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Abstract. We give a symplectic description of the fiber space for each J-th Painlevé
system (J = V,IV,IIL, 1) which was constructed by K. Okamoto. Hamiltonian function
in every chart is a polynomial of the canonical coordinates.

§0. Introduction.

This is the second part of the series of our papers. In the preceding paper ([11]), we
studied a Hamiltonian structure of the sixth Painlevé system (Hyj) equivalent to the
sixth Painlevé equation Py;. More precisely, we gave a description of the fiber space
Ev for the sixth Painlevé system constructed by K. Okamoto ([7]) so that each fiber
Evi(?) has a symplectic structure and proved that there exists no other Hamiltonian
system holomorphic on the whole space Ey; than the sixth Painlevé system. In this
paper, we continue the study for other Painlevé systems, namely, we obtain a symplectic
description of the fiber space E; for each J =V, IV, III, II. The uniqueness of
holomorphic Hamiltonian systems on each E; will be proved in the next part ([12]).
We have not yet completed the study for the first Painlevé system because it has some
difficulty to obtain a symplectic description of Ej.

Painlevé equations P, are the equations given by
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Pr: :2x3+tx+oc,

d*x

dr?

d2
Pr: —x = 6X2 + 1,

dr?
where x and ¢ are complex variables, o, 8, 7, and ¢ are complex constants ([4]). It is
known that each P; is equivalent to a Hamiltonian system (Hy) : dx/dt = 0H;/dy, dy/dt
= —0H; /dx, where

Hua,3,0) = g b= 1) = )32 = {ioo = D(x =)

+rix(x— 1)+ (K, — Dx(x — D)}y +r(x —1)]
1

K :=—[(ro+ K1+ K — 1)2 — KOOZ]>,

(e = 1) 9 = {ro(x = 1) + xex(x — 1) = gax}y + we(x = 1)]

Hyv(x, y,1) = 2xy* — {x* 4+ 2tx 4 20}y + K0 X,

1
Hy(x, y,t) = ; [2x2y2 — {27700tx2 + (2xo + D)x =29t} y + 11, (160 + o0 ) 2x],

1 t 1
Hy(x, y, 1) :Eyz — <x2 +§>J’— (OH'E)X,

1
Hi(x, y,t) = Eyz —2x% — 1.

Here the relations between the constants in the equations P; and the Hamiltonians H;,
are given by

o ==K, ﬁ—EKO, y—zlc, 0==K
for J = VI,
w=K2/2, p=-w3/2 y=-n(l+r), &=-n/2
for J =V,
o= —Ko+ 2K, + 1, ﬂ:—ZKS
for J =1V, and

0= —dn ke, B=dng(o+1), y=4nt, 0= —dn

for J =111 ([4], [8]). The equivalence of P, and (H;) means that if we eliminate the
variable y in (H;) then we obtain P,. We notice that each Hamiltonian H, is a
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polynomial of x and y of which the coefficients are rational functions of ¢ holomorphic
in B; where

Byy=C—-{0,1}, By=Bm=C-{0}, By=Bu=B=C.

The most important property of (H;) (or Py) is the so called Painlevé property
which is stated as: if (x(¢), y(¢)) is a local solution of (H;) determined by an arbitrary
initial condition x(ty) = xo € C, y(ty) = y, € C with ty € By then both x(t) and y(t) can be
meromorphically continued along any curve in By with a starting point t.

Let 25 = (C2 X By,my,By) be a trivial fiber space over B;. Then the system (Hj)
determines a complex 1-dimensional nonsingular foliation such that every leaf passing
through a point in C? x #(t € By) is transversal to the fiber C*> x . But this foliation is
not uniform, namely, for a point (xo, y,,%) € C 2 x By and a curve / in By with a starting
point 79, / may not be lifted to a leaf in C* x B, through the point (xo, y,, ) because
x(t) or y(t) may have poles on / where (x(¢), y(¢)) is the solution of (H,) with (x(#y),
¥(t0)) = (X0, ¥o)-

In the paper [7], K. Okamoto constructed a fiber space #; = (Ej, n;, By) such that

(i) Z; contains 2; as a fiber subspace,

(ii) the system (Hj) of differential equations in C? x By is holomorphically
extended to a system in E; and it determines a uniform foliation on %,

(iif) every leaf in E; intersects with the total space of 2;.

He named each fiber E;(t) = n;~'(¢) a space of initial conditions of (Hy), since there
exists a bijection from it to the set of all solutions of (H;). We can imagine the space
E; by virtue of the following fact: for any simply connected domain U in By, ;=" (U)
is, as a set, a disjoint union of all the extended trajectories determined by (H,). Each
fiber E;(t) is constructed as follows. We first take a compactification X, (the so called
Hirzeburch surface) of C? where ¢ is a certain constant depending on the constants
in H;. Next we make finite number of quadric transformations to X, x ¢ and get
E;(r). Lastly we obtain E;(f) by removing some divisors which consist of vertical
leaves and inaccessible singular points. Here, a wvertical leaf is a leaf contained in a
fiber, and an inaccessible singular point is a singular point of the foliation through which
no solution of (Hj) passes.

The object of this paper is to introduce certain local coordinate systems of each
space E; (J = V,IV,IILII) so that (1°) every fiber E;(¢) has a symplectic structure
and (2°) in each chart of E;, the original Hamiltonian system (H;) is written as a
Hamiltonian system with a Hamiltonian function which is a polynomial of the canonical
coordinates.

