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Abstract. We define a semidynamical system—inspired by some classical dynamical

systems studied by Bebutov in function spaces—in the space of approximative maps

AðX ;Y Þ between two metric compacta, with a suitable metric. Shape and strong shape

morphisms are characterized as invariant subsets of this system. We study their structure

and asymptotic properties and use the obtained results to give dynamical characterizations

of basic notions in shape theory, like trivial shape, shape domination by polyhedra and

internal FANRs.

Introduction.

The theory of shape, introduced by K. Borsuk in 1968 [7], has proved to be a

successful instrument for the study of the global topological properties of dynamical

systems. Shape theory is especially useful when applied to spaces of locally complicated

structure, like the attractors of dynamical systems, for which the tools of homotopy

theory are not appropriate. The papers [6], [15], [17], [18], [19], [28], [29], [31], [32], [35]

are good illustrations of the application of shape theory in dynamics. In this paper we

establish a new connection between shape and dynamics by adopting a di¤erent point of

view. The theory of dynamical systems is used here to give a new interpretation of

shape. We define a structure of semidynamical system in the space AðX ;Y Þ of ap-

proximative maps between two metric compacta X and Y. The metric structure of

AðX ;Y Þ is inspired by topologies introduced in previous papers [16], [23], [24], [30].

The dynamical structure is inspired by some classical dynamical systems studied by

Bebutov in function spaces [1], [2] (see [34, IV.20]). According to this interpretation,

shape morphisms and strong shape morphisms are invariant subspaces of the Bebutov

space AðX ;Y Þ. This means that shape and strong shape morphisms can be viewed as

semidynamical systems themselves. The paper is devoted to the study of the structure

of the Bebutov system AðX ;YÞ and in particular to the recognition of Lagrange and

Poisson stable orbits and non-wandering points, the determination of the limit sets and

the properties of attractors and Lyapunov stable motions. These results are used to

give dynamical characterizations of some basic notions in shape theory. For instance:

1) A shape morphism is generated by a map if and only if it is non-dispersive

(when viewed as a semidynamical system).
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2) For a metric compactum X the following are equivalent:

i) X has trivial shape

ii) The set of Lagrange stable motions of the Bebutov system AðX ;XÞ is contained

in a connected component of AðX ;X Þ.

iii) There exists a connected attractor in AðX ;XÞ containing a periodic orbit, and

every attractor containing a periodic orbit contains all periodic orbits.

3) A metric compactum X is shape dominated by a polyhedron if and only if its

Bebutov system is prolongable.

The reader is referred to the books by Borsuk [8], Cordier and Porter [10], Dydak and

Segal [12], and Mardešić and Segal [25] for information on shape theory. See also

Dydak and Segal [13], Edward and Hastings [14], Kodama and Ono [21], Porter [26]

and Quigley [27] for information on strong shape. For the general theory of dynamical

systems we recommend the books [4], [5], [33], [34] of Bhatia and Hajek, Bhatia and

Szego, Saperstone and Sibirsky respectively. For information on attractors in arbitrary

(not necessarily locally compact) Hausdor¤ spaces, we refer to [3]. Some of the

results in this paper were obtained while the authors were visiting the Universities of

Washington (USA) and Manchester (UK) respectively. The authors are grateful to

the Departments of Mathematics of these Universities and in particular to J. Segal and

N. Ray for their hospitality. They also thank the referee for useful remarks.

1. A short account of shape theory.

In the first section of this paper we review the characterization of shape theory using

approximative maps.

Let X and Y be compact metric spaces such that Y is contained in the Hilbert

cube Q. An approximative map from X to Y is a continuous function F : X � Rþ ! Q

such that for every neighborhood V of Y in Q there exists t0 A Rþ such that

F ðX � ½t0;yÞÞHV . Two approximative maps F ;G : X � Rþ ! Q from X to Y are

homotopic if there exists an approximative map H : X � ½0; 1� � Rþ ! Q from X � ½0; 1�

to Y such that Hðx; 0; tÞ ¼ Fðx; tÞ and Hðx; 1; tÞ ¼ Gðx; tÞ for every ðx; tÞ A X�Rþ. On

the other hand, F and G are weakly homotopic if for every neighborhood V of Y in Q

there exists t0 A Rþ such that F jX�½t0;yÞ and GjX�½t0;yÞ are homotopic in V. We denote

by ½F � the homotopy class of F and by ½F �w the weak homotopy class of F. Observe

that ½F �w I ½F �. We say that F and G are asymptotic if for every e > 0 there exists

t0 A Rþ such that dðFðx; tÞ;Gðx; tÞÞ < e for every ðx; tÞ A X � ½t0;yÞ. If F and G are

asymptotic then they are homotopic.

Given F : X � Rþ ! Q and G : Y � Rþ ! Q approximative maps from X to Y and

from Y to Z respectively, there exists a fundamental map (see [20]) G 0
: Q� Rþ ! Q

from Y to Z being an extension of G. Consider H : X � Rþ ! Q given by Hðx; tÞ ¼

G 0ðF ðx; tÞ; tÞ. Then H is an approximative map from X to Z whose homotopy class

only depends on the homotopy classes of F and G, and whose weak homotopy class only

depends on the weak homotopy classes of F and G, being independent of the extension

G 0. Then the composition of classes is defined as ½G�½F � ¼ ½H� and ½G�w½F �w ¼ ½H �w.

Theorem 1 (Borsuk). If we consider the class of the compact metric spaces and the

weak homotopy classes of approximative maps between them with the composition of

A. Giraldo and J. M. R. Sanjurjo938



weak homotopy classes previously defined we obtain a category isomorphic to the shape

category.

Theorem 2 (Kodama and Ono). If we consider the class of the compact metric

spaces and the homotopy classes of approximative maps between them with the com-

position of homotopy classes previously defined we obtain a category isomorphic to the

strong shape category.

2. A topology in the space of approximative maps.

Definition 1. Let X and Y be compact metric spaces such that Y is contained as a

Z-set (see [9]) in the Hilbert cube Q (this is not a restriction since every compactum can

be embedded as a Z-set in Q), and denote by AðX ;YÞ the set of approximative maps

from X to Y. Given F ;G A AðX ;YÞ, we define the distance from F to G as

~ddðF ;GÞ ¼ max
X

k AN

dðF jX�½0;k�;GjX�½0;k�Þ

2k
; sup
X�Rþ

jdðF ðx; sÞ;YÞ ÿ dðGðx; sÞ;YÞj

( )

Then, if ~ddðF ;GÞ < e, we have that dðF jX�½0;k�;GjX�½0;k�Þ < 2ke, for every k A N .

