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Abstract. Based upon an intuition from electrostatics one might suspect that
there is no topological ball in Euclidean space of dimension ¢ > 2 which carries
a nonconstant Dirichlet finite harmonic measure. This guess is certainly true for
d = 2. However, contrary to the above intuition, it is shown in this paper that
there does exist a topological ball in Euclidean space of every dimension d > 3
on which there exists a nonconstant Dirichlet finite harmonic measure.

The purpose of this paper is to show rather unexpectedly the existence of a to-
pological ball in Euclidean space of every dimension greater than or equal to three on
which there exists a nonconstant Dirichlet finite harmonic measure. In order to clarify
the significance of our result we begin with explaining definitions of harmonic measures,
topological balls, and related notion.

Consider a bounded domain  in the Euclidean space R of dimension 4 > 2 and
an arbitrary subset E of the boundary 02 of Q2. We denote by 1z the characteristic
function of the set E. The upper class %;(22) of E on Q is the upper class % ,(Q),
which consists of all positive superharmonic functions s on € such that liminf,_., s(x) >
lg(y) for all y e Q. Then the harmonic function x — w(x; E,2) on Q given by
(1) o(x; E, Q) := Hﬁ(x) = seiﬂ)ztgg) s(x) (xe Q)
is referred to as the harmonic measure of E with respect to Q (cf. e.g. [1]). It is known
that one of the following three exclusive cases occurs: w(-; E,2) =0 on Q; o(-; E, Q) =
1 on Q; w(-;E,Q) is not constant and 0 < w(-;E,2) <1 on 2. We say that o =
w(-; E, Q) is Dirichlet finite (infinite, resp.) on  if its Dirichlet integral [, IV (x)|* dx is
finite (infinite, resp.). We denote by

OHmD
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the class of all bounded Euclidean domains € such that every harmonic measure
o(-; E, Q) is Dirichlet infinite on Q for every E < 02 unless o(-; E, Q) is constant on
Q. Electrostatically speaking, especially in the case d = 3, Q ¢ Op,,p means that there
is a subdivision of 02 into two parts £ and 0Q\FE such that if the electrode 0Q\E is
grounded and the other electrode E is positively charged suitably with a finite energy,
then there produces a unit potential difference between these two electrodes so that the
configuration (Q; E,0Q\E) functions as an electric condenser. Thus Q € Oy,,p means
that, no matter how we decompose 02 into two parts E and dQ\E, the configuration
(Q; E,0Q\E) does not function as an electric condenser.

We say that a bounded domain M in R? (d >2) is a topological ball if there is a
homeomorphism /4 of M = M UM onto the unit closed ball BY = BYUS?! such that
h(M) = B¢ and h(0M) = S*', where B¢ is the unit ball {x e R’ : |x| < 1} in R and
S9! = 9B is the unit sphere {x € RY : |x| = 1} in R?. Our study has been motivated
by the feeling that topological balls must belong to Op,p. This feeling comes from
the following electrostatical guess in the case d = 3. Consider the decomposition of the
boundary dM of a topological ball M in R® into two electrodes E and dM\E and
let OM\E be grounded. Since E and dM\E are put together very tightly no matter how
we choose E < M, all charges put on the electrode E must instantly go to the earth
through the electrode M\ E so that any configuration (M; E,0M\E) cannot function as
an electric condenser. The first evidence backing up the above feeling is the following
result obtained in [6], [7], and Herron-Koskela [3]:

THEOREM A. If the topological ball M = B (d > 2), then M belongs to the class

OHmD .

We soon realized that what is important in the proof of the above result is, in
addition to that B? is a topological ball, the smoothness of dB¢ = S?"!. We then
obtained the following result in [11]:

TurEOREM B. If a topological ball M in R (d >2) has a C* boundary OM, then
M belongs to the class Ogpp.

