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Abstract. We define a Rohlin property for Z?-actions on UHF algebras and show a
non-commutative Rohlin type theorem. Among those actions with the Rohlin property,
we classify product type actions up to outer conjugacy. We consider two classes of UHF
algebras. For UHF algebras in one class including the CAR algebra, there is one and
only one outer conjugacy class of product type actions and for UHF algebras in the other
class, contrary to the case of Z-actions, there are infinitely many outer conjugacy classes
of product type actions.

1. Introduction.

A non-commutative Rohlin property was introduced by A. Connes for classification
of (single) automorphisms of von Neumann algebras ([3], [4]), and this property was
generalized for example by A. Ocneanu ([20], [2I]) to systems of commuting auto-
morphisms and further to actions of discrete amenable groups. On the other hand, this
notion has also proved useful in the framework of C*-algebras ([1], [6], [7] [12] [13].
[15], [16]), and in [15], Kishimoto established a non-commutative Rohlin type
theorem for automorphisms of UHF algebras (and some AF algebras) and classified
automorphisms (i.e., Z-actions) with the Rohlin property up to outer conjugacy.

The purpose of the paper is to extend Kishimoto’s work to Z2-actions. Motivated
by [15], [16], in Section 2 we introduce notions of Rohlin property and uniform outerness
of Z"-actions on unital C*-algebras. In the UHF algebra case and N = 1, the uniform
outerness was shown to be the same as the ordinary outerness of the relevant auto-
morphism on the GNS von Neumann algebra obtained via the trace ([15]). Our main
theorem here says that for Z-actions on UHF algebras the Rohlin property char-
acterizes the uniform outerness. The main idea of the proof is similar to the one in
[16], but to avoid additional technical problems we make use of the stability i.e., the
vanishing of 1-cohomology obtained in [12].

In Section 3 we introduce three notions of conjugacy to Z>-actions, i.e., ap-
proximate conjugacy, cocycle conjugacy, and outer conjugacy. Using the generalized
determinant introduced by P. de la Harpe and G. Skandalis ([14]), we show that
approximate conjugacy implies cocycle conjugacy when a (unital) C*-algebra is simple
and possesses a unique trace.

In Section 4 we consider product type Z>-actions on UHF algebras, i.e., pairs (a, )
of commuting automorphisms
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Considering the case when the n; x n; matrices uy, vy commute at first, we show that the
Rohlin property in this case is characterized by the property of uniform distribution of
the joint spectral set Sp(@ZZmuk, @Z’:mvk) (m < n). From this we show that any such
pairs are approximately conjugate.

We then investigate two special classes of UHF algebras. The first one is of
the form @k M ;A, where p, (ke N) are primes and non-negative (finite) integers

ir(k € N) satisfy >7,” iy = oo. The second one is of the form (X), .M, with primes
qr(k € K) (where #K < o0) and M, means the infinite tensor product of M, . For
algebras in the first class we construct infinitely many non-cocycle conjugate product
type Z’-actions with the Rohlin property. We would like to emphasize that for
Z-actions this phenomenon does not occur. On the other hand, for algebras in the
second class we show that all the product type Z2-actions with the Rohlin property
are mutually approximately conjugate. Combining these results we get the classification
of product type ZZ2-actions with the Rohlin property on UHF algebras up to outer
conjugacy.

2. Rohlin type theorem.

Let N be a positive integer. We first define the Rohlin property for Z"-actions on
unital C*-algebras. As mentioned above this is a simple generalization of that in the
case of N =1 [15] Let &,...,&y be the canonical basis of ZV ie.,

& =1(0,...,0,1,0,...,0),

where 1 is in the i-th component, and let 7 = (1,...,1) throughout this section. For
m= (my,...,my) and n= (ny,...,ny) € Z¥, m <n means m; <n; for each i=1,...,
N. We define

mZN = {(mny,...,myny)|(ny,...,ny) e ZV}
for m = (my,...,my) € Z" and let Z" act on Z"/mZ" by addition modulo mZ".
DErINITION 1. Let o be a ZV-action on a unital C*-algebra 4 i.e., « is a group
homomorphism from Z” into the automorphisms Aut(4) of 4. Then o is said to have
the Rohlin property if for any m e NV there exist Re N and mV, ... m® e NV with

m, ... ,m® > m and which satisfy the following condition: For any ¢ > 0 and finite
subset F of A, there exist projections

e (r=1,...,R, geZ"/m"Z")

in A satisfying

R
3 =1, |xell<e fog(el)—el | <e (1)
r=1 gez" /mnzN

for any xe F,r=1,...,Ri=1,...,N and ge Z"/m"Z"
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REmMARK 2. When A is a UHF algebra, using Christensen’s perturbation argument
([5, Theorem 5.3.]), we can restate the definition of the Rohlin property as follows. For
any n,me N with 1 <n < N there exist R € N and positive integers m1), ..., m® > m
which satisfy the following condition: For any ¢ > 0 and finite subset F of A4 there exist
projections

e(()r), ,e,(;(),.)il (r=1,...,R)
in A satisfying
R m—1 . .
Z e] 7 ||[X,€j ]H <é
r=1 j=0

for each r=1,...,R,j=0,...,m" —1 and xe F, and

Dy~ <e  foe,(e)—e”| <e

oz, (¢
("

foreachn’:1,...,Nwithn’7én,r:L...,Randj:O?...?m(’)—l,wheree,(:l?,) = ¢, .

]+1|

For automorphisms of C*-algebras a notion of uniform outerness was introduced in
[15]. That is, an automorphism « of a unital C*-algebra 4 is said to be uniformly outer
if for any a € A, any nonzero projection p € A and any & > 0, there exist projections
Dis---» P, In A such that

n
P = th Hp,aoc(pl)H <é (l = 17" -7”)‘
i=1

It was shown that this notion for automorphisms of UHF algebras is equivalent to the
usual outerness for the automorphisms of the von Neumann algebras obtained through
the GNS representations associated with the traces ([15, Theorem 4.5]). Based on this
fact and the Rohlin type theorem for automorphisms of von Neumann algebras due to
A. Connes ([4, Theorem 1.2.5]), a C*-algebraic version of the theorem (for the UHF
algebras) was shown by A. Kishimoto ([16, Theorem 1.3]). We extend Kishimoto’s
work to Z>-actions.

THEOREM 3. Let o be a Z*-action on a UHF algebra A. Then the following
conditions are equivalent:

(1) o has the Rohlin property.

(2) «, is uniformly outer for each ge Z*\{0}.

Once we establish this theorem, we have immediately

COROLLARY 4. Let o be a Z*-action on a UHF algebra A. Then the following
conditions are equivalent:

(1) o has the Rohlin property as a Z*-action on A.

(2) @, has the Rohlin property as an automorphism of A for each ge Z*\{0}.

In it is obvious that (1) implies (2). We devote the rest of this section to
prove the converse in several steps.

LEMMA 5. Let o be a Z*-action on a UHF algebra A. If the condition (2) in
Theorem 3 holds then for any m = (mj,m;) e N*.e >0 and any unital full matrix



586 H. NAKAMURA

subalgebra B of A, there exists an orthogonal family (eg|geZ2,0£g <m-1) of
projections in AN B’ such that
\|oc5i(eg) - eéi"’g” <é
for any i=1,2 and ge Z* with 0 < g,&+g <m—1I, and furthermore,
I < (|m] + 1)z(eo),
where t is the unique tracial state of A and |m| = m; - m;.

