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Abstract. The class of self-similar additive processes is an important subclass
of stochastically continuous processes with independent increments which are
not assumed to be time-homogeneous. It is shown that this process is transient
if it is proper and the dimension is three or more. Furthermore sufficient
conditions for transience are given in one- or two-dimensional cases.

1. Introduction and results.

In this paper an additive process means a stochastically continuous process with
independent increments, which is not assumed to be time-homogeneous. In general it is
an unexplored field to investigate transience and recurrence for time-inhomogeneous
Markov processes. They form too large a class to be analyzed. So we want to find a
large enough subclass containing important additive processes. One of such subclasses is
the class of self-similar additive processes. In fact it contains all strictly stable processes.
The class was first studied by Sato [8], [9]. He made its characterization by the
correspondence with the class of selfdecomposable distributions. After Sato’s paper, the
class was studied by Watanabe and Sato and Yamamuro [10]. There are a lot of
studies on self-similar processes (for example [4], [5], and [1I]). But almost all of them
deal with the case with not independent but stationary increments, so that no preceding
results are useful.

Criteria for transience and recurrence of Lévy processes are well-known, where Lévy
process means a time-homogeneous additive process. Lévy processes are transient if the
dimension of the space is three or more. If the dimension is one or two, the Brownian
motion is recurrent, and there are both recurrent case and transient case in general Lévy
processes. Transience and recurrence are characterized by an integrability condition near
the origin of the characteristic function of the distribution at time 1. This fact is based
on the expression of transience and recurrence by finiteness and infiniteness of the

expected occupation times on compact sets.
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In we showed that a self-similar additive process is either transient or recurrent,
and, furthermore, we made comparison in transience and recurrence of the Lévy process
and the self-similar additive process associated with a common selfdecomposable
distribution. In this paper, as the sequel to the problem, we consider the following
problems for self-similar additive processes:

(1) Are all self-similar additive processes transient if the dimension is three or
more?

(2) Can we decide transience or recurrence, in terms of the characteristic functions,
if the dimension is one or two?

The problem (1) is answered in the affirmative. Concerning the problem (2), we
give some sufficient conditions for transience in dimension one or two in Section 2 and
some sufficient conditions for recurrence in dimension one in Section 5. We note that,
unlike Lévy processes, the expected occupation times on compact sets cannot determine
transience and recurrence (see [10]).

The definition of a self-similar additive process is as follows.

DEFINITION. A stochastic process {X;:t >0} on R?, which is defined on a prob-
ability space (2,7 ,P), is called a self-similar additive process, or a process of class L,
with exponent H > 0 if it satisfies the following conditions:

(i) {Xu} and {c"X,} have the same finite-dimensional distributions for every ¢ > 0,

(i) Xy, — Xy, Xy, — X4y, Xy, — X,,_, are independent for any n and any choice of
0<to<ti <th<--<t,

(iii) almost surely X, is right-continuous in t >0 and has left limits in t > 0.

Let {X,} be a self-similar additive process on R with exponent H. Then, by its
definition, { X} is stochastically continuous and Xy = 0 almost surely. The distribution
at any fixed time is self-decomposable (see [8], [9]). Here, the distribution y is said to be
self-decomposable if for any c € (0, 1), there exists an infinitely divisible distribution p,
such that i(z) = ji(cz)p,(z), z € R?, where /i and j, are characteristic functions of x and
p., respectively. It is known that the characteristic function of its distribution at time ¢ is
given by the following: Let <{x,y) be the usual inner product and |x| = m Let
S={xeR?:|x|=1} and D={xeR?:|x| <1}. Then

E€i<z7X,> — E€i<ZHZ’ X1

—exp| 2711z, A2 +J 1(ei’H<Z’x> — 1 — it ¢z, xD1p(x))p(dx) + it" (p, 2>
Rl

for z e RY, where
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p(EB) = J

B

a(dé) JE ke ()" du

for E e #((0,0)), Be #(S). Here ye R?, A (called Gaussian variance matrix) is a
symmetric and nonnegative-definite matrix, and p (called Lévy measure) is a measure on
R such that p({0}) = 0, and ¢ is a probability measure on S, and k:(«) is nonnegative,

nonincreasing right continuous in u and Borel measurable in &, and

J o(dé) r@ ke(u)u(1 +u®) " du < oo,
S 0

We define transience and recurrence as follows.