In Section 1, we state our results in five theorems. We also cite a result in the
preceding paper which corresponds to those of this paper. In the following
sections, we prove these theorems except the last theorem because it can be verified
by simple calculations. In case J = VI, we could easily obtain canonical coordinate
systems by composing standard coordinate systems of quadric transformations ([11]).
However, in the other cases, we have to make a certain device, namely, we have to
insert a change of variables as [(2.9), [(3.6), (4.3) or (5.5) in order to make transition
functions symplectic.
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§1. Main results.

In order to state our results, we explain a definition and a property of a symplectic
mapping. Let ¢:x=x(X,Y,?), y=yp(X,Y,t), t=1t be a biholomorphic mapping
from a domain D in C*> (X, Y,r) into C*>(x,y,7). We say that ¢ is symplectic, if
for every t = 19, ¢,, = ¢|,_,, is a symplectic mapping from D, = D|._, to ¢#(D,,), namely,
if

dy ndx=dY A dX

for every fixed t =1). Let ¢ be a symplectic mapping as above. Then any Hamil-
tonian system dx/dt = 0H /0y, dy/dt = —0H /0x defined in ¢(D) is transformed to
dX/dt=0K/0Y, dY/dt = —0K/0X in D where K =K(X,Y,t) is a function in D
satisfying

(1.1) dy Ndx —dH A dt =dY A dX —dK A dt.

We note that the Hamiltonian function K = K (X, Y, ) is uniquely determined modulo
functions independent of X and Y.
Then the first assertion of this paper is stated as

THEOREM 1. The space Evy for the fifth Painlevé system (Hy) is obtained by glueing
five copies of C* x By:

V(00) x By = C* x By 3 (x, y,1) = (x(00), ¥(00), ),
V(000) x By = C? x By 3 (x(00), y(00), 1),
V(100) x By = C* x By 5 (x(1o0), y(10), 1),
V(200+) x By = C? x By 3 (x(000+), y(500+), 1),
V(000—) x By = C* x By 3 (x(00—), y(000-), )
via the following symplectic transformations
(1.2) x(00) = y(000)(xo — x(000) p(0c0)),  ¥(00) = 1/y(0c0),

nt K[‘I‘l

(1.3) x(00) = 1 + x(1o0), y(OO):—x(loo)2 0]

+ y(loo),

(1.4) x(00) = 1/x(00+), p(00) = x(000+)(e(+) — x(c00+) y(00+)),
(1.5)  x(000+) = y(00—) (e — x(00—)y(000-)), y(00+) =1/y(o00-)
where

(1.6) By =C— {0},

(1.7) e(+) = (ko + K +5x5)/2,

and V(00) x By is the original space in which the Hamiltonian function Hvy(x, y,t) is
defined.
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THEOREM 2. The space Ery for the fourth Painlevé system (Hyy) is obtained by
glueing four copies of C* x Byy:

V(00) x Biv = C* x Biy 3 (x, y,1) = (x(00), (00), 1),
V(000) x Bry = C* x Bry 3 (x(0c0), y(000), 1),
V(200) x Bry = C* x Bry 3 (x(00), y(200), 1),
V(o0o0) x By = C* x Biy 3 (x(0000), p(000), 1)
via the following symplectic transformations
(1.8) x(00) = y(0o0)(wo — x(000) p(0c0)),  ¥(00) = 1/y(0c0),
(1.9) x(00) = 1/x(200),  ¥(00) = x(c00)(xs — x(200) y(00)),

x(000) = x(c000),

(1.10) 1/2 t 2o, — Ko + 1
00) = — — 4+ == + y(c00
y(0) x(oooo)3 x(oooo)2 x(o00) 7 )
where
(1.11) By = C,

and V(00) x Byy is the original space in which the Hamiltonian function Hyy(x, y,t) is
defined.

THEOREM 3. The space Emnp for the third Painlevé system (Hy) is obtained by
glueing four copies of C* x Bu:

V(00) x By = C? X By 3 (x, y, 1) = (x(00), y(00), 1),
V(0o0) x By = C? x By 3 (x(0c0), y(000), 1),
V(00) x By = C? x By 3 (x(000), y(000), 2),
V(oon,,1) x B = C* x B 3 (x(c0n,,1), y(00n,,1), 1),
via the following symplectic transformations

K0+1

ot
(1.12) x(00) = x(000),  (00) = —x(ozo)z ~(0) + y(00),
(1.13) x(00) = 1/x(00), »(00) = x(c00)(e — x(000)y(00)),
”w[ Koo

(L14)  x(o00) = x(oom, 1), p(o00) = -

+ + y(oon ¢
x(oon 1) x(oon,t) (0m:1)
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where
(115) BHIZC—{O},
(1.16) e= (Ko +xy)/2,

and V(00) x By is the original space in which the Hamiltonian function Hyy(x, y,t) is
defined.

THEOREM 4. The space Ey for the second Painlevé system (Hy) is obtained by
glueing three copies of C* x By

V(00) x By = C* x By 3 (x, v, 1) = (x(00), y(00), 1),
V(000) x By = C? x By 3 (x(200), y(000), 1),
V(00o0) X By = C* x By 3 (x(c00), p(0000), 1)

via the following symplectic transformations

(1.17) x(00) = 1/x(00), »(00) = x(00)(e — x(000)y(00)),
x(000) = x(c00),
(1.18) B 2 t 20
$(00) = _x(oooo)4 - x(oooo)2 B x(0000) (0w
where
(1.19) By =C,
(120) 8:_06_%7

and V(00) x By is the original space in which the Hamiltonian function Hy(x, y,t) is
defined.

