (.7, %)-subharmonic
on Q.

Now we consider the following spaces:

9P (Q;u) = {f € Hll”’(.Q;u) | |Vf] e LP(Q;u), f is bounded continuous},

ocC

DY(Q; ) = € 97 (Q;
o) {f (@540 uniformly bounded, V¢, — Vf in L?(Q;u)

We say that Q is (p,u)-hyperbolic if 1 ¢ Z5(Q;p).

ExampLES. (1) Any bounded domain is (p,u)-hyperbolic. This fact follows from
the Poincaré inequality ((HKM; 1.4]).

(2) For 6 > —N, RY is (p,|x|° dx)-hyperbolic if and only if p < N +4.

To show that RY is not (p, |x]6 dx)-hyperbolic if p > N + 4, it is enough to consider

the functions
1, x| <1

log|x|

, I<|x|<n, n=23,...
logn

Pu(x) = ¢ 1

0, |x| > n.
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We see that [pn [V, (x)|’|x]°dx — 0 (n— o) if p> N +0, while {p,} is uniformly
bounded and ¢, — 1, so that 1 e Z§(R";p).
On the other hand, if p < N +0, then we can show that

j r¢<x>\”dxsc<N,p,6>j Vo)l dx
I<|x<2

|x[>1

for any pe CF(R"). From this it follows that R" is (p, |x|° dx)-hyperbolic if p <
N +9.

Now we state our main theorem.

THEOREM 3.2.  Suppose Q is (p, u)-hyperbolic and the following conditions (C,) and
(B.5) are satisfied:

(C1) There exist a bounded supersolution of (E) in Q and a bounded subsolution of
(E) in Q.

(B.5) [, |%(x,1)|dx < oo for any t€R.

If O = 97(2; ), then the Q-compactification Q, of Q (see [CC]) is an (o/, B)-resolutive

compactification.

REMARK 3.2. Condition (C;) implies condition (Cy) (cf. |Corollary 4.1 in the next
section). As in Remark 3.1, condition (B.4) implies (C;). The following example shows
that (C;) is satisfied even when (B.4) does not hold.

ExaMpPLE. In the case .oZ(x,&) = [E|P2¢, if Q is a bounded domain and %(x,0) is
bounded on Q, then (C,) is satisfied.

Proor. Let ¢ = p/(p—1). Suppose Q = {|x| < R} and |%4(x,0)] < M on Q. Put

1/
a= . (ﬁ) and o(x) = a(R? — |x|7).

Since v > 0 on Q,
B(x,0(x)) > B(x,0) > —M = —N(aq)""".
Now, Vo(x) = —ag|x|? %x, so that ve H'7(Q;dx) and
oA (x,Vv(x)) = —(ag)’ .

Thus,
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—div.Z(x,Vo(x)) + B(x,v(x)) = N(ag)”" + B(x,v(x)) > 0.

Therefore, v is a bounded supersolution of (E) in Q. Similarly, we see that —v is a
bounded subsolution of (E).
For the proof of [Theorem 3.2, we need discussions on obstacle problems which will

be given in the next section. The theorem will be proved in §5.

COROLLARY 3.1. If D EQ, then the closure D is an (</,%R)-resolutive compacti-
fication of D.

ProOF. Choose an (.o7,%)-regular open set G containing D and let uy be the
(o, #)-harmonic function in G assuming values 0 on JG. Then condition (C;) is
satisfied with the function uy|,. Condition (B.5) for D follows from (B.2). If we take
Q = C*(D), then the Q-compactification coincides with D. Since C*(D) = 27(Q;u),
this corollary is a consequence of [Theorem 3.2

COROLLARY 3.2.  Suppose w(x) =1, Q is p-hyperbolic (i.e., (p,dx)-hyperbolic) and
conditions (Cy) and (B.5) are satisfied. Then the p-Kuramochi compactification (see [T]) of
Q is (o/,B)-resolutive.

§4. Obstacle problems.

Let D be an open set such that D € 2, f be a [—0, oo]-valued function on D and

0e H'(D;pu). As in [HKM], let
Hyo(D)={ve HYP(D;u)|v>f ae. in D, v—0eHy"(D;u)}.

We shall say that we H'"”(D;u) is a solution to the obstacle problem
OBP(#,%; f,0;D), if ue Ay 9(D) and

J of (x,Vu) -V(pdx—l—J B(x,u)pdx >0
D D
for all (peHol’p(D;u) such that u+¢ > f ae. in D (i.e., u+ ¢ e Ay o(D)).
A solution to OBP(«/,%; f,0; D) is a supersolution of (E) in D.
If u is a solution to OBP(«/,%;f,0;D), then u|, 1is a solution to
OBP(.</, %; f,u; D') for any open set D' = D.