DEFINITION.  The process {X;} is called transient if

P(lim | X:| = oo) = 1.

t—0o0

The process {X;} is called recurrent if
P<1iminf]X, - X = 0> =1 for every s>0.
{— 00

In order to formulate our main theorems, we prepare some terminology. A measure
on RY is said to be full if it is not concentrated on any (d — 1)-dimensional hyperplane.
The process {X;} is said to be proper if the distribution of X; is full for each 7 > 0. For
any random variable Z we denote by P, the distribution of Z, and by 132(2) the

characteristic function of P,. The following are our main results.

THEOREM 1.1. Suppose that {X,} is a proper self-similar additive process and that
J a(d&)k:(0+) < 0.
S
Let X| have a distribution such that

a(dé) Joo(ei<z7”‘f> - 1) M du+ iz, |-

0 u

R

s
If d=2, orif d=1 and y, =0, then {X,} is transient.

THEOREM 1.2. Suppose that {X,} is a proper self-similar additive process. If d > 3,

then the process {X,} is transient.

THEOREM 1.3. Let d = 1. Suppose that p((0,0)) = 0. A self-similar additive process

{X.} is recurrent if it satisfies one of the following conditions:
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(i) 40,
(i) A=0 and [_, g [x|p(dx) = oo,
(i) 4=0, J_ lxlp(dx) < oo, p((—0,0)) >0, and —[_, o xp(dx) +y > 0.

The dual sufficient conditions for recurrence are obtained in case p((—o0,0)) =0. It is
the case where {—X,} satisfies one of the conditions in [Theorem 1.3.

When we consider the case d = 1, transience and recurrence of many self-similar
additive processes are left undecided by Theorems [L1 and [L3. But, our results show
distinct difference from the case of Lévy processes on R'. For example, if x is a stable
distribution of index « € (1,2) with non-zero mean and one-sided Lévy measure or if u
is a stable distribution of index 1 with one-sided Lévy measure, then the self-similar
additive process with distribution x at time 1 is recurrent but the Lévy process with
distribution u at time 1 is transient. Let {B,} be a one-dimensional Brownian motion
and let y #0. It is shown in that {B; +t'/?y}, which is a self-similar additive
process with exponent 27!, is recurrent. is a generalization of this fact. We
know, on the other hand, that the Lévy process {B, + fy} is transient.

2. Transience conditions.

In this section we shall obtain some conditions important to our discussion.
Namely we shall show that if a certain integral with respect to the distribution Py,,
which is irrelevant to the expected occupation time directly, is finite, then the process
{X,} is transient. At first we prepare a lemma for the proof. Let r be a positive real
number. Let p,(s,x;t,I") be the transition function of {X,;} for 0 <s <1t xeR? and

I'e %’(Rd). Now we define a time-homogeneous transition function p,(h,y, B) by
pl‘(h7 y7 B) = pl‘(l7 x? t + h7 F)

for h>0, y=(t,x)e[0,00)xRY, and Be A([0,0)x RY), where I'={zeR?:

(t+h,z) e B} (see [3] p. 87). We denote by {Y/} the time-homogeneous Markov

process with this transition probability p, (&, y, B). Let I_’,: be the transition operator of

{Y;}

LemMma 2.1. The process {Y;} is a Hunt process.

Proor. Denote by Cy the real Banach space of continuous functions on [0, c0) X R?
vanishing at infinity with the norm of uniform convergence. For any f e (C, and
y=(t,x) e [0,0) x RY, we have

Pif(3) = | o) (1 b Xy () = Xow) + )
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For each ¢, almost surely the limit of X; as s | 7z is equal to the limit as s ¢, so we
have P,f e Cyp. By virtue of Theorem 9.4 in p. 46, the process {Y/} is a Hunt

process. L]

Consider the following three conditions on Py,.

1
(1) PXl (dX)
&Y [x]?
@) | oPal) <
Jre |x] .
(3) | 1| Py, (dx) < co for some a with 0 <o < 1.
JR? X

THeOREM 2.2. If (1) holds, then {X,} is transient.

THEOREM 2.3. Let X; have a distribution such that

o(d) JOO (O 1) @

0

PX](Z> :eXp|:J du+i<y0,z> ’

S
where [¢o(d&)ke(0+) < co. If (2) holds, then the process {X;} is transient. If yy =0 and
(3) holds, then the process {X;} is transient.

PrROOF OF THEOREMS 2.2 AND 2.3. From now on without loss of generality we
assume that H = 1, because the exponent H of {X;} can be changed to any number by
the nonrandom time change {X,} and the transience property is invariant under the
nonrandom time change.

For a > 0 let

d
H (@ = |x[) v 0).

