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Abstract. We define a semidynamical system—inspired by some classical dynamical
systems studied by Bebutov in function spaces—in the space of approximative maps
A(X,Y) between two metric compacta, with a suitable metric. Shape and strong shape
morphisms are characterized as invariant subsets of this system. We study their structure
and asymptotic properties and use the obtained results to give dynamical characterizations
of basic notions in shape theory, like trivial shape, shape domination by polyhedra and
internal FANRs.

Introduction.

The theory of shape, introduced by K. Borsuk in 1968 [7], has proved to be a
successful instrument for the study of the global topological properties of dynamical
systems. Shape theory is especially useful when applied to spaces of locally complicated
structure, like the attractors of dynamical systems, for which the tools of homotopy
theory are not appropriate. The papers [6], [15], [17], [18], [19], [28], [29]. [31], [32].
are good illustrations of the application of shape theory in dynamics. In this paper we
establish a new connection between shape and dynamics by adopting a different point of
view. The theory of dynamical systems is used here to give a new interpretation of
shape. We define a structure of semidynamical system in the space A(X,Y) of ap-
proximative maps between two metric compacta X and Y. The metric structure of
A(X,Y) is inspired by topologies introduced in previous papers [16], [23], [24], [30].
The dynamical structure is inspired by some classical dynamical systems studied by
Bebutov in function spaces [1], (see [34, IV.20]). According to this interpretation,
shape morphisms and strong shape morphisms are invariant subspaces of the Bebutov
space A(X,Y). This means that shape and strong shape morphisms can be viewed as
semidynamical systems themselves. The paper is devoted to the study of the structure
of the Bebutov system A(X,Y) and in particular to the recognition of Lagrange and
Poisson stable orbits and non-wandering points, the determination of the limit sets and
the properties of attractors and Lyapunov stable motions. These results are used to
give dynamical characterizations of some basic notions in shape theory. For instance:

1) A shape morphism is generated by a map if and only if it is non-dispersive

(when viewed as a semidynamical system).
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2) For a metric compactum X the following are equivalent:
i) X has trivial shape
i) The set of Lagrange stable motions of the Bebutov system A (X, X) is contained
in a connected component of A(X,X).
iii) There exists a connected attractor in 4(X, X) containing a periodic orbit, and
every attractor containing a periodic orbit contains all periodic orbits.
3) A metric compactum X is shape dominated by a polyhedron if and only if its
Bebutov system is prolongable.
The reader is referred to the books by Borsuk [8], Cordier and Porter [10], Dydak and
Segal [12], and Mardesi¢ and Segal for information on shape theory. See also
Dydak and Segal [13], Edward and Hastings [14], Kodama and Ono [21], Porter [26]
and Quigley for information on strong shape. For the general theory of dynamical
systems we recommend the books [4], [5], [33], of Bhatia and Hajek, Bhatia and
Szego, Saperstone and Sibirsky respectively. For information on attractors in arbitrary
(not necessarily locally compact) Hausdorff spaces, we refer to [3]. Some of the
results in this paper were obtained while the authors were visiting the Universities of
Washington (USA) and Manchester (UK) respectively. The authors are grateful to
the Departments of Mathematics of these Universities and in particular to J. Segal and
N. Ray for their hospitality. They also thank the referee for useful remarks.

1. A short account of shape theory.

In the first section of this paper we review the characterization of shape theory using
approximative maps.

Let X and Y be compact metric spaces such that Y is contained in the Hilbert
cube Q. An approximative map from X to Y is a continuous function F : X x R, — Q
such that for every neighborhood ¥V of Y in Q there exists 7)€ R, such that
F(X x [ty,0)) = V. Two approximative maps F,G: X x R, — Q from X to Y are
homotopic if there exists an approximative map H : X x [0,1] x R, — Q from X x [0, 1]
to Y such that H(x,0,¢) = F(x,?) and H(x,1,t) = G(x,t) for every (x,7) e X xR.. On
the other hand, F and G are weakly homotopic if for every neighborhood V of Y in Q
there exists 7o € Ry such that F|y,, ) and G|y, ., are homotopic in V. We denote
by [F] the homotopy class of F and by [F], the weak homotopy class of F. Observe
that [F], o [F]. We say that F and G are asymptotic if for every ¢ > 0 there exists
to € R; such that d(F(x,t),G(x,t)) <e¢ for every (x,7) € X x [tp,00). If F and G are
asymptotic then they are homotopic.

Given F: X xR, — Qand G: Y x R, — Q approximative maps from X to Y and
from Y to Z respectively, there exists a fundamental map (see [20]) G': O x Ry — Q
from Y to Z being an extension of G. Consider H : X x R, — Q given by H(x,t) =
G'(F(x,t),t). Then H is an approximative map from X to Z whose homotopy class
only depends on the homotopy classes of F and G, and whose weak homotopy class only
depends on the weak homotopy classes of F and G, being independent of the extension
G'. Then the composition of classes is defined as [G|[F] = [H] and [G],[F], = [H]

w w*

THEOREM 1 (Borsuk). If we consider the class of the compact metric spaces and the
weak homotopy classes of approximative maps between them with the composition of
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weak homotopy classes previously defined we obtain a category isomorphic to the shape
category.

THEOREM 2 (Kodama and Ono). If we consider the class of the compact metric
spaces and the homotopy classes of approximative maps between them with the com-
position of homotopy classes previously defined we obtain a category isomorphic to the
strong shape category.