LemMA 4.1.  Suppose u is a solution to OBP(.<Z,%; f,0;D). If ve H"(D;pu) is a
supersolution of (E) in D and min(u,v) € Ay o(D), then v>u a.e. in D.
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This lemma can be proved by suitably modifying the proof of [HKM; Lemma 3.22]
(cf. [O; Lemma 3.7]).

TaeoreM 4.1. If A7 ¢(D) # &, then the obstacle problem OBP(o/,%; f,0;D)
admits a unique solution. Furthermore, if f is locally bounded above, then the solution has
a representative u which satisfies

1
4.1 u(x) = lim —J udyu =liminf u(x
( ) ( ) p—+0 ﬂ(B(xvp)) B(x,p) : yox ( )

for all x e D.

The existence of a solution in [Theorem 4.1 can be shown by using the theory of
monotone operators as in Appendix I of and the uniqueness follows from
(see [O] for details). We give an outline of the proof of the last half of
as well as that of the next theorem in the Appendix. In case w = I, these
results have been shown in a more general setting, e.g. in [MZ; pp. 1439-1441]. A
straightforward extension of the arguments in to the weighted case seems to be

invalid.

THEOREM 4.2. If Hjo(D) # & and f is continuous, then the solution u of
OBP(.oZ,%; f,0, D) which satisfies (4.1) is continuous in D. Furthermore, it is (<, RB)-
harmonic in the open set {x € D |u(x) > f(x)}.

As a consequence of [Theorem 4.1, we obtain the following (cf. [HKM; Theorem
7.16 and Corollary 7.18]):

COROLLARY 4.1. Any supersolution of (E) has an (.<f , B)-superharmonic represen-

tative.

Proor. Let u be a supersolution of (E) in an open set G < Q and let u#(x) =
essliminf,_,u(y) for all xe G. If we can show that # =u a.e. on G, then we see that i
is (.7, %)-superharmonic in G as in the proof of [HKM; Theorem 7.16].

Let Gy ©€ G be an arbitrary (.7, %)-regular open set. Then there is a bounded
(o/,%)-harmonic function hy in Gy. For any ne N, hy+n is a supersolution of
(E). Thus we see by that u, := min(u, hp +n) is the solution of
OBP(.o/, #; uy, u,; D) for any D € Gy (cf. the proof of [HKM; Theorem 3.23]). Hence,
u, has a representative i, satisfying for all xe Gy by MTheorem 4.1. Then,
u:=lim,_ u, 1s equal to u a.e. and is lower semicontinuous in Gy. It then follows that
u=u a.e. in Gy (see the last half of the proof of [HKM; Theorem 3.63]), so that & = u

a.e. on Gy. Since Gy is arbitrary, # =u a.e. on G.



574 F-Y. MaepA and T. ONO

§5. Proof of Theorem 3.2.
In order to prove [Theorem 3.2, we prepare two lemmas.

Lemma 5.1. Let {u,} be a uniformly bounded sequence of functions in Hol’p (Q; )
such that {[,|Vu,|” du} is bounded and u, — u a.e. in Q. If u is continuous, then
ue 252 u).

Proor. By [HKM; Lemma 1.33], we see that u € H,;”(2; 1), [, |Vul’ du < oo and
Vu, — Vu weakly in L?(Q;u). Obviously, u is bounded continuous in . Hence,
ue g (Q;p.

Now, let |u,| < M for all n and choose 7, € C;°(2) such that |7,| < M and

1

J \Vﬂn—Vunl”du+J 1y — | dp < ., n=12,....
Q Q 2

Then, Vy, — Vu weakly in L?(Q;u). Thus, using Mazur’s lemma, we can find a
sequence {¢,} such that each ¢, is a convex combination of functions in {#,},., and
Vo, — Vu strongly in L?(Q;u). Then ¢, € C°(2) and |p;| < M for each k. Since
u, —»u in LP(D;u) for any D ESQ by Lebegue’s convergence theorem, 7, — u in
L?(D;p), and hence ¢, — u in L?(D;u) for any D € 2. Hence, taking a subsequence,

we may assume that ¢, — u a.e. in Q. Therefore, u € 7} (2; p).

LEMMA 5.2. Let f € 9P(Q;u) and suppose there is a bounded supersolution g of (E)
in Q such that g > f in Q and suppose

(5.1) L Bx, ) dx < co.

Then there exists an (<f ,R)-superharmonic function u in Q such that u> f in Q and
u— feahQ;mp.