Remark 1. It is easy to see that ~dd is a metric in AðX ;Y Þ.

Consider the space AðX ;Y Þ with the topology generated by the distance ~dd. It can

be seen—in a similar way as in [24]—that, with the restriction of Y being a Z-set, it is

a topological invariant of the pair ðX ;YÞ. Moreover, if a is a homeomorphism from X

to X 0 and b is a homeomorphism from Y to Y 0, then the function g : AðX ;Y Þ !

AðX 0;Y 0Þ given by gðFÞðx 0; tÞ ¼ ~bbFðaÿ1ðx 0Þ; tÞ, is a homeomorphism from AðX ;YÞ to

AðX 0;Y 0Þ (see [24]), where ~bb is an homeomorphism of Q which is an extension of b

(such a extension always exists since Y and Y 0 are Z-sets in Q (see [9])).

The following theorem, which can be proved using techniques and ideas of [16] and

[24], states the main properties of the space AðX ;YÞ.

Theorem 3. AðX ;YÞ satisfies the following:

i) Two approximative maps from X to Y are homotopic if and only if they are in

the same path-connected component of AðX ;Y Þ. As a consequence, the mor-

phisms from X to Y in the strong shape category can be identified with the path-

connected components of AðX ;YÞ.

ii) Two approximative maps from X to Y are weakly homotopic if and only if they

are in the same connected component of AðX ;Y Þ. Therefore, the morphisms

from X to Y in the shape category can be identified with the connected

components of AðX ;YÞ.

iii) Given F A AðX ;YÞ, if we consider the sets

aðF Þ ¼ fG A AðX ;YÞ jG asymptotic to Fg

cðF Þ ¼ fG A AðX ;YÞ jF jX�½t0;yÞ ¼ GjX�½t0;yÞ for some t0 A Rþg;

then cðF ÞHaðF ÞH½F �H½F �w and cðFÞ ¼ aðF Þ ¼ ½F � ¼ ½F �w. In particular, every

morphism in the shape category is the closure of a morphism in the strong shape

category.
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iv) Given F A AðX ;YÞ, given e > 0, if we define

½F �e ¼ fG A AðX ;Y Þ jF jX�½kG ;yÞ FGjX�½kG ;yÞ in BeðYÞ; kG A Rþg

we have that ½F �e is open and closed in AðX ;YÞ and that ½F �w ¼ 7
e>0

½F �e.

Therefore, the morphisms from X to Y in the shape category can also be

identified with the connected quasicomponents of AðX ;YÞ.

3. The semidynamical system ðAðX ;YÞ;Rþ; pÞ

Let M be a metric space. A semidynamical system on M is a triad ðM;Rþ; pÞ

where p : M � Rþ ! M is a continuous function such that

i) pðx; 0Þ ¼ x for every x A M,

ii) pðpðx; tÞ; sÞ ¼ pðx; tþ sÞ for every x A M and every t; s A Rþ.

Given x A M we denote by px : Rþ ! M the positive motion through x defined as

pxðtÞ ¼ pðx; tÞ.

Given x A M, we denote by gþðxÞ ¼ fpðx; tÞ j t A Rþg the positive semi-trajectory of

x and by gÿðxÞ ¼ fy A M j x A gþðyÞg the funnel in x.

The following theorem introduces a semidynamical system in the space AðX ;YÞ.

Theorem 4. Consider

p : AðX ;Y Þ � Rþ ! AðX ;Y Þ

ðF ; tÞ 7! pðF ; tÞ : X � Rþ ! Q

ðx; sÞ 7! pðF ; tÞðx; sÞ ¼ Fðx; tþ sÞ:

Then ðAðX ;Y Þ;Rþ; pÞ is a semidynamical system.

Moreover, if X is homeomorphic to X 0 and Y is homeomorphic to Y 0, then the

semidynamical systems ðAðX ;Y Þ;Rþ; pÞ and ðAðX 0;Y 0Þ;Rþ; p
0Þ are isomorphic.

Proof. We see first that p is continuous. Take ðF0; t0Þ A AðX ;YÞ � Rþ and e > 0.

Consider k0 > t0 such that

Xy

k¼k0þ1

Dþ e

2k
<

e

2
; with D ¼ diamðYÞ;

and such that dðF0ðx; tÞ;YÞ < e=4 for every x A X and every t > k0. Since F0 is

continuous in X � ½0; 2k0�, there exists d > 0 with t0 þ d < k0 such that

dðF0ðx; t0 þ sÞ;F0ðx; tþ sÞÞ <
e

4

for every x A X , every t A Rþ with jtÿ t0j < d and every s A ½0; k0�, and hence

jdðF0ðx; t0 þ sÞ;Y Þ ÿ dðF0ðx; tþ sÞ;YÞj <
e

4
:

And if s > k0, then t0 þ s; tþ s > k0 and

jdðF0ðx; t0 þ sÞ;YÞ ÿ dðF0ðx; tþ sÞ;YÞj < 2 �
e

4
¼

e

2
;

for every x A X .
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On the other hand if ~ddðF ;F0Þ < ðe=22k0þ2Þ, then for every x A X , every tU k0 and

every sU k0 we have

dðF0ðx; tþ sÞ;Fðx; tþ sÞÞ <
e

4

and for every t; s A Rþ

jdðF0ðx; tþ sÞ;Y Þ ÿ dðFðx; tþ sÞ;YÞj <
e

4
:

Therefore if ~ddðF ;F0Þ < ðe=22k0þ2Þ and jtÿ t0j < d then

Xy

k¼1

supðx;sÞ AX�½0;k� dðF0ðx; t0 þ sÞ;Fðx; tþ sÞÞ

2k
<

Xk0

k¼1

e=2

2k
þ

Xy

k¼k0þ1

Dþ e

2k
< e

and

sup
X�Rþ

jdðF0ðx; t0 þ sÞ;Y Þ ÿ dðFðx; tþ sÞ;YÞjU
e

2
þ

e

4
< e:

Hence ~ddðpðF0; t0Þ; pðF ; tÞÞ < e. Therefore p is continuous.

On the other hand, if F A AðX ;YÞ then pðF ; 0Þ ¼ F and pðpðF ; tÞ; sÞ ¼ pðF ; tþ sÞ

for every t; s A Rþ. Therefore ðAðX ;YÞ;Rþ; pÞ is a semidynamical system.