Proor. Let (m,,H;) be the GNS representation associated with 7. By the
uniqueness of a trace we can extend each o, (g€ Z*) to an automorphism of the AFD
I1; factor 7,(4)"(< B(H,)) and we use the same symbol o, for this extension. Since o,
is outer on 7.(4)” for g € Z*\{0} by [15, Theorem 4.5], it follows from [20, Theorem 2]
that for any m e N? there exists a strongly central sequence

(/) 2 _ ;
(EV|gez’0<g<m—-1)|jeN)
of orthogonal families of projections in 7,(4)” such that
SRR
geZ2 \

0<g<m—I

for each je N and

Otgi(E(j)) — E(j) — 0

g &itg
strongly as j — oo for each i=1,2 and ge Z*> with 0 < g <m — I, where (m,k) =
(Oak)> (kamZ) = (ka O)
From this central sequence we shall construct a uniformly central sequence
(f{lgeZ’, 0<g<m—T)|jeN)
of orthogonal families of projections in 4 such that

o X )

gEZ2
0<g<m—-I

strongly as j — oo and
o (£§) = L1l = 0
as j— oo for each i=1,2 and ge Z*> with 0<g,g+¢& <m—1. To do this, let
(4;]j e N) be an increasing sequence of unital full matrix subalgebras of 4 such that
UjA; is dense in 4. From [15, Lemma 4.7] we find a uniformly central sequence
(ej| je N) of projections in 4 such that
me(e;) — E) — 0

strongly as j — oo. Changing e; slightly and taking a subsequence, we may assume
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that e; € (UrAy) ﬂA]f for each j. Let ¢ >0. From [5, Corollary 6.8], by taking inner
perturbations, there are o, o, € Aut(A4) such that

ot — o, || <&, O‘z‘( U Aj) c 4

jeN jeN

for i=1,2. Set

by =¢ Yoo )" ()%(e) e ki=¢ Yo wle)) e
9:(91792)522\{0} PIEZZ\{O}
—(m-I)<g<m-I —(m—1I) <g<m-I

n; = t(h;) and x; = 7(k;). Then it follows that

\hj — kj|| < e(my +my —2){(2m; — 1)(2my — 1) — 1}.

Furthermore, lim;_, x; = 0 since

limx; = lim 7 [ ¢ E ag(ej)
J—o J—®
geZ*\{0}
—(m=I)<g<m—I

< lim Y (e ale)
j—o
g, heZ* g#h
0<g,h<m—I

< lim Z (o (ej)oy(er))

J=oo
g, heZ? g#h
0<g,h<m—-I

=1im Y «EEV)=0.

J—o 3
g.heZ= g#h
0<g,h<m-I

Let p; be the spectral projection of /; corresponding to (0,;7].1/ 2.

Then p; e A since
Sp(h;) is finite. p; <e; and 77].1/2(6]- — p;) < h; because n]}/zx[”;/z CO)(t) <t (te]0,0)),
hence L

1/2
7(ej) — 77]./ <t(p;) < ().
In addition
1/2
p; ST @))%\ oy < el <
g=(91,92) € Z*\{0}
—(m—I)<g<m—I

So for any g,h € Z> with 0 <g,h<m—1I and g # h, we have
2 2
letg (e (P = llog (yetn—g (P = [ jet8—4 ()l

= ||P/°‘h—g(Pj)Pj||
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< ||p; Z oy(p;) \ P

geZ*\{0}
—(m—-I)<g<m—I

< 8’-1—17]-1/2,

where &' = ¢e(my +my —2){(2m; — 1)(2my — 1) — 1}. Here lim#; =0 since limx; =0
and lim||h; — k;|| = 0. Therefore taking a sufficiently large j for each ¢ > 0, we obtain
the required f gj) near o,(p;) by slight modiﬁcation

Noting that ZOgggm—IT(f((/j)) — 1 and r(f )—r(fh ), we have

Furthermore for any unital full matrix subalgebra B of A, taking a sufficiently large j,
we may assume that f éf) € ANB' for any g. This concludes the proof. O

In Ocneanu’s result [20, Theorem 2], applied in the above proof, we have the
cyclicity condition (under the action) of the projections ( |g €eZ’0<g<m-—1I)in
the von Neumann algebra 7.(4)"”. However, when approximating these projections by
the projections (f é") lge Z*,0 <g<m—1I) in the C*-algebra A, we lose the cyclicity
condition. It is our next problem to restore this cyclicity condition. To do this we
need a technical lemma from [16]. Let K(/?(Z)) be the compact operators on /*(Z)
and let (E;;|i,je Z) be the canonical matrix units for K(/>(Z)). On K(I*(Z)) we
define an automorphism ¢ by o(E;;) = Ei1141 (i,je€Z). For any n,k,/le N with
1 <k <, define

=n2k+1-1),

k—1 . . ; :
i k—i Vilk —i)
(%Eni,ni + TEn(k+l+i),n(k+l+i) + 7}{ Eni,n(k+l+i)

itk — i sl
+ % n(k+14i), ) + Z Enz nis (2)

ee=a""(f) (i=0,....,n—1).

Then (e;|i=0,...,n—1) is an orthogonal family of projections in K(/?>(Z)). Hence
for any ¢ > 0, there exist k,/ with 1 « k « [ such that

(see [16, Lemma 2.1] for the detail). Using these estimates we have the next lemma.
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LEMMA 6. Let o be a Z*-action on a UHF algebra A. If o4 is uniformly outer for
any g € Z*\{0}, then for any me N, ¢ > 0 and any unital full matrix subalgebra B of A
there exists an orthogonal family (e;|i =0,...,m — 1) of projections in AN B’ such that

m—1
e, (er) — eintl| <& [lag,(er) — e <e, T<1 -> e,-) < et(eo)
i=0

for i=0,...,m—1, where e, = e.

PrOOF. Let me N, ¢ > 0 and let B; be a unital full matrix subalgebra of 4. By
the above statement there exist k|, /; e N with 1 « k; «/; and an orthogonal family
(eili=0,...,m—1) of projections in K(/*(Z)) such that

— . m dime
ZeiSPM, lo(e) —eit] <& (i=0,....m—1), ——2>1—¢, (3)
i=0 N]
where Ny =m(2k; + 1, — 1) and e, = ¢p. Similarly by the above statement (for n =1,
¢ and Bj), there exist ky, , € N with 1 « ky « I, and a projection e in K(/*(Z)) such
that

dime

eSPN27 HO’(@)—éH <&, >1_81; (4)

where N, =2k, + 1, — 1.