2. A topology in the space of approximative maps.

DeriniTION 1. Let X and Y be compact metric spaces such that Y is contained as a
Z-set (see [9]) in the Hilbert cube Q (this is not a restriction since every compactum can
be embedded as a Z-set in @), and denote by A(X,Y) the set of approximative maps
from X to Y. Given F,Ge A(X,Y), we define the distance from F to G as

. d(F Gy
d(F,G) :max{z ( ‘XX[O’gk x [O’k]), sup |d(F(x,s),Y) —d(G(x,s), Y)]}
keN XXR

Then, if d(F,G) < e, we have that d(Fly 0.9 Glyxo.) < 2ke, for every ke N.
REMARK 1. It is easy to see that d is a metric in A(X,Y).

Consider the space A(X,Y) with the topology generated by the distance d. Tt can
be seen—in a similar way as in [24]—that, with the restriction of Y being a Z-set, it is
a topological invariant of the pair (X, Y). Moreover, if o is a homeomorphism from X
to X’ and f is a homeomorphism from Y to Y’ then the function y: A(X,Y) —
A(X',Y'") given by p(F)(x',1) = fF(e ' (x'),1), is a homeomorphism from A(X,Y) to
A(X',Y") (see [24]), where f§ is an homeomorphism of Q which is an extension of f
(such a extension always exists since Y and Y’ are Z-sets in Q (see [9])).

The following theorem, which can be proved using techniques and ideas of and
[24], states the main properties of the space A(X,7Y).

THEOREM 3. A(X,Y) satisfies the following:

1) Two approximative maps from X to Y are homotopic if and only if they are in
the same path-connected component of A(X,Y). As a consequence, the mor-
phisms from X to Y in the strong shape category can be identified with the path-
connected components of A(X,Y).

i)  Two approximative maps from X to Y are weakly homotopic if and only if they
are in the same connected component of A(X,Y). Therefore, the morphisms
from X to Y in the shape category can be identified with the connected
components of A(X,Y).

iii) Given Fe A(X,Y), if we consider the sets

a(F)={Ge A(X,Y)|G asymptotic to F}
C<F) = {GE A(X7 Y) |F|X><[to,oo) = G‘Xx[to,oo) fOl’ some 1y € R+}7

then ¢(F)ca(F) < [F]<[F), and ¢(F) = a(F) = [F] = [F),,. In particular, every
morphism in the shape category is the closure of a morphism in the strong shape
category.
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iv) Given Fe A(X,Y), given ¢ >0, if we define
[F]s = {GE A<X7 Y)‘F‘Xx[kg,oo) = GlXx[kg,oo) in BL(Y)7kG € R+}

we have that [F|, is open and closed in A(X,Y) and that [F], = ()_,[F],
Therefore, the morphisms from X to Y in the shape category can also be
identified with the connected quasicomponents of A(X,Y).

3. The semidynamical system (4(X,Y), R, x)

Let M be a metric space. A semidynamical system on M is a triad (M,R,,n)
where 7: M x Ry, — M is a continuous function such that

1) 7(x,0) =x for every xe M,

i) n(n(x,?),s) =n(x,t+s) for every xe€ M and every t,s€ R.
Given xe M we denote by 7, : R, — M the positive motion through x defined as
i (1) = m(x, ).

Given x € M, we denote by y*(x) = {n(x,t)|t € R} the positive semi-trajectory of
x and by y"(x)={ye M|xey*(y)} the funnel in x.

The following theorem introduces a semidynamical system in the space A(X,Y).

THEOREM 4. Consider
niAX,Y)x R, — A(X,Y)
(F,0)—n(F,1): X xRy — O
(x,8) — n(F,1)(x,8) = F(x,t+s).

Then (A(X,Y),R.,n) is a semidynamical system.
Moreover, if X is homeomorphic to X' and Y is homeomorphic to Y', then the
semidynamical systems (A(X,Y),R,,n) and (A(X',Y'),R,,zn') are isomorphic.

ProoF. We see first that 7 is continuous. Take (Fy, 7)) € A(X,Y) x R, and ¢ > 0.
Consider ky > ty such that

o0
A . .
Z j< E, with 4 = diam(Y),
L 2k 2

=ko+1

and such that d(Fy(x,?),Y) <e¢/4 for every xe X and every ¢>ko. Since Fy is
continuous in X x [0,2ko|, there exists 6 > 0 with 7 +J < ko such that

ﬂ%@m+ﬁJMmHﬂ»<§

for every x e X, every te R, with |t — )| <J and every s € [0, ko], and hence

|ﬂ%@m+ﬁﬂﬁ—ﬂ%uﬁ+mYﬂ<3

And if s > ko, then 7y +s,1+ 5> ko and

d(Fo(x, 10 +5), Y) — d(Fo(x,t +5), Y)| < 2-

Y

)
[N

for every x € X.
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On the other hand if d(F,Fy) < (¢/2%%2), then for every x € X, every r < ko and
every s < ko we have

d(Fo(x,t+s),F(x,t+5)) <§
and for every t,se€ R,
d(Fo(x,t+5), ¥) = d(F(x,1+5), Y)| < 5.

Therefore if d(F,Fy) < (¢/2%02) and |t —ty| <J then

2 SUP(y g e xxjor] AFO (X, 10+ 8), F(X, 1+ 5)  The/2 &N A+e
> <D gt 2

k
k=1 2 k=1 k=ko+1

and

sup |d(Fo(x, 10 +5), Y) —d(F(x,t+5), V)| < 2+ % <.
XxR, 2 4
Hence d(n(Fy, 1)), n(F,1)) <& Therefore 7 is continuous.