As a response to the criticism that the C? assumption in the above result is too
strong, we succeeded in weakening it to the C' condition or rather the Lipschitz
condition. Actually these are special cases of the following more general result. We say
that a boundary point y € 4Q of a bounded domain @ in RY (d = 2) is graphic if one of
the following two conditions is satisfied: there are a neighborhood U of y, a Cartesian

coordinate x = (x',...,x% ! x?) = (x/,x?), and a continuous function ¢(x') of x’ such
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that (0Q)N U is represented as the graph of x? = ¢(x’) and QN U is situated on only
one side of the graph; there are a neighborhood U of y, a polar coordinate (r,&) (r > 0,
¢e S, and a continuous function ¢(¢) > 0 of & such that (0Q2) N U is represented as
the graph of r = ¢(¢) and QN U is situated on only one side of the graph. A bounded
domain Q = R? is referred to as a continuous domain if every boundary point of Q is
graphic. Clearly C'-domains or more generally Lipschitz domains are special con-
tinuous domains. Then we have the following result (cf. [9], [10]):

Tueorem C. If a topological ball M in R? (d =2) is a continuous domain, then

M belongs to the class Oyyp.

In view of these results we are tempted to suspect that every topological ball
belongs to the class Op,,p. Actually this is true for all topological balls in the two
dimensional Euclidean space R>. In fact, by the Riemann mapping theorem there is a
conformal homeomorphism / of any topological ball (i.e. Jordan domain) M < R?* onto
the unit disc B> and this mapping 4 can be extended to a homeomorphism of M = M U
M onto the closed unit disc B> = B>U S! by the Carathéodory theorem. This with the
conformal invariance of the harmonicity and that of the Dirichlet finiteness and

Theorem A instantaneously implies the following result (cf. e.g. [6]).
THEOREM D. Any topological ball in R? belongs to the class Oppp.

By virtue of this result, hereafter in this paper, we may and will assume that the
dimension d of the base Euclidean space R? is at least three: d > 3. To continue the
study in the direction of Theorems A, B, and C, it is therefore of compelling importance
to determine whether or not there is a topological ball M in RY (d > 3) that does not
belong to Og,,p. Contrary to our intuition mentioned thus far it turned out that the

following rather surprising result holds, to prove which is the chief object of this paper.

2. MAIN THEOREM. For every dimension d > 3 there exists a topological ball M in

RY that does not belong to the class Ogyup.

A harmonic function w is said to be a harmonic measure on M in the sense of Heins
if the greatest harmonic minorant of w and 1 — w is the constant function zero. It
is easy to see that a harmonic measure w(-;E, M) of any boundary set £ < 0M with
respect to M is a harmonic measure on M in the sense of Heins. It is known (cf. e.g.
[6]) that the Royden harmonic boundary A(M) of M is connected if and only if there are
no nonconstant Dirichlet finite harmonic measures on M in the sense of Heins. Thus

the main theorem 2 above implies the following: for every dimension d > 3 there exists
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a topological ball M in R? whose Royden harmonic boundary A(M) is disconnected.
Actually it is known (cf. [6], [7], [9], [10], [11]) that topological balls M in Theorem A,
B, C, and D all have connected Royden harmonic boundaries 4(M). To prove the
above main theorem 2 we only have to exhibit an example of an M ¢ Og,,p. We will
construct an example of M with a bit more properties than really required, which is
inspired by the so called Keldysh ball obtained in the celebrated paper [4] to show a
phenomenon related to the stability of the Dirichlet problem.

3. EXAMPLE. For each dimension d > 3 there exist a topological ball M in RY and
a compact subset E of the boundary oM of M with the following properties:

(a) every point of the boundary oM of M is regular with respect to the harmonic
Dirichlet problem on M,

(b) the surface area |0M| of OM is finite;

(c) the surface areas |E| of E and |0M\E| of OM\E are both strictly positive;

(d) the harmonic measure w(-; E, M) of E relative to M is Dirichlet finite and is not

constant, i.e.
(4) O<J Vo (x; E, M)|* dx < .
M

To construct an M and an E in the above example we need two simple lemmas
concerning harmonic and superharmonic functions. We fix an R? (d = 3) and identify
the hyperplane RY~! x {0} in R? with R"!. Let a= (a',...,a% ") be a point in R!