Proor. Let {D,} be an exhaustion of Q by domains D, € Q2 and let u, be the
solution to the obstacle problem OBP(.«Z,%; f, f: D,). Then, by Theorem 4.2, we may
assume that u, is continuous in D, and by LCemma 4.1, u, < ¢ a.e. in D,.

Now, let n <m. Let v=uy|,. Since v=f on D,
0 <min(v,u,) — f <u,— f 1n D,.

Hence, min(v,u,) — f € Hol”’(Dn;,u), so that min(v,u,) € #; r(D,). Since v is a super-
solution of (E) in D,, [Lemma 4.1 implies that v > u,, namely, w, >u, in D,. Let

uy = lim,_,,u,. Then, up > f on Q. Since u, < g a.e. in D, uy is a supersolution of (E)

in Q by [Proposition 1.2
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Next, let D be any open set such that D€ Q2 and let up be the continuous
solution to the obstacle problem OBP(.<7, %; f,uy; D) (cf. Theorems 4.1 and 4.2)). Since
up is a supersolution of (E) in D and min(uy,up) € Ay, ,,(D), we have uy > up a.e. on
D by Lemma 4.1. On the other hand, if D, > D, then u,, being the solution of
OBP(/, %B; f, f;D,), is also the solution of OBP(.<7, %; f,u,; D). Since up is a super-
solution of (E) in D and min(u,,up) € A7, (D) (note that 0 < u, — min(u,, up) <
max (uy — up,0) € Hy'? (D)), up >u, in D by [Cemma 4.1 again. Letting n — o0, we
have up > uy, and hence uy = up a.e. on D. Thus, there is a continuous function u in Q2
such that u = up a.e. on Q. Then u > f and, being a continuous supersolution of (E), u
is (.7, #)-superharmonic in Q.

Since u, is the solution to the obstacle problem OBP(.</,%; f, f; Dy),

J o (x,Vuy,) -V(f — un)dx+J B(x,uy)(f — uy) dx >0,
D,

D,

so that

(5.2) o J \Vu,|” du < OQJ V[PV S du + J B(x,u,)(f — uy) dx.
D” D D

n n

Now, since f <u, <g a.e.,

jD B, un)(f — ) dx < j B, )f — ) dx < j B, f) (g — f)dx < o

D, Q

by assumption [5.1}.
Therefore, from [5.2), we deduce that {[, [Vu,|”du} is bounded. Extend each u,

by fon Q\D, and denote the extended function again by u,. Then u, — f € Hol’p (Q2; ),
{u, — f} is uniformly bounded on Q, u, — f — u— f a.e. in Q and {|, [Vu, — Vf|" du}
is bounded. Hence, by Lemma 3.1, u — f € 2§ (Q2;u).

PrOOF OF THEOREM 3.2. We may assume that Q is a linear subspace of 27 (Q; u)
containing constant functions and closed under max and min operations. Let v; (resp.
;) be a bounded supersolution (resp. subsolution) of (E) in 2. We may assume that v,
is (.o, #)-superharmonic and v, is (<7, %)-subharmonic in Q (Corollary 4.1). For
simplicity, let "= Q,\Q. Let f € Q and let § be the continuous extension of f'to I".

Since f is bounded, there is a constant ¢ > 0 such that g:=v;+c¢> f on Q and by
condition (B.5), is satisfied. Hence, by the above lemma, there is an (.7, %)-
superharmonic function » in @ such that u> f and u— f e 25(Q;u). Choose
an exhaustion {D,} of Q by (</,%)-regular open sets and put u, = P(u,D,) in the
notation in [Proposition 2.3. Then, u, € %y, so that u, > H (¥;Q,) for each n. On the
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other hand, by the comparison principle, u > u, > u,;. Thus, by [Theorem 1.6, u :=
lim,, o, u, is (o, %)-harmonic in Q and u>u > H(lﬁ;Qa).

Since u, is (o7, %)-harmonic in D,, u, —ue H()l’p(Dn;u) and u, = u on Q\D,, we
have

(5.3) JQ o (x,Vuy) - Vu, —Vu)dx + L} B(x,uy) (u, —u)dx = 0.

Now, ue 27(Q2; ), so that [, |Vu|’du < oo. If ¢/ >0 is so chosen that v, — ¢’ < f in
Q, then by the comparison principle, v; — ¢’ < u, <u, so that {u —u,} is uniformly
bounded. Hence, by condition (B.5), {],%(x,u,)(u—u,)dx} is bounded. It then
follows from that {[, |Vu,|” du} is bounded, and hence {[,|V(u—u,)|” du} is
bounded. Since u — u, € Hy”(Q;u) and u — i is continuous in Q, u — i € ZL(Q;u) by
[Cemma 5.1, and hence i — f € Z§(Q; ).

