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Abstract. We give the recursion formula of the Harish-Chandra C-function with
respect to the highest weight of the representations of K. Using this formula, we get the
explicit expressions of the Harish-Chandra C-functions for Spin(n,1) and SU(n,1). As
an application, by using these expressions, we get the realizations of discrete series
representations of SU(n, 1) as subquotients of nonunitary principal series representations.
We shall also get the decompositions of holomorphic and antiholomorphic discrete series
when restricted to U(n—1,1). By using the structures of K-spectra of discrete series
representations, we can concretely construct the invariant subspaces of the representation
spaces of holomorphic and antiholomorphic discrete series.

1. Introduction.

The Harish-Chandra C-function plays a basic role in studying harmonic analysis
on semisimple Lie groups, because it closely relates to the Plancherel measure and
the reducibility of the principal series representations. Moreover, the location of the
singularities of the Harish-Chandra C-function is crucial for the proof of Paley-Wiener
type theorems or various Schwartz type theorems. After a time, many peoples studied
the Harish-Chandra C-function. However, even now, the explicit expressions of the
Harish-Chandra C-functions are not known except for a few semisimple Lie groups and
special cases, such as class one case or one dimensional K-type case.

The purpose of this paper is to give the explicit formulae of the Harish-Chandra
C-functions for Spin(n,1) and SU(n,1). Here in order to describe the contents of this
paper, we shall use some notation explained in §2. By the product formula for the
Harish-Chandra C-function (cf. [4]), the problem of computing the Harish-Chandra C-
functions of semisimple Lie groups of general rank is reduced to the real rank one case.
For this reason, it is crucial to compute the Harish-Chandra C-function for Spin(n,1)
and SU(n,1). For 7€ K, the Harish-Chandra C-function is given by

(1.1) Ca(v) = J e HD) (7)), (ve o).
N
The reason for restricting our attention to the cases Spin(n,1) and SU(n, 1) is that no

multiple irreducible unitary representations of M occur in any irreducible unitary
representation of K. In these cases, there exists a meromorphic function C;(o : v) such
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that
(1.2) TC,(v) =Ci(o:v)T, (T e Homy(V;, Hy)).

We obtain in this paper the explicit expressions of C;(o : v) for Spin(n,1) and SU(n,1).
These expressions give us the precise informations on the zeros and the poles of the
Harish-Chandra C-functions C;(v). On the other hand, Cohn [1] showed that for any
semisimple Lie group G, there exist p; j,¢q; ;€ C (1 <i<r,1<j<j;) and u,...,4, €
a* such that

ro i F(%"'qlﬁ)
1.3 det C;(v : :
(13) ) qur<_<>+p)

2oy

In [T], he conjectured that the constants p; ; and ¢; ; appearing in the above expression
are rational numbers and depend linearly on the highest weight of 7. By using the
expression of C;(o : v) together with V, = )" __ [t : 0]H,, we can get the explicit formula
for det C;(v) and this shows that Cohn’s conjecture is true for Spin(n,1) and SU(n, 1).
Because the remaining rank one simple Lie groups Sp(n,1) and Fy_y) have multiple
irreducible unitary representations of M, we shall need more complicated argument for
these groups and thus we will postpone the discussion for these groups to another paper.

This paper consists of two parts. The first part is devoted to the construction of
the recursion formula of the Harish-Chandra C-function. To accomplish this, we shall
use the formula of the infinitesimal operator of the principal series representation for
semisimple Lie groups of real rank one, which was proved by Thieleker [10]. In
this paper we will reform Thieleker’s formula in terms of the M-invariant differential
operators. With the help of this formula, we can obtain the recursion formula of the
standard intertwining operator relative to Dg. From the relationship between the
standard intertwining operator and the Harish-Chandra C-function, this formula leads
to the recursion formula of the Harish-Chandra C-function. By using this recursion
formula, for getting the expression of the Harish-Chandra C-function, it suffices to
consider the case when the dominant, analytically integral form on t. is minimal in the
sense of the betweenness condition of the Gel'fand-Tsetlin basis.

The second part is devoted to the calculation of integral in the definition of the
Harish-Chandra C-function for the case when the dominant, analytically integral form
on t. is minimal in the sense mentioned above. In order to carry out this integral, we
shall realize the fundamental representations of K in terms of the alternating tensor
products of C" and compute the matrix element relative to a highest weight vector.
From this, with the help of the integration formulae of the hypergeometric function, we
can get the expression of the Harish-Chandra C-function associated with the above
irreducible unitary representation of K.

In §8 and §9, as an application, we shall show that the information on zeros of the
Harish-Chandra C-function can be used to get the realizations of discrete series rep-
resentations of SU(n,1) as subquotients of nonunitary principal series representations.
We shall also get the decompositions of holomorphic and antiholomorphic discrete
series when restricted to U(n — 1, 1), which was proved in [8]. By using the structures
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of K-spectra of discrete series representations, we can concretely construct the invariant
subspaces of the representation spaces of holomorphic and antiholomorphic discrete
series. In the case of SU(2,1), these decompositions were obtained by J. Xie and
our proof was inspired by his paper [14].

2. Notation and preliminaries.

The standard symbols Z, R and C shall be used for the integers, the real numbers
and the complex numbers. If x e C, Ro, Jv and x denote its real part, its imaginary
part and its complex conjugate, respectively. If x is a column vector, ‘x denotes its
transpose and x* = 'x. For E < R and p e Z.,, E” denotes the subset of E” comprised
of all x=(x1,...,x,) such that x; —xjy1eZso for 1 <j<p—-1 1If x=(x1,...,x,) €
E” and 1 < g <p, we write [X[=30_| xj, x<g=(x1,...,%,) € E? and xz4=(x4,..., X)) €
Er~7!' For xe EI'™ and ye E?, x > y means x; — yi€Zxo and y; — xj11 € Zx for

>
1 <j<p. For a finite set F, Card F denotes its cardinal number. If V' is a vector
space over R, V., V* and V} denote its complexification, its real dual and its complex
dual, respectively.

For a Lie group L, L denotes the set of equivalence classes of irreducible unitary
representations of L. As usual, we shall use lower case German letters to denote the
corresponding Lie algebras and upper case German letters to denote their universal
enveloping algebras. As is well-known, the elements of £ act on C*(L), as differential
operator, on both sides. Following Harish-Chandra, we shall write f(D;x; E) for the
action of D,Ee€ & on fe C*(L) at x€ L.

Let G be a semisimple Lie group with finite center and K a maximal compact
subgroup of G and 0 the corresponding Cartan involution. Throughout this paper we
assume rank G =1. Let {:,-) denote the Killing form on g and define the inner
product <{-,->p on g by (X, Y),=—(X,0Y). Let g=1t+p be the Cartan decom-
position of g corresponding to . Choose a maximal abelian subspace a of p. Let [) be
a O-stable Cartan subalgebra containing a and set hy =hNE. Let t be the Cartan
subalgebra of f containing f;. Fix an ordering on v/—1b; + a that is compatible with
the one on a and fix the ordering on v/—It that is compatible with the one on /—1b;.

Let X denote the set of all nonzero roots of g with respect to a and X" the subset of
2 consisting of all positive roots. For o« € X, g, denotes the corresponding root subspace
of g and m, = dimg,. Let n be the sum of all positive root subspaces. 4 and N denote
the analytic subgroups of G corresponding to a and n, respectively and N = ON. Then
G = KAN and g =f+ a+ n are the Iwasawa decompositions of G and g, respectively.
For g€ G, g decomposes under G = KAN as g = «(g) exp H(g)n(g), where x(g) € K,
H(g)ea and n(g) e N. Let M and M’ denote the centralizer and the normalizer of a
in K, respectively. Then W(a)=M'/M is the Weyl group of G. For we W(a), ce M
and v € a¥, define wv € o and woe M by wy(H)=v(Ad(w)"'H) and wo(m)=a(w 'mw).
Let Ag be the set of roots of I, relative to t. and A} the subset of Ax consisting of all
positive roots. Put p=(1/2)>" s+ m,a and og = (1/2) Zﬂeﬁz p.

Let Dx and D), be the sets of dominant, analytically integral forms on t. and by,
respectively. If 4 e Dk (resp. pe Dy), we write 7, (resp. o,) for the element in K
(resp. M) whose highest weight is equal to 4 (resp. x). For 7€ K and o € M, we denote
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by [z : ¢] the multiplicity of ¢ occurring in z|,, and put K(¢) = {te K : [t: 6] # 0} and
M(t)={oceM:[t:0] #0}. Similarly for AeDx and ue Dy, we set Dg(u)=
{leDg:1;€K(0,)} and Dy (A) = {ue Dy : g, M(z;)}.

Finally let dk and dii be the Haar measures on K and N, respectively, normalized as
Jxdk =1 and [5 exp{—2p(H (n))}di = 1.