(=R x {0}) and r a positive number. We call the open set
Qa,r) ={x=(x' ... x™eR™: X' —d|<r (1<i<d-1)}

in R?"! a flat cube in RY or simply a cube in RY"! and a its center and r its interior
radius or simply radius. The number (d — 1)1/ %y may be called the exterior radius of
O(a,r). We denote by B(a,r) = BY(a,r) the open ball in RY with radius r centered at a.
Then

B Ya,r) = Oa,r) = B*(a,(d — 1)"/%).

We denote by O(a,r) the closure of Q(a,r). We single out the particular boundary point
b= (a'"+ra%...,a"") of Q(a,r)in RY! which will be referred to as the distinguished
boundary point of Q(a,r).

Let G be an arbitrary domain in R? containing a O(a,r). We will seriously use
the following fact: every point of Q(a,r) is a regular boundary point of the domain
G\O(a,r) with respect to the Dirichlet problem on G\Q(a,r). This is assured by the
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following criterion of regularity (cf. e.g. Kuran [5] and also [8; Appendix]): a boundary
point y of a domain Q in R? is regular for the Dirichlet problem if there is a truncated
flat cone (i.e. (d — 1)-dimensional cone) with vertex y contained in the complement
RN\Q of Q.

The hyperplanes {xe R ':x'=a'} (1<i<d-1) divide Q(a,r) into 27!
congruent small cubes Q(ax,7/2) (1 <k <291). The points a; (1 <k <297!) are
referred to as subcenters of Q(a,r). Let {a;:1 <k <2971} be subcenters of a cube
Q= Q(a,r) and let Qr = Qak,(r/2)2) (1 <k <297'), where 0 <A< 1. Then the
family {Qi,..., 0541} is said to be regularly distributed in Q with index A€ (0,1).

We fix a cube Qp:=Q(0,1) in R N=R"'x{0}) and a ball Bj:=
B4(0,3(d - 1)1/ %) in R?, which contains Qp. The first auxiliary result is the following:

5. LEMMA. For any number &> 0 there exists a A, € (0,1) with the following
property: for any cube Q = Qqy and for any family {Q; : 1 <i <2971} of congruent cubes
Q; regularly distributed in Q with any index J. € [, 1), any continuous positive super-

harmonic function s on By such that s >1 on U1<i<24,1 Q; satisfies s>1—¢ on Q.

Proor. Take a ball B = BY(0,2(d — 1)'/?). Let we C(B;)N H(B,\Q,) such that
w|0B; =0 and w|Qp =1 as a result of every point in Q, being regular. Here H(G)
denotes the class of all harmonic functions on an open set G in RY. We set 0(1) =
0(0,27") for e (1/2,1) so that Oy = Q(4) = O(A) = B;. Since w|Qy = 1, there is a
Je € (2/3,1) such that w|Q(4,) > 1 — . Fix an arbitrary 1 €[4, 1) so that Q(4,) > O(/)

and w|Q(4) > 1 —e. Let re (0,1] be the radius of Q and a; be the center of Oy and set
O = O(ax,r/2). We consider a function wy on (r/2)AB; + ax = By given by

wie(x) = w((r/2) 7 A7 (x — a)).

Observe that (r/2)AQ(A) + ax = Q) and (r/2)AQp + ax = Qk. Therefore wy € C(B')N
H(B'\Oy) such that wi|0B' = 0, wi|Ox = 1, and wi|Q} > 1 — ¢, where B’ = (r/2).B; +
ar. Since s> w; on the boundary of B’\Qy, the minimum (comparison) principle
assures that s > wy; on B'\Q. Thus we can conclude that s|Q] > 1—¢ for every k.