On the other hand, if Fe A(X,Y) then n(F,0) = F and n(n(F,t),s) = n(F,t+s)
for every t,s € R,. Therefore (A(X,Y),R,,n) is a semidynamical system.

Suppose now that o is a homeomorphism from X to X’ and f is a homeomorphism
from Y to Y’. Since Y and Y’ are Z-sets in Q, there exists an homeomorphism
B : O — Q which is an extension of 8. Consider (A(X, Y),R.,n) and (A(X', Y'),R,,7')
semidynamical systems defined as above. The function y: A(X,Y) — A(X’, Y') given
by p(F)(x',s) = fF(a~'(x’),s) is a homeomorphism from A(X,Y) to A(X',¥’) and,
given (x';s)e X' x Ry

J(r(F, ))(x',5) = Br(F, 1) (a7 (),5) = BE(o (x'), 1+ 5) = p(F)(¥', 1 +)

=7'(y(F), )(x', ).
Hence, y(n(F,t)) ==n'(y(F),t) for every (F,t)e A(X,Y)x R.. Therefore the semi-
dynamical systems (A(X,Y),R,,n) and (A(X',Y’),R.,n’) are isomorphic. O
RemArRk 2. Denote by
CX,Y)={FeAX,Y)|F(x,t) = F(x,0), for every (x,f)e X x R}

the set of approximative maps generated by a continuous function from X to Y (isometric
to the set of continuous functions from X to Y with the supremum distance). This is
the set of stable points of A(X,Y). Consider also

GX xR,,Y)={FeAX,Y)|F(XxR,) < Y}

with the induced metric. Then %(X,Y) and (X x R,,Y) are positively invariant
closed subsets of 4(X,Y). The subset whose elements are the periodic approximative
maps is also positively invariant. Given 7 > 0, the set of periodic approximative maps
from X to Y with period less or equal than 7 is closed in A(X,Y). The subset of
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periodic approximative maps is dense in €(X x R, Y). On the other hand, the subset
of approximative maps taking to stable points and the subset of approximative maps
taking to cycles are invariant.

PROPOSITION 1. For every F € A(X,Y), y(F) < [F| and y(F) < [F]
and [F), are invariant sets.

w

Therefore [F|

w*

The above considerations imply that the semidynamical system decomposes into
two subsystems, the one having as elements those shape morphisms generated by maps
from X to Y, and its complement. We will see in the sequel that the dynamical
properties of this two subsystems are fairly different. For example, the latter turns out
to be dispersive while the former has very natural prolongational limits.

4. Limit sets in A(X,Y).

Let (M,R,,7) be a semidynamical system on a metric space M. The omega limit
set of a point x € M is the set A" (x) of the points y € M such that there is a sequence
{t,} in R, with t, — o0 and n(x,t,) — y. =, is said positively departing if A" (x) = &,
positively asymptotic if A7 (x) # @& and A" (x)NyT(x) = &, and =, is said positively
Poisson stable if A7 (x)Ny*(x) # &. =, is said positively Lagrange stable if y*(x) is
compact.

The first positive prolongation of a point x € M is the set D*(x) of the points y € M
such that there is a sequence {x,} in M and a sequence {7,} in R, such that x, — x and
n(xy, ;) — y. The first positive prolongational limit of x is the set J™(x) of the points
y € M such that there is a sequence {x,} in M and a sequence {7,} in R, such that
Xp — X, t, — oo and n(x,,1,) —y. We say that x is non-wandering if x € J*(x).

In this section we show that the main limit sets of this semidynamical system agree
with important shape notions. Many of the results deal with the role played by the
approximative maps from X to Y whose image is completely contained in Y. Given
FeA(X,Y) we will denote the set [F] N%(X x R, Y) by [F]..

The following result relates this set with one of the main notions of semidynamical
systems.

THEOREM 5. Consider F € A(X,Y). Then J*(F)=[F|, =[F],N€(X X Ry, Y).
As a consequence, J*(F) # & if and only if [F|, has a representative generated by a
continuous function from X to Y.

PrROOF. Suppose that GeJ'(F). We see first that Ge%(X x R,,Y). Take
(x0,20) € X x R, and ¢>0. Consider #; € R. such that d(F(x,t)+1),Y) <¢/3 for
every x e X and every 7> ;. Since G € J*(F), there exists H € A(X,Y) with d(F,H)
< ¢/3 and there exists £, > #; such that d(n(H,1),G) < ¢/3. Then

& &
|d(F<X0,Z()—|—12), Y)—d(H(xO,lo+l2), Y)| <=, |d(H(.X0,l()+lz), Y)—d(G(Xo,lo), Y)| < g

3
Therefore |d(F(xo,t + 12),Y) — d(G(xo,1), Y)| <2¢/3 and since d(F(x,t0+t),Y) <
¢/3, then d(G(xy,1),Y) < e Since this happens for every ¢ > 0, then d(G(xo, %), Y) =
0 and since Y is compact then G(xo,%) € Y.
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In order to show that F and G are weakly homotopic consider a neighborhood V' of
Y in Q (we can suppose without loss of generality that V" is an ANR) and take ¢ > 0
such that B,(Y) < V' and such that e-near maps from X to V' are homotopic in V.
Consider ko € R, such that d(F(x,?),Y) <e¢/2 for every xe X and ¢t > ky. Consider
J <¢/2%. Then it is easy to see that Fly . .y and Hly,y, ) are homotopic in V' for
every H e A(X,Y) with d(F,H) <J. Moreover we can take J in such a way that
Glyiky o) and H'ly ) are also homotopic in V' for every H'e A(X,Y) with
d(G, H’) < 8. Now, since GeJ*t(F) there exists H € A(X,Y) with d(F,H) <6 and
there exists 7o € Ry such that d(G,n(H, %)) <J. But then Fly ;. ) and Hly, ;o ),
and G|y, o) and 7(H, 1)y, ) are homotopic in ¥, and since H(X x [ko,0)) = V'
then H|y, i, ) and n(H, )|y, ) are also homotopic in V. Hence Fly, y ) and
Glyxky, ) are homotopic in V.