Next by applying to (Ni,N2) € N?, any & >0 and B, there exists an
orthogonal family (p,|g € Z?,0<g < (N;—1,N, —1)) of projections in 4N B such
that

oz, (py) = Pesgll < &2, 1< (NiN2+1)t(py) (5)

for any i=1,2 and ge Z* with 0<g, &+9g< (N, —1,N,—1).
If we put

1 Ny—1 Ni—1 Ny -2
Z{Zpl+ljaél ( ZP;;)( : O‘él(l’(i,j)))}»

then we have

X106, (p(i,j)) = P(i+1,)™*1
for any i=0,...,Ny—2, j=0,...,N,—1 and

1 Np—1 2 Ny -2
xl—l——Z{ZPm, % (Pj) = Prip) (l—zpu>< Z“c’l(P(i,j)))}-

j=0 i=0

Noting that [l (p(; ;) — Pgis1 |l < 2, we have [|x; —1|| <2(Ny —1)&. So taking the
polar decomposition u|x;| of x; for a sufficiently small ¢ > 0, we obtain a unitary u
with |ju; — 1|]| <4(N; — 1)e;. By the uniqueness of the polar decomposition we have

Ad uyoog (pijy) = Pt
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fori=0,...,Ny =2, j=0,...,N, — 1. Similarly for o¢,, we obtain a unitary u, in 4
such that

[ — 1] <4(N2— D)ea, Adwy oo, (pij) = Piijen)

for i=0,....Ny—1, j=0,...,N; —2. Let oy =Ad uy 0 o, and let angduzoocgz.
Since [p(g o)) = [p(1,0)] it follows that there exists a partial isometry v; of 4N B} such that
Ui = p,g) and vivy = p(; ). Similarly there exists a partial isometry vy of AN B
such that v3v2 = p(g o) and v205 = p(o1y-  Then Ad v3 0 a2 (p,.0)) = P(0,0), 0 Ad vy 0o €
Aut(p,0)4p(0,0)). On the other hand «:, € Aut(4) has the Rohlin property as a single
automorphism, and hence so does Ad v; o op. Therefore Ad v; o a5 is stable by [12], [7].
More precisely for any &3 > 0, any unital full matrix subalgebra B, of 4 and the unitary
vy0(v1) o1 (V2)1 € Pio.0)4P0,0)» if Bi is taken sufficiently large in advance, we have a
unitary w in AN B) such that

o502 (v1) "oy (v2)v1 — (Ad 05 0 o2 (W)) - w*|| < é&3.

Let w; =v;w and let w, = v;. Then w; and w, are partial isometries in 4N B} such
that wiw; = wyw, = P(0,0)> WIWT = DP(1,0)» W2W3 = Do, 1) and

[l (wa)wi — s (wi)wa || = [|[v302(01) " (01 (v2)v1w — 2 (viw)v2) W™ || < &. (6)
Define
oty (ot (w2)) 52 (erf (w2)) - -~ o (o (w2)) (i>))
E,-(f;) =4 P, (i=))

td (o (w2)) "o (af (w)) "+ od (o (w2))" (i < )

fork=0,1,i,j=0,...,N, — 1. Then we can easily see that (Ei(f;) |i,j=0,...,N; — 1)
i1s a system of matrix units. For any unital full matrix subalgebra B; of A4, by taking
a sufficiently large B, including B3, we may assume that {El(];) |k=0,1;i,j=0,...,
Ny —1} € ANB;. Let C¥ be the C*-subalgebra of A generated by {El.(.l;) i, j=0,...,
N> —1} and let @; be the canonical isomorphism from C*) onto P&ZK(ZZ(Z))PNZ.
Define

e =@ 1(e).
Since o @ = @ o[ CH) we have from (4) that

Nr—1

<y Py o) =Wl <er, w(e®) > (1 —e)Nat(py0)). (7)
i=0

Furthermore define

Nr—1 Nr—1
W, = (Z océ(wl)> O WV =mwmwy < Z P
i=0

i=0

Again for any unital full matrix subalgebra B; of 4, by taking a sufficiently large Bj
including B4, we may assume that W; e ANB;. Then recalling the formula (2), we
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have

where X denotes

P O V2 = J) go)
21: k_zEj’j + ky+h+j, ka+h+j + TENQHZH
]:

J(ko — ]) s
L — k> kz+lz+JJ + Z

Jj=ka

On the right hand side of (8), the nonzero terms are calculated as follows:

i 0 i * i i *
o (W) E o (w1)* = o (w1) pro,jyod (w1)

= Pq,)
=E"),
aé-wl)%(70122+12+]a§2+12+j(wl)*
= o () (w2) " o (Wi (wr) )
R o (W) (w2)" -+ (wan (12) ),

where x ~ y means ||x — y|| <e Applying (6) repeatedly we have

(ka+1h)es (1)

Jj (0) ka+h+j * ~
O‘z(wl)E; ko+h+i%2 (w1) ~ Jy ko b4y

We estimate the other nonzero terms similarly and obtain

ky—1 /—
||€(1)/—e 22: 2_]

ky + b)es

Let ¢j(ky, b, e3) be the right hand side of the above inequality. Then we have
loa () — eV < 2[|eV — e[| + [loa(eV) — V]| < 21 (ka, by, 3) + 1.

For any ¢4 > 0 and any unital full matrix subalgebra Bs of A4, applying [15, Lemma 3.5]
and taking a sufficiently large By including Bs, we have a partial isometry W/ of 4N B
such that (W])* W] =, w](W])* = ¢! and

oo (W) = W|| < [loa(e®) — || + [Joa (€M) — V'] + &4
<e+2ci(ka, b,e3) + &1 + és. 9)

Of course we can make the last quantity very small. By using this W/, let D be the C*-
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subalgebra of A4 generated by
{of (W) 2 (W) -+ (W) [Ny = 1 > i > j >0},

Here again for any unital full matrix subalgebra Bg, by taking a sufficiently large Bs
including Bs, we may assume that D < AN B. As D is isomorphic to Py, K(I*(Z))Py,,
let ¥ be the canonical isomorphism from D onto Py, K(/*(Z))Py, and let

fi=v )

fori=0,....m—1. Then (f;|]i=0,...,m—1) is an orthogonal family of projections
in AN B¢ such that

loa (i) = fiall <een,
me(fy) > (1 —e))Niz(e) (10)
for i=0,...,m—1, where f,, = f,. Thus we have for i=0,...,m—1,
oz, (1) = Sl < lloe, (7)) — aa (SN + Mo () = S

<2uy — 1| + &

<2-4(N, — 1ex +¢.
Using the formula (2), the formula (9) and

[Jororz — a0 || < 2([Joty — et || + Jloz — e |[)
< A([fur = T + fluz = 1)),

we can also make |log (f;) — f;|| very small. Finally we want to estimate 7(f;). We
have already three inequalities from (5), (7) and

1 < (NN, + 1)T(P(0,0)>7
r(e(o)) > (1 - 81)N27<p(070))7

mt(fy) > (1 — &) Nyz(e?).

From these we obtain

5 1 m—1

Since 1 < k; < l;, (f;]i=0,...,m—1) satisfies the desired conditions. O

PrROOF OF THEOREM 3. Let o be a Z>-action on a UHF algebra 4 which satisfies the
condition (2). For any m e N we take mg, m; € N such that m « m; < my and my is
divided by m;. Furthermore for any ¢ > 0 and finite subset F of 4, we take a unital
full matrix subalgebra B; of A such that for any x € F there exists y € B} with ||x — y||
<eée. If we apply to any ne N and & > 0 then we have an orthogonal
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family (e;[i =0,...,m—1) of projections in 4N Bj satistying

[owe, (er) — ein1|| < &2,
o, (e1) — eil| < &2,
my—1
7(eg) > m’(l — Z e,-)
i=0

fori=0,...,my— 1, where e,, = ¢p. This is not sufficient because the sum Zl.'igl e; of
the projections (e¢;) may not be 1. We will cope with this problem now. Put

mo—1 mo—1 mo—1
Xi= Y o (e) + (1 Y e,~> (1 - > o (e,)),
i=0

i=0 i=0
mo—1 mo—1 mo—1

Xy = Z ejoz, (e;) + (1 — Z e,-> (1 — Z 0652(61')>
i=0 i=0 i=0

and let u;|x;| and uy|x;| be the polar decompositions of x; and x;, respectively. As in
the proof of we can show that u; and u, are unitaries in A satisfying

|lur — 1| < 4mypey,
Ad u;j ooz, (e) = ejyy
for i=0,...,my— 1, where e,, = e, and
|lur — 1|| < dmpe,