Suppose now that a is a homeomorphism from X to X 0 and b is a homeomorphism

from Y to Y 0. Since Y and Y 0 are Z-sets in Q, there exists an homeomorphism
~bb : Q ! Q which is an extension of b. Consider ðAðX ;YÞ;Rþ; pÞ and ðAðX 0;Y 0Þ;Rþ; p

0Þ

semidynamical systems defined as above. The function g : AðX ;Y Þ ! AðX 0;Y 0Þ given

by gðFÞðx 0; sÞ ¼ ~bbF ðaÿ1ðx 0Þ; sÞ is a homeomorphism from AðX ;YÞ to AðX 0;Y 0Þ and,

given ðx 0; sÞ A X 0 � Rþ

gðpðF ; tÞÞðx 0; sÞ ¼ ~bbpðF ; tÞðaÿ1ðx 0Þ; sÞ ¼ ~bbFðaÿ1ðx 0Þ; tþ sÞ ¼ gðFÞðx 0; tþ sÞ

¼ p 0ðgðF Þ; tÞðx 0; sÞ:

Hence, gðpðF ; tÞÞ ¼ p 0ðgðFÞ; tÞ for every ðF ; tÞ A AðX ;YÞ � Rþ. Therefore the semi-

dynamical systems ðAðX ;YÞ;Rþ; pÞ and ðAðX 0;Y 0Þ;Rþ; p
0Þ are isomorphic. r

Remark 2. Denote by

CðX ;YÞ ¼ fF A AðX ;Y ÞjF ðx; tÞ ¼ Fðx; 0Þ; for every ðx; tÞ A X � Rþg

the set of approximative maps generated by a continuous function from X to Y (isometric

to the set of continuous functions from X to Y with the supremum distance). This is

the set of stable points of AðX ;YÞ. Consider also

CðX � Rþ;Y Þ ¼ fF A AðX ;YÞ jF ðX � RþÞHYg

with the induced metric. Then CðX ;YÞ and CðX � Rþ;Y Þ are positively invariant

closed subsets of AðX ;YÞ. The subset whose elements are the periodic approximative

maps is also positively invariant. Given t > 0, the set of periodic approximative maps

from X to Y with period less or equal than t is closed in AðX ;YÞ. The subset of
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periodic approximative maps is dense in CðX � Rþ;YÞ. On the other hand, the subset

of approximative maps taking to stable points and the subset of approximative maps

taking to cycles are invariant.

Proposition 1. For every F A AðX ;Y Þ, gðF ÞH ½F � and gðFÞH ½F �w. Therefore ½F �

and ½F �w are invariant sets.

The above considerations imply that the semidynamical system decomposes into

two subsystems, the one having as elements those shape morphisms generated by maps

from X to Y, and its complement. We will see in the sequel that the dynamical

properties of this two subsystems are fairly di¤erent. For example, the latter turns out

to be dispersive while the former has very natural prolongational limits.

4. Limit sets in AðX ;YÞ.

Let ðM;Rþ; pÞ be a semidynamical system on a metric space M. The omega limit

set of a point x A M is the set LþðxÞ of the points y A M such that there is a sequence

ftng in Rþ with tn ! y and pðx; tnÞ ! y. px is said positively departing if LþðxÞ ¼ q,

positively asymptotic if LþðxÞ0q and LþðxÞV gþðxÞ ¼ q, and px is said positively

Poisson stable if LþðxÞV gþðxÞ0q. px is said positively Lagrange stable if gþðxÞ is

compact.

The first positive prolongation of a point x A M is the set DþðxÞ of the points y A M

such that there is a sequence fxng in M and a sequence ftng in Rþ such that xn ! x and

pðxn; tnÞ ! y. The first positive prolongational limit of x is the set JþðxÞ of the points

y A M such that there is a sequence fxng in M and a sequence ftng in Rþ such that

xn ! x, tn ! y and pðxn; tnÞ ! y. We say that x is non-wandering if x A JþðxÞ.

In this section we show that the main limit sets of this semidynamical system agree

with important shape notions. Many of the results deal with the role played by the

approximative maps from X to Y whose image is completely contained in Y. Given

F A AðX ;Y Þ we will denote the set ½F �w VCðX � Rþ;YÞ by ½F ��w.

The following result relates this set with one of the main notions of semidynamical

systems.

Theorem 5. Consider F A AðX ;YÞ. Then JþðFÞ ¼ ½F ��w ¼ ½F �w VCðX � Rþ;Y Þ.

As a consequence, JþðFÞ0q if and only if ½F �w has a representative generated by a

continuous function from X to Y.

Proof. Suppose that G A JþðF Þ. We see first that G A CðX � Rþ;YÞ. Take

ðx0; t0Þ A X � Rþ and e > 0. Consider t1 A Rþ such that dðF ðx; t0 þ tÞ;YÞ < e=3 for

every x A X and every tV t1. Since G A JþðFÞ, there exists H A AðX ;YÞ with ~ddðF ;HÞ

< e=3 and there exists t2 V t1 such that ~ddðpðH; t2Þ;GÞ < e=3. Then

jdðFðx0; t0þt2Þ;Y ÞÿdðHðx0; t0þt2Þ;YÞj <
e

3
; jdðHðx0; t0þt2Þ;YÞÿdðGðx0; t0Þ;Y Þj <

e

3
:

Therefore jdðFðx0; t0 þ t2Þ;YÞ ÿ dðGðx0; t0Þ;YÞj < 2e=3 and since dðFðx; t0 þ t2Þ;YÞ <

e=3, then dðGðx0; t0Þ;YÞ < e. Since this happens for every e > 0, then dðGðx0; t0Þ;YÞ ¼

0 and since Y is compact then Gðx0; t0Þ A Y .
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In order to show that F and G are weakly homotopic consider a neighborhood V of

Y in Q (we can suppose without loss of generality that V is an ANR) and take e > 0

such that BeðYÞHV and such that e-near maps from X to V are homotopic in V.

Consider k0 A Rþ such that dðFðx; tÞ;Y Þ < e=2 for every x A X and tV k0. Consider

dU e=2k0 . Then it is easy to see that F jX�½k0;yÞ and HjX�½k0;yÞ are homotopic in V for

every H A AðX ;YÞ with ~ddðF ;HÞ < d. Moreover we can take d in such a way that

GjX�½k0;yÞ and H 0jX�½k0;yÞ are also homotopic in V for every H 0 A AðX ;Y Þ with
~ddðG;H 0Þ < d. Now, since G A JþðFÞ there exists H A AðX ;Y Þ with ~ddðF ;HÞ < d and

there exists t0 A Rþ such that dðG; pðH; t0ÞÞ < d. But then F jX�½k0;yÞ and HjX�½k0;yÞ,

and GjX�½k0;yÞ and pðH; t0ÞjX�½k0;yÞ are homotopic in V, and since HðX � ½k0;yÞÞHV

then HjX�½k0;yÞ and pðH; t0ÞjX�½k0;yÞ are also homotopic in V. Hence F jX�½k0;yÞ and

GjX�½k0;yÞ are homotopic in V.