However U1 k<2dl Q_,’C = Q and therefore we deduce s|Q > 1 — ¢ as desired. O

With every ¢ > 0 we associate a number A(¢) which is the infimum of the set of
/e appeared in the above lemma.

Let Gy be a bounded regular domain in the sense that every boundary point of Gy
is regular for the Dirichlet problem on Gy. Take a compact subset K of Gy such that
G := Gy\K is again a regular domain. Suppose there is a union L of a finite number of

polygonal line segments contained in G except possibly for their end points such that
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dis(L,K) > 0. Let (7;),, be a sequence of closed sets 7; which is the closure of an open
set 7° < G with piecewise smooth boundary 07° such that 7, > T;;; o L (1 <i< o0),

dis(7Ty,K) >0, and (),_, Ty = L. The second auxiliary result we need is the following:

i>1

6. LEMMA. Let ue C(Go) N H(G) with u|0Gy =0 and ulK =1 and let u; € C(Gy) N
H(G\T;) with u;|T;U0Go = 0 and u;|K =1 (1 <i< ). Then (u;),5, converges to u on
G in the Dirichlet integral Dg(f) := |, V£ (x)| dx:

(7) lll)rglo Dg(u; —u) =0.

Proor. We denote by W'2(G) the Sobolev space on G with exponent 2, i.e.
W12(G) is the space of functions f € L?>(G) having distributional gradients Vf with
Vf| € L*(G) so that the Dirichlet integral Dg(f) = [, |V/(x)|* dx = || |V/f]; L*(G)||* of f
can be defined. The space W!2(G) is a Banach space with the norm | f; W'2(G)| =
(||f;L2(G)||2—|—DG(f))1/2. We denote by WOI’Z(G) the Sobolev null space on G, i.e.
the closure of Ci°(G) in the Banach space W!2(G). For convenience we also use the
mutual Dirichlet integral Dg(f,g) := |.V/f(x)-Vg(x)dx for two functions f and g in
W12(G). It is easy to see that u; € W'2(G) for every i > 1. Let i < j and observe that
ui—u; =0 on J(G\T;). Hence we easily see that u; —u; € Wol’z(G\Tj). Since u; €
WL2(G\T;) N H(G\T;), u; is a weak solution of Au; =0 on G\T; and a fortiori

[ v v - ) =0
ATy

or DG\Tj(uj; u; — Mj) =0. Clearly Dg(uj', Ui — Uj) = DG\y}.(uj, U — Uj) since Up = u; = 0 on

T; and 07; is piecewise smooth. Hence we have D¢(uj,u;) = Dg(u;). Observe that
De(ui — uj) = Dg(ui) — 2D (ui,u;) + De(u;) = De(ui) — Do(uj).

This shows that (Dg(w;)),», 1is a decreasing convergent sequence and so is
(DG<ui_l’l,i)>jzi and

) tim (tim Dt~ w)) = fim (fim (D) - D)) =0
By the minimum principle we see that (u;),., is an increasing sequence dominated by
u on Gy. Hence u,, :=1im;_, u; € H(G\L) and 0 < u; < u,, <u on Gy\L, which shows
that u,, € C(Go\L), u,,|0Gy = 0, and u.,|K = 1. Since the Newtonian capacity of L is
zero because of d > 3, there is a continuous map V' of the one point compactification R?
of RY to the extended half interval [0, 0] such that ¥ € H(R\L) with V|L = o and
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V(o0) = limy_,,, V(x) =0. The maximum principle yields u < u,, + ¢V on G\L for any
¢>0. Hence u,, =u on G\L so that lim; ., u; = u locally uniformly on G\L. This

shows that (|Vu; —Vu,|),.; converges to |Vu—Vu;| a.e. on G. Hence by the Fatou

j>i
lemma
Dg(u; —u) = JG (lijnlglf \Vu(x) — Vu,-(x)|2> dx
< h,»“iio?f JG Vi (x) — Vg (x)| dx :jlin; Dg(u; — u;).
This with (8) implies (7), which is to be shown. O