We have proved that J*(F)c [F],N%(X xR.,Y). Consider now Ge [F], N
C(X xR, Y). We see first that for every ¢ >0 and every f#, € R,, there exist G’ €
B.(F) and t >ty such that 7n(G’,¢f) = G. Given ¢ > 0 consider ky >y such that

0
A
Z e < ¢, where 4 =diam(Y),

and such that Fly g ) and Gly,y, ) are homotopic in B (Y). Then there exists a
continuous function /1 : X x [0, 1] — B2 (Y) such that g = Fly, ¢, and hy = Gy, -
Define G': X x R, — Q as
( F(x,1) if ¢ < ko

h(x,l—k()) if ko <t<ky+1

G(x,2ko+1—1) if ko+1<t<2ko+1
| G(x,t—2ko—1) if 2kg+1 <1t

G'(x,1) =

Then

- sup (x,8) € X x[0,k] d(F(X,S), G/(X,S))

2 % Z DI~

k=1 k=ko+1
On the other hand, it is easy to see that |d(G'(x,t), Y)—d(F(x,1),Y)| = |d(F(x,t),Y)| <
¢ for every (x,7) e X x R,. Hence G’ € B,(F) and n(G’',2ky+ 1) = G with 2k + 1 >
to. Therefore G e J™(F). O

CoROLLARY 1. Consider F € A(X,Y). Then

D*(F) =y"(F)UJ"(F) = [FJU[F], < [F],.

Consequently, €(X x R.,Y) is a stable set in the sense of Bhatia and Hdajek [4].
Moreover, for every Fe A(X,Y), the sets [F|, and [F|. are stable.

w w
On the other hand, if we consider

S={FeAX,Y)|[F]. =},
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then every positively invariant closed subset of S is stable. In particular, [F)|, and

yF(F) = y"(F) are stable for every F € S.
THEOREM 6. Consider F € A(X,Y). Then A" (F) < [F];

w*

Moreover lim,_,,n(F,t) = G if and only if a(F)N%(X,Y) = {G}, where a(F) is the
set of approximative maps asymptotic to F.

Proor. The first statement is a consequence of the above theorem. In order
to prove the second statement consider so e Ry, and &> 0. Take ko> sy. Since
lim,,,7(F,t) = G there exists ) > sy such that

&

~ e B
d(n(F;t>7G> <Z and d(n(F,t—So),G) <W

for every ¢ > tp, and hence for every x € X

d(F(x,1), G(x,0)) < % d(F(x, 1), G(x,5)) < %

Then d(G(x,s0), G(x,0)) < ¢ for every ¢ >0. Hence G(x,s9) = G(x,0) for every sp €
R .. This also implies that F and G are asymptotic and hence homotopic. The proof
of the converse statement is left to the reader. ]

The following example shows that 4™ (F) does not necessarily have to be contained
in [F] nor in 4(X,7Y).

ExampLE 1. Consider F,G: {0} x R, — S! given by F(0,7) = (1,0) and

60,1 e if 2k —1<r<2k
1) =
(1,0) rest.

Then F € A" (G) but is not homotopic to G. Moreover, varying slightly F we can also
get F ¢ %(X,Y) with the same properties.

COROLLARY 2. Let F e A(X,Y) satisfy any of the following conditions:

i) AT(F)#,

i) 7p positively asymptotic,

i) 7p positively Poisson stable,

Iv) 7p positively Lagrange stable.
Then [F], has a representative generated by a continuous function from X to Y.

On the other hand, if [F|, has not a representative generated by a continuous function
from X to Y, then mp is positively departing.

THEOREM 7. A positive motion wp is positively Lagrange stable if and only if F is
uniformly continuous.

PrOOF. Suppose that np is positively Lagrange stable but F is not uniformly
continuous. Then there exists ¢ > 0 such that for every n € N there exist (x,, #,), (¥, 1)
€ X x Ry such that d(x,,y,) <1/n, t, <s, < t,+ (1/n) and d(F(x,, 1), F(y,,s:)) > e

By the compactness of y+(F) there exists a sequence {f;,} such that {zn(F, 1)}

converges. Hence given ¢ > 0, there exists ny € N such that d(zn(F, 1. ), n(F, 1)) < ¢/6

n
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for every n > ny, and hence
&
d(F(x, bk, + 1), F(x, tg, +1)) < 3

for every (x,7) € X x [0,1]. Since n(F,t, ) is continuous in X x [0,1], there exists 0 <
0 < 1 such that for every x,y € X with d(x,y) <J and every se R, with 0 <s<J we
have

d(F(x, 1), F(3, 1, +5) < 5.