For any positive integer n we denote by f'(x) the n times convolution of f,(x) with

itself. Then the Fourier transform of f]' is as follows:

d . -1 2n
Angy iKzxy gn B sin2™"az;
= [ e wmac=TI ()
First step. Let r be a positive integer multiple of 27! and suppose that

Jga 1/ x|'"Py (dx) < 0. Let K be an arbitrary compact set in R. We first suppose

prove that, if we choose a sufficiently small, then
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(2.1) §1>1(f)EU f4’( (t45) — Xor +w)ds| > 0.
wek

Then we can show transience of {X;} as follows. Let Tx =inf{s > 0: Y;" €[0, o) x K}.
Let g,(t,x) = fa‘”(x) for each (t,x)€[0,00) x R?. The process {¥/} is expressed by
a system of probability measures {P}: ye[0,00) x R’} on the space of paths on
[0, 00) x R?. The expectation with respect to P! is denoted by E/. Now from
2.1 {Y/} is a Hunt process. So, using the strong Markov property, we have

0

(22) E Um ga(y')ds] > B [EY}K { 0

r ga(y')ds] Tx < o0

> PV(Tx < o) inf E") U ga(Y)) ds}
0

weK,t>0

PY(Tx < o) inf EU f4’( (t45)" X;r+w)ds}.

weK,t>0

From (2.2) we have, for any a > 0,

(2.3) P(inf{u > 0: X, € K} < o)
=P"Y(inf{u>0:Y  €[0,00) x K} < )
:J 2, (0,0), dy) P (Tx < o0)
0, 0) ><R“’
1 0

IA

EJ[O,m)deﬁr<a, (0,0),dy)E} Uo ga(Y,") ds}

g0 >Uw gu( X)) ds],

o

where ¢ is a positive constant independent of a. Since r is a positive integer multiple of

2~!, the change of variable u = |x;|s" gives the following:

' 8
sin (auxy /2|xx|) rdu < const. X

o q8rld=1) ro
JO fa4r(srx) ds < 1 J u(l/r)—l

rlae] " Jo U/ 2| x| o |/
for 1 <k <d. Hence we have
J, % 1
f."(s"x) ds < const. X —————7 < const. X —-.
0 it bl X"

Then we have
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24 £ [ auyas| = | Pt | Frsmas

< const. X J

Py (dx) < 0.
T )

It follows from that the last member of converges to 0 as o — oo. This shows
that the process {X;} is transient. Then it is enough to show for proving transience

of the process. Now we have, for ¢ > 0,

t>0,wekK

(2.5) inf EU fH (X — X +w) ds]
(

t+\ ) Z)

PX,<Z)

1<w,z> dz

> inf J;dsJR 4’()

t>0,wek

— ’ 4r _
= tz(l)gfeK‘[o ds Jl ‘<4m\/_fa (z)cos Fy(s,z) exp Gy(s,z)dz = Q, (say).

Here F,(s,z) and G,(s,z) are, respectively, the imaginary and the real part of ¥(s,z)
defined by

Py(s,z) = i<z, w) = 27 (1 + )% — 1)z, 2y +i((t +5) — 1)<z, p)

+ L a(dé){ J: <e"<z’”f> —1— iz, uédp ( 0 fs) )) e/ (Z =9 4

[ r-seeon(s) 40}

Second step. We shall prove [Theorem 2.2 by showing Q > 0 in (2.5). Note that the
assumption of the first step holds, namely, [, 1/|x|"" Py, (dx) < oo with r=2"!. Now

we estimate the last term of ¥(s,z). We will repeatedly use nonincrease of k:(u) in u.
We have

Vi
J a(dé)J (e’<z’“§> — 1 — iz, ué))
s 0

o () ()

\ 1/ (t+s) 1
< TL a(d&) <Jo (t + s)uke(u) du — J tukz(u) du)

0

26) GUMEDELACRD du'

IA

Z 2 1
s|2| Jsa(df)J wk:(u) du.