We have proved that JþðFÞH ½F �w VCðX � Rþ;YÞ. Consider now G A ½F �w V

CðX � Rþ;Y Þ. We see first that for every e > 0 and every t0 A Rþ, there exist G 0 A

BeðFÞ and tV t0 such that pðG 0; tÞ ¼ G. Given e > 0 consider k0 V t0 such that

X

y

k¼k0þ1

Dþ e

2k
< e; where D ¼ diamðYÞ;

and such that F jX�½k0;yÞ and GjX�½k0;yÞ are homotopic in Bðe=2ÞðYÞ. Then there exists a

continuous function h : X � ½0; 1� ! Bðe=2ÞðY Þ such that h0 ¼ F jX�fk0g
and h1 ¼ GjX�fk0g

.

Define G 0
: X � Rþ ! Q as

G 0ðx; tÞ ¼

Fðx; tÞ if tU k0

hðx; tÿ k0Þ if k0 U tU k0 þ 1

Gðx; 2k0 þ 1ÿ tÞ if k0 þ 1U tU 2k0 þ 1

Gðx; tÿ 2k0 ÿ 1Þ if 2k0 þ 1U t:

8

>

>

>

>

>

<

>

>

>

>

>

:

Then

X

y

k¼1

supðx;sÞ AX�½0;k�dðFðx; sÞ;G
0ðx; sÞÞ

2k
U

X

k0

k¼1

0

2k
þ

X

y

k¼k0þ1

Dþ e

2k
< e:

On the other hand, it is easy to see that jdðG 0ðx; tÞ;YÞÿdðFðx; tÞ;Y Þj ¼ jdðFðx; tÞ;YÞj <

e for every ðx; tÞ A X � Rþ. Hence G 0 A BeðFÞ and pðG 0; 2k0 þ 1Þ ¼ G with 2k0 þ 1V

t0. Therefore G A JþðF Þ. r

Corollary 1. Consider F A AðX ;Y Þ. Then

DþðF Þ ¼ gþðFÞU JþðFÞH ½F �U ½F ��w H ½F �w:

Consequently, CðX � Rþ;YÞ is a stable set in the sense of Bhatia and Hájek [4].

Moreover, for every F A AðX ;YÞ, the sets ½F �w and ½F ��w are stable.

On the other hand, if we consider

S ¼ fF A AðX ;YÞ j ½F ��w ¼ qg;
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then every positively invariant closed subset of S is stable. In particular, ½F �w and

gþðFÞ ¼ gþðF Þ are stable for every F A S.

Theorem 6. Consider F A AðX ;YÞ. Then LþðF ÞH ½F ��w.

Moreover limt!ypðF ; tÞ ¼ G if and only if aðF ÞVCðX ;Y Þ ¼ fGg, where aðFÞ is the

set of approximative maps asymptotic to F.

Proof. The first statement is a consequence of the above theorem. In order

to prove the second statement consider s0 A Rþ and e > 0. Take k0 > s0. Since

limt!ypðF ; tÞ ¼ G there exists t0 > s0 such that

~ddðpðF ; tÞ;GÞ <
e

4
and ~ddðpðF ; tÿ s0Þ;GÞ <

e

2k0þ1

for every tV t0, and hence for every x A X

dðF ðx; tÞ;Gðx; 0ÞÞ <
e

2
; dðF ðx; tÞ;Gðx; s0ÞÞ <

e

2
:

Then dðGðx; s0Þ;Gðx; 0ÞÞ < e for every e > 0. Hence Gðx; s0Þ ¼ Gðx; 0Þ for every s0 A

Rþ. This also implies that F and G are asymptotic and hence homotopic. The proof

of the converse statement is left to the reader. r

The following example shows that LþðF Þ does not necessarily have to be contained

in ½F � nor in CðX ;Y Þ.

Example 1. Consider F ;G : f0g � Rþ ! S1 given by Fð0; tÞ ¼ ð1; 0Þ and

Gð0; tÞ ¼
e i2pt if 2k ÿ 1U tU 2k

ð1; 0Þ rest.

(

Then F A LþðGÞ but is not homotopic to G. Moreover, varying slightly F we can also

get F B CðX ;YÞ with the same properties.

Corollary 2. Let F A AðX ;Y Þ satisfy any of the following conditions:

i) LþðFÞ0q,

ii) pF positively asymptotic,

iii) pF positively Poisson stable,

iv) pF positively Lagrange stable.

Then ½F �w has a representative generated by a continuous function from X to Y.

On the other hand, if ½F �w has not a representative generated by a continuous function

from X to Y, then pF is positively departing.

Theorem 7. A positive motion pF is positively Lagrange stable if and only if F is

uniformly continuous.

Proof. Suppose that pF is positively Lagrange stable but F is not uniformly

continuous. Then there exists e > 0 such that for every n A N there exist ðxn; tnÞ; ðyn; snÞ

A X � Rþ such that dðxn; ynÞ < 1=n, tn U sn < tn þ ð1=nÞ and dðFðxn; tnÞ;Fðyn; snÞÞ > e.

By the compactness of gþðFÞ there exists a sequence ftkng such that fpðF ; tknÞg

converges. Hence given e > 0, there exists n0 A N such that ~ddðpðF ; tknÞ; pðF ; tkn0 ÞÞ < e=6
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for every nV n0, and hence

dðF ðx; tkn þ tÞ;F ðx; tkn0 þ tÞÞ <
e

3

for every ðx; tÞ A X � ½0; 1�. Since pðF ; tkn0 Þ is continuous in X � ½0; 1�, there exists 0 <

d < 1 such that for every x; y A X with dðx; yÞ < d and every s A Rþ with 0 < s < d we

have

dðF ðx; tkn0 Þ;Fðy; tkn0 þ sÞÞ <
e

3
:

Therefore, for every nV n0 and for every x; y A X with dðx; yÞ < d and every s A Rþ with

0 < s < d we have

dðFðx; tknÞ;F ðy; tkn þ sÞÞ <
e

3
þ

e

3
þ

e

3
¼ e:

Therefore for every nV n0 such that 1=kn < d we have that dðxkn ; yknÞ < 1=kn < d and

0 < skn ÿ tkn < 1=kn < d and hence

dðF ðxkn ; tknÞ;Fðykn ; sknÞÞ < e;

and this is a contradiction. Hence F is uniformly continuous.