Therefore, for every n > ny and for every x,y € X with d(x,y) < J and every s € R, with
0 <s<o0 we have

d(F(x,t,), F(y, tr, +5)) < §+§+§ — &

Therefore for every n > ny such that 1/k, <6 we have that d(xx,,yk,) < 1/k, <J and
0 < s, —t, <1/k, <0 and hence

d(F('xkn7 tky,)? F(ykn7skn)) < 87

and this is a contradiction. Hence F is uniformly continuous.

We see now that if F is uniformly continuous then 7y is positively Lagrange stable.
To prove this we are going to show that every sequence in y*(F) has a convergent
subsequence and it suffices to show it for sequences in y*(F), i.e., for sequences of
the kind {n(F,t,)}. Finally by the continuity of x it is enough to consider the case
t, — 0.

Since X is compact there exists a countable dense subset £ of X x R,. By the
compactness of Q there exists {#;,} such that {n(F,#, )} converges pointwise in E (if
E = {(x;,t;)} we take a subsequence {n(F,t!)} pointwise convergent in (xi,¢), this
subsequence has a subsequence {n(F,2)} pointwise convergent in (xi,#;) and (xy,%),
and so on. Then the diagonal subsequence {n(F,?!)} converges pointwise in E).

Moreover, if (x,7) € (X x R;)\E then given ¢ > 0, by the uniform continuity of F,
there exists (y,s) € E such that d(F(x,#, + 1), F(y,t, +5)) < &/3 for every ne N. On
the other hand, there exists ng € N such that d(F(y, &, + ), F(p, t, +5)) < /3 for every
n > ny. Therefore, for every n > ny,

d(F(x, b, + 1), F(x, 1, +1)) < Chiiioe
3 33
Hence for every (x,7) € (X x R.)\E, {F(x,t, + )} is a Cauchy sequence, and since Q
is compact, it is a convergent sequence. Therefore {n(F,1#; )} converges pointwise in
X x R, to a function G: X x R, — Q.

Moreover, for every (x,f) e X x Ry, given ¢ > 0, there exists ny € N such that,
for every n>ny, d(F(x,tx, +1),G(x,1)) <e/2, and there exists n >mny such that
d(F(x,tr, +1),Y) <e/2. Hence d(G(x,t),Y) <eée Therefore G(X x R,) < Y.

We see now that G is uniformly continuous. Given ¢ > 0, there exists é > 0 such
that d(F(x,t),F(y,s))<e/3 for every (x,1),(y,s)e X xR, such that d((x,?),(y,s)) <9.
On the other hand given (x,7), (y,s) there exists no € N such that d(F(x, t, + 1), G(x,1))
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<e¢/3 and d(F(y,t, +5),G(y,s)) <&/3. Therefore, if (x,1),(y,s) € X x Ry are such
that d((x,?),(y,s)) <J, we have

d(G(x, 1), G(y,s)) < §+f+ .

€
3°3
Therefore G is uniformly continuous and, in particular, G e A(X,Y).

Finally we see that {n(F,t,)} converges to G in A(X,Y). Given ¢ >0 take ko
such that

0
4 .
Z e <% where 4= diam(Y).

Since F and G are uniformly continuous, there exists 0 > 0 such that

d(F(x,1), F(y,s)) < g, d(G(x,1),G(y,s)) < %

for every (x,1),(y,s) € X x Ry with d((x,1?),(y,s)) <. On the other hand, there exist
{(xl, ll), cee (X,', lr)} c X x [O,ko] such that X x [O,ko] c Bg(X], ll) u--- UBg(Xr, lr).
Consider ny e N such that d(F(x,#, +1),Y) <e for every (x,7) € X x R, and every
n > ngy, and such that

d(F(xi 1, + 1), G(xi, 1)) < &

67
for every i € {1,...,r} and every n > ng. Then, for every (x,7) € X x [0, ko] there exists
ie{l,...,r} such that (x,7) € Bs(x;,¢;) and hence, for every n > no,
e & & ¢
F e e e_¢t
d(F(x, ty, +1),G(x,1)) < ctete=2

Therefore, taking into account that G(X x R,) < Y, we have that, for every n > ny,

2 SUP(y gy e xx o) (F (X th, + 1), G(x, 1)) ko /2 “ A+e¢
Z 2k < Z T Z 2k <
k=1 k=1 k=ko+1

and

sup |d(F(x,t,, +1),Y) —d(G(x,1),Y)| <e.
XxR,
Then d(n(F,t,),G) <& for every nm>ny, and {n(F,1, )} converges to G in
AX,Y). O
CorOLLARY 3. If Fe A(X,Y) is uniformly continuous, then [F]|, has a repre-

sentative generated by a continuous function from X to Y.

THEOREM 8. Denote by .M the set of non-wandering points. Then M =
C(X xR, Y).

Proor. If Fe.#, then FeJ"(F)c%(XxR,Y). Conversely, if FEG(XxR.,Y),
then Fe [F] NE(X xR, Y)=J"(F). 0

w
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5. Stability and attraction properties.

In this section we are going to study properties concerning stability and attraction
for closed sets. We will use the approach given in [5], where these notions are defined
for closed subsets L in arbitrary metric spaces, in terms of neighborhoods of the kind
B.(L). In other books on dynamical systems these concepts are defined in terms of
arbitrary neighborhoods of L.

Let (M,R,n) be a semidynamical system on a metric space M. A closed subset
L of M is stable if for every xe L and every ¢ > 0 there exists 0 >0 such that
n(Bs(x) x Ry) < B,(L). L is uniformly stable if for every &> 0 there exists 0 >0
such that n(Bs(L) x R;) < B,(L).