0
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Let M > +/t+s. And we have

R R

_ JM<ei<z,ué> _ 1>M du}‘
Ji u

sJ a(dé){J 95U 1 iz, uE| (u/\/t+—s) ke(u/\/1) "
S Vi

(2.7)

(u/\/t+S)

+Jj;|<zué>| +j <z uey| SHLVY

o[ )

+12[(M = Vit s)ke(1) + |2|(M — Vi)ke(1 )} 1, (say)

(u/\/) }

u

. ke(u) * ke(u)
SZJSG(df){JM/(I+S)r ” du—JM/Zr ” du}

= ZJ a(dé) JM/tr kew) du=J, (say).
S

M/(t+s)" U

" ey Kel/ (L4 9)") — ke(u/1)
e - -

Here we consider two cases. If 7> 1, then, choosing M =/t + s, we have

I< dsa(dé){?lq(\/%) J;m udu + yzy\/Eké(l)}

s|z| 1
| (dé){ k(. m)ﬂzrﬁkm}

IA

and

Vits
2] aan [ TR,

Let 0 <e< 1. If + <1, then, choosing M =& '\/1+s, we have
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2 peW1+s
I< JS O'(df){%J uke (ﬁ) du+2’2’8_1 V1 +Skf(1)}

and

ke (u)

1/¢ u

du.

JSZJ
s

ota?) |

Hence the three inequalities [2.6), (2.7), and give the following estimate: for small

enough a and ¢,

|Wi(s,z)| <m/4 for 0 <s<e|z| <4raVd, and weK,

and hence cos F,(s,z) > 1/v/2 and exp G,(s,z) > e ™/*. Therefore
8671/4[
\/z |z| <4ravd

completing the proof of [Theorem 2.2
Third step. Next we shall prove [Theorem 2.3. Let r = m, where m is a positive

integer. From the assumption of the theorem, ¥(s,z) is represented by

0> £i(z)dz > 0,

W(s,2) = i)+ i((s+ 1) = ™)<, 2

- J o(dg) Jw(e’(%”@ —1) ke(u/(s+16)") — ke(u/t™) »
N

0 u

We have

-1

J o(d¢) f (o> _ 1) RGO kel s81|z!J o(dE)ke(0+),
s 0 u s

and, let M =& !, then J in has the following estimate: for ¢ > 1,
J < 2mlog(1 —i—s)J a(d&)ks(0+),
s
and, for t <1,

” ke (u)

1/e(1+s5)" U

J£2J du.

S

ata?) |

It suffices to show that O > 0 in (2.5), if y, =0 and (3) holds in the case that m
is an arbitrary positive integer and if (2) holds in the case that m = 1. In the same
way as in the second step, we can show it in the respective cases. This completes the

proof. L]
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3. Lemmas.

In this section, in order to prove Theorems [L1 and [L2, we prepare some lemmas.
We denote by H, the range of the linear transformation defined by the matrix 4. We
denote by 71, the orthogonal projector from R to H,. In general denote by Supp(u)
the support of a measure u. Let G be the smallest linear subspace containing H,
and Supp(p). Let S(G)={xe G:|x|=1}. For e S(G) and ¢>0, let f(6,¢) =
Jieos) 20 0(dE)k:(0+) if |[11,0] <e, and let p(0,¢) = o if [[1,0| > e. Let

=sup inf f(6,¢).
ﬂ 8>g GGS(G)ﬂ< )

This quantity f depends only on the matrix 4 and the Lévy measure p. But, making G
explicit, we call § the concentration order of the pair (4, p). Sato [6] defined a similar
quantity S, but our f is different from Sato’s f, since Sato defined £ with inf DeS(RY) in

place of infycg5). We have the following lemma.
LemmA 3.1. The process {X,} is proper if and only if G = R".

Proor. The process {X,} is proper if and only if Py, is full. By a general theory of
infinitely divisible distributions, Py, is full if and only if G = R? (see [7]). O

We need more lemmas. Here recall that a distribution Py, is self-decomposable.

Keeping in mind, we introduce the following terminology. Let V be a
linear subspace of RY. We say that a self-similar additive process {X;} is V-proper if
P(X,eV)=1 and G =V, where G is the linear subspace defined at the beginning of
this section. For any measure u and any Borel set B, denote by x|, the restriction of u
to B.

LEMMA 3.2. Let V be a linear subspace of RY. Denote by T the orthogonal projector
from RY to V. Then we have the following.
(@) The process {TX,} is a self-similar additive process with exponent H, and its

characteristic function is as follows:

Ee'@TX0 = EelT2TX0 — exp { —27'?M(TATz, z)

+ JRd<e””<“> — 1= it <z, p(x)pT |y oy (dx) + i<z, Ty |.