3. Infinitesimal operator of the principal series.

In this section, we shall introduce the formula of the infinitesimal operator of the
principal series representation that was shown by Thieleker [10]. We shall reform
Thieleker’s formula for our convenience so that we can get the recursion formula of the
Harish-Chandra C-function. In the following discussion, for all 7 € K (resp. o € M), we
fix representatives of 7 (resp. g) and by abuse of notation, write 7 (resp. ¢) for it again.

We shall first review the compact picture of the principal series to explain the
notation and the parametrization. Let (o, H,)e M and vea. We set

(3.1) Cy(K) ={pe C*(K;H,) : plkm) = a(m) "' p(k)}.

Let #”" denote the Hilbert space completion of C°(K) relative to the inner product
frg) = [ {fk),g(k)>y dk. Define the action n,, of G on H#”" by

(3:2) (0. (9)p) (k) = & PHT (g7 1R)), (pe ).

Then (7, ,, #°") is a representation of G and is unitary for ve v/—la*. These are
called (nonunitary) principal series representations of G.

For pe A7, we set p,(g) = e "H)y(x(g)). For 7 e K(a), #%" (1) denotes the
7-isotopic component of #?". Then Frobenius reciprocity implies the following lemma.

Lemma 3.1. The correspondence T @ v — frg,(k) = T(z(k)"'v) is a K-module
isomorphism of Homy, (V;, Hy) ® V; onto # " (t). Here V, denotes the representation
space of T.

Hereafter we denote by o e 2" the unique simple root and choose H € a so that
a(H)=1. Take {X,;:1<j<m,} and {U;:1 < j<m} (m=dimm) to be ortho-
normal bases of g, and m, respectively and put Y, = 2*1/2(X“,i+0X“7 ;) and Z,; =
272X, — 0X,). We set wj,=—Y" Y2, and wy=-Y/" U} =37 o, We
shall first prove the following lemma.

LemmA 3.2 (cf. [10, Lemma 1]). Let Zep, and ¢ € CF(K). Then we have

(3o (D00 = 2 70)(K) + 51— (670) s ) = (K)ol o)
- s ) 0m) — g K)plhsn,)

Here ¢,(k) = <Ad(k)™'Z,Hy/<H,H).
Proor. We first note that
_ Ad(K) ' Z HYH G- & _
(3.3) Ad(k)™'Z = EBS +3 N KAd(k) ' Z, Zjs i) Zjn, i

j=1 i=1




The Harish-Chandra C-functions of Spin(n,1), SU(n,1) 959

It follows from the definition of ¢, that

(3.4) 0,0k H) = —(v+ p)(H)p,(k) for Hea, keK,
(3.5) ¢,(k;X)=0 for Xen, keKk.

Noting Zj, ; = —Yjui + \/EXJ-W, we obtain

(3.6) 0, (ks Zjs,i) = =0, (k; Yo,i) = —o(k; Yy i)

Taking into account [3.3) and [3.6), we have

(3.7) (7. (Z)0) (k) = 9,(~Z: k) = —0,(k; Ad(k) ™' Z)

= v+ p,a){Ad(k)"' Z, H) (k)

+ Z Z (AA(K) ' Z, Zi i o (ks Vi)
j=1 i=
A simple calculation yields that
(38) [H, Y}'zx,i] :ijoc,ia [),]'0(71'7Zja,i] = j<0€, OC>H

From [3.8), we obtain

Cad(= Y ) Ad(K)'Z, Hy _ —j<Ad(K)'Z, Z;s i)
(H,H) B (H,H) '

Therefore, substituting into (3.7), we obtain

/l

(3.9) Pz (k5 Y1) =

v+p o)

(3.10)  (muZ)0)(k) = L2 (g0)(k Z (K; Yol a1
(o0 -
1 My

- 2<OC,OC> ;¢Z(k7 YZa,i)(/)(ka YZoc,i)-
A simple calculation using gives that
(3.11) b0 U) =0, ¢z(k; Yy, ) = =7 <o gz (k),
and hence
(3.12) ¢ (k; wjy) = jzn/ljc{<a7 7 (k),  dz(kiwr) = (my + dmay ) o, )P, (k).
By using Leibniz’s formula, we have
(3.13)  (920)(k; wjn) = Pz (K)p(k; o) + b7 (k; o) 2Z¢z ks Yo, i) (K Yo, i)

= ¢Z<k)(/)(ka a)joc) +j2mjot<oc7 O‘>¢Z(k)(p<k)

=2 ¢y (k; Yiui)olk; Vi),
i=1
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Therefore

My,

(3.14) —Z ¢,k o(k; )

- % (B20) (ks 030) = 62 (K)pks 03) = Py, 25(9) (K]

Substituting (3.14) into (3.10), we have

(.15) (mon(2)k) = T2 (40 k)

oy 00
+ ﬁ [($20) (K ) — § 7 (K)plc; 0,) — m,Ct, 25(d70) (k)]
+ 4<al7 5 [(020) (6 02) = 7)ok 2) — 4yt 0 20) ()
= 2 ) 0) 5y [80) (s 0 0m) = (gl 403,
- 0 (B0 s 022) = gl )

Noting and using Leibniz’s formula, we obtain

(3.16) (020)(k; 0y + @22) = ($20) (ks 1) + 97 (k (k Z Uz)

and hence

(B17)  (P20) (ks 0y + w24) — Pz (k)p(k; 05 + w24) = (P20) (ks 1) — fz (k) (ks cox).

Substituting (3.17) into the last expression in (3.15), we get the assertion. O

4. Recursion formula for C-function.

We shall first summarize some known results on the relationship between the
standard intertwining operator and the Harish-Chandra C-function. In [6], Knapp and
Stein constructed the integral expression of the intertwining operator between the
principal series representations, which is called the standard intertwining operator. Let
(6,H,) e M and (7, V,) € K(g). Letvea’ be such that R{v,«>>0. Then the standard
intertwining operator is defined by

(4.1) (A(w,a,v)p)(k) =J D g lwne(7)) dit, (k) € CF (K)).

g

N

As indicated in [6], we know A(w,0,v)p e C(K) and

wao

(4.2) A(w, 0, v)na, W(9)p = Tya, w(g)A(w,a,v)p.
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Let T ® ve Homy,(V;, H;) ® V;. Then it follows from Wallach (cf. [13, p. 270]) that

(4.3) (A(w,0,7) fre.) (k) = T(C:(v)z(w) ™' 2(k) "),
where
(4.4) C.(v) = J e H) 137 i

Looking upon C;(v) as a linear mapping of Homy,(V~, H;), we write C;(o :v) for the
determinant of C;(v). We call C;(o : v) the Harish-Chandra C-function associated with
7 and . Our main concern in this paper is the case that dim Homy,(V;,H,) = 1. Itis
known that if G = Spin(n,1) or G = SU(n, 1) then this assumption holds for all 7 € K
and ¢ € M (7). Under this assumption, because 7C;(v) = C;(c : v)T, (4.3) can be written
as follows.

LemMA 4.1. Retain the above assumption. We have

A(Wv g, v)fT@v = CT(O- : v)er(w)(T@)v)‘
Here R.(w)(T ®@v) = Tt(w)' @v.

ReMARK. The function det C;(v) was first introduced by Cohn [1]. Later, Vogan
and Wallach studied the function C.(¢:v) for reductive Lie groups of arbitrary
rank. In their paper, they proved that C.(g: v), as a function of v, has a meromorphic
extension on a’ and it can be written as quotients of products of classical I functions.

We suppose the unitary representation (Ad,p,) of K has no multiple weights and
give a recursion formula of the Harish-Chandra C-function. Let 4, denote the set of
all weights of (Ad,p,) relative to t.. Under this assumption, the following lemma is
valid.

Lemma 4.2 ([5, p. 111]). Let A€ Dx. Then
Ad® 1, = Z Wl(}. +ﬁ)‘[)u+/g,

ped,
where m(A+ ) =0 or 1.

In the following, V; is an abbreviation of V;, and when there is no possibility of
confusion, we shall use similar abbreviations. We write E; .z for the canonical pro-
jection of p, ® V), into V4 given by the decomposition in [Lemma 4.2. Let 1 € Dg and
pe Dy(2). For T eHomy(V;, H,), define T e Homy (p, ® V;, H,) by

(Z,H)

(4.5) T(Z®v) = CH.H T(v).

Define the linear mapping

(4.6) /%ﬂ(Z; L+ p, /1) HomM(V,l, Hﬂ) RV, — HomM(V,1+ﬁ, Hﬂ) ® V,1+ﬁ
by

(4.7) My(Z: 3+ B, AT @v) = TE}, 3 ® Ejp(Z Q).