We turn now to the construction of M and E < dM in Example 3. Reversing the
process we first construct £ before determining M. These sets £ and M will be subsets
of By := B¥(0,3(d — 1)1/2). We will construct cubes Q,..; in By N (R"! x {0}) for each
n>1, where iy =1 and 1 <j, <297! (2 <k <n). The construction is by induction.
First let Q;, = Q(0,1), where i; runs over {1} so that i; =1. Consider a sequence

(An)y>» given by
Iy =max{A(27"),1 -27"} (n>=2).

Here recall that the number A(¢) is introduced right after the proof of Lemma 5. Next
take the family {Q;,, : 1 <i, < 297!} of congruent cubes Q,; regularly distributed in
Q;, with index 4,. Suppose congruent cubes Q;..; (i =1,1<i <29 2<j<k))

have been constructed for each 1 <k <n—1. Then let {Q;..; . :1<i, <297} be

regularly distributed in Q;,..; , with index 4, for each i;---i,_;. Now we define the set
E by
E = m ( U Qil"'in>’
1<n<oo \ij- iy

where the union is taken over ij =1 and 1 <i <29°! (2<k <n). The set E is a
compact, totally disconnected and perfect subset of ByN (R?™! x {0}). We compute the

area (i.e. the (d — 1)-dimensional Hausdorff measure in essence) |E| of E and show that
9) 0<|E|] < o0.

To see this let r be the radius of Q;,..;,_,. Then the radius of Q;,..;, ,;, is (r/2)4, and thus
10ii | = 2" " and |Qi..i | = (r2,)*"". Hence
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U Qil"'inliz1' = /1571|Q[1“'in—1 |

1<i, <241

Since |Q;,| =29"!, we conclude that

U Qi

il“"n

d—1
= 2d1< H ﬂ]>
2<j<n

and a fortiori we deduce

-1
ol (Lo ()
1<n<oo \i1iy 2<j<0
By the choice of 4, we have 1 > [], ;. 4 = [[h<;-.(1 —27) >0, which assures the
validity of (9).
For each n > 1 let u, be such that u, € C(By) ﬂH(BO\Ui,---i,, 0;,..; ) and u,|0By =

0 and “n}Uil-..i Qilmin = 1. Observe that u, is positive and superharmonic on Bj. Since

Jm € [A(27"),1), Lemma 5 assures that u, > 1 — 27" on every Q on which u,_; = 1.

i1+ iyt

By the maximum principle we conclude that (u,),.; is decreasing on By and
|t (x) — 1 (x)] <27" (x€ By,n >2).

Hence (uy),., is uniformly convergent on By and we denote by u the limit function of
(t4n),; on By. Then u e C(By) N H(B)\E), u|0By =0, and u|E = 1. The function 1 — u
plays the role of barrier (in the wider sense) at each point of E for the region By\E with
respect to the harmonic Dirichlet problem on By\E.

We next define a system of polygonal line segments /; as follows: /; 1s the

l"'in
straight line segment joining the point by = (3(d — 1)1/ 2.0, 0,...,0) of the boundary
of By with the distinguished boundary point b; of Q,, where i =1; /;;;, 1s a simple
polygonal line segment joining the point b; with the distinguished boundary point b;;,

of Q. The arcs [, (1< <2%")lie on Q;\[J,, Q;;, except for their end points; the

arcs /;,;, do not intersect one another anywhere except at b;. The simple polygonal line
segment /;..; ,; connect the distinguished boundary point b;..; , of Qj..; , with the
distinguished boundary point b;,..; ,; of Q;..; ,;. Here the arcs [;,..; . (1 <i, <297

remain within the domain Q;,..;, ,\\lJ, O;..; ,; except for their end points and they do