Here pT~'(B) = p(T~(B)) for any Borel set B.
(b) If the process {TX,} is transient, then {X,} is transient.
(c) If {X;} is proper, then {TX,} is V-proper.
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Proor. We immediately see the first assertion of (a) and (b) from the definitions of
a self-similar additive process and transience, respectively. Since T equals the transposed
matrix of 7, by virtue of Proposition 2.4.11 in p. 60 the second assertion of
(a) holds. The proof of (c) is as follows. Let ¥+ be the orthogonal complement
of V. If P(TX, e H)=1 for some (dim} — 1)-dimensional hyperplane H in V, then
P(X; e H+ V+) =1, contrary to that {X,} is proper. Hence {TX,} is V-proper. []

LemMa 3.3 (Sato [6]). Suppose that Py, is not a delta measure. Let [ be the
concentration order of (A,p)g. Then B> 0 and, for any B’ satisfying 0 < B’ < B, there is

a constant M such that

Py, (z)] < M|Z|_‘BI for z#0 and z€G.

We use the following terminology. Let ¥ be a linear subspace of RY and let
S(V)={xeV:|x| =1}. Suppose that a measure A on V satisfies 4({0}) = 0 and has a

decomposition

/l(dé)J SO

E U

A(EB) = J

B

for Ee€#((0,00)) and Be #(S(V)). We say that the decomposition satisfies the
condition (A) if 4 is a probability measure on S(V'), and 7:(u) is nonnegative, non-
increasing right continuous in u and Borel measurable in &, and

o0

J i(dé)J te(u)u(l +u?) " du < o0.
S(V) 0

LEMMA 3.4. Let V be a linear subspace of R®. Denote by T the orthogonal projector
from RY to V. Then the Lévy measure pT‘1|V\{0} of {TX,} is decomposed into

P o (E8) = | atae) [ 2 a

E U
for Be #(S(V)) and E € #((0, 0)), where this decomposition satisfies the condition (A).

Furthermore, we have
J G(d&)k:(04) = J a(d&)k:(0+).
S(V) S\V+

Here V* is the orthogonal complement of V.

Proor. The first assertion is a consequence of the fact that {7X,} is also a self-

similar additive process. We have, for a > 0,
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“ d . ~ “d
| ataokm =] < o dE)hs(a)
S(V) Jo U Jurée(a,0)S(V)

© du
— a<dé>j W )
(T¢)/|TE)eS(V), TE#0 a/|Te| U

“du

_ Ak [ 2.
). ujmo"( 2 é<\m>

Hence, from the right continuity of k:(u) and k:(u) in u, we conclude the lemma. []

Lemma 3.5. Let d = 3. Suppose that {X,} is proper. Assume that the characteristic

function of X is decomposed as

PXI (2) = i ()i (2),

where u, and p, are self-decomposable distributions. For k =1,2 let A and p, be
the Gaussian variance matrix and the Lévy measure of ., respectively. Let Vi be the
smallest linear subspace containing H 4, and Supp(p,). Suppose that V) is two- or three-

dimensional. If the concentration order of (Ai,py)y, is infinite, then we have

P
[P,
|z|>1

2]

PrROOF. At first suppose that V7 is three-dimensional. Then from we
have, for any o with o > 2,
|1Px, (2)]

1
J 7dzsconst.xj 1+ua’z< 0.
s 7 lz>1 ||

Next suppose that V7 is two-dimensional. Denote by 77 and 7, the orthogonal
projectors from R* to V) and V>, respectively. Choose a vector e such that e e Vs,
lel =1, and e ¢ ;. Such a vector e exists because {X;} is proper. From we
have, for any o >0 and some 0 < ' <1,

2] 2]

J P, _ J @) )]
|z|>1 |z|>1

< const XJ 1 L _
B s 2 T ¢z e

J? (say) )

since |Thz| > |[<z,e)|. Let the vectors e, e;,e3 be the orthonormal basis of R? such that

V1 1s generated by the vectors ey, e;. Let e = cje; + cyes + c3e3, where ¢p,¢;,¢3 € R and
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c3 # 0. Write the integral using the coordinates in the basis e;,e;,e3. Then we have

dz 1 1

=1 171 (2124‘2%)“/2 |le1z1 +6‘222+C323!ﬁ”

J = const. x J

Here we introduce a new norm | -||. Let ||z| = (z2 4 22)"/% + |c121 4 225 + 323 for
any z € R®. Note that there are positive constants ¢ and b such that a||z|| < |z| < b||z|.