We first prove the following lemma.
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LemMA 4.3.  Retain the above notation and assumption. We have

brfree= Y MA+B) Ly ziip e

fed,
Proor. We compute

(Ad(k)"'Z, H)
(H, Hy

F(Ad® 1)(k) ' (Z ®v))

(P2/100) (k) = T(z:(k) ")

/—\

(Ad®T)(k)" Y E; 4Ep(Z® v))

ped,

= Z (A+ B T(E] yt:p(k) " Ezip(Z ® v))
ed,

= Z m(4 + ﬂ)fTE;M@EH,;(ZW) (k).
ped,

Therefore the assertion holds. L]

The next lemma is an easy consequence of [Lemma 4.3.
LemMA 4.4. If m(A+ ) #0 then

Riip(W)M(Z; 04 B, A) = =My (Z; 2.+ B, A) Ry (W).
Proor. We compute

Ad(kw)'Z, H>
(H,H)

_ (Ad(k) ' Z, Ad(w)H )

(4.8) (RW)(dzfr00)) (k) = T(z;(kw) ')

Tri(w)~ (za(k) " 'v)

{H,H)
_(¢ZfR,1(w)(T®v))(k)'
Noting [y z.i4p.ren € X ™ (Tiap) and fr (rer € A """ (1), we see that
(4.9) Rw) (92 /100) = Z m(4+ f) TRy ) t(Z:548.3)(T@0)
pe4,
2SR, 00)(T@Y) = Z m(A+B) [y, (70482 R, (w) (T @)
ped,

Substituting (4.9) into (4.8) and comparing side by side, we obtain the assertion. []

Combining with [Cemma 4.3, we have the following proposition.

PROPOSITION 4.5. Let pe Dy and A€ Dx(u). Then there exists n’(ws,) € C such
that
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o, (Z) fre0 = Z

fed,

0 QA+ 2k + BB Mapl@2d) = 15 (02)
Cor, ) 2, ) 4, 0)

X M2+ B) Ly z:54.0)(T@w):

ey, wy (Z)fR,-v(w)(T@)U) = Z

ped,

oy QA+25k + BB Mip(@22) — 15 (@22)
D 2<a, o) 4o, o)

x m(/4 + ﬁ)ﬁ%w(z; I8, )R, (w)(T®v)*

ProOF. We obtain from that

(P2Sreu) (k;wr) = Z m(A+ B) [y z.i4p.5)(Teu) (K ©1)

Bed,

= (4 B+0k, A+ B+0k> — Ok, 0k )M+ B)f 425,370 (k)
pedy

¢Z(k)fT®v(k; Cl)f) - (<’1 +5K7j“ +5K> - <5K75K>)(¢ZfT®L>(k>

= (40K, A+ k) — Ok .0k 0)m(+ B) [ 1y 2545, 1700 (K)-
Bedy

Hence

(¢sz®u)(k; wy) — ¢Z(k)fT®u<k§ wr)

= Z QA+ 20k + B, Bom(2+ B)f 4,234, 1)1 000) (K)-
Bed,

On the other hand, under the assumption that dim Hom(V;, H,) =1, there exists
14 (w2,) € C such that

Tt (w2) =14 (w2,) T,

and thus

Sroolk; o) = Tt (02)(1:(k) " 0) = 1} (02) fre.(k)-
Similarly we have
f,‘%ﬂ(z;i—&-ﬁj)(T@v) (k; w2y) = ﬂﬁrﬁ(wh)f// Z; 4B, 1) (T ®v) (k).

Consequently we obtain

<¢ZfT®u>(k; W2y) — ¢Z(k)fT®v(k§ 2y)

=> (154 p(@22) — 13 (020) )2+ B) f 4.z 1.y T @0 (K)-
ped,

Noting
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S0 ok 02) = Tt (w) ' 1) (72(k) ')
= T1;(w2)7,(w) " (1;(k) o)

= ﬂf(wZa)fTU(w)*l @v(k)7

we can get immediately the second equation in |Proposition 4.3 O

Combining [Lemma 4.1 with [Proposition 4.5, we can get the recursion formula of
Harish-Chandra C-function.

THEOREM 4.6. Let pre Dy, vea) and /€ Dx(u). If m(A+ ) #0 then

_<V,OC>+<2A+25K +ﬁ,ﬂ>_7’/f+ﬁ(a)2“) —775(0)2“) 0,1
oy 00 2<o, 0y 40, o) o (Ou v

D R I N 7Y, 5(021) — 1% (027) o
B <OC7 OC> 2<O€, OC> 4<O(, OC> Tiip Oy V).

Proor. We first recall that

(4.10) A(w, Oy V)naﬂ,V(Z)fT(@u = nwaﬂ,w\J(Z)A(m Oy, V)fT@v-

Combining [Proposition 4.3 with (4.10), we have

the right-hand side of (4.10)
= Cy, oy : V)(”woﬂ,vVV(Z)fRZ(vv)(T(@u))

_ . <V, OC> <2j« + 25[( + ﬂ,ﬁ> 7754_5(6020 - ﬂf(a)Za)
= C‘L'/: (Uu : V) Z {_ (o, 0> + 2o, 0 — 4o o

ped,
X M4+ B)f (2 545,00 Ry () (T@0)-
Similarly taking into account Lemma 4.4, we have
the left-hand side of (4.10)

5 {<v, %) QA DB Migl02) - ﬂf(wza)}

= Al “‘”)[ Gy K ey

fed,

x m(Z+ ﬁ)f////,l(Z;i—&-ﬁJL)(T@v)]

-y oy QA+ Dx+5B 1} p(02:) = 11} (02,)
N fed, <O€,O{> 2<O€,O€> 4<OC,O(>

X Cmﬁ(% tv)m(4 +ﬂ)ng+ﬁ(w’)//il,(Z;}.+ﬁ, N(TQv)
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) R AL L2k BBy My ©02) ~ 1 (02:)
- Cor, ) 2o, ) 4, 0)

fed,

X CTH/)’(G,U tv)m(4 +ﬂ)f,/zzw,,(z; I+, )R, (w)(T®v)*

Therefore we obtain the desired formula. ]

5. Representations of K and M.

In the remainder of this paper, we shall confine our attention to the cases of
Spin(n,1) and SU(n,1). As is well-known, in these cases, the irreducible unitary
representations of K and M are realized in terms of the Gel’fand—Tsetlin basis of u(n)
and o(n). Later these realizations are used for getting the matrix element of the Harish-
Chandra C-function relative to the highest weight vector. We shall borrow the notation
from Knapp’s book [5, pp. 60-64] and Vilenkin—Klimyk’s book [11, pp. 361-365].

Let G = SOy(n,1), (n=3) or G=SU(n,1), (n>=2). Weset F=Rif G=SO0y(n,1)
or F=C if G=SU(n,1) and F; ={xe F:x+x=0}. Then the Iwasawa decom-
position of G is given as follows:

5.1) K= {(X 1> iXeSO(n)}, for G = SO(n, 1),
{(X u) :XeUm),ue U(l),udetX = 1}, for G=SU(n,1).

Let H=E, .1 +E;1,€p and a=RH, where E,, denotes the matrix unit whose
(k,I)-component is equal to J, xJy .

( I
(5.2) A=<a; = cosh? sinht | :te R},

L sinh ¢ cosh ¢

I, z —z

(5.3) N=<nlzzuy=| -z 1-w/2 ©/2 czeF" ueFLo=z>-2u},

L —z* —w/2 1+w/2

( I —z -z w
(5.4) N={iGzu=| z2 1-w?2 -w/2 |:zeF'""ueF,o=/|z*-2u

L —z* /2 l+w/2 )

It is easy to prove the following lemma and hence we omit its proof.
LEmMA 5.1.  Let ni(z,u) be as above. Then
H(n(z,u)) = log|l + w|H,

2zz* -2z

I, | — 0
"Tro 1+0o
~ 2z* l-w
k(a(z,u)) = T o T 0
1
0 0 +w

11+ o
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If ESR and pe Z.,, we denote by E? the subset of EZ comprised of all x =
(X1,...,X,) such that x, | > |x,|. If xe EZ'' and y € E?, we write x » y for x > y and
Yy > |xpy1]. If xe EZ and ye Ef, we write x 3>y for x > y,, and y » x>, We
first compute the second term <24+ 20k + B, 8>/2<a, o) appeared in [Theorem 4.6.

(1) Spin(2n+1,1)-case. Let H; = Ej;_ 5 — E»;»j—1 for 1 < j <n and let {¢;} be the

dual basis of t; relative to {H;}. Then we have

(5.5) Ap ={eteg,(1<i<j<n)e(l<i<n)l,
(5.6) 4y, ={te&,(1 <i<n),0},
(5.7) D—IZnD—IZn

. K — 7 >0 >; M — D) >>-

It follows from that [r): 0, =1 if and only if 2>>>pu.  From these, we obtain
<2/1 + 251( + 8j, 8j>
24o, oy

(2) Spin(2n+2,1)-case. Let H; and ¢ be the same as in (1) for 1 <j<n+1.
Then we have

(5.8)

=i+n—j+1, (1<j<n).

(5.9) A ={ateg (1<i<j<n+1)},
(5.10) dy={xe,(1<i<n+1)},
1\ 1 n
(5.11) Dy = (EZ)» . Dy = (§Z>0>>.
It follows from that [r;:0,) =1 if and only if 4> u. From these, we obtain
(5.12) <2}“+22<i’f0:;8f’8f>:/1j+n—j+%, (1<j<n+1).