Ad Uy O otg, (8,’) = €

for i=0,...,my—1. Let oy =Adu; o o, and let oo = Adu o og, - Then OC{”O and
o, are automorphisms of ¢yA4ey. By there are an orthogonal family (p;|j =
0,...,n—1) of projections in 4N B{ and a positive number c;(my, &) which decreases to

zero as & — 0 such that

n—1

2 pi<e
i=0
my

| (p:) = Piall < c1(mo, e2),

lo2(p;) — pill < c1(mo, e2)

for i=0,...,n—1, where p, = p,, and
w(p;) = 7(1 —e),
where e = ;ioofl e;. We have used the fact t(ep) > nt(l —e) here. For any & >0

and any unital full matrix subalgebra B, of A4, by taking a sufficiently large B; and by
applying [15, Lemma 3.5], there exists a partial isometry v e AN B} such that
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v'v=1—e, w*=p,,

lea(v) = vl < [[e2(po) = poll + lloa(l —e) = (1 —e)|| + &3
< c1(mo, &) + moey + 3.
As before there also exists a unitary uj € A satisfying that |juj — 1|| < 4¢1(mo,&) and
Aduyoa™(p;) = piy
for i=0,...,n—1. Let f=Adu oo™ and let w=n""25""18(v). Then we have
ww=1-—e, ww* < ey,
1B0) — il < 07122, (1)

lloa(w) — wl| < ca(mog,n,e,63)

for some positive number ¢, (my, 1, &, ¢3) which we can make very small. Furthermore
by taking B, very large we may assume that we AN Bj for any unital full matrix
subalgebra B3 of 4. Let

o™ (et 2 (w) - o] (w) (i i>])

Eij= < of '(ww?) (if i=))
ol (w) ol () o T (w)t (i i< )
for 0<i, j<my and let C be the C*-subalgebra of A generated by {E;;|0 <1i,

Jj<my—1}. Then C is isomorphic to M, and we may assume that C is a sub-
algebra of 4N By for any unital full matrix subalgebra B, of A if Bs is very large. Let

1 _
0 0 1
10 0

U= 0 1 € My i1
0 1 0 0
L 0 0 1 0.

By simple calculation o;[C = Ad U and

Sp(U) = {1} U {e*k/m |k =0,...,my— 1}.
(1)

i

|i=0,...,m — 1), (e(.z) | j=0,...,m;) of projections in

Define orthogonal families (e )

AN By as follows:

(mo/my)=2

|
e,()E Z Eonyvi(mo fmy )= 1)k, my+i((mo fmy ) =)+ >
k=0
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Since (E;;|0 <1i,j<my—1) is system of matrix units in 4N By, there are canonical
systems ( ,(C)l | O <k,dl<m—1), (e,(f), |0 <k,l <m;) of matrix units associated with
( ) and ( ) respectively. Define a partial isometry V in 4N B; by
mi— 1
V= Z el+1 I+Z €ir1)
where eg)ml | = eélzm , and em)Jrl oy = e((fznl. Then

my—1 m "
2 e§1)+ze}2) =lc (ZiEi,z):
i=0 j=0 i=0

1
Ad V() =el), Ad V()=

Cit1
fori=0,...,m —1and j=0,...,m where e,(ql]) ze(()l) and e

calculation

fjl) L= e(()z). By a simple

Sp(V) { 2mik [ (mo—my) |k 0 My — my — I}U {e2ni1/(m1+l) |l: 0’ o ,ml}'

Therefore Sp(V) is very close to Sp(U) if my and m,; are very large, i.e., V' is almost
unitarily equivalent to U. Consequently we can find orthogonal families (f El) |i=
0,...,m —1), (fj(z) |j=0,...,m;) of projections in 4N Bj and a small enough positive
number c¢3(mg,my, &,¢€3) in such a way that

SRy O,

e (f) = £V < es(mo,m e, 23),
||<Xz(fl(~1)) - f§1)|| < c3(mg,my, &, ¢€3),
o (f ) = £ < es(mo,mr,ene5),
loa (/) = 171 < c3(mo, my, e, 3)

for i=0,....m —1 and j=0,...,m;, where ffil) Ef(()l) and f,(jl)ﬂ zf(()z). Then by
considering [IT), if n is very large,

S i=0,m =1, (P ]=0,my), (e —al(ww') [i=0,... mp — 1)
satisfy the conditions appearing in Remark 2 (for » =1). Hence « has the Rohlin
property. []

3. Conjugacy.

In this section we introduce three notions of conjugacy for Z-actions on C*-
algebras and discuss their relationship. First we prepare some notations. For Z-
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. . . y?s
actions o,/ on a unital C*-algebra 4, we write = f when

log, —yo Bz 0y | <e (i=1,...,N)

70 . )
for e > 0 and y € Aut(4). For simplicity % will be denoted by L or ~. Recall that a
l-cocycle for o means a mapping u from Z” into the unitaries U(A4) of A satisfying
Uy ip = uyoy(uy) for each g,he Z"V.

DEFINITION 7. Let o and f be Z"-actions on a unital C*-algebra A.

() « and B are approximately conjugate if for any ¢ >0 there exists an auto-
morphism y of A4 such that « % B.

(2) o and f are cocycle conjugate if there exist an automorphism y of 4 and a 1-
cocycle u for o such that

Adugoocg:yoﬁgoy*1

for each ge ZV.
(3) « and f are outer conjugate if there exist an automorphism y of 4 and unitaries
uy,...,uy in A such that

Adujoos =yof, oy

fori=1,...,N.
Cocycle conjugacy of course implies outer conjugacy, and we have

PROPOSITION 8.  Assume that A is a simple separable unital C*-algebra with a unique
tracial state. Then approximately conjugate Z"-actions on A are cocycle conjugate.

Our proof is based on the generalization of the determinant introduced by P. de la
Harpe and G. Skandalis (see for details) and the famous 2 x 2 matrix trick due to
A. Connes (see [2]). We quickly review basic facts on the former. For a unital C*-
algebra 4, we let GL,(A) the group of the invertible elements in the n x n matrices
M, (A) over A (equipped with the C*-norm). The inductive limit of topological groups
(GL,(A)|n € N) with the usual embeddings GL,(A4) — GL,,;(A) is denoted by GL.,(A)
and the connected component of the identity by GL° (4). Suppose that 7 is a tracial
state on 4. If & is a piecewise continuously differentiable mapping from [0, 1] into
GLY (4), we define

A(6) :Lj ORORY

2mi 0

(note that the range of ¢ is contained in GL,(A) for some n since [0, 1] is compact and
that 7 actually means t ®tr on 4 ® M, = M,,(4)). The determinant A, ([14]) asso-
ciated with a tracial state 7 is the mapping from GL? (4) into C/7.(Ky(A)) defined by

Ar(x) = p(4:(8)).

Here p is the quotient mapping from C onto C/7.(Ky(A4)), and ¢ is a piecewise
continuously differentiable mapping from [0, 1] into GL? (A4) with £(0) = 1 and &(1) = x.