The second assertion of this paper is

THEOREM 5. For every J =V, IV, Ill, 1I, the Hamiltonian function Hj(x) =
Hj(%;x(x), y(x),t) in every chart V(x) x By is a polynomial of x(x) and y(x) of which the
coefficients are rational functions of t holomorphic in Bj.

For the reader’s convenience, we cite here a result in corresponding the above
theorems: The space Evy is obtained by glueing six copies of C* x By via the following
symplectic transformations

x(00) = p(0o0)(rxo — x(00) y(000)),  ¥(00) = 1/y(00),
x(00) = 1+ y(loo)(ry — x(1o0) y(100)),  ¥(00) = 1/y(To0),
x(00) = ¢+ y(10)(r; — x(to0) y(1e0)),  y(00) = 1/ p(10),
x(00) = 1/x(c00+),  y(00) = x(200+)(&(+) — x(00+) y(c00+)),

xX(000+4) = y(000—)(xe, — x(000=)y(00=)),  y(000+) = 1/y(c00-),
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where &(+) = (ko + K1 + Kk, — 1 +Ky)/2. Moreover, the Hamiltonian function in each
chart is a function of a polynomial of the coordinates of which the coefficients are rational
functions of t holomorphic in Byy.

§2. Proof of THEOREM 1.

In the following sections, we prove THEOREMs from 1 to 4 by reviewing the
construction of each fiber E;(¢) (te By,J =V,...,1I) ([7]) and by suitably choosing
local canonical coordinate systems.

For every J, we begin our study with a minimal compactification =, of C? obtained
by glueing four U; = C? (xi1,v;),i=0,1,2,3, via the following identifications:

(2.1) Xo=x1, yo=1/y,
(2.2) xo=1/x2,  yo=x2(e—x2),),
(2.3) X =x3, ¥ =1/y3

where ¢ is a complex constant. This manifold is known as Hirzeburch surface, which is
isomorphic to P! x P! if ¢ # 0, and to a compactification of the cotangent bundle over
P! if ¢=0. We consider each U; or U; x By as a chart of 2, or X, x By respectively.
Note that y; =0 in U; corresponds to y; =0 in U; because

xi=1/x3,  y = y3/[xseys —x3)].
In the present case where J =V, we take the constant ¢ as ¢ = ¢(+) given by |(1.7):

&= (Ko+ K +1x5)/2.

2.1. We extend the system (Hy) defined in Uy x By 3 (xo, o, t) = (x, y,1) to a
Pfaffian system defined in the whole space X, x By and we observe the foliation of
2. X By defined by the Pfaffian system. We see that, in U; x By,i = 0,2, the foliation
has no singular points and every leaf is transversal with fibers. However, in U; x By,
i = 1,3, the foliation has both singular points and vertical leaves. Recall that a vertical
leaf is, by definition, a leaf contained in a fiber. Set

DO(1) = (U (y; =0) x 1) U(Us(y3 =0) x 1) = P!,
a\(/O)(t) = {(xlvylvt) = (V,O, Z)}a v=0,1,

a\(;O)(t) = {<X3,y3,l) = (0707 t)}v V=00,

where Uj(y; = 0) denotes the set {(x;, ;) € U;|y; =0}. Then DO(z) — ) {a\” (1)} is

a vertical leaf and the three points ago)(l),v =0,1,00 are the singular points of the

foliation, which is verified, for example, by

dy_ [Bxf —2xi + 14+ 0(p)ly,  dr _ 1y

dx 2x1(x1—1)2+0(y1) T dx _2x1(x1 —1)2—1—0()/1)

where O(y,) denotes a polynomial of xj, y,,¢ with a factor y,. In the following, O(r)
always denotes a polynomial of some three variables which has a factor r and
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the superscript (k) of a letter indicates that it is concerned with a k-th quadric
transformation.

2.2. Quadric transformations with centers ago)(t) and agl)(t) for arbitrarily fixed

te By and v=0,00. In order to completely separate the leaves passing through the
point ago)(l), we make quadric transformations two times successively. We denote the
quadric transformation with center a by Q,.

2.2.1. The first quadric transformation w1th center a(vo)(t). Let (25 TS ) e C? and

(Zgl),W(l))eC2 be coordinate systems of V () Q(O) (U1 xt) for v=0 or of

V() = 0,0, (Us x 1) for v= oo defined by
xi=zy, y=zpmy,
(2.4)

w = 20wy = )

for v=20, or

(2.5)
X3 = Z(ll) W@, Yy = w

for v= oo, then the exceptional curve is given by
D) = Qagm(,) (@ (1)
= {00120 = 0 UL, W, WY = 0)

and our system is written as

daw _ (1+ow)w  dt tW
dZ  Z—wx,+0W) dZ Z—K,+ O(W)

with (Z, W) = (z&”, Wv(l)) in a neighborhood of D! ()— {W =0}, or

dz | dw 1
dl l[2-|—0()-|—0(w)], z—:;[—l-l—O(z)-l-O(w)]

dt
with (z,w) = (zgl),wgl)) in a neighborhood of (zsl),wsl), t) =(0,0,7). Therefore, we see
that