(3) SU(n,1)-case. Let H; =+ —1E;;for 1 <j<n+1 and let {¢} be the dual basis
of t; relative to {H;}. Then we have

(5.13) A ={e—¢,(1<i<j<n)},
(5.14) 4y = {ﬂj =& _8n+17_ﬁj7<1 <j<n)},

1 n 1 n—1
5.15 Dy = VA Dy = 7z .
G-15) . <n+1 >>’ " (n+1 )

It follows from that [t;,:0,) =1 if and only if 4/ > x. From these, we obtain

Q2L+ 20k +ﬂj,ﬁj>
2o, 07
Here |t;| = [4| =}, 4. In both Spin(n,1) and SU(n,1) cases, for 1€ Dk and ue

Dy, we shall write |7)| and |o,| instead of |A| and |u|, respectively.

We remark that if G = Spin(n,1) then 7% (ws,) =0. In the case of SU(n,1), for
computing 74 (w2,), we need to construct the irreducible unitary representation (z;, V)

(5.16) =24 +2yl+n-2/+3, (1<j<n).
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and write down the action of 7,(wy,). As is well-known, these are realized in terms of
the Gel'fand—Tsetlin basis.

(1) K = Spin(n)-case. Let M = (m,,my,_1,...,m3,my) be a sequence such that
1 P
(517 et = (et o) € (320
>

p

nmyp = (Wl1>2p, e ,mpjzp) € (%Z) .
The preceding sequence M 1is called a Gel'fand-Tsetlin data if my,.1 >>m,, and
Mypi2 > Mapy.  For the Gel'fand-Tsetlin data M, we write v(M) for the corresponding
Gel'fand—Tsetlin basis. For A e Dk, we denote by V), the Hilbert space generated by
the orthonormal basis v(M) with m, =4A. We put I,,=E, ,—E,,,(p <gq). Then
there exists an irreducible unitary representation (z,, ;) of K satisfying the following
conditions:

(5.18) T3 (Dp,2p41)0 ZA Mﬂ ZA 217)
(5.19) i(Dp1,2p42)0 Z B2p+1 M;_[i‘rl Z Bz,n+1 2p+1 (M2_15+1)
+V-1Cy,(M)v(M),

where M, 7 is the Gel'fand-Tsetlin data obtained by replacing m;,, with m;,, + 1 in
my, of M For the explicit forms of AJ (M), Bépﬂ( ) and C»,(M), see [11, p. 364].
For /1 € Dk, define the Gel’fand-Tsetlin data M; = (my,...,m1) by my, = may 1 = A<op.
Then from [5.18), v(M;) is a highest weight vector of 7;.

2) K=S(U(n) x U(1))-case. Let M = (my,...,m;) be a sequence such that

1 p
(520) mp = (n’ll’p, . ,mp’p) € (mz>>

Then preceding sequence M is called a Gel'fand-Tsetlin data if m,.; > m,. For the
Gel’fand-Tsetlin data M, we write v(M) for the corresponding Gel'’fand-Tsetlin basis.
For 1€ Dk, we denote by V; the Hilbert space generated by the orthonormal basis
v(M) with m, = 2. We put X, = E, ,11, ¥, = Eps1.p, H, =V—1(E, , — E,11 1) and

=+/—1diag(—1,...,—1,n). Then there exists an irreducible unitary representation
(7,,V;) of K satisfying the following conditions:

(5.21) ZAJ (M),

(5.22) 7,(Y,)o(M) = ZP:B]{(M v(M7
Jj=1
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p+l
(5.23) Ti(H,y {22””}17 Zm/p 1_ijp+1}\/_v( );

(5.24) T,(Ho)v(M) = —(n+ 1) imj,n\/—_lv(M),
=1

where M;—rj is the Gel'fand-Tsetlin data obtained by replacing m; , with m; , £ 1 in
my, of M. For the explicit forms of 4)(M), Bf(M), see [11, p. 363]. For A€ Dk, let
M; = (A A<y1,-..,4<1). Then from (5 23) and (5.24), v(M) is a highest weight vector
of T,

We shall now compute 7% (ws,). For 1€ Dx and ue Dy (), define the Gel'fand-
Tsetlin data M, , by M; , = (A, ficp_y,---,1<;). Then it is obvious that v(M; ,) €
V;(u) and v(M; ,) is a highest weight vector of the irreducible unitary representation
(T2las> Vi(u)) of M. Because

n—1
(5.25) Y L4 0,...,0,i,—i)
. =———diag(0,...,0,i,—i
SR W
-1

BEYW e m{H0+H1 +2Hy + -+ (n = 1)Hy 1},

we have from (5.23) and |5.24) that

1
(526) (VoM ) = 3 A 2|~ o,V Te(M3 )
Since wy, = — Y3, it follows
2
(5.27) T(@22)0(M;, ) = m(ﬂm = loul) o (M, ).

Because 7'7;(wa,) = 1 (w2,)T for T € Homy(V;, H,), we have
(528) TT;V(CUZO()D(M;L’#) = nf(a)zof)Tv(M,W).
Therefore, it follows from Tv(M; ,) # 0 that

1
4n+1)

Taking into account |z;.4| = |1;| + 1, we obtain

(5.29) 7} (02) = 2lt] = loul)”.

’754.5/. (w24) — ’75 (@24)
4o, o)

(5.30) = 2|ts] — |o + 1.

6. Explicit expression of the recursion formula.

In this section we shall write down the recursion formula of the Harish-Chandra C-
function in the cases of Spin(n,1) and SU(n,1). In these cases, because all noncompact
roots have same length, we see that for A € Dx and u € Dk (1), m(A+ f) =1 if and only
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if [t,45:0, =1. In the remainder of this paper, we simply write v instead of {v,a)/
{at, o).

1) Spin(2n +1,1)-case. Let 2 = (Ay,...,4,) € Dg and u = (u;,...,4,) € Dp(2) and
set A(p) = (fy,- s My |1t]) € Dx(p). We obtain from ((5.8) and [Theorem 4.6l that if
[T34e 10, = 1 then

(61) (vt dtn—jt1)Coou: ) = —(v+ 4 +n—j+ 1)Cs (047 7).

Applying the preceding recursion formula and shifting the parameters as u; —
i 1<j<n-—1) and |u,|— 4, we can find

(62) CTA(O-,M . V) — (_1)|T/1|—\t/:(#)\

ﬁ(—V+ﬂj+n—J+ 1)1,._,1, (—=v+ | + 1),
X
= (v+u+n—j+1) (v + [ + 1),

Here (a), = I'(a+n)/I(a).

By using the recursion formula (6.2), for getting the expression of C.(o:v), it
suffices to compute C;, (g, :v). We remark that the Gel'fand-Tsetlin basis v(M ;)
is a highest weight vector of (z;(,ly, Viw(u)) and if w, >0 then v(Mj,)) is a
highest weight vector of (7, Vi) We first suppose u,>0. Take T e
Hom (V) Viw(u)) to be a canonical projection. Noting Tv(M ) = v(M;) # 0

and TC,, ,(v) = Cy, (0, :v)T, we have

(63) C: T )(J,U V) - <TC7-'A ;,)( )U<M/l(,u))7v(M},(,u))>

= {Cpy, VoM ), 0(M ) >

bl ().

)'j*:uj ‘run|

= J]V ef(v+p)(H(ﬁ)) <T),(,u) (K<ﬁ)_l)v(Mi(u))a U<M/1(u))>dﬁ'

Setting ¢, (k) = {t (k)v(M (), v(M (), We obtain

N

(6.4) CTA(;:)(% 1v) :J e ¢) ( () l)dﬁ-

We shall next suppose u, < 0. Since w is represented as exp(nla, 2n+1), it follows from
(5.19) that wu= (py,..., i1, —t,). Thus A(u) = A(wu) and v(M,,,)) is a highest
weight vector of 7;(,). Take T € Homy (V) Vi(w(wn)) to be a canonical projection.
Noting Tq(ﬂ)(w)*l € Hom (V> Viw (1)), we have

(6.5) T(T;L(H)(w)_lC%l)(v)r;v(ﬂ)(w))v(MMW)) = Cp, (0, 1 V) To(M ),

and hence

(66> CTA(,;) (GH : V) = J e_(v+p)(H(ﬁ))<T/l(,u)(w_1’€(ﬁ)ilW)U(Mi(vw))? U<M/1(ww)>>dﬁ

=

= e_(””)(H(ﬁ))gzﬁA(ﬂ)(w‘lzc(ﬁ)flw)dﬁ.

=
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(2) Spin(2n+2,1)-case. Let A= (A1,...,4u+1) € Dx and u= (py,...,1,) € Dy(A).
We set A(x) = (144, 1, A1) € Dg(1).  We obtain from {(5.12) and that

if [t344 10, =1 then

3 3
(6.7) (—v+/1j+n—j+§)CU(oﬂ:v) = —(v—i—/lj—f—n—j—f—E)Cmﬁ(oﬂ:v).