Rohlin property 597

A crucial fact here is that 4, is a group homomorphism. For a unitary x € 4 with
|x —1]| < 1, the logarithm & = i~!log(x) (with the principal branch) makes sense and
we can consider the path () = exp(iht) from 1 to x. Since &(1)&(r)”' = ih, we have

1

4.0 =5 ] <t ar) = 3 ptcttogto)

PROOF OF PROPOSITION 8. Let o and f be approximately conjugate Z”"-actions on
A. In general, if an automorphism of a simple unital C*-algebra is close to the identity
in norm then it is inner, and furthermore it is implemented by a unitary which is also
close to the unit of the algebra. Hence for a sufficiently small ¢ > 0 there exist unitaries
uy,...,uy in A and an automorphism y of A4 such that
Ad u; o o, :yoﬁ@oy_l, lu: — 1] <&
for i=1,...,N. We want to show
uorg, (ur) = ot (ur) (12)
for any k,/=1,...,N. From the commutativity of ¢ , and the simplicity of A4, there
exists A € T such that
(e, () “ukoeg, (ur) = A1.
Since uy, u; are close to 1, we can set
h 1 log(ux), h 1 log(u;)
= — u = — u
k 2m.gk, l 2m.g1

and

1 \} \) * 8 A
H(s) = o -log{ (o (1)) "upore, () }
for s€[0,1]. Applying 4, to the both sides of the equality

e—2m’oc5/ (Shk)e—Znish/eZnishkeZniocék (sh) _ eZniH(s),

we have

—p(t(og (shi))) = p(e(shi)) + p(e(she)) + p(e(og, (sh))) = p(z(H(s))).
The uniqueness of a trace shows that the left hand side of the above equality is zero, i.e.,
7(H(s)) € 7.(Ko(A)) for any s € [0,1]. Since 7,.(Ky(A4)) is discrete in C and 7(H(0)) =0,
we obtain H(1) =0 i.e., A=1. Using these unitaries uy,...,uy, we construct a desired
l-cocycle by the method in [2]. We consider the Z"V-action ¢ on M,(A4) defined by

1 0
ae, :Ad{0 u] 0 o,

Since o, ...,0¢, commute with each others from [12), ¢ is indeed well-defined. Note
that

Lo )17 senero)
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for any ge Z" and x,ye A. The identity
0 0] [0 O][x O][0 1
0 x| |1 0[[0 O0f[[0 O

yoPB, oy (x) = Aduy o ay(x),

shows

where u, is the desired I-cocycle defined by

o o= (l7 o))

(see [22, Lemma 8.11.2]). 0

REMARK 9. If « and f are outer conjugate automorphisms of a UHF algebra with
the Rohlin property, then they are approximately conjugate by the stability property.
Hence the three notions of conjugacy defined above are the same for those auto-
morphisms. However outer conjugacy does not imply approximate conjugacy for Z-
actions. See Remark 18 for a counter-example.

4. Product type actions.

In this section we discuss product type Z>-actions on UHF algebras. As in the
case of single automorphisms, the Rohlin property for these actions is closely related to
a notion of uniform distribution of points in 7°. First we say the N-dimensional
version of [1, Lemma 4.1]. It is shown as in the one-dimensional case, so we omit the
proof.

ProPOSITION 10.  Let (Si |k e N) be a sequence of finite sequences in T" i.e.,

Sk:(.S'IWU’p:1,...,I’lk)7 SkJ,ETN

for each ke N and p=1,...,n.. Then the following conditions on (Sy|keN) are
equivalent.

(1) lim 3 f(se,) = JT” £(s) ds

k— o0 Ny P

for any f e C(TY), where ds denotes the normalized Haar measure on TV

N IR
@ i g 25k = ©
p=1
for any 1= (Ii,...,Iy) e ZN\{0}, where s' denotes s{l S,ZQV for each s = (s1,...,5y) €

TV.

(3) lim — v (ﬁ[@ﬁ"), 0§“)> = (2m) ™" ﬂ(@é” -0

k— o0 N i1
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for any 0 < HY) < Hgi) < 2m, where vy is defined by

vi(S) = #{p|1 < p <n and arg(sy,,) € S}

for each subset S of Hl]i 110,2%) and #F denotes the cardinality of the set F.
These conditions necessarily imply that n, — oo. Moreover suppose that (nilk € N)
has the following asymptotic factorization into large factors: For any n€ N there exists

positive integer ko such that for any positive integer k > ko one has n,(cl),...,ngv) >n
where ng) are the components of ny, i.e., nj = nl(cl) . -n,(cN). Then the above conditions are

also equivalent to
(4) For any ¢ > 0 there exist positive integers ko and ny such that for any k, n,(cl), .
n,(CN) e N satisfying k > ky, n,(cl), e ,n,(CN) >ny and ni = n,(cl) o -nl(CN), there exists an

bijection ¢ from {1,...,n;} onto {1,...,n,(€1)} X e X {1,...,n,((N)} such that

Sk,p — (exp <2m’- (q)(g?)l) yo..,EXp <2m’ . ((0(,5\,)))]\]>>
e e

for any k and p, where |s| = max{|s,| : | < p < N} for each se T" and (¢(p)), denotes
the i-th component of ¢(p).

Y

<e (13)

If Sj satisfies the estimate for some ¢ as above, then Sj is said to be
(n,(cl),...,n,(CN);e)-distributed. If one of the conditions of the above proposition holds

then (Sx|k e N) is said to be uniformly distributed.

DeFINITION 11, Let o be a Z"-action on a UHF algebra A. Then « is said to be a

product type action if there exists a sequence (my |k € N) of positive integers such that
A=) My, and

O(g(Ak) = Ak

for any g € Z" and k € N, where A, denotes the C*-subalgebra of A4 corresponding to
My, ® (®1¢kC1mz)~

REMARK 12. In the situation above, if N =2, then one finds unitaries u}cl), u,({z) n

Ay and J; € T such that

ul(cl)u,(cz) = /lku,(cz) u,((l)
for any p,qe Z. Since u,(cl), u,(f) are unique up to a constant multiple, 4, is unique. In
addition ;¥ = 1. For if x4 is an eigenvalue of u,(f) with multiplicity r then g 4,” is
also an eigenvalue of u,(cz) with multiplicity r; for each pe N. Since M,, is finite-

dimensional, there exists p, € NV such that A7° =1 and 4] # 1 forany p=1,...,p, — L.

If {¢;,7|p=0,...,py— 1} does not exhaust all the eigenvalues of u,({z) then we take an
eigenvalue x, of u,(f) not belonging to {4, ”|p=0,...,p, — 1} and repeat the same
process. Thus there exist eigenvalues u;,...,u, of u,(f) with multiplicity ry,...,r, re-

spectively. Since my = (r1 +--- +1y)py, it follows that 1" = 1.
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For n x n unitary matrices U and V with UV = VU, we define Sp(U) to be a
sequence consisting of the eigenvalues of U, each repeated as often as multiplicity
dictates and Sp(U, V') is a sequence consisting of the pairs of eigenvalues of U and V'
with a common eigenvector, each repeated as often as multiplicity dictates. Then the
Rohlin property for the product type Z>-actions on 4 with A, = 1 can be characterized
as follows.

PROPOSITION 13. Let o be a product type Z*-action on a UHF algebra A with
(my |k e N), " |keN), W |keN), (Jl|keN) as above. If i =1 for each k e N
then the following conditions are equivalent:

(1) o has the Rohlin property.

(2) (Sp(@Z:’nu,(cl),@Z:mu,(f))\n:m,m+1,...) is uniformly distributed for any
me N.

PrOOF. By (1) is equivalent to the condition: of f has the Rohlin
property as a single automorphism of 4 for each (p,q) € Z*\{0}. By [16, Lemma 5.2]
this condition is equivalent to the condition:

oAy @
(Sp<®u§c)”§c)>
k=m

is uniformly distributed in 7. By [Proposition 10| for N =1, the last condition is
equivalent to the condition: for any me N

n:m,m—l—l,...)