We see now that if F is uniformly continuous then pF is positively Lagrange stable.

To prove this we are going to show that every sequence in gþðF Þ has a convergent

subsequence and it su‰ces to show it for sequences in gþðFÞ, i.e., for sequences of

the kind fpðF ; tnÞg. Finally by the continuity of p it is enough to consider the case

tn ! y.

Since X is compact there exists a countable dense subset E of X � Rþ. By the

compactness of Q there exists ftkng such that fpðF ; tknÞg converges pointwise in E (if

E ¼ fðxi; tiÞg we take a subsequence fpðF ; t1nÞg pointwise convergent in ðx1; t1Þ, this

subsequence has a subsequence fpðF ; t2nÞg pointwise convergent in ðx1; t1Þ and ðx2; t2Þ,

and so on. Then the diagonal subsequence fpðF ; tnn Þg converges pointwise in E).

Moreover, if ðx; tÞ A ðX � RþÞnE then given e > 0, by the uniform continuity of F,

there exists ðy; sÞ A E such that dðFðx; tkn þ tÞ;F ðy; tkn þ sÞÞ < e=3 for every n A N . On

the other hand, there exists n0 A N such that dðFðy; tkn þ sÞ;Fðy; tkn0 þ sÞÞ < e=3 for every

nV n0. Therefore, for every nV n0,

dðFðx; tkn þ tÞ;Fðx; tkn0 þ tÞÞ <
e

3
þ

e

3
þ

e

3
¼ e:

Hence for every ðx; tÞ A ðX � RþÞnE, fF ðx; tkn þ tÞg is a Cauchy sequence, and since Q

is compact, it is a convergent sequence. Therefore fpðF ; tknÞg converges pointwise in

X � Rþ to a function G : X � Rþ ! Q.

Moreover, for every ðx; tÞ A X � Rþ, given e > 0, there exists n0 A N such that,

for every nV n0, dðF ðx; tkn þ tÞ;Gðx; tÞÞ < e=2, and there exists nV n0 such that

dðFðx; tkn þ tÞ;YÞ < e=2. Hence dðGðx; tÞ;Y Þ < e. Therefore GðX � RþÞHY .

We see now that G is uniformly continuous. Given e > 0, there exists d > 0 such

that dðFðx; tÞ;F ðy; sÞÞ< e=3 for every ðx; tÞ; ðy; sÞ AX�Rþ such that dððx; tÞ; ðy; sÞÞ < d.

On the other hand given ðx; tÞ; ðy; sÞ there exists n0 A N such that dðF ðx; tkn0 þ tÞ;Gðx; tÞÞ
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< e=3 and dðFðy; tkn0 þ sÞ;Gðy; sÞÞ < e=3. Therefore, if ðx; tÞ; ðy; sÞ A X � Rþ are such

that dððx; tÞ; ðy; sÞÞ < d, we have

dðGðx; tÞ;Gðy; sÞÞ <
e

3
þ

e

3
þ

e

3
¼ e:

Therefore G is uniformly continuous and, in particular, G A AðX ;Y Þ.

Finally we see that fpðF ; tknÞg converges to G in AðX ;Y Þ. Given e > 0 take k0
such that

Xy

k¼k0þ1

Dþ e

2k
<

e

2
where D ¼ diamðYÞ:

Since F and G are uniformly continuous, there exists d > 0 such that

dðFðx; tÞ;F ðy; sÞÞ <
e

6
; dðGðx; tÞ;Gðy; sÞÞ <

e

6

for every ðx; tÞ; ðy; sÞ A X � Rþ with dððx; tÞ; ðy; sÞÞ < d. On the other hand, there exist

fðx1; t1Þ; . . . ; ðxr; trÞgHX � ½0; k0� such that X � ½0; k0�HBdðx1; t1ÞU � � � UBdðxr; trÞ.

Consider n0 A N such that dðFðx; tkn þ tÞ;Y Þ < e for every ðx; tÞ A X � Rþ and every

nV n0, and such that

dðFðxi; tkn þ tiÞ;Gðxi; tiÞÞ <
e

6
;

for every i A f1; . . . ; rg and every nV n0. Then, for every ðx; tÞ A X � ½0; k0� there exists

i A f1; . . . ; rg such that ðx; tÞ A Bdðxi; tiÞ and hence, for every nV n0,

dðF ðx; tkn þ tÞ;Gðx; tÞÞ <
e

6
þ

e

6
þ

e

6
¼

e

2
:

Therefore, taking into account that GðX � RþÞHY , we have that, for every nV n0,

Xy

k¼1

supðx;tÞ AX�½0;k�dðF ðx; tkn þ tÞ;Gðx; tÞÞ

2k
<

Xk0

k¼1

e=2

2k
þ

Xy

k¼k0þ1

Dþ e

2k
< e;

and

sup
X�Rþ

jdðF ðx; tkn þ tÞ;Y Þ ÿ dðGðx; tÞ;Y Þj < e:

Then ~ddðpðF ; tknÞ;GÞ < e for every nV n0, and fpðF ; tknÞg converges to G in

AðX ;Y Þ. r

Corollary 3. If F A AðX ;Y Þ is uniformly continuous, then ½F �w has a repre-

sentative generated by a continuous function from X to Y.

Theorem 8. Denote by M the set of non-wandering points. Then M ¼

CðX � Rþ;Y Þ.

Proof. If F AM, then F A JþðFÞHCðX�Rþ;YÞ. Conversely, if F ACðX�Rþ;Y Þ,

then F A ½F �w VCðX � Rþ;YÞ ¼ JþðFÞ. r
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5. Stability and attraction properties.

In this section we are going to study properties concerning stability and attraction

for closed sets. We will use the approach given in [5], where these notions are defined

for closed subsets L in arbitrary metric spaces, in terms of neighborhoods of the kind

BeðLÞ. In other books on dynamical systems these concepts are defined in terms of

arbitrary neighborhoods of L.

Let ðM;Rþ; pÞ be a semidynamical system on a metric space M. A closed subset

L of M is stable if for every x A L and every e > 0 there exists d > 0 such that

pðBdðxÞ � RþÞHBeðLÞ. L is uniformly stable if for every e > 0 there exists d > 0

such that pðBdðLÞ � RþÞHBeðLÞ.