Hence we have

1 1
J < const. X J . 5
l|z||>1/b ”Z” Zl + 22) |C]Z1 + 2y + C3Z3|
d21d22 ds

= const. X [x PRSI 12 5

R (23 4 23)"" N2 P lsi>1/m (22 4 23) 7% 4 Is))|s]
l—oc
= const. X L Jr+s>l/b s dr

b ds ul=> © o ds ul=—
= const. X JO WJS(U+1)>1/bH——u du + Jl/b SOH—/},—l Js(u+1)>1/b 1 +u du ;.
u>0 u>0

Choose o« with o+ 8" >2 and 1 <« <2. Then

o0 ds ul_“ d - 0 ds 1 lfocd N oodu -
1/ Swﬂ/il S(IZ@gl/bl+u ‘= 1/b S‘”ﬁl*1 ou ! 1 u* :

Furthermore, we have

b ds ul=— b ds du
J G p 1 L(1+u)>1/b 1+u du < J grp 1 J 0
0 w0 0 u>(1/bs)—1

por-1 1/b ds
o .
a—1Jo (1 — bs)
Hence we have J < oo. This completes the proof of the lemma. O

LEMMA 3.6. Let B be a subset of RY such that if x € B, then ax € B for any a > 0.
Let W be a linear subspace of R?, and let U be the smallest linear subspace that contains

Supp(plgnw). Denote by o the concentration order of (0,plgny)y. If & < oo and

| - ataep(0s) = =
BOwnNS

then there is a point {y € SNU such that
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(3.1) o(dE)k:(04) < oo,

J(BﬂWﬂS)\So

(3.2) o(dE)k:(04) = oo,

JBﬂWﬂSo
where Sy ={Ee SNW : (&> =0}

Proor. From the definition of the concentration order, there is a sequence {;, which
converges to some {;€ SN U and which satisfies that
o = lim lim

210 n%J|<:,c;>|ze
EeBNWNS

a(d&)k:(0+).
By Fatou’s lemma, we have

o> hr{.ll(l)anKé,cpzzE a(d&)k:(0+) = Pﬁ% JI<€’C;-,~>>2% a(d&)k:(0+).
ceBNWNS ceBNWNS

Choosing a sequence ¢ | 0 such that {, =lim;_, Cgf exists, we have, again by Fatou’s

lemma,
*= J<é,co>|>o a(d&)ke(0+).
EeBNWNS
The lemma has been proved. -
Lemma 3.7. Set
P
zeR%|z|>1} |z|

for 0 <a<d. Then {X;} is transient if it satisfies one of the following:

(@) d=3and I, < .

(b) d=>2, I) < o, and {X,} satisfies the assumption in Theorem 2.3.

() d=>1, I, < co with some 0 <o <1, {X,} satisfies the assumption in Theorem
2.3, and y, = 0.

Proor. Let u(z) :de: (1 —1z;]) v 0), then its Fourier transform is given by
v(x) = H/?’lzl((sinxj/Z)/(xj/Z))z. Then we have, for r > 0,

(3.4) Py, (x| <r) < CJ v(r~1x) Py, (dx) = CJ u(z) Py, (r~'z) dz
R’ R?
= cr? J Py, (2)u(rz) dz < crdJ |Py, (2)| dz,
R? |zl <(Vd/r)
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where ¢ is a positive constant not depending on r. By using [3.4), we have

1 © dr
Vd d R “d
< const. X J lix Fdj |Px, (z)| dz + O‘J 111 :
o T Ji<wagm va'r

Furthermore we have

dz

J‘/‘? dr

: rdJ d\=r J Py, (2)]
<

d—o Js1 |z

. Vi
+ J 1Py, (2)] dzJ drrd =1~
|z|<1 0

(d—2)/2 p (d—2)/2
< LJ | de(f” dz d J dz.
d—o Js1 |27 d—o )3<va
Hence, by virtue of Theorems and 2.3, the process {X;} is transient. O

4. Proofs of Theorems 1.1 and 1.2.
At first, by using lemmas in Section 3, we shall prove our first main theorem.

Proor oF THEOREM 1.1. It suffices to prove transience of {X;} in the case that d =1
and y, = 0. For, in the case that d =2, choose a rotation matrix R such that the first
coordinate of Ry, is 0 and let T be the orthogonal projector from R> to the first
coordinate. Then, from {TRX,} satisfies the assumption of the theorem for
d =1, and transience of {TRX,} implies that of {X;} by Lemma 3.2(b).

Now suppose d = 1 and y, = 0. Let § be the concentration order of (A4, p)p1, where
A=0. We know that f >0 (see [Lemma 3.3). Let 0 < o < min{f,1}. By virtue of
Cemma 3.3, for any S’ satisfying o < ' < 8, we have

P
J |X171(_Za)| dz < const. X J — dz < o0.
zZ>1 2] 2[>1 |z
Hence, from Cemma 3.7(c), we obtain that {X,} is transient. ]

To prove Theorem 1.2 we need the following lemma.