(1) ={(Z}", WiV, 1) = (x,,0,0)} € DV(1),
BV (1) = {(z",wil, 1) = (0,0,1)} € DV (1) N D (1)

are singular points of the foliation and Dsl)(t) — {agl)(l), bil)(t)} is a vertical leaf. Here
we also denote by the D) (¢) the proper image of D(¢) by the above quadric
transformations. The similar convention is made throughout the paper. We see
moreover that the point bgl)(l) is a singular point through which no solution of
(Hy) passes by virtue of Painlevé property and the above form of the system near

(zgl),wsl),l) = (0,0,7). We call such a singular point an inaccessible singular point.
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222 The second quadric transformation with center a&l)(t). Let (z$ )7Wv ) e C?
and (Zy ), Wv(z)) e C? be coordinate systems of Véz)(t) = Qamm(Vél)( 1)) for v=0 or of
Vg)(t) = Qa<1>(,)(V§ol)(t)) for v= oo defined by ’

Z0 ey 120, W — 0@
(2.6)

then
DY (1) = Q0 (@ (1) = {z) = 0} U{W? =0}.
We can verify that the Pfaffian system is written as
tdz\?) — P,(z? W 1)dt =0,

aw'® — 0,(ZP, w? 1)dt =0
in the coordinates Zﬁz), Wv( and ¢t where P,, Q, are certain polynomials of Zﬁz), Wv(z)
and 7. This means that the foliation has no singular points in (252), Wv(z),l)-space
C? x By and every leaf in the space is transversal with fibers. On the other hand, the
point (zg ) w1 1) =(0,0,7) is not a singular point of the foliation and the leaf which

passes the point is the vertical leaf D' ( ) — {b ( )}, because our system is written as

2)

dw W da
dz 1+0(w)" dz 1+ 0(w)

with (z,w) = (27, w!?) in a neighborhood of (/% w®, ) = (0,0,1).

2.3. Quadric transformations with centers ago)(t), . ,a@(l) for arbitrarily fixed /¢
By. In order to separate the leaves passing through the point a§° (1), we make quadric
transformations four times successively.

2.3.1. The first quadric transformation w1th center ago)(t). Let (zg ), wg ) e C? and
(Zgl), Wl(l)) e C? be coordinate systems of V () Q0 o (U1 X t) defined by

xp =1 +Z§1), V= 251)W§1)7

(2.7)
x=1+z2"w"  y =wl,

then
1 0 1 1
DV(0) = 0,0, (@ (1) = {=" = 0} U W} = 0},
and our system is expressed as

dz _ (0(z)+O(w))z dt 1z
dw~ (—qw+ 02w’ dw  —nqtw+ O(z)
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in a neighborhood of Dgl)(t) = {zgl) =0} where (z,w) = <Z§1)7W(11)), or

dw _— ow)w  dt W
dZ nqt+0(W)' dZ nt+ O(W)’

in a neighborhood of (Z b Wl(1 ,1) =(0,0,7) where (Z, W) = (Z;l), Wl(l)). Hence we
see that the point

1 1 1 1 0
a1y = {2, 1) = (0,0,0)} e DV (1) N D (1)

is a singular point and D () {a1 (1)} is a vertical leaf.
2.3.2. The second quadrlc transformation w1th center agl)(t). Let (zgz),w1 ) e C?
and (Z (2), Wl(2 ) € C* be coordinate systems of V )( 1) = Qa(l)(t)( ()( t)) defined by
1

Zgl) _ 252), ng) _ Z§2)W§2)’

(2.8)

then

and our system is written as

& (0()+0(z) + O(w):  di iz
dw  (=2=2ntw+0())w * dw —2—2ntw+ O(z)

with (z,w) = (zgz),wgz)) in a neighborhood of Dgz)(t) = {zgz) =0}, or

dz 1 dw 1
W= -2+ 0(z) + O(w)], 2= ;[—2 + O(z) + O(w)]

in a neighborhood of (zgz),wgz),t) =(0,0,17), or

W“;—f :;[2m+ 0(Z) + 0(W)), z‘;—f/ :%[—2m+ 0(Z) + O(W))

with (Z, W) = (Zgz), W1(2)> in a neighborhood of <Z§2)7 Wl(z), 1) =(0,0,7). Therefore we
see that the points

d? (1) = {2, w0 = (0,-1/(n1), 1)} € DX (1),
B2 () = {7, W, 1) = (0,0,0)} e DP (1) n DO (1),
b)) = {27, WP, 1) = (0,0,0} e D (1) N DV (1)

are smgular points, blo() and b(lzozj(t) are inaccessible singular points, and Dgz)(t)—
(@), (1), (1)} is a vertical leaf.
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2.3.3. The third quadric transformation with center agz)(t). Here we insert a change

of variables
(2.9) Zgz) = 252)’ Wgz) = l/vgz),

namely, a change of local coordinates near the point agz)(t). The change of variables is
necessary for makmg transition functions in a description of Ey symplectic.
Let (z@,w1 )e C? and (253), Wl(3)) e C* be coordinate systems of V1(3)(l) =

Qa52>(f)( 1 ()) defined by

Zgz) = 253), ng) = —nt+ 253)W53),
(2.10)