If L is a nonempty closed subset of M, the region of weak attraction of L is the set
Ay, (L) of the points x € M such that for every ¢ > 0 and every 7 € R, there exists t > 7
such that n(x,7) € B,(L). The region of attraction of L is the set A(L) of the points
x e M such that for every &> 0 there exists e R, such that n({x} x [t,0)) <
B.(L). The region of strong attraction of L is the set A;(L) of the points x € M such
that for every ¢ > 0 there exist 6 > 0 and 7€ R, such that 7(Bs(x) x [t,00)) < B.(L).

L is a weak attractor, attractor or strong attractor if there exists 6 > 0 such that
B;(L) is contained in A, (L), A(L) or As(L), respectively. L is asymptotically stable if
and only if L is a uniformly stable attractor.

PROPOSITION 2. For every Fe A(X,Y),
Aw([F]w) = A([F]w) = [F]w'

Proor. Take G € 4,([F],) and ¢ > 0. Consider 0 < ¢’ < ¢ such that &¢’-near maps
from X to B.(Y) are homotopic in B.(Y). There exist o € R, and F' € [F],, such that
d(n(G, 1)), F') < ¢'/2 and G(X x[ty, 0)) = B, /»(Y), and hence F'(X x [0,0)) < By(Y).
In particular F'(X x {0}) = B/(Y), G(X x {to}) = Bupo(Y) and d(F'|y, 01, Glysy) <
¢'/2. Therefore F'|y,, and G|y, are homotopic in B,(Y) and hence F’ and
n(G, 1) are also homotopic in B,(Y). On the other hand, there exists 7; € R such that
Glyxin, ) and (G, 10)|xy( o0)> and Fly,p, ) and F'[y ) are homotopic in By(Y).
Hence Fly,(, ) and Gly,p, ) are homotopic in B,(Y). Therefore G e [F], and
Aw([F]w) < [F]w'

In order to prove that [F]| < A([F],), it suffices to observe that if G € [F], then
7({G} x [0, %)) < [F],. 0

COROLLARY 4. Given F e A(X,Y) with [F], # &, then

[, = a([F],) = A(F,) = 4o([F],) = [F],,

where the first inclusion is strict.

Moreover, given a closed subset L of A(X,Y), then [F| < A(L) if and only if
[F]; < L.

Proor. The first part is an immediate consequence of the above proposition. The
fact of the first inclusion being strict is a consequence of Y being a Z-set in Q.
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Moreover if [F], ,N%(X x R;,Y) c L then
[F],N%é(X xR, Y) = A([F],NG(X x R.,Y)) = A(L).

Conversely, suppose that there exists G € [F], N%(X x R;,Y) such that G¢ L. Then
there exists ¢ > 0 such that B,(L)NB,(G) = . Consider H: X x R, — Y given by

G(x, 1) if0<r<l1
H(x,t)={ G(x,n*+n—1) if n<t<n’+n,neN
G(x,t—n>—n) if ®+n<t<(m+1)",neN.

Then He[F],NE(X xR.,Y) but H¢ A(L) since n({H} x [t,0))NB,(G) # & for
every t€ R, and hence n({H} x [t,0)) & B,(L). O

The following example shows, however, that none of the inclusions can be replaced,
in general, by an equality, not even in the case of compacta with trivial shape.

ExaMpLE 2. Consider X =[0,1] and

A
Y = {(x,y) eR’|xe[-1,1]-{0},y= s1n<;> } U ({0} x [—1,1]).
Then [F], = A(X,Y) for every F e A(X,Y) and
a(C(X xR, Y)) #A(C(X xR, Y)) # Au,(6(X xR, Y)) # A(X,Y).
Moreover, none of this regions of attraction is a neighborhood of ¢ (X x R, Y).
Moreover, A(¢(X x R,,Y)) = &.

PROPOSITION 3. Let L be a non empty closed subset of A(X,Y) and F € A(X,Y)
such that F € Ay(L). Then [F],, < A(L).

ProOF. Consider G € [F],, and ¢ > 0. Since F € Ay(L), there exist 6 >0 and t€
R, such that n({F'} x [t,0)) < B,(L) for every F' € Bs(F). On the other hand, since

G € [F],, = ¢(F) (see Theorem 3), there exists G’ € Bs(F) such that n(G,tg) = n(G’, tg)
for some 7 € R;. Therefore G e A(L). O

PrOPOSITION 4. Let L < A(X,Y) be a weak attractor. Then A,(L) is a union of
weak homotopy classes. If moreover L is an attractor then

Lo {[F],|FeA(L)}.

ProoF. Let L be a weak attractor and take F € A,(L). Since 4, (L) is open, there
exists ¢ > 0 such that B,(F) < A,(L). Then given G € [F],, there exists G’ € B,(F) such
that 7(G, t¢) = n(G', ts) for some ¢t € Ry. Hence, since G' € B,(F) < A,(L), then G €

Ay(L).
On the other hand, if L is an attractor and F € A(L), then [F]|, < A(L), and by the
above proposition, [F], < L. ]

Notions of attraction and stability can also be established for positive motions; we
adopt here the definitions given in [33]. Given a semidynamical system (M,R.,7) on a
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metric space M and given x € M, the positive motion 7, is positively Lyapunov stable if
for every & > 0 there exists d > 0 such that d(n(x,?),n(y,t)) < ¢ for every y € Bs(x) and
every t€ R.. =, is uniformly positively Lyapunov stable if for every ¢ > 0 there exists
0 > 0 such that d(n(x,t+7),n(y,t)) < ¢ for every ye Bs(n(x,7)) and every t,7€ R,.
Given x € M, the region of orbital attraction of x, is the set .«/" (x) of the points y € M
such that there exists 7 € R; such that lim, ., d(z(x,t+t),7n(y,t)) =0. =x, is an
orbital attractor if ./ (x) is a neighborhood of y*(x). =, is orbitally asymptotically
stable if 7, is an uniformly positively Lyapunov stable orbital attractor.