LemMA 4.1. Let d = 3. Let V be a two-dimensional linear subspace of R®, and let T

be the orthogonal projector from R> to V. Suppose that the Gaussian variance matrix of
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TX, vanishes, namely, TAT = 0. Let V* be the orthogonal complement of V. If we have
(4.1) J= J o(dE)k:(04) < oo,
S\Vt

then {X,} is transient.

Proor. As {TX,} satisfies the assumption of [Theorem I.1 by (4.1) combined with
Lemma 3.4, {TX,} is transient. Hence, by [Lemma 3.2(b), {X;} is transient. O

We shall prove our second main theorem by using Lemmas 3.7 and H.1.

PRrROOF OF THEOREM 1.2. By (b) and (c), it suffices to prove transience of
{X;} in the case that d = 3. From Lemma 3.7 and Lemma 4.1, it suffices to show that
I, in is finite or that J in is finite under the assumption of [Cemma 4.1. Let /
be the dimension of H,, where H, is the linear subspace defined at the beginning of
Section 3. If / =3, then I, < co from [Lemma 3.3, because the concentration order of
(A,p)g: 1s infinite. From now on suppose that / < 2.

Let B be a subset of R? such that if x € B, then ax € B for any a > 0. Now we have

(4.2) Py, (2) = i (2)ia(2),

where

/iy (z) = exp [—21<Az,z> + J ("5 — 1 — iz, x)1p(x))p(dx) + i<z, p) |,
B

o) = exp | (€0 = 1= iz p0)p(an)|

Here B = R*\B.

Suppose that / = 2 and B = H, above. Then the concentration order of (4,p|y, )y,
1s infinite. So from we have I, < oco. From now on we shall consider the
case / = 1 and the case A = 0 together. Here, if /=1, let H=H,, and if A =0, let H

be a one-dimensional linear subspace such that
(4.3) J a(d&)k:(0+) < oo.
SNH

From now on, in the case 4 = 0, suppose that such a linear subspace H exists, because
if it does not exist, then the concentration order S of (0,p)g: is infinite from the
definition, and I, < oo by [Lemma 3.3.

Denote by U the smallest linear subspace containing Supp(p|,.). Notice that U is

two- or three-dimensional. Now we divide this case into two cases.
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Case 1. Suppose that [,...0(d&)ks(0+) < oco. Denote by H* the orthogonal
complement of H, and by T the orthogonal projector from R to H'. Then we have
TAT =0 and J < 0.

Case 2. Suppose that [,,.,¢0(d&)ks(0+) = 0. Let 5, be the concentration order
of (0,p|y.)y. Here we divide this case into two cases: f, = oo and f, < 0.

Case 2-1. Suppose that f, = co. Let B= H in [4.2). Apply to Py,.
Since U is two- or three-dimensional, we have I, < oo.

Case 2-2. Suppose that ff, < co. By the assumption [, 0(d&)ks(0+) = oo, then
from there is a point {; € SN U such that

(4.4) a(d&)k:(0+) < o0,

J(HcmS)\So
(4.5) | ot =,
HeNS,

where So = {¢e§: (&> =0} Let Wy={xeR>:{x,{,>=0}. Let ; be the con-
centration order of (0,p|y, o H")Wo” where W is the smallest linear subspace con-
taining Supp(p|y, ). Furthermore we divide this case into two cases: 3 < oo and
B3 = 0.

Case 2-2-1. Suppose that 3 < oo. From [4.5), using again, we can

decompose Sy, namely, there is a point {; € W; NS such that

(4.6) o(d&)ke(0+) < oo,

J(H‘ﬂSo)\Su
(4.7) J o(dE)k:(04) = o,

HeNS,
where S; = {&€ Sy : (&, (1) =0}. Hence combining this with [4.4], we have

(4.8) o(d&)ke(0+) < o0,

J(H« NS\S

(4.9) mes o(dE)ks(0+) = 0.