Consequently, using the preceding recursion formula and shifting the parameters as ;
— A (1 <j<n), we can find

(6.8) C., (0, : v) = (1)l H

In this case, because v(M;(,)) is a highest weight vector of both 7,(,|,, and 7;,), we
obtain

(6.9) Cep (040 v) = J e*<"+P><H<ﬁ>>¢X(H) (rc(i) ") d.

N

3) SU(n,1)-case. Let A= (A,...,4y) € Dx and p= (uy,...,14,_1) € Dy(1). We

set () = (fy,- s ty_1, M) € Dg(1). We obtain from [5.16), and [Theorem 4.6
that if [t;4p : 0, =1 then

(6.10)  (—v2A o +n-2j+2)Cr (0 1 V) = (4 2o +n=2j42)Cry (00 v).

Consequently, using the preceding recursion formula and shifting the parameters as u; —
4 (I1<j<n-1) and u, | — 4,, we can find

(6.11) C, (Jﬂ ) = (_1)\11\—\11@)\

—v+n+|o,| , —v+n—|a,|
n—1 (f‘}'ﬂ]_]‘l‘ 1) (—2 £ — Uy
/Atj_,uj Hp—1 _A’l

% I,_Il v+n+|o,| , v+ n—|a,|
Jj= — +uw—j+1 5 M
A=l Hn 1=

x Cry (041 V).

In this case, because v(M;(,)) is a highest weight vector of both 7;.,|,, and 7;,), we
obtain

(6.12) Coploiv) = [ e g )

N

7. Fundamental representations of K.

In this section we shall give the explicit formulae of ¢, (k(7)""). We note that
since K is connected compact, 7; can be extended to a holomorphic representation on
K., which is a matrix group whose Lie algebra is f,.

(1) Spin(2n+ 1,1)-case. The fundamental representations are listed as follows:

(7.1) wp=¢e1+--+¢, (I<p<n-1), o, (e1 4+ &)

NI*—‘
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Let ¢, be the standard basis for C*"*' and set e =27"%(ey,_1 +V/—ley,) and ¢, =
2712(ey, 1 —V/—1ley,) for 1 <p<n. Let (&,C*™) be the usual representation of
SO(2n+1) and (&, /\"C*"!) the alternating tensor representation of (&,C*"*!).
Then &, (1 <r<n) is irreducible with the highest weight 4, =¢ +---+¢ and ef A
- A el is its highest weight vector. Let p: Spin(2n+1) — SO(2n+ 1) denote the
covering mapping. Define the irreducible unitary representation of K by @,(k) =
®,(p(k)). Then an easy computation yields that for 1 <p, g <n,

(7.2) <@(K(ﬁ(x>)’1>e;-’e;-> — Gy — (x2p—1 + \/—_lxip_)*_()cch_l — \/—_1X2q)

Setting z, = x2p—1 + V—1x2, (1 <p <n) and z="(z,...,2,), we can write as

n

_ - ZpZ
(13) <Ol e ep> =0~ and @ = | =z
p=1
2n—2
. HH .
On the other hand, because w can be represented as diag(l,...,1,—1,—1,1), we obtain
| . z'z
L (7))~ oty P=q
(7.4) (D(w Kk(A(x)) W)ep 1€y ) =0pg— Tt
where z/ = '(zy,...,2,-1,Z,). Therefore
(7.5) B4, ((1(x)) ™) = <D (c(A(x)) el A A e e A Al
_ r 2
— det (9, — 220 2l
N P 1+ o B l+w
1<p,g<r
22:1 |Zp‘2

G4, (v K(A(x)) T W) = ¢y (6((x)) ) = 1 = I+ o

We write T, (resp. _) for the sum of all positive root subspaces (resp. negative root
subspaces) relative to (f.,t.). Let K, and K_ denote the analytic subgroups of K.
corresponding to f, and f_, respectively. For A€ Dy, it follows from the definition of
¢/l that

(7.6) ¢, (kyexp Hky) = ¢, (expH) = ") (ke K., ky e K_, H e t,),

and thus we obtain ¢, (kiexp Hky) = ¢, (ki exp Hk»)*. Noting that K, expt.K_ is
dense in K. and ¢; is holomorphic, we see that ¢, (k) =¢, (k)* for any
k € K.. Consequently we have

1

(2.7 o () ) = 1, () ™) = 1

Taking the branch of the square root so that ¢, (k((0))"") = 1, we see that
1

_ “1y
(7.8) P, (K(A(x)) ) = —

:

Let = (p,....1t,) € Dy Then noting A(u) =03 (st~ 1,1 )9p + (f 1 — |t )on_1 +
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2|, |w,, we obtain

n—1

B (k) = H¢wp(k)up ﬂp+1¢wn (K )ﬂnfﬂﬂn|¢wn (k)2|#n|, for any k e K.,

p=1

and thus

(7.9) (o () ™")

n

B =1 e M1~ |t
l—i 1|]|2 P~ Hp+l l_z 1‘ ]|2 1 ( 1 )2|ﬂn|
i 1+co l+w Vi+o

SRR (B 91T MRS E

p=1 Jj=p+1

(2) Spin(2n +2,1)-case. The fundamental representations are listed as follows:

(7.10) wp=¢1+--+¢, (I1<p<n-1),
1
Wn 5(61 + e — enr),
1
Wpy] = 5(81 + o En).
Define C2"** and C?"** to be the subspaces of C*"** generated by {e],... el } and
{er,...,e,.}, respectively. Then @, is reducible and has two irreducible compo-

nents, which are /\" C*""*A C¥** and /\" C*""* A C¥"*2. We denote by @, and
@, the irreducible unitary representations whose representation spaces are restricted
to \"C*?2 A C¥2 and /\" C*""* A C*"*2, respectively. Then the highest weight of
QD:H (resp @Hl) is A =e+ - +eu (resp. A, =+ +& —&q41) and e A

A (resp. ef A--- Aef Ae,,)) is its highest weight vector. A simple calculation
yields that for 1 < p, ¢ <n

(1) (D) e ey = =L (D) e = — L

poontl 14+’ P l+ow’
— -1\ + N Z_n—HZ_q _ —1\ — N Zn_lz_q
(D) ey e = =7t (PU() ey € = =71,
) P
= -1 Zn — -1\ — — Zn_
(D(k(A(x)) ey iseniy) = 1o J:; (P(r(A(x)) )enr ) = =7 +;),

where z, = xy,-1 +V—1xp, and z,;1 = x2,41 + V—1. Accordingly, by a computation
analogous to obtaining [7.4], we get

72 52
T1) g () = g () ) = L

Taking the branch of the square root so that ¢, (k(7(0))") = B, (k@(0))™) =1, we
see that



The Harish-Chandra C-functions of Spin(n,1), SU(n,1) 973

(7.13) Bor, (1(A(x)) ") = % b,y (K(1()) 1) = #\/%“

Take A= (41,...,2n11)€Dx  and  u=(uy,...,1,) € Dy(A). Noting  A(u) =
Z;l;ll(:up - :up—H)wp + (:un - j‘f1+1)60n + (:un + /anrl)wl’H»l: we see that

n—1 n Hp=Hp 1
(714) ¢y (e(a(x)™) = 1+ o)™ [] (1 + Y l5P+ X%m)

p=1 J=p+1
X (14 x3,)" (1 +V=Txae1) (1 = V=Torgar) .
(3) SU(n,1)-case. The fundamental representations are listed as follows:
(7.15) wp=¢1+-+&—penr1, (1<p<n-—-1), wy=—¢yi.
Let (&,C") be the usual representation of K = S(U(n)x U(1)), that is, for k=
<X u) eK and ze C", ®(k)z =u"'Xz and (®,, /\" C") the alternating tensor repre-

sentation of @. We denote by (@, C) the representation of K defined by @y(k)z =
u'z. Then @, (1 <r<n-—1)and @, are irreducible with highest weights , and wy,
respectively and e; A -+ A e, and 1 are their highest weight vectors. An easy com-

putation yields that for 1 <p, g <n—1,

B 1 l14+w 2z,Z
(7.16) (D(re(n(z,u)) " )ep, eq) = 1+ o (51”‘1 1 jé’_}).
Therefore

r 2

) gy (1T+eY 2 p1 12l

7.17) b tetatza) ™) = () (1= 55 ),
etz ) ™) = (12)
OLTHE, 1 |1 + o

Let u= (g5 -5 44,—1) € Dy. Then A(u) = ;l;lz(ﬂp — typ1)®p — (n+ 1)pténi1. There-

fore by a calculation similar to that in (2) Spin(2n+2,1) case, we have

(7.18) s (e((z,u)) ™)

n—2 P /upfzuerl
=(1+ w)(|0ﬂ|+2ﬂn4)/2(1 + a—))*(lﬂﬂ|+2u1)/2 (1 +@—2 |Zj|2> '
p=1 j=1

8. [Expressions of the Harish-Chandra C-functions.