2D 2O O~ ey ),

then
D(1) == Q 0, (@ (1) = £z = 0} U W)Y = 0}

We see that our system is expressed as

dz (—nt+ O(2))z dr tz
dw 2nt((ki+ 1) —w)+ 0(z)" dw  2nt((kc, + 1) —w) + O(z)

in a neighborhood of Di(1) = {z” = 0} where (z,w) = (", "), or

W”;—f :%[m+ 0(Z) + O(W)), z‘%/ - %[—2m+ 0(Z) + O(W))

in a neighborhood of (253), W1(3), t) =(0,0,¢) where(Z, W) = (253), Wl(3)). Therefore,

a1ty = {0 w0 = (0, + 1,00} e DY(1),

b (1) = {2, WP 1) = (0,0,0} e DY (1) n DP (1)

are singular points, b(13)(t) is an inaccessible singular point, and D(13)(t) — {a§3) (1), b§3) (1)}
1s a vertical leaf.
2.3.4. The fourth quadric transformation w1th center a?)(t). Let (z§4) ,w1 )e C?
and (Z 4), Wl( )) e C? be coordinate systems of V () 0. o) ( 28 (1)) defined by
92w = o 1) 4 O
(2.11)
253) = Z§4) W1(4), w§3) =(rc,+1)+ W1(4).

We can verify that the Pfaffian system is written as
tdzg Pl(zg4),w1 1) dt =0,

taw'® — 01 Wi ndr =0
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in the coordinates 2(14), w§4), and ¢ where P, Q) are certain polynomials of 254), w§4) and

t. This means that the foliation has no singular points in (254),w§4), t)-space C 2 x By
and every leaf in the space is transversal with fibers. On the other hand,we can verify

that

az  Z0(Z) dr tZ
aw — —nt+0(Z2)" dW  —nt+ O0(Z)

in a neighborhood of (Z§4), W1(4), t) = (0,0,¢) where (Z, W) = (254), W1(4)), which shows
that the point (254), 1(4), t) = (0,0,¢) is not a singular point of the foliation and the leaf
which passes the point is the vertical leaf D§3)(t) - {bgs)(t)}.

2.4. The space Ey. Denote by @, the composition of all the above eight quadric
transformations. Then the space constructed by K. Okamoto ([7]) is the space defined

Ev= ) Ev(t) x 1,

te By

=0, o0 k=1,2,3

We can verify that the extended system of (Hy) defines a uniform foliation on Ey.
By following the above procedure, we see that Ey is a 3-dimensional complex
manifold obtained by glueing

{(x0,y0.1) € C* x By}, {(x2,1,1) € C* x By},

{(ZP, WP, 1) e C* x By}, v=0,,

(Y Wi 1) e C? x By}
via the coordinate transformations [2.1}-(2.11). It is easy to see that
dyy A dxg = dyy A dxs,
dyy A dxy = —dW A dZ$), dyy Aodxg = —aW® A dz?),
dyo A dxg = dw§4) A dz(14).
Therefore, by choosing new coordinate systems as
(x(00), ¥(00)) = (x0, ¥),
(x(0%0), y(020)) = (=2, Wi),  (x(1o0), y(10) = (=4, wi?),

(x(0004), p(000+)) = (x2,35),  (x(000=), p(000-)) = (=2, W),

we obtain a description of Ey given in THEOREM 1. Thus we have proved THEOREM 1.
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Figure 1. J=V

§3. Proof of THEOREM 2.

In the following sections, we only give the exact forms of our transformations,
because the verification of the transformations is the same as that in the preceding
section, §2.

In the case of J =1V, we take ¢ for X, as ¢ = x.

3.1. Extend the system (Hpy) defined in Uy x By 2 (xo, o, t) = (x,,7) to a
Pfaffian system defined in the whole space X, x Bry. Then, in U; x Byy,i =0,2, the
foliation defined by the Pfaffian system has no singular points and every leaf is
transversal with fibers, however, in U; x Byy,i = 1,3, the foliation has both singular
points and vertical leaves. We see that, for any fixed z € By;, DO(¢) — Uv{ago)(t)} is a
vertical leaf and the two points a&o)(t),v = (0,00 are singular points of the foliation,
where

DO(t) = (U(y; =0) x ) U (Us(y; =0) x 1) = P',

a(()O)(l> = {(xlaylvl) = (0707 t)}7 a(c(c))([> = {(X3,y3,l) = (0707 [)}

3.2. Quadric transformations with centers a(()o)(t) and a(()l)(t) for any fixed 7 € Byy.
In order to separate the leaves passing through the point a(()o)(t), we make quadric
transformations two times successively.
3.2.1. The first quadric transformation with center a(()o)(t). Let
a=dl =)
(3.1)
xi=2' gy =,
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then

DY(1) = 0,0, (ag” (1) = {4 = 0} U " = 0},
the points

ay (1) = (2", Wy", 1) = (0,0,1)} € D (1),

By (1) = {(z w(, 1) = (0,0,0)} e DO (5) N DY (1)

are singular points of the foliation, D(()l)(t) — {a(()l)(t), b(()l)(t)} is a vertical leaf, and b(()l)(t)
1s an inaccessible singular point.
3.2.2. The second quadric transformation with center a(()l)(t). Let

Z0 = xp+ 22, W =200,
(3.2)
Z(()l) — K JrZ(()z) Wéz), Wél) _ W(EZ),

then
2 1 2 2
D (1) = Q0 (a (1)) = {2 = 0} U {W” = 0}

We see that, in the (Z(()z), Wéz),t)-space C? x By, the Pfaffian system has no singular
points, every leaf is transversal with the fibers, and the point (z(()z), w(()z), t) = (0,0,¢) is not

a singular point of the foliation and the leaf which passes it is the vertical leaf D(()l)(t) -
GO

3.3. Quadric transformations with centers agg)(t), e ,ag)(t) for any fixed ¢ € Byy.
To separate the leaves passing through the point a?.?(z), we make quadric trans-
formations six times successively.