PROPOSITION 5. A positive motion ng is orbitally attracted by a positive motion ng if
and only if there exists ty € Ry such that n(F,ty)) and G are asymptotic. Hence

AT (F) =\ a(n(F,1)) = [F],
teR,
where a(n(F,t)) = {G € A(X, Y)|G asymptotic to n(F,t)}. Moreover, if np is an orbital
attractor, then

AT (F)= | a(x(F,1) = [F] = [F],.

teR.

Proor. The first statement is straightforward. In order to prove the second

statement, suppose that .o/ (F) is a neighborhood of y*(F). Then there exists ¢ >0
such that B,(F) = «/"(F). Consider G e[F], Then, given ¢> 0, consider ky such

w*

that
. 4 .
Z e <¢, where 4 =diam(Y),
2k
k=ko+1
and Fly, ) and Gly,y, ) are homotopic in B,,(Y). It is easy to see that then

there exists /1: X x [0,1] — B,p(Y) such that hy = F|y, 1./ = Gly, 4,41y Consider
H:X xR, — Q given by

F(x,1) if ¢ <k
H(x,t) =< h(x,t—ko) if ko<t<ko+1
G(x,1) if kp+1<t

Then H € B,(F) = «/*(F) and hence there exists /€ R, such that H is asymptotic to
n(F,t). On the other hand, since n(H, ko + 1) = n(G, ko + 1), then also G is asymptotic
to n(F,t). Hence Ge o/"(F). Therefore [F|, < .o/"(F) < [F] < [F],. O

PrOPOSITION 6. Consider F € A(X,Y) such that np is positively Lyapunov stable.
Then

[F],=[F]=a(F)={Ge A(X,Y)|G asymptotic to F}.

Proor. Take Ge[F],6 and ¢ > 0. There exists 6 > 0 such that

w

dn(F,t),n(H,t)) <e
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for every H € B5(F) and every t€ R;. On the other hand, since G € [F],, we saw in
the proof of the above proposition that given 6 > 0 there exist H € B;(F)N[F], and
fo € R, such that 7(G, 1) = n(H,1t). Then d(n(F,t),n(G,1)) <&, for every t > 1, and
hence d(F(x,t),G(x,t)) < ¢ for every x € X and every ¢ > f). Therefore F and G are
asymptotic. L]

6. A Lyapunov function in (4(X,Y), R, 7n).

Given a semidynamical system (M,R.,7) on a metric space M, a Lyapunov
function on M is a continuous function ¢: M — R, such that ¢(n(x,t)) < ¢(x) for
every x e M and every 1€ R,.

REMARK 3. The function ¢: A(X,Y) — R, given by
o(F) = max{d(F(x, 1), ¥)| (x,1) e X x R,}

for every F e A(X,Y), is a Lyapunov function in A(X,Y).
Observe that ¢(F) < d(F,4(X x R.,Y)) for every Fe A(X,Y) and that

B,(6(X xR, Y)) = ¢7'([0,¢) = 97 '((0,¢]) = €(X x Ry, B,(Y))

for every &> 0.

7. Equivalence of dynamic properties and shape properties.

Given compact metric spaces X and Y we may consider the Bebutov semidynamical
system in A(X,Y). We have already mentioned that, since every shape morphism is
invariant, it can be considered as a semidynamical system itself. In this section we
present characterizations of shape properties in dynamical terms. The proofs of the
theorems are, in general, simple consequences of the results developed in previous
sections.

THEOREM 9. Given a shape morphism [F| , the following are equivalent:
i) [F], is generated by a map,
i) the semidynamical subsystem restricted to [F], is non-dispersive,

ili) there exists an orbit in [F| not agreeing with its first positive prolongation.

wo

w

Proor. The equivalence of i) and ii) is a direct consequence of [S, Theorem IV.1.8].
To prove that i) implies iii) suppose that [F]  is generated by a map. Then we just
have to take G € [F],, such that G(X x {#,}) ¢ Y for some divergent sequence {#,}
R.. Then G satisfies the required condition. To see that it is always possible to
choose such a G consider f: X — Y generating [F|,. Consider y, ¢ Y (since Y is a
Z-setin Q, Y # Q). Then there exists 4 : X x [0,1] — Q such that Ay(x) = yo for every
x€ X and such that h; = f. Then there exists b€ (0,1] such that ,(X) ¢ Y for
values of 7 € [0,b) arbitrary close to » and such that %, is homotopic to f in Y. We
define G(x,t) = h(x,bt/(1 +1)).

Conversely if an orbit y*(G) in [F],, doesn’t agree with its first positive prolongation
then J*(G) # & and the result follows. O

The following result is a consequence of Theorems 8 and 9.
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THEOREM 10. Let X be a compact metric space. The following are equivalent:

1) X has trivial shape.

i) The set of non-wandering points of A(X,X) is contained in a connected
component of A(X,X).

iii) The set of Lagrange stable motions of A(X,X) is contained in a connected
component of A(X,X).