Substituting the explicit expression of ¢ ﬂ)(zc(ﬁ)*l) into the integral formula of
Cr,,, (0,1 v) and carrying out the integration, we can get the explicit expressions of
Cr,,y (0, 1 v).  Combining the recursion formulae of the Harish-Chandra C-functions, we
can get the expressions of the Harish-Chandra C-functions C;(o : v).
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(1) Spin(2n+1,1)-case. 1In this case, p=n, N =~ R* and

_n . n"(n — 1)' o
(81) JRzn(l + CO) dx = m (— Cy, SaY).
Thus we have under the identification R* ~ C" that
(8.2)
:upfluerl
nCry, (0 1 v) = J ,,(1 + ) H <1 i Z 2] ) (1 + |zaf?) 0 dzaiz,
¢ p= J=p+1
by changing the integration variables with z; = rje‘/*_wf and rj2 =s5;, we have
e} - o0 —
:n”J J (14514 +8,) —(vntm) H Syt e sy )T
0 0 =1

x (1 —|—sn)”"*17‘”"| dsy .. .ds,

"
= n”J (14514 -+ +5,) ") dsy

0
n—1
o0 oo n—2
X J J (14 spp1 + -4 50) 0 H1(1 —I—sn)”"*f'“"' dsy .. .ds,
0 0 p=1
n—1
- 1 Ky Ky —\vrnTiy—
v+n+u1—1L Jo( toko )
n—2
X H(I Sy A A S) T (L )Pl sy L ds,
p=1
n—1
-z o0 o0 (vint)
-~ 1 ... 1 gy et g ) V=
V+n+ﬂ1—1J0 JO( +2+ +n)
n—2
X H(l + Spy1 oA 8) T (14 sp) Tl ds, L ds,,
p=2

by continuing a similar calculation,

- 1
H +n+ﬂ, —j vl
Therefore taking into account (8.1), we have

Cen-)y 1

8.3 Cy, (o, v
(8.3) i (O (n—1)! :1v+n+,uj—] V+|ﬂn|

:1

~.
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(2) Spin(2n+2,1)-case. 1In this case, p=n+1/2, N =~ R* and
—2n—1 n"t
(8.4) JRM (1+w) dx = Yo (= ¢y, 5ay).

Thus we have under the identification R*""' =~ C” x R that

(8.5)  nCry, (oy:v)

n—1 n Hp=Hpt1
o PO H(1+ 2 rzjrz+x§n+l>
X

p=1 J=p+1
X (14 x5, )" (1 4+ V=1x2551)” P = V= Txg1) ™ dzdZdxan1,

by changing the variables with z; = rje*/‘_wf and rj2 =5,

n

o0 o0 o0
:TCHJ J J (1_|_Sl_|_...+sn+x§n+l)*(v+n+l/2+ﬂl)

0 J—w
X H(l + Sp+1 +o A syt x§n+1)/‘p—ﬂp+1 (1 + x%n-i-l)lun
p=1
X (1 + V —1X2n+1)7i”“ (1 -V —1X2n+])2'1+1d51 oo dspdxon gy,

by carrying out a calculation similar to that in (8.2),

L 1

— _I_ A/ x +/W1+l+1/2)
[ HV—FI’I—F,UJ ]+1/2J ( 2n+1>

X (1= V=Txgyy) 2 g, .
Here in order to compute the last expression in (8.5), we need the following lemma.

LemMa 8.1 (cf. [3,9]). Letn>1,AeC,leZ, qgeZsy (1<j<n-—1)and F =
1+ (1/2)(z1)* + - + |zaa1|?) + V=1u. Then

_(J40)/2 (1 Tz "
J FUHO2 pli-0)/2 H F_ Z Z|* | dzdzdu
Cn—IXR PZI JZI
- (2n>n2)v+n+111+"'+qn—1[‘(_),— n—qy—-- '_qnfl)

ol pay , Y i\
A, v e S A —Y Y

J=1

Taking into account (8.4), we obtain from with n =1 that
n!2—2v+2n+lr(2v>

(8.6) Cryn (Ou:v) =

n

1 1 1\’
H(V‘l—n‘l—ﬂ]‘{‘i—])F(V‘{'in_H+§)F<V—in+1+§>
=1
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(3) SU(n,1)-case. In this case, p=n and N~ C"' x R and

—2n _ o
(8.7) JC 1ol sz = 5

= ¢y, sQY).
Thus we have

(8.8) enCe, )(O'ﬂ Ly) = J (1+ w)—(V+ﬂ—|0ﬂ|—2ﬂnf])/2<1 + a—))—(V+n+\0u|+2ﬂ|)/2
. C"'xR

n—2 p ﬂp_ﬂp+1
X H(1 +@—2Z|zj|2) dzdzdu.
p=I J=1

Taking into account (8.7), we obtain from [Lemma 8.1 that
(8.9) Ciyylou:y)
B (n— 1127V (v)

o=l ydbndlo,| v+n—|o,| v—n+|a,| '
11(%‘]4‘#/ r %_ﬂn—l r %4‘1"‘%—1
=

Combining the above expressions and the recursion formulae of the Harish-Chandra C-

function, we can get the explicit expressions of the Harish-Chandra C-functions for
Spin(n,1) and SU(n,1).

Tueorem 8.2. The Harish-Chandra C-functions C,(o,:v) for Spin(n,1) and

SU(n, 1) associated with t; € K and o, € M(t;) are given as follows:
(1) Spin(2n+ 1, 1)-case.

n

[ —n+j—p) (I T0+n—j+p)

2n—1)! = j=1

C(0,:v) = =)

z= .

F(V—l’l-l—j—ﬂj) F(v-l—n—j-l—l-i-/lj)
=1

1 J

J

(2) Spin(2n +2,1)-case.

n2 QN [T —n+j—3—w) [ITv+n—j+3+ )
j=I

=1

Cf* (0-'” : V) - n+1 n+1
[Iv—n+j—5=A) I Tv+n—j+3+4)
j=1 j=1

(3) SU(n, 1)-case.
Cr, (0, :v)

Cn =1 /y_n—lo ) =1 fy+n+lo )
oo () ()
Jj= Jj=

= n — — n
Ir vV—n ‘G”‘+j—/1,~ r v+n+’a”’—j—|—l+ij
Jj=1 2 -/ j=1 2
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We write det C;,(v) for the determinant of the linear endomorphism C;,(v) of V.
Taking into account V; =3 p ) Hy, we see that

(8.10) detC,(v)= [] CT; o v) i
ue Dy (4
Thus, substituting the expression in into (8.10), we obtain the explicit

formula of detC;,(v). On the other hand, in [1], Cohn obtained the expression of
det C;(v) for any semisimple Lie group. He showed that there exist p;;, ¢ ;€
C (l<i<rl<j<yj,) and y,...,u, €a* such that

( vy o) tq )

¥ EYZ2VEVEN i,j

(8.11) det C,(v HH 2<<””°"> .
D) ‘

He conjectured in his paper that the constants p; ; and ¢; ; appearing in the above
expression are rational numbers and depending linearly on the highest weight of 7. We
can now concretely write the values of p; ; and ¢; ; and thus we obtain the following
corollary.

CoRrROLLARY 8.3. Cohn’s conjecture is true for Spin(n,1) and SU(n,1).

Applying Theorem 6(i) and Theorem 7(ii) in [7], we can concretely construct the
discrete series representations of SU(n, 1) as subquotients of the nonunitary principal
series representations. Because these computations can be carried out without any
difficulty, we shall only write the conclusions. For g€ Dy, 2 € Dx(u) and v e a*, we
set

i (i1 (Ch 1),

8.12 DA V) =
( ) i) j=1 (kj + l)ij*ﬂ/ Uin-1 + 1),%717),,1

Y

where /iy = (v—n—|o,)/2+j— 4 and k= (v+n+|o])/2—j+uw. Let #%'(K)
denote the set of K-finite elements in C, (K). For f =3 f,,9=> g, #""(K),
we set (f, 90 = >_<ai(u, )1, 9:)-

COROLLARY 8.4. Retain the above notation. For pu= (uy,...,1,_1) € Dy, we set
,u[’, =, +n/2—p. Then the discrete series representations of SU(n,1) are listed as
follows:
(1)  The holomorphic discrete series. We choose we Dy and v e a* so that h,_; <
—1. Let

I = (Hyy oo s My s gy F o1 + 1),

y—|o v+ |o
A= Z,upep | Iu|8n_ 2| ’u|8n+17

Sa={4€Dk(p) s ftyy = 2n = pty_y + hyy + 1}
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Let V4 be the Hilbert space completion of V,(K)=)_, s Vi relative to -,
and 1t4(g9) = 15,0(9)|y,- Then (w4, V) is a holomorphic discrete series with the
Harish-Chandra parameter A and the minimal K-type .