3.3.1. The first quadric transformation with center agg)(t). Let

X3 = zg), V3= z(oé)w(l),

(3.3) %
X3 = Zgé) Wg), Yy = WS)»
then
D(1) := Qo (@D (1)) = {1 = 0} U {w ) =0},
the point

d) (1) = {(2%) . W), 1) = (0,0,)} e DV (1)
is a singular point of the foliation, and Dg)(t) - {ag)(t)} is a vertical leaf.
3.3.2. The second quadric transformation with center a})(r). Let

A @) 0),0)

(3.4)
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then
D) i= 00 (@l (1) = () =0} U (W) =0},
the points

a2 (1) = {(=5,w®,1) = (0,0,)} e DD (1),

o) 'y Weo

b (1) = {22, W 1) =(0,0,1)} e DV (1) N DD (1)

0 ) o0
are singular points of the foliation, the point b(o?(t) is an inaccessible singular point, and
Dg)(t) - {a(o?(t),b(o?(t)} is a vertical leaf.
3.3.3. The third quadric transformation with center a(é)(t). Let

2=, Wl =),
(3.5)
z(é) — Zg) Wg), W(o<2;) _ WS),
then
D) = 0, (@2 (1) = {2 = 0} U (WD =0},
We see that

() = {90, 1) = (0,2, e DY (1),

o0 Y o0 )

BN = {20, w0 = (0,0,0)} e DV (1) N DS (1),

0

b3 (1) ={(Z9, WD 1) = (0,0,0)} e DA(1)yn DI (1)

o0

are singular points of the foliation, the points b(oi)o@ and bg)oo(t) are inaccesssible
singular points, and Dg)(t) - {ag)(t),b(;)o(t),bg)oo(t)} is a vertical leaf.
3.34. The fourth quadric transformation with center a(oi)(t). Here we make a

change of coordinate systems near the point ag)(t) given by

(3.6) 23 =207 w® = 1/0)
Let

B By S M)
(3.7)

0 Z 2@ )y ),
then

D (1) = Qo () (1)) = (1) = 0y U {W) = 0},

the points
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are singular points of the foliation, bg)(t) is an inaccessible singular point, and Dgi)(t) -
{a(oi)(t),bg)(t)} is a vertical leaf.
3.3.5. The fifth quadric transformation with center ag)(t). Let

A9 =29, W = ),
(3.8)
A Z ZO WO W = ),
then
DI(1) = Qo (@(1)) = =9 = 0y U (D =0},
the points

a>(0) = {9 wd 1) = (0,1 — ko + 2K, 1)} € DD (1),

0] 7700

b0y ={(zD, W), 1) = (0,0,0} e DY (1) N DY) (1)

oo )

are singular points of the foliation, b(og)(t) is an inaccessible singular point, and D(Cg)(t) -
{a(og)(t),bg)(t)} is a vertical leaf.
3.3.6. The sixth quadric transformation with center a(og)(t). Let

20 =20 WO = (1 — kg + 2i00) + 29w,
(3.9)
29 = ZOw® WO = (1 — g+ 2x,0) + WO,

o0

then

We can verify that our system has no singular points and every leaf is transversal
with the fibers in (z(cg),wgg),t)-space C? x By, moreover, the point (ZES), Wc(g),l) =
(0,0,1) is not a singular point of the foliation and the leaf which passes it is the vertical
leaf DY) (1) — {b) (1)},

3.4. The space Eyy. Denote by @, the composition of all the above eight quadric
transformations. Then the space constructed by K. Okamoto is the space defined by

Ewy = U Elv(l) Xt

te By

where

Ew(t) = En (1) — D) UD (1) DI (1), En(t) = (%, x 1).
1<k<5

By the above procedure, we see that Epy is a 3-dimensional complex manifold
obtained by glueing

{(X(), Yos Z) € C2 X BIV}7 {(x27 Y2, l) € C2 X BIV}7

{(ZP w1y e € x By}, {(z29

o)

ng),l) € C2 X BIV}
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Figure 2. J =1V

via the coordinate transformations (3.1)—(3.9), and

dyo A dxg = dyy A dxy, dyo A dxg = —dW AdZY,  dys A dxy = dw'® A d29).

Therefore, by choosing new coordinate systems as
(x(00), »(00)) = (xo, p),  (x(000), y(020)) = (2", W),

(x(200), (00)) = (x2,3,),  (x(000), p(o000)) = (=5, W),

we obtain an expression of Epy given in THEOREM 2, which completes the proof of the
theorem.

§4. Proof of THEOREM 3.