1
lim ——— > =0
172 ’
n— o0 N(Wl, l’l) n (1) n 2)
()~17)~2) ESp(@k:m”k + =m Uk )

where N(m,n) = [[,_, mr. Finally by [Proposition 10| for N = 2, the last condition is
equivalent to (2). O

In A. Kishimoto showed the following for a UHF algebra A.

(1) Product type Z-actions on A4 with the Rohlin property are approximately
conjugate.

(2) For any Z-action o on 4 with the Rohlin property and ¢ > 0, there exist a
product type Z-action f on 4 with the Rohlin property and an automorphism y of A4
such that o % p.

In particular there is one and only one approximate conjugacy class of Z-actions on
A with the Rohlin property. In the case of N =2 we do not know whether (2) is valid
or not. In the rest of this section we state several versions of (1) for Z?2.

THEOREM 14. Let o and B be product type Z*-actions on a UHF algebra A with the
Rohlin property. Let o be determined by (my |k € N), (A |k € N) as in Definition 11 and
Remark 12, and p by (n;|1 € N), (¢ |1 € N). If 2 = p; = 1 for each k,l € N, then o and
B are approximately conjugate.

Proor. By patching several parts of the M,, ’s and the M,,’s respectively there exist
a sequence (Ny |k € N) of integers satisfying Ny =0 and Ny > 0 (k > 1) and sequences
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(U,El) |k eN), (U,Ez) |k € N) of unitary matrices such that
UIEI) € U(MNk ® MNA'H)?

vu® = uPul" (i=1,2,keN),

(A, o,z = (g@OMNk,k@OAd Uz(k),k@)oAd Uz(,j),

(A 1861 ﬁo <l§<>oMNk,k@>oAd U2k+1’®Ad U2k+1)

Lete > 0. Since (Sp(X),_, Ad U2k+1 : @k o Ad U2k+1 | n € N) is uniformly distributed by

IProposition 13 and U () ( ) = UO(Z) U, ), for a sufficiently large n there exist a unitary

Wi in ®in+02MNk and umtarles Vzm , Vz(z) n inzzMN, such that

n
" <k®o Ué,ih) wi - U e |l <22,

n
" (@ Uéill) wi— U @ V| < 2%

Then replace My, by @)MHMNA and U ) by X_o 2k+1, ) by ®n+1 (i=1,2)
respectively, and further replace My, , by My, (k>2n+ 3) and U2(k7n) ., by U2(;€) iy
Uz(l&,n)ﬂ by U2(2+2 (i=1,2,k >n+1) respectively. Thereby W;e UMy, ® My,)

and Vz(l), Vz(z) € U(My,), which satisfy
lad mi(u) - 0" @ 13| < 27%
|Ad Wy (UP) — U @ VP < 272

In the same way, after replacing My, Uz(i), U3(i) etc. suitably, there exist a unitary W,
in My, ® My, and unitaries V3(1), V§2) in My, such that

lAd WL (U = VD @ V|| < 2%,

|Ad WH(UP) = VP @ V|| < 272,

By repeating the above procedure for kK = 3,4,..., we can construct a unitary Wj in
My, ® My,,, and unitaries V1£1+)17 V,gr)l in My,,, in such a way that

IAd Wi (UY) = vV @ 1)) || < 27K+,

IAd Wi (UP) = v @ v || < 27k,
Thus
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(A O‘@Uafz = (@ MNk>®Ad U2k 7®Ad U2k)>

7 L.
X (@MNk,®Ad ! ,®AdV
k=0

where 7, = X),_;Ad Wy and

(4, B¢, Be,) = <k®0 MNkaka)OAd Uz(k)ﬂvg@oAd Uz(k)+1>

20
3

Yoo
~
~

(@MN,,®Ad 2% ,@Ad v )

where y, = ®;O:0 Ad Wyiy1. This completes the proof. O

As mentioned in the introduction, we discuss product type actions for two classes of
UHF algebras. Let (p, |k € N) be the prime numbers in the increasing order. For a
sequence (i | k € N) of nonnegative integers with >, ix = o0, put g = p,ik and let 4 =
&) My, We regard M,, as a C*-subalgebra of 4. We consider the class of product
type Z>-actions o on this 4. Assume that o looks like

D2 (2)¢
gy [My, = Ad i) 1 (14)

on M, with unitaries u,(cl), u}({z) in M, and Ax € T satisfying u,(cl)ul(f) = /Iku,(f)u,(cl). Since

A" =1, we may regard /; as an element of Gy = Z/qiZ. We let [o] be the sequence
(k |k e N) in [[,Z, Gx. We define an equivalence relation in [[,_, Gx by: g ~h if
there is an »n such that g, =#h; for all k>n Let 0 be the trivial sequence
(0,0,...). We note that for every g € [[;; Gi there is an action o in the above class
with [o] = g.

THeOREM 15. (1) If o is an action in the above class and [0 + 0, then o has the
Rohlin property.

(2) If o and B are actions in the above class and satisfy the Rohlin property, then the
following are equivalent:

(2.1) o] ~ [A].

(2.2) o and P are outer conjugate.

Before proving we introduce some notations and prepare a lemma.
For a positive integer n and Ae T with A" =1, we define the n x n unitary matrices
S(n) and Q(n, 1) by

1. 0
S(l’l) - . . e Q(n,},) -

1 0 ' S (n=1)
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LemMmA 16. Suppose that U and V are n X n unitary matrices such that

UV = exp(2nik/n) VU
for some ke N. Let q/p be the irreducible form of k/n. Then there exist w;, ;€ T
(i=1,...,n/p) such that (U,V) is conjugate to (U3 ® U, V1 ® V3), where
/. = exp(2nik /n),
Ui :S(p>7 4 EQ(p,i_l),

n/p n/p

Uz :@a),«, Vz :C—B,Lti.
i=1 i=1

Moreover each w;, u; are unique up to multiples of powers of A.

ProOF. Since U”V = VU? we have a complete orthonomal system of C”" con-
sisting of the common eigenvectors of U” and V. We take such a system (. i, 1)
1e.,

Uy = S )

Vi) = H<0e,p0)-
Then if w” =k, the space spanned by

Ewpyr OUEepys oy PTUPTIE

is invariant under U,V and the matrix representation of (U, V) with respect to the
above basis is (wU;,uV1). Thus (U, V) is conjugate to the direct sum of (w; Ui, 1; V1)
for some sequences w;,x; in T. Since (wU;,uV)) is conjugate to (wA* Uy, ui’/ V1) for all
k, j, the last statement is obvious. ]

PrOOF OF THEOREM 15. (1) Let « be given as in the theorem. Take unitaries u,(cl),

u,(f) in M, and Ax € T as in (14). By it suffices to prove that «, , has the
Rohlin property as a single automorphism for each (p,q) e Z*\{0}. From the as-

sumption there is a subsequence (p, |n € N) of (p, |k € N) such that 4, # 1 for any n.
Applying [Lemma 16 to u,(;), u,(j) we have a decomposition (u,(cl)1 ® ”1(;327 uf)l ® u,(i)z) of

(u,(cl),u,(cz)) up to conjugacy, where

| ’ 2 o
ul(c)l = S(Plin)a ul(c)l = (Pljc,lvflk,,l)

for some 1 < j, <ir,. Then it is easy to see that

1 p 2 q
(Sp(up) ul)y) [n e N)

12k0>

i1s uniformly distributed in 7. This ensures that

/
(Sp(@) u;i””uf”)
k=ko
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is also uniformly distributed for all ko. Hence o, :®ZO:1 Ad u,(cl)pu,(cz)q has the
Rohlin property by [16, Lemma 5.2]. O

To prove (2) we introduce an invariant as a slight generalization of that

9]

DerINITION 17. For n x n unitary matrices U,V and AeT with 1" =1, if
|IAUV — VU|| < 2 then the closed complex path y(¢) = det((1 — ) AUV + ¢tVU) (t€]0,1])
does not go through zero. We define w,(U, V') as the winding number of the path y
around zero.