If L is a nonempty closed subset of M, the region of weak attraction of L is the set

AoðLÞ of the points x A M such that for every e > 0 and every t A Rþ there exists t > t

such that pðx; tÞ A BeðLÞ. The region of attraction of L is the set AðLÞ of the points

x A M such that for every e > 0 there exists t A Rþ such that pðfxg � ½t;yÞÞH

BeðLÞ. The region of strong attraction of L is the set AsðLÞ of the points x A M such

that for every e > 0 there exist d > 0 and t A Rþ such that pðBdðxÞ � ½t;yÞÞHBeðLÞ.

L is a weak attractor, attractor or strong attractor if there exists d > 0 such that

BdðLÞ is contained in AoðLÞ, AðLÞ or AsðLÞ, respectively. L is asymptotically stable if

and only if L is a uniformly stable attractor.

Proposition 2. For every F A AðX ;YÞ,

Aoð½F �wÞ ¼ Að½F �wÞ ¼ ½F �w:

Proof. Take G A Aoð½F �wÞ and e > 0. Consider 0 < e 0 < e such that e 0-near maps

from X to Be 0ðYÞ are homotopic in BeðY Þ. There exist t0 A Rþ and F 0 A ½F �w such that
~ddðpðG; t0Þ;F

0Þ < e
0=2 and GðX�½t0;yÞÞHBe 0=2ðYÞ, and hence F 0ðX � ½0;yÞÞHBe 0ðY Þ.

In particular F 0ðX � f0gÞHBe 0ðY Þ, GðX � ft0gÞHBe 0=2ðY Þ and dðF 0jX�f0g;GjX�ft0g
Þ <

e
0=2. Therefore F 0jX�f0g and GjX�ft0g

are homotopic in BeðY Þ and hence F 0 and

pðG; t0Þ are also homotopic in BeðYÞ. On the other hand, there exists t1 A Rþ such that

GjX�½t1;yÞ and pðG; t0ÞjX�½t1;yÞ, and F jX�½t1;yÞ and F 0jX�½t1;yÞ are homotopic in BeðYÞ.

Hence F jX�½t1;yÞ and GjX�½t1;yÞ are homotopic in BeðY Þ. Therefore G A ½F �w and

Aoð½F �wÞH ½F �w.

In order to prove that ½F �w HAð½F �wÞ, it su‰ces to observe that if G A ½F �w then

pðfGg � ½0;yÞÞH ½F �w. r

Corollary 4. Given F A AðX ;Y Þ with ½F ��w 0q, then

½F ��w H að½F ��wÞHAð½F ��wÞHAoð½F ��wÞH ½F �w;

where the first inclusion is strict.

Moreover, given a closed subset L of AðX ;YÞ, then ½F ��w HAðLÞ if and only if

½F ��w HL.

Proof. The first part is an immediate consequence of the above proposition. The

fact of the first inclusion being strict is a consequence of Y being a Z-set in Q.
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Moreover if ½F �w VCðX � Rþ;YÞHL then

½F �w VCðX � Rþ;YÞHAð½F �w VCðX � Rþ;YÞÞHAðLÞ:

Conversely, suppose that there exists G A ½F �w VCðX � Rþ;Y Þ such that G B L. Then

there exists e > 0 such that BeðLÞVBeðGÞ ¼ q. Consider H : X � Rþ ! Y given by

Hðx; tÞ ¼

Gðx; tÞ if 0U tU 1

Gðx; n2 þ nÿ tÞ if nU tU n2 þ n, n A N

Gðx; tÿ n2 ÿ nÞ if n2 þ nU tU ðnþ 1Þ2, n A N .

8

>

>

<

>

>

:

Then H A ½F �w VCðX � Rþ;YÞ but H B AðLÞ since pðfHg � ½t;yÞÞVBeðGÞ0q for

every t A Rþ and hence pðfHg � ½t;yÞÞNBeðLÞ. r

The following example shows, however, that none of the inclusions can be replaced,

in general, by an equality, not even in the case of compacta with trivial shape.

Example 2. Consider X ¼ ½0; 1� and

Y ¼ ðx; yÞ A R
2 j x A ½ÿ1; 1� ÿ f0g; y ¼ sin

1

x

� �� �

U ðf0g � ½ÿ1; 1�Þ:

Then ½F �w ¼ AðX ;Y Þ for every F A AðX ;YÞ and

aðCðX � Rþ;Y ÞÞ0AðCðX � Rþ;Y ÞÞ0AoðCðX � Rþ;YÞÞ0AðX ;Y Þ:

Moreover, none of this regions of attraction is a neighborhood of CðX � Rþ;YÞ.

Moreover, AsðCðX � Rþ;YÞÞ ¼ q.

Proposition 3. Let L be a non empty closed subset of AðX ;YÞ and F A AðX ;Y Þ

such that F A AsðLÞ. Then ½F �w HAðLÞ.

Proof. Consider G A ½F �w and e > 0. Since F A AsðLÞ, there exist d > 0 and t A

Rþ such that pðfF 0g � ½t;yÞÞHBeðLÞ for every F 0 A BdðF Þ. On the other hand, since

G A ½F �w ¼ cðFÞ (see Theorem 3), there exists G 0 A BdðFÞ such that pðG; tGÞ ¼ pðG 0; tGÞ

for some tG A Rþ. Therefore G A AðLÞ. r

Proposition 4. Let LHAðX ;Y Þ be a weak attractor. Then AoðLÞ is a union of

weak homotopy classes. If moreover L is an attractor then

LI f½F ��w jF A AðLÞg:

Proof. Let L be a weak attractor and take F A AoðLÞ. Since AoðLÞ is open, there

exists e > 0 such that BeðF ÞHAoðLÞ. Then given G A ½F �w there exists G 0 A BeðFÞ such

that pðG; tGÞ ¼ pðG 0; tGÞ for some tG A Rþ. Hence, since G 0 A BeðFÞHAoðLÞ, then G A

AoðLÞ.

On the other hand, if L is an attractor and F A AðLÞ, then ½F �w HAðLÞ, and by the

above proposition, ½F ��w HL. r

Notions of attraction and stability can also be established for positive motions; we

adopt here the definitions given in [33]. Given a semidynamical system ðM;Rþ; pÞ on a
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metric space M and given x A M, the positive motion px is positively Lyapunov stable if

for every e > 0 there exists d > 0 such that dðpðx; tÞ; pðy; tÞÞ < e for every y A BdðxÞ and

every t A Rþ. px is uniformly positively Lyapunov stable if for every e > 0 there exists

d > 0 such that dðpðx; tþ tÞ; pðy; tÞÞ < e for every y A Bdðpðx; tÞÞ and every t; t A Rþ.