Proor. If X has trivial shape then every pair of morphisms from X to X are
homotopic, hence 4(X,X) is connected and this implies ii) and iii). Since the set of
non-wandering points of A(X, X) agrees with (X x R,, X), ii) implies that the identity
map is in the same connected component that, and hence is weakly homotopic to, any
constant map. Therefore ii) implies i). Finally, since the identity map and any
constant map are both uniformly continuous, iii) implies that they have to be weakly
homotopic. Therefore iii) implies that X has trivial shape too. ]

If X = X', we can consider the Bebutov semidynamical systems defined in 4(X,Y)
and in A(X',Y). Given Fe A(X,Y) and G e A(X',Y), we say that the orbit through
F is the restriction of the orbit through G if n(F,t) = n(G,¢) for every ¢, when the latter
is restricted to X. This is equivalent to G|y, = F. We say that a Bebutov system
A(X,Y) is prolongable if for every X’ containing X, there exists a neighborhood W of
X in X’ such that every orbit in A(X,Y) is the restriction of an orbit in A(W,Y).

THEOREM 11. Let X be a metric space. Then X is shape dominated by a polyhedron
if and only if A(X,X) is prolongable.

PrOOF. Is a consequence of the fact that X is shape dominated by a polyhedron if
and only if X is a FANR (see [8, p. 350]), and this is equivalent to X having a
neighborhood U in X’ such that X is a shape retract of U. OJ

THEOREM 12. Let X be a compact metric space shape dominated by a polyhedron.
The following are equivalent:

i) X is an internal FANR.

i)  Every shape morphism from an arbitrary compactum Z to X is generated by a
map (from Z to X).

iii) Every connected component of A(Z,X) contains a Lagrange stable orbit, for any
compactum Z.

iv)  Every connected component of A(Z,X) contains a non-wandering orbit, for any
compactum Z.

Proor. The implication i) = ii) was proved in [II]. Conversely, if X is a FANR
such that every shape morphism from an arbitrary compactum Z to X is generated by a
continuous map, then X is internally movable and hence (see [22]) an internal
FANR. The rest of the equivalences are consequences of the fact that shape mor-
phisms from Z to X can be identified with the connected components of A(Z, X) and
the results in the previous sections. ]

The following result relates shape notions with attraction properties in A(X, Y).
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THEOREM 13. Let X be a compact metric space. Then the following are equivalent:

1) X has trivial shape.

i)  There exists a connected attractor in A(X,X), and every attractor contains the
set €(X xR, X).

i) There exists a connected attractor in A(X,X) containing a periodic orbit, and
every attractor containing a periodic orbit contains all periodic orbits.

Proor. If X has trivial shape then A(X,X) is a connected attractor containing
(X x R.,X). Moreover, any attractor must contain some approximative map F and
then, by proposition 4, it contains [F|’ = (X x Ry, X). Therefore i) implies ii).

Obviously ii) implies iii). Suppose now that iii) is satisfied. Then there exists a
connected attractor L in A(X,X) containing a periodic orbit. Since L is connected,
there exists F € A(X, X) such that L c [F],. Then iii) implies that also every periodic
orbit is contained in [F],, and, since the periodic orbits are dense in (X x R, X), then
(X xRy,X) c[F],. Therefore the set of non-wandering points is contained in a
connected component of 4(X,X) and the result follows from [Theorem 12 O

The necessary conditions for an orbit to be an orbital attractor or Lyapunov Stable
stated in Section 5 are really strong conditions. In fact we have the following result.

THEOREM 14. Let X be a continuum and Y a compact metric space. Then
i)  Every orbit in A(X,Y) is an orbital attractor if and only if Y is finite.
i) Every orbit in A(X,Y) is Lyapunov stable if and only if Y is O-dimensional.

ProorF. We only prove ii), leaving i) to the reader. Suppose that Y is O-
dimensional. Then it is totally disconnected. Let F be an approximative map from X
to Y and consider ¢ > 0. There exist {U;, Ua,..., U,} pairwise disjoint open and closed
subsets of Y with diameter less than &/5, such that ¥ = U U --- UU,. There exists
0 <0 <e/5 such that d(U;, U;) > 50 for every i # j. Then Bs(Y)= Bs(U;)U---U
Bs(U,), union of open balls in Q with d(Bs(U;), Bs(U;)) > 30. Consider now ko € N
such that F(x,t) € Bs(Y) for every x € X and every ¢ > ky. Then there exists iy such
that F(x,t) € Bs(U;,) for every x € X and every ¢ > ko. Let G be any approximative
map with d(F,G) < d/2%. Then d(F(x,1),G(x,t)) <6 for every x € X and every <
ko. On the other hand |d(F(x,1),Y) —d(G(x,t),Y)| <o for every x € X and every t €
R, and since F(x,t) € Bs(U,,), this implies that G(x,?) € Bys(U;,) for every x € X and
every t > ko. Then it is easy to see that d(F(x, 1), G(x,t)) < ¢ for every x € X and every
te R.. Therefore, d(n(F,t),n(G,t)) <e for every te R,. Hence my is Lyapunov
stable.

Conversely, since every two constant approximative maps with image in the same
connected component are homotopic, it follows from that if every orbit in
A(X,Y) is Lyapunov stable then all connected components must be points. Hence Y
has to be totally disconnected. ]
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