From |[AUV — VU| <2 we can define log(A~'VUV*U*), with log the principal
branch of the logarithm. As is shown in [10, Lemma 3.1]

1
(U, V) =5~ Tr(log(A~ ' VUV*U™))

with the nonnormalized trace Tr on M,,.

PrOOF OF THEOREM 15 (2). Take u,(cl),u,((z) eUM,), /€T as in (14) for «, and

v,(cl),v,(cz) e UM,), w €T for fp similarly, i.e.,

1)?” (2)¢
ﬁ(p,q) [MQk :Advl(c) Ul(c) ’

1) (2 2) (1
oo — ol

First we show that (2.2) implies (2.1). To get a contradiction we assume that outer
conjugate «,f satisfy [«] + [f]. Outer conjugacy means

AdWioa, =y of. 0y (i=1,2)

for some unitaries W, W, € A and an automorphism y of 4. For any ¢ > 0 we have a
positive integer M and unitaries W/, W, in ®1€i1 M, with [|[W; — W/|| <e (i=1,2) so
that

|Ad W/ 0o, —y~" o Bz 09| < 2.

By the assumption there exists a positive integer K > M with Ax # pg. Further take a
sufficiently large N > K such that

V(qu) S My ® - @My,

where X <, Y means that for any x € X there is y € Y satisfying ||x — y|| < ¢||x||. Here
we use the perturbation theorem [5, Corollary 6.8], that is, for a sufficiently small ¢ > 0
we have a unitary wy; in 4 such that

Adwioy(My) = My ® -+ @ My,

and [|wy — 1]| <282, Sety; =Adwioy, By =y, (My,) and By=M, ® -~ @ My, N
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B{. Then

M,® - @M, =B ®B,,

yoAd W/ oas o yl_l(Bl) = By,

1o Ad W/ ooz oy [Br = Ad y, (uf))

for i=1,2. Since |Ad W{ ooz — 7' o f: oy|| < Cie'/? for some positive constant C
independent of ¢ we have

ﬁfl (B]) o= Cla'/zBl .

Noting that By, f: (Bi1) € M, ® --- ® M, we can use [5, Corollary 6.8] again. So
we have a unitary wr in M, ® --- ® My, such that

Ad wyo B (B1) < By,
[wy — 1]| < Cag'/*
for some positive constant C;. As M, ® --- ® M, 1s finite-dimensional and
Ad wy o B: (B1) = By,
Adwyofe (Mg ® -+ @ Myy) = My, ® -+ @ Mgy,
we have unitaries U; in By and U, in B, such that
Ad wyo B [By = Ad Uy,
Ad wyo B [By = Ad U,.
For these unitaries we have the following estimates:
I(Ad 7 (u)) = Ad U)[B1]| = [[(71 0 Ad W/ 0z, 037" — Ad w2 0 B ) [ B
< ||y 0 Ad W/ oo oyt — Ad w0 Bs |

< C481/4,

HAd (U ® Uy) @Ad vk < [[Ad wy o B: — B¢ |l

< C481/ 4
for some positive constant C4;. Thus we obtain scalars #,, #, of T such that

I, ) =7, U1 || < 4C3e"/4,

N
H U@ U, —n,X) U/(cl) < 4Cqe'?,
k=1

Consequently we have
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for some 7 € T and positive constant Cs. Similarly for the direction of &, we obtain a
unitary ¥, in B, such that

1/4

7 () ® Us — n@vk < Cse

N
2 (@2) @ Vs — c®v§3)H < Cee*
k=1

for some { € T and positive constant Cs. To use an invariant in [Definition 17, we set
t=TI", 1. Then there is a A€ T such that A9 =1 and

ot — 1] +2(Cs + Co)e'/* < 2.

Note that w; is invariant under homotopy of unitaries for which w; is defined. From
the above estimates we have

(71(”1<)®U2,V1<”K)®V2 —a)< ®Uk ’ ®Uk>

for a sufficiently small ¢ > 0. We now evaluate the both sides to get a contradiction.

Let
t
Ak = exp (2m’ . S—k>, W = exp (2m' . —k>, A =exp (2ni- > )
qk qk VA

for some s, 7 €{0,...,qx — 1} and s€{0,...,(q1---gy —1)}. Then

27 ) @ V) (1 (u) ® Un) (0 (u)) ® V2) (1 () @ Un)”

=1, ® exp{2m (q _SK> } VaUs VU
1°

) AK —s —SK
= €Xp 2mi ]CZ—Bl d1 - qn + K 16[1"‘(1K—1‘1K+1""IN + H,

with Tr(H,) € Z. Thus

for some Hy e My, ..q, \qx.1qn

o () ® Vo, 0 () ® 12)

K —S —SK
- Tr{@((ql gy + g ) Ly grrgrin-ay + HZ) }
j:

= —5— Skq1 - gk—1q9k+1 gy + g Tr(H).

On the other hand

N A o —s o,
o(n@uv (X" | = | —— +§ qu
k=1 k=1 qi1---4n 1

= =S = Iqi- Qeoiqesi gy gL g
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for some ne Z. Therefore

(sk = tk)q1 -+ gx—19Kk+1 - - gy = g Tr(H) + Z E+ nqy---qn

k;éK

Noting that sg — tx # 0 and sg — tx is not divided by ¢gg, we have a contradiction.

Next we show that (2.1) implies (2.2). We assume [o] ~ [f]. Then we may also
assume that 4, = g, for any k since inner perturbation does not change outer conjugacy
classes. If there is a ky € N such that A; =1 for any k > k(, then we have the result
from [Theorem 14. If there is no such ko, we pick up all the k’s with 4; # 1 and make
the subsequence (p, |[neN) of (p,|keN). Let Jx = exp(2nisi/qx) as before. Then
for any N

ky N g
H Ak = exp (2m nzl qk") .

By noting that sz, # 0 and gi,’s are relatively prime to the each others, ZHN: | Sk, / Gk,
equals to

Sy
pl--pl)
in the irreducible form for some positive integers j;,...,jy and Sy. Here we apply
to two pairs (R 1, Q¥ ul™), (R 1), R 01 of unitaries. Then
for any ¢ > 0, if we take a sufficiently large N, these pairs are almost conjugate i.e., there

is a unitary w in ®:i M, such that

<271

ky . kn .
Ad wy (@ u,@) — ® v,(cl)
k=1

k=1

for i=1,2. We adopt the same method for @ZikNHqu and 27'¢ in place of e.
Repeating this procedure as in the proof of [Theorem 14, we have the result. O

REMARK 18. Let 4 = M3 ® M-~ and let w, = exp(2zni/n) for each ne N. We
define Z*-actions o, f on A by

k=1 k=1

— Ad Q(3,w3) ( Ad Q(2 W)), 2, = Ad S(3) ® (@Ad S(2")>,

k=1 k=1

ﬁffl = ldM? ® (é) Ad Q<2k,602k)), 'Bfl = ldM3 ® (C;Z) Ad S(2k>)

Then the same arguments as in the first part of the above proof show that «, f have the
Rohlin property and they are not approximately conjugate. However they are clearly
outer conjugate.