In the case of J =1II, we take ¢ for X, as [1.16).
4.1. For any fixed ¢ € By, our extended Pfaffian system has two singular points
a\(1),v=0,00 and a vertical leaf DO (¢) — Uv{a(vo)(t)} on a fiber X, x ¢t where

DO(1) = (Ur(y, = 0) x 1)U (Us(y; = 0) x 1) = P,

a(()O)(t) = {(xluyhl) = (0707 t)}v agg)(t) = {(X3,y3,l) = (0707 t)}

4.2. Quadric transformations with centers a(()o)(t),...,ag)(t) for any fixed 7€ By.

To separate the leaves passing through the point aéo)(t), we make quadric trans-
formations four times successively.
4.2.1. The first quadric transformation with center a(()o)(t). Let
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the point
1 1 1 1
a1y = (Wi ) = (0,0,0)} € DI (1)

is a singular point of the foliation, and D(()l)(t) — {a(()l)(t)} is a vertical leaf.
4.2.2. The second quadric transformation with center aol (t). Let

1 _ 2 (1) 2,2

Z = Z y w =z 'wW ,
(4.2) ‘()1) 0(2) (2)0 (?) 0 )
then
2 1 2 2
DY) = Oy () (1) = {27 =0y U (W = 0},
the points

a (1) = {7, w 1) = (0, =1/ (mot), 1)} € DY (1),
by (1) = {(z w1 = (0,0,0)} e DO()NDP (1),

b (1) = (28, W 1) = (0,0, € DY ()N DY(1)

are singular points of the foliation, bé%)(t),béa(t) are inaccessible singular points, and

DY (1) = {alP (1), b5 (1), 65 (1)} is a vertical leaf.
4.2.3. The third quadric transformation with center a(()z)(t). We insert here the

transformation

(4.3) Z(()Z) _ Z(()Z)’ W(()z) _ l/v(()z)'
Let
s Z(()z) _ 283), U(()z) = ot + z(()s)w((f),
L )
then
3 2 3 3
D(() )(t) = Qa32><z>(a8 )(1)) = {Zé) =0} U {Wé ) = 0},
the points

ad (1) = {Y, wl, 0) = (0,0 + 1,0)} € DY (1),
3 3 3 2 3
b (1) = {28, W 1) = (0,0,0)} e D (1) n DY (1)

are singular points of the foliation, the point b(()3)(l) is an inaccessible singular point, and
D(()3)(t) - {aé”(z),bé”(z)} is a vertical leaf. .
4.2.4. The fourth quadric transformation with center a(() )(t). Let
45) ) =20 wd = o+ 1)+ 2w,
5
A 7w W et 1)+ W,

then
D) = 00, (@) (0)) = {=4" = 03U (W =0},
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We see that our system has no singular points and every leaf is transversal with the
fibers in (284), wé‘”, t)-space C2 x By, moreover, the point (Z(()4), W(§4), t) =(0,0,¢) is not
a singular point of the foliation and the leaf which passes it is the vertical leaf D(()s)(t) -

(Y1)}
(0) (3)

4.3. Quadric transformations with centers a. (¢),...,a; () for any fixed 7€ Byy.
This procedure is the same as that given in the preceding section 4.2 provided the
constants ko, kK, %o, Y., are replaced by x., — 1,x0+ 1,%,,,7, respectively.

4.4. The space Ey;. Let @, denote the composition of all the above eight quadric
transformations. Then the space constructed by K. Okamoto is the space defined by

Em= ) Em(t) x ¢t

te By

where

EHI(Z) = EIH(Z> — D(o)(l> U D(k)<l), EIH(Z> = ¢t(2_s X t).

We see that Epp is a 3-dimensional complex manifold obtained by glueing
{(x0,y0.1) € C* x B}, {(x2,¥5,1) € C* x By},

{(Z(()4)’ w(()4)7 t) € C2 X BIH}; {(2(4) W(4), t) € C2 X BHI}

o0 7 a0

via the coordinate transformations (4.1)—(4.5) for v =0 and the corresponding ones for
v = oo, and
dyy A dxog =dyy A dxy, dyy A dxyg = dw(()4) A dz(()4), dy, A dxy = dwgi) A dz@.

Therefore, by taking new coordinate systems as
(x(00), y(00)) = (x0, yo), ~ (x(000), y(000)) = (5, wy"),

(x(200), p(000)) = (x2,1,),  (x(00m.1), p(0n,,1)) = (=, wld),

we obtain an expression of Ejy given in THEOREM 3, which proves the theorem.

D (1) D2 (1)
2
bl (1)
DY (1) DY (1)
3) (3)
Dy (1) b (1)
’ ol PY)
2)
D(l)( ) B Dg)(l) _boooo(t)
bOoo (t)

Figure 3. J=1II
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§5. Proof of THEOREM 4.

In the case of J =1I, we take ¢ for X, as [1.20}.

5.1. For any fixed ¢ € Byy, our extended Pfaffian system has a singular point a(og)(t)

and a vertical leaf D©(¢) — {a (1)} on a fiber £, x ¢ where

DO(1) = (Ui(yy = 0) x )U(Us(y; = 0) x 1) = P,

aQ (1) = {(x3, 3, 1) = (0,0,)}.
5.2. Quadric transformations with centers agg)(t), . ,a(oZ))(t) for any fixed 7€ By.
To separate the solutions which pass through the point agg)(t), we make quadric
transformations eight times successively.
(0)

5.2.1. The first quadric transformation with center .’ (7). Let

X3 :Zg)a )3 :Z(I)W 1)7

o0 "Moo
(5.1)
X3 = ché) Wc(@l)a V3 = Wg),
then
DY(1) = Qo (@ (1)) = {=1) = 0y U{W(D =0},
the point

aB(1) = {0, ), 0) = (0,0,0)} € DY)

o] ? 7Moo

is a singular point of the foliation and Dgé)(t) — {ag)(t)} is a vertical leaf.
5.2.2. The second quadric transformation with center a.’(7). Let