(2)  The antiholomorphic discrete series. We choose yu€ Dy and v € a* so that k) <
—1. Let

j‘m = (Iul _kl - 17:“17"'3:“1171)’

v+ |a,| Ut v — g,

Sy :{},EDK(,M) 5 <A < -k — 1}.
Let V4 be the Hilbert space completion of V,(K)=)_, s Vi relative to -,
and 7t4(9) = 15,0 (9)|y,- Then (mq,V4) is an antiholomorphic discrete series
with the Harish-Chandra parameter A and the minimal K-type A.
(3) The nonholomorphic discrete series. We choose € Dy and v € a* so that h, <
—1, hyy1 >0, kyyo < —1 and ko1 >0 for some 0 <a<n-—2. Let

im = (1“17 sy Mgy My +ha + 171“(14,-2 - ka+2 - lu:ua-|-2,' .- nun—l)a
v+ [0, —

a
A= / V= |0-/l| / /
p=1 p=a+2

Sp={2€Dx(1) : ftg 2 dar1 2 Hg+ha + 1, g < Aaid < fgyn — Kavo — 1}

If a<n—2, let V, be the Hilbert space completion of V(K)=73_,.5 Vi
relative to I'(—hg1 +1)<:,->;. If a=n—2, let V4 be the Hilbert space
completion of V,(K) relative to I'(—hy,—1 + 1)I(=ky,—1 + 1)<:,->;. We put
74(9) = 76,0 (9)ly,. Then (my, Va) is a nonholomorphic discrete series with the
Harish-Chandra parameter A and the minimal K-type .

9. Restriction of discrete series.

In this section we shall concretely construct the invariant subspaces of the rep-
resentation spaces of holomorphic and antiholomorphic discrete series of SU(n, 1) when
restricted to U(n—1,1). X v

Let us embed Gy =U(r-1,1) into G=SU(n,1) by g¢g= < . ) —

X 0 v weou
0 a 0], where a= (detg)_1 e U(1). Let

w* 0 u
X 0 0
(9.1) K, = 0 a 0):XeUmn—-1),aqueU(l),audetX =1 5,
0 0 u

n—1

—
Z ={z(h) = diag(h,...,h,h"" h) : he U(1)},
Ay = expRH,
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where H) = E,_1 p+1 + Esy1.0-1. Then G = K14,K; is a Cartan decomposition of Gj.
For /e€Z and pe Dy, define the unitary representation (y( ,,H,) of Zx M by
L, (2(h),m)o = W a,(m)v, (me M,ve H,). Since Ky = MZ, X € K; if and only if
{+n+ Dy, € (n+1)Z. For ae Dg, it follows that

(92) Gl = D Aot p Va= D ValB).

p<a p<a

So when we look upon V,(f) as a representation space of Kj, we write this repre-

sentation space as V(_(,i1)(u—p)).p- We shall first rewrite the results in
45 in terms of the Clebsch-Gordan coefficients. Fix an orthonormal basis

{E,-:E,,+17,-/\/2(n—|—1),F,-:E,-,n+1/\/2(n—i—1):1gign} _of Pe- Then E; and F;

correspond to the Gel'fand-Tsetlin basis with data (1,,...,1;0;_1,...,0;) and

. /—/l\-ﬂ _
(Lyy ..., 1;,0;-1,...,0;) respectively. Here 0;=(0,...,0),1,=(1,0;,_;) and 1,=(0,_1, —1).
Let (-,-]-) denote the Clebsch-Gordan coefficients relative to the decomposition V; ®
V=73 mep, Vir, that is, for v(M) eV, oM eV, and v(M") e V,»

(v(M),v(M") [ o(M")) = <E;»((M) @ o(M")),v(M"))y,,.

Here E;» denotes the canonical projection of V, ® V,» to V,». We use the following
fact concerning the Clebsch-Gordan coefficients of U(n) (cf. [11, p. 385]).

LEMMA 9.1. For arbitrary Gel'fand-Tsetlin data M = (m,,...,m;), M'=

/ "

m,  m | m

/ / n i i . .

(my,,...,my), M" = (m),....m{), there exist (mjjl m{fl m’./1>ER(2£]£n)
-b M [

such that the Clebsch-Gordan coefficient (v(M),v(M')|(v(M")) can be expressed as

follows:
/ " . ni; m] m'
o) o) =TT (i | )

J=2

m m; | mj . .
Moreover, (mj_l m],__l mj,/_ 1 has the following properties.
(W) If |mj| + [mj| # |m]| or |mj| + |mj_| # |m/_,|, then
S ) = 0.

(ml?j{zz) =

mJ ) are called scalar factors of the Clebsch-Gordan

mj ) _ (_if mj
(mf) < ;- Lo (mj),,

; !
REMARK. ( "o T
. m; m
coefficients.

For each o € Dx(u) and B e Dy (), let T/ be the canonical projection of V, into
V,(B) and write P/ = \/dim V,/dim V,(B)T/. Throughout this section we shall identify
A" (t,) with V), and simply write v instead of fo . In the following discussion, for

1; m;
2) < 1111 (m;) ; -1
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we shall use the notation x*/ to denote

A simple calculation implies that

dim V, wl ou |

x=(x1,...,x,) ER" and 1< j<n,
(X1, X, X+ L X, o, X)),
58 o 1
(93) PO(EfXJrf: \/7
1
PfE;,—

221 1)

For ae Dg(u) and fe Dy(a), we

dimVa,( 1, « a_j>1)ﬁ,
o)

dim V,
set fo,ﬂ: (a7ﬂ7ﬁ227"'7ﬂ2n—1) and M“»ﬁ:

(o, B, B<p_2s---sB<i). Then for 1 <i<n—1, we have from [Cemma 9.1 that
ol ot L, B, | B -k
94)  F®uM " B e L A
(94) ;;( 1, ﬁ+k> <0i1 Beoici | B<ica (M)
- L, oo’ 1 Boni ;ri?iiil ik
E ®v(M Z Z o, B B o(M ),
=1 k=n—i i— >n—i+1 >n—i+1
where
ik —i p— — —k+n—i—
Mo]c7/3 - (OC P k7 z§+17"'7 zlrc:i 17ﬁ2n—i+17"'7ﬁ2n—1)7
Mi’]ﬂ{ ( +]>ﬁ+k7ﬂ<n 2>'~~>ﬂ<17ﬁ<z 17"'7ﬁ£1)‘

ReMARK. For the explicit forms of the scalar factors appeared in and (9.4),

see [11, p. 385].

Substituting and (9.4) into the expressions in [Proposition 4.5, we obtain

(95) naﬂ,v<El n+1 Z Z
j=1 k=

1;

8 0,

7270,1.,V<En—&-1 i Z Z

j=1 k=n—i

X
0,

where hj(a) = (v—n—|o,|)/2+j —

aj and kj(a) =

dim Vm ) 1, oot 1, oot
dimV, V 0,1 ul|l u L p|p™*
ﬁ<i ﬂilzc rJk
= = v(M? ),
Beiit | B<in ( “’ﬂ)
dim V_, ) 1, ola” 1, oo
(o - _
dim ¥/, O p| p )\ 1y BB
Poni | B
=ZNn—1 > (MO/; )
ﬁaniJrl ﬂ2n7i+l e

(v+n+|o,|)/2—j+o +1. For 1<

i<j<n-—1, it follows from [5.21) and [5.22) that

9.6)

T v(Ej,1)0 (Mo, p) = g v (Ei ) Jo(M ) = 0.

Let w; be the Casimir operator of Gp, that is
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(9.7) W) Z o 1 > (EjiEj+Ei jE;)
1<1<n+1 1<i<j<n-—1
i#n
n—1
+2) (FE + EF).
j=1

We shall first consider the case of holomorphic discrete series. Fix g€ Dy, and ve
a* so that the condition in |Corollary 8.4(1) is fulfilled. For simplicity we set p, =
(v+n—|o,])/2. Then it follows from |Corollary 8.4(1) that

(9.8) Z Vi= > Y B= > > Vup),

< (00, Am) o< (00, ) f<a (=, €Z>0 f<a<(00,Am)

pesS |od| = |B[=¢

where S ={feDy:f =1y =p;>1.,,(2<j<n-—1)}. For our convenience,
we introduce the following notation:

Sm:{ﬂ€S2ﬂ<;{m}, Sc:{fe Z:/—,uneZZo},

n+1
Sy ={teSc:t—weZ=}, S.=S\S,.

o/ 1, ofa”
dim V(x On—l “l H in—l ﬁ ﬁik ’

7 —k+n—i—1
_ li ﬂZn—i zn—;l l
01'71 ﬁZrt—H-l ﬂZn—H-l

Z(p)=_keZ.y: l<k<n-1,p* €Snt,
N/(B) ={oe Dk : p <o <(00,im),le| —|B] =7}, m(Z,B) = Card N,(p),

ViB) = D ValB).

xeN/(f)

For o€ Dk and ff € Dy (o), let

dim V., 1,
C(Ot,j,k) = ke i\ ( !