Here we divide this case into two cases.
Case 2-2-1-1. Suppose that 4 = 0. Denote by W) the linear subspace spanned by
S1. Let (Wl)L be the orthogonal complement of W), and let T be the orthogonal

projector from R* to (W;)". From and we have

J :J o(dE)ks(0+) < J a(d&)k:(0+) +J o(dEYk=(0+) < 0.
S\S;

SNH (SNH\S,



360 K. YAMAMURO

Case 2-2-1-2. Suppose that / = 1. From the set HN S| is non-empty. Then,
Wi is one-dimensional and H‘NS; =S; consists of two points. Hence we have
HN W, ={0}. Now let W be the linear subspace spanned by H and ;. Denote by I7
the orthogonal projector from W to H. Then we obtain that the concentration order of

(4,ply )y is infinite. In fact, since S; consists of two points and H # S;, we have

(410)  lim inf J<é,c>|>»e"(‘M)ki(o+> > I J|<<,z>|>e“(dé)k‘f(0+)
fewns SeWNS cewns <€

_ L o(dE)k:(04) = o

by [4.9). Here I1, is the orthogonal projector defined at the beginning of Section 3. Let
B=W in [42). Then from we have I, < .

Case 2-2-2. Suppose that f; = co. Notice that W # {0} by [4.5)]. At first suppose
that W is two-dimensional. In choose B¢ = WyNH¢. Then, by Lemma 3.3, we
have I, < oo. Next suppose that W is one-dimensional. Here we divide this case into
two cases: /=1 and 4 =0.

Case 2-2-2-1. Suppose that / = 1. Let W be the linear subspace spanned by H and
W;. Then, W is two-dimensional. Similary to (4.10), considering in place of [4.9],
we conclude that the concentration order of (4, p|y,nyc)y is infinite. Hence from
we have I, < .

Case 2-2-2-2. Suppose that 4 =0. Let (W(j)L be the orthogonal complement of
Wy, and let T be the orthogonal projector from R* to (WO’)L. Then we have, since
WoNH® > W,

= sk 04)
Js\wy

_ o (dé)k(0+) +J a(d&)ke(0+)

Js\(SynH<) (SoNH\W,

= a(d&)ke(0+)
JS\(SynHe)

— o(dE)k:(04) + j o(dE)k:(04)
JsnmN\(SynHe) (SNH)\(SoNH¢)

IA

o(dE)k-(04) +J o(dE)k:(0+4) <

J(S\So)mHv SNH

by (4.3) and (4.4). The proof is now complete. O
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5. Proof of Theorem 1.3.

PrOOF OF THEOREM 1.3. Without loss of generality we assume that the exponent
H =1 for {X;}. Let a>1. We have

(5.1) 1> P(X,n <0, X, >0 for all positive integer k)

\Y

M 1

P(Xpn <0< Xpnit, Xynient — X = 0 for all positive integer k)

3
Il
—_

Il
M

P(Xn <0< Xyt )P(Xyiint — Xynn > 0 for all positive integer k)
1

3
I

Il
[

P(X; <0< X,)P(X,x — X; =0 for all positive integer k).
1

3
Il

In case (i) and (ii) both Py, and Py, x, have supports R by Proposition 4.1 of

A

Sato [9]. Let yy =y — J_ g ¥p(dx). In case [iii] we have Supp(Py,) = (—o0,y] and
(a— 1)y, € Supp(Px,—x,) < (—o0,(a —1)p,]. These follow from the Lévy measures
of X; and X,—X; are, respectively, o({—1})k_1(—x)1(_c 0)(x)/|x|dx and
o({—1})(k_1(—=x/a) —k_1(=x))1(_s,0)(x)/|x| dx on (—o0,0). Since we have that

P(X1 <0< Xa) ZP(—;? <X < O)P(Xa—Xl > 17)

for any # > 0, in all cases we have P(X; <0 < X,) > 0 by choosing # appropriately.
From this and (5.1) we have

(5.2) P(X,« — X1 =0 for all positive integer k) = 0.
In the same way we have

o0

1> ZP(XI > 0> X,)P(X,+ — X1 <0 for all positive integer k).

n=1

Further,
PXi1>0>X,)=Pn>X,>0)PX,—X;<—-1)>0

for any # > 0, since Supp(Py,_x,) is unbounded below. Hence
(5.3) P(X,« — X1 <0 for all positive integer k) = 0.

Since a can be arbitrarily large in (5.2) and (5.3), we have
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o ©
{Xak—Xl>O} >P ﬂU{Xa1k/—X1>O} =1

~
~ 8
T8

I=1 k=l I=1k'=1
o0 O e} o0

P ﬂ U{Xak—X] <O} ZP m U{Xau‘»/—X] <O} :1
I=1 k=l I=1k'=1

Hence the sample path of X; — X crosses the origin after arbitrarily large time. By
using Lévy-Itd6 decomposition theorem, we see from p((0, 00)) = 0 that the process {X;}
has no upward jump. Hence X; — X visits the origin after arbitrarily large time. This
shows that {X;} is not transient, so {X;} is recurrent. This completes the proof of
eore 3. []
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