Similarly, applying the above arguments to (Lsz/ , 93’) and —f, we obtain a bounded
(7, 8)-harmonic function u in Q such that u < H(}; Q) and f —u e Z5(Q; ).

Therefore, i — u € 2}(2; 1), so that there is a uniformly bounded sequence {¢,} in
Cy° () such that ¢, — it —u a.e. in Q and Vo, — Vi —Vu in L?(Q;u). By the (o, %)-
harmonicity of # and u,

J o (x,Vu) -V, dx + J B(x,i)p,dx =0,
Q Q

J o (x,Vu) - Vo, dx + J B(x,u)p, dx = 0.
Q Q

Subtracting these two equations and letting » — oo, we have
| ot xvi) = 7)) (Vi = Ve | (8. ) = B ) ) e =
Q Q

By (A.4) and (B.3), we deduce that Vit =Vu a.e. in Q, and hence # =u+ c. By the
assumption that Q is (p, u)-hyperbolic, we see that ¢ = 0, namely, # = u, which implies
that H(y;Q2p) = H(y;Qp), that is, i is (o, %)-resolutive.

Since the set of continuous extensions of functions in Q is dense in C(I")

with respect to the uniform convergence, we conclude that every e C(I') is (<Z, %)-
O

resolutive by [Proposition 3.1

Appendix: Continuity of solutions to obstacle problems.

In this appendix, we give an outline of the proof of the last half of and
Theorem 4.2, namely the continuity of solutions to obstacle problems. For the most
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part, we follow the discussions in [MZ], in which the case w(x) = 1 is treated. However,
we cannot completely follow due to the fact that our weight w is not necessarily
translation invariant.

Let D # ¢ be an open set in 2 and C > 0 be a constant. Let ¢ denote the symbol

+ or —. If ve H'"?(D;u) is nonnegative and satisfies

j V(0 — k)PP du < cj (0= K} {n” + Vnl?} duc + Cka 2 du
D D {(v-k)*>0}

for all k>0 and 7€ C*(D) with 0 <y <1, then we write ve S, (D,C).
The following is the key lemma (cf. [MZ; Theorems 2.2, 2.3, 2.4]).

LemmMA A.l. Let DEQR2, My>0 and u be a solution to the obstacle problem
OBP(/,%; f,0;D). Then there is a constant C > 0 depending only on p, c,, o1, oy and
a3(D) such that whenever B(xy,p) € D the following holds:

(i) for every constant M with |M| < My and [ < M in B(xo,p),

(u— M) +2(My+1)p"/ "V e St (B(xo,p), C),
1) for every constant M with |M| < M,,
(i) fa Y
(u— M) +2(My+1)p"/P7V ¢ S, (B(x0,p), C),
(iil) for every constant M with |M| < My and u> M a.e. in B(xo,p),
u—M+2(My+ 1)ptr=D e S, «(B(xo,p), C).

ProoOF. We give a sketch of the proof of (i), the first half of which is analogous to
the proof of [MZ; Theorem 2.2]. Namely put v = (u— M)" and let g = (v — k)" for
k> 0. For ne C{(B(x,p)) with 0 <n <1, we take

p(x) = —g(x)n(x)",  x e B(xo,p).

Then u+ ¢ e A7 (D), and hence

J o (x,Vu) -Vodx + J B(x,u)pdx > 0.
B(X()v/)) B(XU,/J)

Let B" = {x € B(xo,p) : u(x) > M +k}. Then ¢ =0 on B(xp,p)\B" and Vg =Vu on
B*. Thus,

Lﬁ(&i(x, Vu) -Vu)y? dx < —pJ (o (x,Vu) - Vi)gn?~ dx — J B(x,u)gn’ dx.

Bt Bt
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By (A.2), (A.3) and (B.2), it follows that

(x1) % J VulPy? du < P“zj Vul"~" \Valgn? " du+ OfsJ (™" + 1)gn? du,
Bt Bt Bt

where a3 = oa3(D). By Young’s inequality, we have
_ _ o
(x2) poch Vul?~ (Valgn”" du < %J Vul"n? du+ ClJ g"\Vn|” du
B B B

with C; = C(p,a1,%2). On the other hand, since |u| < g+ My+k on B, again by

Young’s inequality

"+ g < oo+ 17+ o 20 (L))

&p
for ¢ >0, where p’' = p/(p—1) and A9 = (My+ 1)”. By the Poincaré inequality

I 1
—pJ (gm)" dp = —pJ (gm)" dp < G J V(gm)|" dp
pY Jp+ P B(xo,p) B(xo,p)