not have points of intersection apart from b Moreover we assume that {/;

ipeedp—y 1 g1y

1 <i, <29} is congruent with {/;.; ; : 1< j, <29'} for every pair of i i, |

and jy - j, 1.
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Let 4, be the set of points not further away from /; than a number ; € (0,1) and
belonging to By\Q;, x (—o0,0); let 4,,..;, , (n>2) be the set of points not further
away from | J; /;..;, ;, than a number J, € (0,1) and belonging to By N ((Q;,...;, .\,
Qi 1iy) X (—00,00)). By choosing d, >0 further small we may suppose that the
following conditions are satisfied: 4,,...;, , is contained in By N ((Qi--i, , \U; Qj.i, i) X
(—o0, oo)) except for the points of 4 lying on the hyperplanes x! = (bilu-i,,,l)l and
x!' = (b

surface area [04;,..; ,| of 04

il"'ir1—1
) (1 <i, <29°Y); the set 4., , is the closure of a topological ball; the
is not greater than (274*1)"722" (n>2) and also

A,’l...,‘n)

AT
i+ Ip—1
040] <27'. Finally we set Fy:= 4o, Fy:=FyU4;, and F,:=F, ;U (|
(n>2). We also set F,, :=|J,_,.. Fu. Clearly E=F,\F,.

We choose (6,),5,
the function defined above. Recall that ve C(By)NH(By\E) with v|0By =0 and
v|E =1. Clearly 0 <J < oo for § = Dp,(v). Let v, € C(By) N H(By\EU F,) with v,|F, U
0By =0 and v,|E=1 (n>0). We maintain that (6,),., can be made so small that

i1y

further small so as to have the following situation. Set v := u,

(10) Dy (0 — v1) <3/4" (n>0),

where we understand that v_; =v. We first use Lemma 6 for G =By, L =1;, and
T; = 4y with 6; < 1/i to conclude that by choosing ¢; > 0 small enough we can deduce
that Dp,(vo — v) <J/4%. Again we use Lemma 6 for G = By\4y, L= |
T; = 4;, with J, < 1/i to conclude that by choosing J, > 0 sufficiently small we have

i, lini» and
Dp,(v1 —v9) = Dpy\r, (01 — 1) < J/43. Assume that by repeating the same process we
have chosen positive numbers &;,...,6, so small that Dp (vp —vx_1) < /452
(0<k<n-—1). Then, by making J,,; >0 smaller, using Lemma 6 again for
G=B\F1, L=1J, ., |
Dg, (v, — v,-1) <6/4"2. We have thus completed the induction of choosing (J,)

liy.i,.,, and T; = 4;..; with J,,1 <1/i we conclude that

n>1

further so small as to make valid. We can of course moreover assume that (d,),,
1s a strictly decreasing zero sequence.
We are now ready to define the required topological ball M in Example 3 as

follows:
(11) M := B)\(EUFE,).

It is not difficult to see that M is in fact a topological ball in R only by taking a close
look at the construction of M. For the sake of completeness, however, we will ascertain
in the sequel that M is certainly a topological ball in RY. For each &€ dBy and re
(0,6(d — 1)"/%), the set {x e dBy : |x — &| < r} is referred to as a spherical cap on 0By of

chordal radius, or simply radius, r centered at £. In the sequel spherical caps considered
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are all on 0By. We see that F,, NdB, is the closure of a spherical cap S, centered at
(3(d —1)"%,0,...,0) € 0By : F,, N 0By = Sy. Observe that

OM = (0By\So) U (0F,,\Sp).