For e S, let

For fe S, let

ﬁf = (max(ﬂb:uZ)v cee 7max(ﬁn717,un71)nun)a

ﬂ/ - (min(ﬂlnul)7 cee 7min(ﬁn71nunfl))'

Taking into account f,, 8, € Sy, By < (B;,—0) and f, < (B,—), we see that N/(p)
can be written as

(9.9) N/ () ={o€ Dk : 052 € S, fy < (022, —0), 022 < (B, —0),

=] < 1B + £ — max (B, 1)}
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Taking into account (f,), =B, and (B,); = (4m)s,, we can easily see that m(/,f) <
m(Z,f,). For this reason, we write (9.8) as the following form:

(9.10) => ZV B ZV

(eSS aeN/(f (eSS} aeN/(f

ﬁESm ﬁésm

w3 Y mp+Y S
/€S, aeN,() /€S aeN,(p)
feSn BéESm

We shall here get expressions of eigenvectors of w;. Assume that an eigenvector v
is represented as v= 3,y p C20(Msyp), (cx€C). Then it follows from that
na(Eji)v=0 for 1<i<j<n-—1. Thus for v being an eigenvector, it suffices to
determine ¢, such that 7(E,1;)v=0, (1 <i<n-—1). It follows from (9.5) that

(911) nA<En+1,i)U: Z { i Z o, k (M;l/;)}

€Ny (f) j=1 k=

Noting hj(a) <0 (1 < j<n), hy(x) <0 and h,(x) =0 if and only if o, = u,, we see
that ¢(a,/, k) # 0 if and only if f* €S, and a7/ e N,(f). Letting Z(,i) = Z(f)N
{n—i,...,n—1} and rewriting o/ as «, we have from that

(912) Uy n+1 l Z Z Z Cocﬂc 7]7 )d(k)”(ngg)

keZ(B.i) aeN,(p7%) eeN (B

Therefore 74(E,;1.;)v =0 implies that we have for k € Z(f,i) and o€ N/(f*) that

9.13 cpic(a™, j k) =0.
J

at/eN/(p)

From this, we see that it suffices to determine ¢, such that n,(E,+1,-1)v=0. To
determine c¢,, we use arguments similar to those in [14, Theorem 3.1].

LemMA 9.2, Let /€ S. and f € S,,.

(1) If /eS;, then there exists v=73_, n pc0(Msyp) €V, (B) such that
TA(Eps1,n—1)v =0. Moreover, such a v is unique up to a scalar factor.

(2) If €S, and |B| = [Am| — ¢, then there exists v="73_, yn,p c20(Map) € Vi(f)
such that n (Ey+1,-1)v =0. Moreover, such a v is unique up to a scalar factor.

PrOOF. (1) We obtain from that
(9.14) Ny(p) ={ae Dk :asr €Sy, f<a}.

Then setting N/(f,p) = {xe N/(f) : 2y =p}, we have

N/(B) = U Ny (B, p).

1Bl = <p</

We first remark the following fact. For Ae N/(f,p), we put

Z(p)={keZg:keZ(P), " e N(F)}.
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Then setting o = 4~', we have from [9.13) that

(9.15) e k) + Y cpune(@ j+1,k) =0, (ke Z(A,p).

JEZ(2,p)
By the orthogonality relations of the Clebsch-Gordan coefficients, it is easy to check that
c(a¥*1, j41,k) are linearly independent and thus we can get c w1 (je Z(4,f)) from
the above simultaneous equations.

We can find the constants ¢, (xe€ N,(f)) by induction on o;. Let oy =
(g +£+1Bl=Aml, 12, - - -, 1t,).  We first choose ¢, as an arbitrary nonzero real number.
Suppose that ¢, are determined for all « € N/(f, p). For ae N,(f,p— 1), we pick k €
Z. so that aZX €S,. Then setting 1= (™) e N,(B,p), we can get ¢, from the
simultaneous equations [9.15]. By the orthogonality relations of the Clebsch-Gordan
coefficients, it is easy to check that ¢, is independent of the choice of k.

(2) Because f €S, and /€ S., we have from (9.7) that

c

(9.16) Ny(p)={a€eDg 02 Sy, f<olosa| <|pl+¢— 1}
Thus N/(f) = & if || < |Am| — 7. By a similar way to (1), we can also determine the
constants ¢, satisfying p; + ¢ + || — |An| < o1 < . O

For /€ S. and S € S,,, we choose v as in | We denote by 77(/, §)(K)
the 7n,(K))-invariant subspace of V,(K) contalmng {nA( w1)'v:jeZso}. Then
wa(En—1)v =0 implies 77(/,)(K) =2 p_(p—o) Vi—ws1)rp)- Taking into account
m(/,B) <m(/,pB,) for B ¢S,, we obtain from that

(9.17) ValK)= ) 7 (GAK) + D 7 (4B)K).
s, i,
|BI = |2m| =¢

We shall next consider the case of antiholomorphic discrete series. Fix pe€ Dy,
and v € a* so that the condition indicated in [Corollary 8.4(2) is fulfilled. For simplicity
we set uy=—(v+n+|o,l)/2. In this case, if aeS,, then k;j(a) <0 (1 <j<n),
hi(e) >0 (1 <j<mn)and ki(x) <0. Moreover, k() =0 if and only if oy = p;. We
have from |Corollary 8.4(2) that

(9.18) K= Y =Y Yrne=Y Y 1p.

0(<(;Ll117_oo) O(<(/Lm _% ﬁ<0{ /ES} [)’<a<(/lm,—oo)

pes  lal=Ipl=/

where

—{peDy i 2Bz, (1<j<n=2) 1024},

~ 1
S. = {/ €
n
For our convenience, we introduce the following notation:

Sp={peS:f<in}
St={teS.:t—ueZs}, S, =S\S

1Z20 :,uo—/eZZO}.
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For f e S, let

ZP)=1{keZy:1<k<n—1,p"%eS,},
N/(f) = {2 €Dk : f < o< (dm,—00), o = |B| = ¢}, m(/,B) = Card Ny(f),

W/B) = Y VaulB).

xeN/(p)
For fe S, let
ﬁf = (max(ﬁlhul)a s >maX<ﬁn—lnun—l))v

ﬂ/ = (:u07 min(ﬁlnul)’ s 7min<ﬂn72nun72))'

By the same reason as in the case of holomorphic discrete series, we have
(919) N/(ﬁ) = {O( € Dg : O<pn-2 € S'ma ﬂf < (OCSH—% _OO)7OC£n—2 < (ﬁ/a _OO>7

’aSn—Z‘ =< |ﬁ‘ +7 _min(ﬁnflnunfl)}'
and thus m(Z,f) <m(/,p,). For this reason, we write as follows:

(9.20) VaK) =" Wi(B)+ > WiB)+ > WiB)+ D> WilB).
leSH leSH (eSS leS;
BeSn B¢ S BeS, BESn

Assume that an eigenvector v is represented as v =3, (g ¢20(Myp), (cz € C). Then
by arguments similar to those in the case of holomorphic discrete series, for v being an
eigenvector, it suffices to determine ¢, such that 7 (E,_1 ,+1)v =0.

LEMMA 9.3. Let /€ Sc and f € §m.

(1) If /€S, then there exists v= D weN, () c0(My 5) € Wy(B) such that
TA(Ep—1 ns1)v =0.  Moreover, such a v is unique up to a scalar factor.

2) If teS; and |B| = |Am| — ¢, then there exists v = D weN,(p) cv(M, ) € Wy(p)
such that n (E,—1 n+1)v =0. Moreover, such a v is unique up to a scalar factor.

For / € S, and f € S,,,, we choose v as in [Lemma 9.3.  We denote by #(/, )(K) the
n4(Kj)-invariant subspace of V,(K) containing {n4(E,_1)’v:j€Z>o}. Then n (F, 1)v
= 0 implies #(Z, B)(K) = >4~ ) Vi—(ns1)r,p)- Therefore we obtain from (9.19) that

(9:21) Va(K) =D W (HE) + D W (BK).
s, s,
1Bl = |7m| ¢

We summarize these into the following theorem.

THEOREM 9.4. Let v °(/,f) and W (/,p) denote the completions of V" (/,[)(K) and
W (¢, P)(K) relative to <-,-»;, respectively.

(1) The holomorphic discrete series (w4, V) is decomposed with no multiplicity as
follows:
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Va= Y 1B+ D, TB).

(eSS (€S,
ﬂESm ﬂESm
|ﬁ|2|;{m|_[

The Blattner parameter of V" (£,f) is (—(n+ 1), p).

(2) The antiholomorphic discrete series (my, V) is decomposed with no multiplicity

as follows:

Va= DY _WR+ Y. WP).

teS; leS;
ﬁegm ﬂegm
|ﬂ|2|im|7[

The Blattner parameter of W' (/,f) is (—(n+ 1)Z,[).
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