Let {gx |k € K} be a finite or infinite set of prime numbers. We next consider
product type ZZ?-actions on the UHF algebra
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® Q>

keK

. 0
where M- is understood as (X),” M.

THEOREM 19. For the above UHF algebra, any two product type Z*-actions with the
Rohlin property are approximately conjugate.

Proor. From [Mheorem 14 it is enough to prove that for any product type Z>-
action o« on 4 with the Rohlin property and ¢ > 0, there exist an automorphlsm y of A
and a product type action f with the Rohlin property such that o i~ p and f has the
same form as in _ i.e., there exist a sequence (n; |l e N) of positive integers
and sequences (”1 |l eN), (vgz) |/ € N) of unitary matrices such that

051), 052) eM,,

1)51)1)52) _ v§2)v§1),

(A ﬁfﬂﬁfz - (@M’U’@Advl 7®Advl )

Let (p, | k € N) be the prime numbers in the increasing order. By definition we find
a sequence (Ny|k e N) of positive integers in such a way that each k€ N there are

nonnegative integers m,(cl),. m](cN*), unitaries uy, vy and A; € T satisfying

0 0 0
(A, o, O(éz) = k@ M OB/ @ Ad uy, ® Ad v |,
=1 =1

k &
Py Py,

U, V) € U(M 0 m(Nk)>, UV = lkvkuk,
k ..,k
Py Py,

N o m,(cl) ++ mk ) #0.

I’Vl k

Set Ok = p,* ka . By Remark 12, ikQ" =1 for each k. If 1 =1 for any k, we
are done, so we assume that Ay # 1 for some ke N. Take k; = min{k e N| A #

1}. For n>k; +1 we define

Nm= [ & m= ][] *
k=ki+1 k=ki+1

and relatively prime integers M (n) and K(n) by

An) = exp(Zni- K(n)>, M(n) < N(n), K(n)e{0,...,M(n)—1}.
M(n)

If we set m@(n) = max{m\’ |k +1<k <n} (i=1,...,Ny,) then for each i the ex-

ponent of the factor p, in M(n) is less than or equal to m')(n). Hence taking a

sufficiently large n, we can make the exponent of the factor p; in N(n)M (n)_l as large as

we like if m?(n) # 0. In particular N(n)M(n)~" is divided by Q7 and N(n) is much

larger than M (n).
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We want to show that for any J > 0, which is much smaller than e, there exist
positive integers n, mj, m, and unitary matrices U;, V; (i=1,2,3) and W such that

n>ki+1, my,m=06",
mimy = N(m)M(n) ™' 02,
U,V e Mle, Uy, V2 € MM(”)Q/q?

U3,V3€MN WEMN(n),

(m)M(n)~ Q>
U Vi =2 iU, UsVa = V3Us,
Sp(Us, V3) is (my,my;0)-distributed (15)
and

n n n 718
(@ My, ® Adu, & Advk> AR

k=ki+1 k=k;+1 k=ki+1
(M 0, ® MM(”)le ® MN(n)M(n)*IQ,;f’

Ad(UI @ U, ® Uz), Ad(V1 ® V>, ® 13)).

Suppose that we have shown this statement, then we can construct the required y and f
as follows. Set

m=(0i10:---0) - O - N(m)M(n)~' 02,

ky

ol = (@uk) ® U, ® Us,
k=1

o _ A

= Qo | @ V1 ® Vs,

k=1

w,=w.
Then vgl), ng) e U(M,,). Applying the same method to
o0 o0 o0
MM(”)Qk ® ® MQk ) Ad U, ® ® Ad Up |, Ad V) ® ® Ad Uk
: k=n+1 k=n+1 k=n+1

and 27 '¢ in place of

0 0 0

@MQk,®Ad uk,®Ad Uk

k=1 k=1 k=1

and ¢, we get m, 1)), 0\, W,. Repeating this procedure as in the proof of Theorem 14,
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we obtain an automorphism y as the infinite product of Ad W; (i=1,2,...) and an
action f§ as

0 .
B: =XAd v (i=1,2).
=1

This f also has the Rohlin property due to (15). Hence we have the required y and f.

Now we show the remaining part of the proof, that is, the existence of n,m;,m; € N,
unitary matrices U;, V; (i =1,2,3) and W satisfying the prescribed conditions. By
we can decompose (up to conjugacy)

(@ Moy, ® Uk, @ Uk)

k=ki+1 k=k+1 k=ki+1
nto
M(n) NmMmn) ™ Y1 2 071 2 )

where U™ = S(M(n)), V" =Q(M(n),2(n)"") and UV V" are some commuting
unitary matrices. Furthermore we see

(Sp(UY, Vi) |0 = ky + 1)

is uniformly distributed. Actually note that Sp(Uz(") , Vz(") ) is unique up to piecewise
multiples of (A(n)*, A(n)’) for any k,7e N. So if sup{M(n)|n >k, + 1} = oo then it is
clearly uniformly distributed. If sup{M(n)|n > k; + 1} < co then there is a positive
integer M such that M is divided by M(n) for any n > k; + 1. Noting that

n n B K<n> n U n u
(& )&, n)-on(ost- 5) (& w)( & )
(@”9 u%)(é v,i")z(éé v;”)<<>”§ M)

k=ki1+1 k=ki1+1 k=ki+1 k=ki+1

for any n>k;+1. This implies uMvM =vMuM for any k >k +1. Hence by

IProposition 13
n n
Sp @ w', & v

k=k1+1 k=k1+1

we have

n2k1+1>

is uniformly distributed. Since

k=k1+1 k=k1+1

Sp< R uM, & v,£4>=8p<1®U§”> 1@V,

it follows that

(Sp(US" Vi) |n = ky + 1)
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should be uniformly distributed. Using this distribution of the joint spectrum, we can
make for a sufficiently large n

(M 2, UM vy

close to (up to conjugacy)
(M%®M%®MWWW@?%®W®@@W®W®%M
in norm, where

Uy =Vy=58(0k), Up=V3" =0k, )
and Sp(UY, V") is (my,my;6)-distributed for some my,m; € N satisfying
my,my >0"",  mymy = N(n)M(n)_lQ,:lz.
Since U,V, = /1,;1 V,U,, we obtain desired unitaries in such a way that
U=U, V=V,
L,=U"eUl, V=r"eVl,
Uy =0, vs=v,
We complete the proof. O

Now we sum up the results we have shown so far. Let (p, |k € N) be the prime
numbers in the increasing order. By Glimm’s theorem ([11]), for any UHF algebra 4
there exists one and only one sequence (ix |k € N) of nonnegative integers or oo such
that 4 ~ ®1?:1Mp;k: where M) is understood as @;ilMpk. Then our classification of

Z%-actions on A is as follows:

THEOREM 20. Let A be a UHF algebra with the invariant (i |k € N) as above.

(1) If t{keN|1<iy <} = o0 then there are infinitely many outer conjugacy
classes of product type Z*-actions on A with the Rohlin property.

(2) Ift{keN|1 <ir < 0} < oo and A is infinite-dimensional then there is one and
only one outer conjugacy class of product type Z*-actions on A with the Rohlin property.

(3) If A is finite-dimensional then there is no Z*-action on A with the Rohlin
property.
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