We will show that there is a homeomorphism % of 0F,\Sy onto Sy fixing the boundary
of Sy in 0By so that, by setting 4|(0By\So) = identity, / is a homeomorphism of oM
onto 0By. By the construction of M, we will then see that /& is extended to a ho-
meomorphism of M onto By such that 4(M) = By so that we can conclude that M is a
topological ball. In other words, by specifically deforming 0F,\Sy topologically to So,
M (M, resp.) is deformed topologically to By (B, resp.). Now we start the construction
of a homeomorphism 4 of 0F,\Sy onto Sy fixing the boundary of Sy in dBy. For the
purpose we choose spherical caps S;,..; in Sy for each n > 1, where ij =1 and 1 <
ir <2971 (2 <k <n). The choice is by induction. First let S; be a spherical cap of
radius r; > 0 such that S; = Sy where i; = 1. Next take a family {S;; : 1 <i, <29}
of the same radii r, > 0 such that S

of spherical caps S are mutually disjoint and

i i

Sii = Si. Suppose spherical caps Sj,..; (i1 =1,1<i; <29 (2<j<k)) have been
chosen for each 1 <k <n—1. Then let {S;.; ,; :1<i, <29°'} be a family of
spherical caps S;,..; ,; of the same radii r, > 0 such that S;.; , are mutually disjoint
and §i1~-~i,,_1 i ©Sj..;_, for each ij---i,_;. It automatically follows that r, | 0. We then
set Xp:=Sp and X, := Ui1-~i,, Si..i, for each n > 1, and finally set ¥ := (1), ., X,. We

decompose
5Foc\So:((5Fm\So)ﬂFo)U< U <<6Fw\so>m<m\ﬂl>)> UE
1<i<w

and similarly

So = (Xo\X1) U ( U ()?l-\Xm)> uY.
I1<i<oo
Since (0F,,\So) N Fy is homeomorphic to X\ X; and these two sets have the boundary
of Sy in 0By in common, we can construct a homeomorphism % of (0F,\Sp) N Fy onto
So\ X1 = X\ X, fixing the boundary of Sy in 0By such that / induces a natural cor-
respondence Ay — sp := S;,. Since (0F,\Sy) N (Fi\Fy) is homeomorphic to X|\X, 7
can be continued to a homeomorphism of (0F,\Sy) N F; onto So\X> such that 4 induces
a natural correspondence 4; — s, = Ul <j<i Si,j. Suppose h can be continued to a
homeomorphism of (0F,\Sp) N F, onto So\X,;1 such that & induces a natural cor-

respondence A;,..; — Si..; = Ulssz‘H i1i,; for every iy ---i,. Then, since (0F,\Sp)
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N (F,y1\Fy,) is homeomorphic to X, 1\ X,.2, & can be continued to a homeomorphism of

(0F,\So) N F,y1 onto So\ X, such that 4 induces a natural correspondence A —

.
Sijrips) 1= U1g;g2d4 Si.i,,,; for every ij---i,41. Hence we can extend /4 to a home-
omorphism of (0F,\Sp)\E onto So\Y in a special manner described above. By the
construction of E there exists a bijective correspondence between points x € E and
sequences ijiy---i,--- (i = 1,1 < iy <291 (k> 2)) such that the sequence of sets 4,,,
Aijiyy -y Aijiyeiys - - - converges to x. In this case we write x = x(ijip---i,---). Similarly
by the way Y is constructed there exists a bijective correspondence between points y € Y
and sequences iji>---i,--- as above such that the intersection of s;, Si iy, - - - Sijiy-i,s - - - 1S
{y}. In this case we also write y = y(ijip---i,---). By the fashion % is determined, %

induces the natural correspondence 4, .., — Sii..i,- Hence if we define h: E — Y by
h(x(iyiy -« i) = y(iyip -+ iy~ +)