< C20 ! (Jm \Vul"n? du + J g’ |Vn|” dﬂ)

B+
with C;3 = C3(c,). Choose &= &(cy, pyor,03) >0 so that ePo3Ca(p)Ci2P~1 = oy /3.
Then

(+3) agj (P~ + Vgn? dp
B+

< 3Gy (p) (J g’n? du +ka
B+

Bt

n’ du)

+ C4ppl}«0J npdﬂ+%(J ’Vu’pﬂpdﬂ—l—[ gP’Vde,u)
Bt

Bt Bt

with Cy = C4(cy, p,or,03). Thus, from (x1), (x2) and (x3) we obtain

[ e dws es(| g wanydu ) |

n’ du)

with Cs = Cs(p,cy, o1, 00,03). Then we can show that
v+ Zié/ppl/(”_l) e S, ,(B(xo,p),2Cs)

in the same manner as [MZ; Lemma 2.7].
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To prove assertion (i) (resp. (iii)), we let v = (u—M)", g= (v — k)" (resp. v=
u—M, g=(v—k)”) and ¢ =gn?. The rest of the proof proceeds just as above (cf.
[MZ; Theorem 2.4 (resp. 2.5)]).

The next two lemmas can be proved in the same way as in by using the
Moser iteration technique and the John-Nirenberg lemma (cf. [MZ; Lemmas 2.8, 2.9,
2.10, 2.13 and Theorems 2.11, 2.12, 2.14]; we should suitably use conditions on the p-
admissibility for u).

LEMMA A2, Let C >0, ye(0,p] and pe(0,1]. If veS, (B(xo,p),C), then there
is a constant K > 0 depending only on p, c,, C and y such that

1 1/y
ess sup v<K 7J v'du | .
B(x0,p/2) (,u(B(xo,p)) B(xo,p)

Lemma A3. Let C>0 and pe(0,1]. If ve S, (B(xo,2p),C) with v>0 ae. in
B(xo,p), then there are constants K >0 and y € (0,1) depending only on N, p, ¢, and C
such that

1 1/y
ess inf v>K —J v'du | .
B('XUHD/Z) <Iu<B(x07p)) B(Xo,/)) >

Lemma A.1 (i) (ii)) and Lemma A.2 yield

PROPOSITION A.l. Let DEQ, My >0, ye(0,p], xoe D, pe(0,1] with B(x,p) =
D and u be a solution to the obstacle problem OBP(<f/,B; f,0;D). Then there is a
constant C > 0 depending only on p, ay,0,03(D), ¢,, y and My such that

(i) for every constant M with |M| < My and f < M in B(xy,p),

1/y

1 ;

ess sup (u— M)Jr <C —J {(u— M)+}/d,u +Cp1/(1’_1),
B(x0,p/2) ,U(B(X(),p>) B(xo,p)

(ii) for every constant M with |M| < M,,

1

1/y
- u— M)} du| +Cp!rh.
Iu(B(Xo,P)) JB(XOJ)){( ) } )

ess sup (u— M) <C
B(x0,p/2)

Lemma A.l (iii) and Lemma A.3 yield

PROPOSITION A.2. Let DERQ, My >0, xo € D, p e (0,1] with B(xo,p) = D and u be
a solution to the obstacle problem OBP(.</,%; f,0;D). Then there are constants C, C’
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and y € (0,1) such that, for every constant M with |M| < My and u > M a.e. in B(x,p),

1 1/y

ess inf (u—M)>C 4J u—M)"d —C'pl 1),
B R V)] ) Bt

Here C and y depend only on N, p, o1,02,03(D), ¢, and My, and C' depends only on p
and M,.

Now, suppose that f is locally bounded above and u is a solution to the obstacle
problem OBP(.«/, %; f,0; D). Then from [Proposition All it follows that u is essentially
locally bounded in D. Furthermore, by Proposition A.2 and Hoélder’s inequality, setting

1
(x0) p—+0 w(B(x0,p)) ) Bxo.p) '

for each xp € D, we can show that u satisfies (cf. the proof of [MZ; Lemma 3.4]).
Thus we obtain the last half of Theorem 4.1.

To prove [Theorem 4.2], suppose f'is continuous. Then we can show that u satisfying
is continuous in D in the same way as the proof of [MZ; Theorem 3.6], using
Proposition A.1 (i).

Finally, if ¢ € C°({u > f}), then by the continuity of u — f there exists 49 > 0 such
that u + Ap > f in D for |A] < A9. It then follows that u is (.«/, #)-harmonic in {u > f},
namely the last half of Theorem 4.2l

[CC]
(GZ]

[HKM]
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