Given x A M, the region of orbital attraction of px is the set AþðxÞ of the points y A M

such that there exists t0 A Rþ such that limt!y dðpðx; tþ t0Þ; pðy; tÞÞ ¼ 0. px is an

orbital attractor if A
þðxÞ is a neighborhood of gþðxÞ. px is orbitally asymptotically

stable if px is an uniformly positively Lyapunov stable orbital attractor.

Proposition 5. A positive motion pG is orbitally attracted by a positive motion pF if

and only if there exists t0 A Rþ such that pðF ; t0Þ and G are asymptotic. Hence

A
þðF Þ ¼ 6

t ARþ

aðpðF ; tÞÞH ½F �;

where aðpðF ; tÞÞ ¼ fG A AðX ;Y ÞjG asymptotic to pðF ; tÞg. Moreover, if pF is an orbital

attractor, then

A
þðF Þ ¼ 6

t ARþ

aðpðF ; tÞÞ ¼ ½F � ¼ ½F �w:

Proof. The first statement is straightforward. In order to prove the second

statement, suppose that A
þðFÞ is a neighborhood of gþðFÞ. Then there exists e > 0

such that BeðF ÞHA
þðF Þ. Consider G A ½F �w. Then, given e > 0, consider k0 such

that

X

y

k¼k0þ1

Dþ e

2k
< e; where D ¼ diamðY Þ;

and F jX�½k0;yÞ and GjX�½k0;yÞ are homotopic in Be=2ðY Þ. It is easy to see that then

there exists h : X � ½0; 1� ! Be=2ðY Þ such that h0 ¼ F jX�fk0g
; h1 ¼ GjX�fk0þ1g. Consider

H : X � Rþ ! Q given by

Hðx; tÞ ¼

Fðx; tÞ if tU k0

hðx; tÿ k0Þ if k0 U tU k0 þ 1

Gðx; tÞ if k0 þ 1U t:

8

>

>

<

>

>

:

Then H A BeðFÞHA
þðF Þ and hence there exists t A Rþ such that H is asymptotic to

pðF ; tÞ. On the other hand, since pðH; k0 þ 1Þ ¼ pðG; k0 þ 1Þ, then also G is asymptotic

to pðF ; tÞ. Hence G A A
þðFÞ. Therefore ½F �w HA

þðF ÞH ½F �H ½F �w. r

Proposition 6. Consider F A AðX ;YÞ such that pF is positively Lyapunov stable.

Then

½F �w ¼ ½F � ¼ aðF Þ ¼ fG A AðX ;Y Þ jG asymptotic to Fg:

Proof. Take G A ½F �w and e > 0. There exists d > 0 such that

~ddðpðF ; tÞ; pðH; tÞÞ < e
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for every H A BdðFÞ and every t A Rþ. On the other hand, since G A ½F �w, we saw in

the proof of the above proposition that given d > 0 there exist H A BdðFÞV ½F �w and

t0 A Rþ such that pðG; t0Þ ¼ pðH; t0Þ. Then ~ddðpðF ; tÞ; pðG; tÞÞ < e, for every tV t0 and

hence dðF ðx; tÞ;Gðx; tÞÞ < e for every x A X and every tV t0. Therefore F and G are

asymptotic. r

6. A Lyapunov function in ðAðX ;YÞ;Rþ; pÞ.

Given a semidynamical system ðM;Rþ; pÞ on a metric space M, a Lyapunov

function on M is a continuous function j : M ! Rþ such that jðpðx; tÞÞU jðxÞ for

every x A M and every t A Rþ.

Remark 3. The function j : AðX ;YÞ ! Rþ given by

jðF Þ ¼ maxfdðFðx; tÞ;YÞ j ðx; tÞ A X � Rþg

for every F A AðX ;Y Þ, is a Lyapunov function in AðX ;YÞ.

Observe that jðFÞU ~ddðF ;CðX � Rþ;YÞÞ for every F A AðX ;YÞ and that

BeðCðX � Rþ;YÞÞH jÿ1ð½0; eÞÞH jÿ1ð½0; e�Þ ¼ CðX � Rþ;BeðYÞÞ

for every e > 0.

7. Equivalence of dynamic properties and shape properties.

Given compact metric spaces X and Y we may consider the Bebutov semidynamical

system in AðX ;Y Þ. We have already mentioned that, since every shape morphism is

invariant, it can be considered as a semidynamical system itself. In this section we

present characterizations of shape properties in dynamical terms. The proofs of the

theorems are, in general, simple consequences of the results developed in previous

sections.

Theorem 9. Given a shape morphism ½F �w, the following are equivalent:

i) ½F �w is generated by a map,

ii) the semidynamical subsystem restricted to ½F �w is non-dispersive,

iii) there exists an orbit in ½F �w not agreeing with its first positive prolongation.

Proof. The equivalence of i) and ii) is a direct consequence of [5, Theorem IV.1.8].

To prove that i) implies iii) suppose that ½F �w is generated by a map. Then we just

have to take G A ½F �w such that GðX � ftngÞNY for some divergent sequence ftngH

Rþ. Then G satisfies the required condition. To see that it is always possible to

choose such a G consider f : X ! Y generating ½F �w. Consider y0 B Y (since Y is a

Z-set in Q, Y 0Q). Then there exists h : X � ½0; 1� ! Q such that h0ðxÞ ¼ y0 for every

x A X and such that h1 ¼ f . Then there exists b A ð0; 1� such that htðX ÞNY for

values of t A ½0; bÞ arbitrary close to b and such that hb is homotopic to f in Y. We

define Gðx; tÞ ¼ hðx; bt=ð1þ tÞÞ.

Conversely if an orbit gþðGÞ in ½F �w doesn’t agree with its first positive prolongation

then JþðGÞ0q and the result follows. r

The following result is a consequence of Theorems 8 and 9.
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Theorem 10. Let X be a compact metric space. The following are equivalent:

i) X has trivial shape.

ii) The set of non-wandering points of AðX ;XÞ is contained in a connected

component of AðX ;XÞ.

iii) The set of Lagrange stable motions of AðX ;X Þ is contained in a connected

component of AðX ;XÞ.