for every sequence ijiy---iy--- (i = 1,1 < i <2971 (k >2)), then h: 0F,\Sy — Sp is
seen to be a homeomorphism of dF, \Sy onto Sy fixing the boundary of Sy in 0By. By
extending h to 0M on setting / as identity on 0By\Sy, we have thus constructed a
homeomorphism /4 of dM onto dBj. Since we have seen that JF,\S, is topologically
deformed to Sy fixing the boundary of Sy in 0By, 0F, = (0F,,\So)U S, is seen to be
homeomorphic to a sphere. Hence d(EU F,,) = 0F,, is homeomorphic to a sphere. By
the construction of EU F,,, we see that EU F,, is the closure of a region homeomorphic
to a ball bounded by the topological sphere 0(EUF,) = dF,. Thus EUF, is the
closure of a topological ball, and again by the construction of M = By\(EU F,,), we see
that M is homeomorphic to a ball bounded by the topological sphere dM. Because of
this we can extend / to a homeomorphism / of M onto By with 4(M) = By. Hence we
have ascertained that M is a topological ball.

Since M\ E is piecewise smooth, every point in dM\E is regular, which is seen by
e.g. the cone condition criterion. As before, 1 —u = 1 — v plays the role of barrier on M
for every point of E. Thus M is a regular domain and a fortiori the condition (a) of
Example 3 is satisfied. Observe that, in addition to (9),

|0F, | < [0do] + >

2<n<ow

k) aAthq

i n—1

<274 Yo e ey =

2<n<owo

Therefore we see that |0M| < |0By|+ |0F.|+ |E| < oo so that the condition (b) of
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Example 3 is fulfilled. It is clear that [0M\E| > |0By|/2 > 0. This with (9) assures the
validity of (c) in Example 3.

To complete the construction for Example 3 only the proof of (4) (i.e. the condition
(d) in Example 3) is left. We first claim that
(12) lim v,(x) =w(x;E,M) (xeM).

n—aoo

Observe that v > v, > v,41 >0 on M (n > 0). Therefore (v,),., converges to a function
vy € C(Bo\E)NH(M) such that 0 <v,, <1 on By\E and v.|F, UdBy=0. To prove
we need to recall the definition (1) of w(-; E, M). Clearly vix|M € %r(M) and hence
vk = o(-;E,M) on M. On letting k T oo we deduce v, > w(-;E,M) on M. To show
the reversed inequality, take an arbitrary s € %g(M) and any number A€ (0,1). Since
liminf,_,,s(x) > 1 for each ye E, there is a ball B(y, ry) = BY(y,r,) (r,>0) in R?
such that s > 4 on B(y,r,)N M. Then the set U = | J
s>/4 on UNM. Because E = ﬂlgk@o (F,\Fy) is compact and E < U, there is a
number ko such that F,\F, = F,,\F; = U for each k > ko. Fix an arbitrary k > ko. If
y e (OM)\U, then, since vi(y) =0, liminfycps vy A7's(x) = 0= (y). If ye(dM)N
U, then, since A 's>1 and vy <1 on MNU, liminfycpr vy /Tls(x) > 1> ().

veE B(y,r,) is open, U o E, and

Hence

liminf 27's(x) > limsup v (x)

xeM,x—y xeM,x—y
for every y € dM, which implies, in view of the minimum (comparison) principle, that
J7ls>uv on M. On letting k T oo and then 411, we obtain s > v, on M. By the
arbitrariness of s € %g(M), we finally conclude that w(-; E, M) > v,, on M. The proof
of is thus over.

Finally we turn to the proof of (4). Since Dy (v, — vy_1) < Dp,(vy — vp_1) < 5/4"2

(n >0), we have for every j > 1 that

Dy 1/2 Z Ds(vi — ;1) 1/2 Z 51/2/21+2 51/2/2‘

0<i<j 0<i<owo

In view of the Fatou lemma yields

Dy(w(-; E, M) — )2 < liminf Dy (v; — v)"/? <522

j—o
and a fortiori we obtain that

’DM(CO( ’E, M))l/Z —DM(U)I/Z‘ < DM(CU(,E, M) . U)I/Z S51/2/2
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Since Dys(v) =0 > 0, the above inequality implies that

L Duy(0) < Dus(of- 1. M) < 2 D).

which yields (4). The construction of M and E < dM in Example 3 is completed.

[1]
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