AD @ 0 0,0

0 0 o0 o Voo
(5.2)
W =z0wd, W =w,
then
D) = 0, (@) = (22 = 0} U W =0},
the points

a2 (1) = {(z3, W), 1) = (0,0,1)} e DR (1),

b0 ={(ZD, W), 1) = (0,0,0} e DY (1) N DY) (1)

are singular points of the foliation, the point b(o?(t) is an inaccessible singular point, and
Dg)(t) - {a(o?(l),b(o?(t)} is a vertical leaf.
5.2.3. The third quadric transformation with center ag)(t). Let

2D =0 WD = 0,0

(5.3)
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then
DY) = Q@2 (1) = (= = 0} U{WY =0},
the points

a)) (1) = {(=5),w§),1) = (0,0,)} e DY) (1),

0 )T oo

bg)@ = {(Zg), W§§>, 1) =(0,0,0)} € D(O?(t) ﬂD(3)(Z)

0

are singular points of the foliation, the point bg)(t) is an inaccessible singular point, and
DY (1) — {a(1),65 ()} is a vertical leaf.
5.2.4. The fourth quadric transformation with center ag)(t). Let

£ =l WY =0l
(5.4)
B =zOw® W0 — @
then
DD () = Q0 (@D (1) = {4 = 0} U (WP =0},
the points

0(4)(l) = {<Z(4)7 W(4)> 1)=1(0,-1/2,0)} e Dgot)(t)v
B (1) = {29, W, 1) = (0,0,0)} € DO(1) N DD (1),

b(4) (Z) = {(2(4)7 W(4)7 t) = (0707 t)} € D(og)(t) nD@O)

o0 o0

are singular points of the foliation, the points bg)o(t),bg)oo(t) are inaccessible singular

points, and Dg)(t) — {a(oi)(t),bg)()(t),b(oi)\w(t)} is a vertical lea}g

5.2.5. The fifth quadric transformation with center «. (7). We insert here a
transformation given by

(5.5) B O}
Let

Z(é) — Z(Og)’ U(4) — _2 + Z(Og)w(og),
(5.6)

D =zOwd W= 24wl
then

D) = Qg0 (@ (1) = {28 = 0}U (W) = 0},

the points
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are singular points of the foliation, the point b(oi)(t) is an inaccessible singular point, and
Dg)(t) - {a(oi)(t),b(oi)(t)} is a vertical leaf.
5.2.6. The sixth quadric transformation with center ag)(t). Let

2 =20 9 = 50,
(5.7)
25 = zOwO W0 — o)
then
D) = Qs (@D(1)) = {9 = 0} U {19 =0},
the points

a) (1) = {(Z(og),wg), 1) = (0,~1,0)} € D)(1),

D) ={(Z, W, 1) = (0,0.0)} e DY (1) N DY) (1)
are singular points of the foliation, the point bgg)(t) is an inaccessible singular point, and

D) — {d9(1),69()} is a vertical leaf.
5.2.7. The seventh quadric transformation with center a@(l). Let

Z(Og) = Zg), W(Og) = —l+z(o?w(o?,
(5.8)
26 — 700 WO — ),
then
DY) = Qu, (@ (1) = () = 0y U{WD = 0},
the points

) (0) = {2, wi]), 1) = (0, ~2a,1)} € DJ)(1),

y Weoo

D) = {20, w0 =(0,0,0} e DY ()N DY) (1)
are singular points of the foliation, the point bS.Z)(z) is an inaccessible singular point, and

DY) — {aD (1), 67 (1)} is a vertical leaf.
5.2.8. The eighth quadric transformation with center a(oz)(l). Let

A0 =29, W) = 2 ),
(5.9)
20— 7O W0~ oy ),
then

DY(1) = 0,0, (@ (1)) = {9 = 0} U {WY = 0}.

We see that, in Z@,W@,t -space C? x By, our system has no singular points and
p y

every leaf is transversal with the fibers, moreover, the point (Z&i), Wg), 1) =(0,0,1) is
not a smgular pomt of the foliation and the leaf which passes the point is the vertical

leaf D! () {b ()}



Painlevé systems 865

D(O)(t) D@O)
(4)
DY (¢
10 R0 el |
DY) (1) Do)
. (3)
Dy (1) l d
0 16 () 2
b (1)
............... p¥ (1)

Figure 4. J =11

5.3. The space Ey. Let @, denote the composition of all the above eight quadric
transformations. Then a space defined by

Eyq = U EH<Z) X

te B

with

En(t) = Eu(1) - DY) U DW(1), En(t)=&,(Z, x 1)
1<k<7

is the space constructed by K. Okamoto.
By the above procedure, we can verify that Ey is a 3-dimensional complex manifold
obtained by glueing

{(x0, 0, 1) € C* x Bu}, {(x2,1,1)€ C* x By}, {(z¥, wl¥ 1)e C* x By}
via the coordinate transformations (5.1)—(5.9), and
dyo A dxg =dy, Adxy, dyy A dxy = dwg) A dzg).
Therefore, by choosing coordinate systems as

(X(OO), y(00)> = (Xo, y0)7 (X<OOO)7y(OOO)) = (Xz, y2)7

(x(o000), y(e0)) = (25, wi)),

o 7 o0

we obtain an expression of Ejy given in THEOREM 4, which shows the theorem.
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