Proof. If X has trivial shape then every pair of morphisms from X to X are

homotopic, hence AðX ;XÞ is connected and this implies ii) and iii). Since the set of

non-wandering points of AðX ;XÞ agrees with CðX � Rþ;X Þ, ii) implies that the identity

map is in the same connected component that, and hence is weakly homotopic to, any

constant map. Therefore ii) implies i). Finally, since the identity map and any

constant map are both uniformly continuous, iii) implies that they have to be weakly

homotopic. Therefore iii) implies that X has trivial shape too. r

If X HX 0, we can consider the Bebutov semidynamical systems defined in AðX ;Y Þ

and in AðX 0
;YÞ. Given F A AðX ;Y Þ and G A AðX 0

;YÞ, we say that the orbit through

F is the restriction of the orbit through G if pðF ; tÞ ¼ pðG; tÞ for every t, when the latter

is restricted to X. This is equivalent to GjX�Rþ
¼ F . We say that a Bebutov system

AðX ;Y Þ is prolongable if for every X 0 containing X, there exists a neighborhood W of

X in X 0 such that every orbit in AðX ;YÞ is the restriction of an orbit in AðW ;Y Þ.

Theorem 11. Let X be a metric space. Then X is shape dominated by a polyhedron

if and only if AðX ;XÞ is prolongable.

Proof. Is a consequence of the fact that X is shape dominated by a polyhedron if

and only if X is a FANR (see [8, p. 350]), and this is equivalent to X having a

neighborhood U in X 0 such that X is a shape retract of U. r

Theorem 12. Let X be a compact metric space shape dominated by a polyhedron.

The following are equivalent:

i) X is an internal FANR.

ii) Every shape morphism from an arbitrary compactum Z to X is generated by a

map ( from Z to X).

iii) Every connected component of AðZ;X Þ contains a Lagrange stable orbit, for any

compactum Z.

iv) Every connected component of AðZ;X Þ contains a non-wandering orbit, for any

compactum Z.

Proof. The implication i) ) ii) was proved in [11]. Conversely, if X is a FANR

such that every shape morphism from an arbitrary compactum Z to X is generated by a

continuous map, then X is internally movable and hence (see [22]) an internal

FANR. The rest of the equivalences are consequences of the fact that shape mor-

phisms from Z to X can be identified with the connected components of AðZ;X Þ and

the results in the previous sections. r

The following result relates shape notions with attraction properties in AðX ;Y Þ.
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Theorem 13. Let X be a compact metric space. Then the following are equivalent:

i) X has trivial shape.

ii) There exists a connected attractor in AðX ;XÞ, and every attractor contains the

set CðX � Rþ;X Þ.

iii) There exists a connected attractor in AðX ;XÞ containing a periodic orbit, and

every attractor containing a periodic orbit contains all periodic orbits.

Proof. If X has trivial shape then AðX ;XÞ is a connected attractor containing

CðX � Rþ;X Þ. Moreover, any attractor must contain some approximative map F and

then, by proposition 4, it contains ½F ��w ¼ CðX � Rþ;XÞ. Therefore i) implies ii).

Obviously ii) implies iii). Suppose now that iii) is satisfied. Then there exists a

connected attractor L in AðX ;XÞ containing a periodic orbit. Since L is connected,

there exists F A AðX ;X Þ such that LH ½F �w. Then iii) implies that also every periodic

orbit is contained in ½F �w and, since the periodic orbits are dense in CðX � Rþ;XÞ, then

CðX � Rþ;X ÞH ½F �w. Therefore the set of non-wandering points is contained in a

connected component of AðX ;XÞ and the result follows from Theorem 12. r

The necessary conditions for an orbit to be an orbital attractor or Lyapunov Stable

stated in Section 5 are really strong conditions. In fact we have the following result.

Theorem 14. Let X be a continuum and Y a compact metric space. Then

i) Every orbit in AðX ;Y Þ is an orbital attractor if and only if Y is finite.

ii) Every orbit in AðX ;Y Þ is Lyapunov stable if and only if Y is 0-dimensional.

Proof. We only prove ii), leaving i) to the reader. Suppose that Y is 0-

dimensional. Then it is totally disconnected. Let F be an approximative map from X

to Y and consider e > 0. There exist fU1;U2; . . . ;Ung pairwise disjoint open and closed

subsets of Y with diameter less than e=5, such that Y ¼ U1 U � � � UUn. There exists

0 < d < e=5 such that dðUi;UjÞ > 5d for every i0 j. Then BdðYÞ ¼ BdðU1ÞU � � � U

BdðUnÞ, union of open balls in Q with dðBdðUiÞ;BdðUjÞÞ > 3d. Consider now k0 A N

such that Fðx; tÞ A BdðYÞ for every x A X and every tV k0. Then there exists i0 such

that Fðx; tÞ A BdðUi0Þ for every x A X and every tV k0. Let G be any approximative

map with ~ddðF ;GÞ < d=2k0 . Then dðF ðx; tÞ;Gðx; tÞÞ < d for every x A X and every tU

k0. On the other hand jdðF ðx; tÞ;YÞ ÿ dðGðx; tÞ;YÞj < d for every x A X and every t A

Rþ, and since F ðx; tÞ A BdðUi0Þ, this implies that Gðx; tÞ A B2dðUi0Þ for every x A X and

every tV k0. Then it is easy to see that dðF ðx; tÞ;Gðx; tÞÞ < e for every x A X and every

t A Rþ. Therefore, ~ddðpðF ; tÞ; pðG; tÞÞ < e for every t A Rþ. Hence pF is Lyapunov

stable.

Conversely, since every two constant approximative maps with image in the same

connected component are homotopic, it follows from Proposition 6 that if every orbit in

AðX ;Y Þ is Lyapunov stable then all connected components must be points. Hence Y

has to be totally disconnected. r
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[31] J. M. R. Sanjurjo, Multihomotopy, Čech spaces of loops and shape groups, Proc. London Math. Soc.

(3) 69 (1994), 330–344.

[32] J. M. R. Sanjurjo, On the structure of uniform attractors, Journal of Math. Analysis and its

Applications 152 (1995), 519–528.

[33] P. Saperstone, Semidynamical systems in infinite dimensional spaces, Applied Math. Sciences vol. 37

(Springer-Verlag, Berlin, 1981).

Generalized Bebutov systems 953



[34] K. S. Sibirsky, Introduction to topological dynamics. (Noordho¤ International Publishing, Leyden,

1975).

[35] C. Tezer, Shift equivalence in homotopy, Math. Z. 210 (1992), 197–201.

Antonio Giraldo José M. R. Sanjurjo
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