J. Math. Soc. Japan
Vol. 51, No. 3, 1999

On blowing-up of polarized surfaces

By Koji Yokoyama

(Received July 29, 1997)

Abstract. Let (S,L) be a polarized surface and let x: S — S be the blow-up at r
points p;,...,p, on S. Set L =n*L— Y aE;, where a;’s are positive integers and E;’s
are the (—1)-curves over p;. We consider whether L is ample or not if p,’s are in a
general position. The cases of sectional genus two are studied especially precisely.

Introduction.

A polarized surface (S, L) is a pair consisting of a compact complex surface S and
an ample line bundle L on S. We consider the following problem: for a polarized
surface (S,L), let p,,...,p, be r points on S, let 7: S — S be the blowing-up at these r
points, let a1, ...,a. be r positive integers, and let L := n*L — >, a;E; a line bundle on
S, where E; is the (—1)-curve over p; for i=1,...,r. Thenis L ample if p,,...,p, are
in general position?

If the answer is YES, we get a new polarized surface (5’, Z,), but this is not always
the case. First obviously (L)> >0, so we must assume L>> "/ > In order to
apply Nakai’s criterion, we should show L -Z > 0 for any curve Z on S, where Z is the
strict transform of Z on S. So, if L-Z <0, let us call Z(or Z) a bad curve.

In §1 of this paper we give the following results. See [K| and for related
results.

(1) There is a constant ¢ such that L-Z < ¢ for any bad curve Z. ¢ is com-

putable in terms of (S,L,ai,...,a,). Thus there are at most finitely many numerical
equivalence classes containing a bad curve (c.f. (1.6)).
(2) In case aj =ay=---=a,=1,L is ample if there is an irreducible reduced

member C of |L| with ¢g(C) > h!'(0s) (c.f. (1.8)).

In the latter sections, we study the classification of polarized surfaces (S, L) with
sectional genus ¢(S,L) =2, that is defined by the formula 2¢(S,L) —2 = L(Ks + L),
where Ky is the canonical bundle of S. The classification of such polarized surfaces are
given in and [F1]. But there are some cases which are uncertain to occur, where
(S, L) is obtained by blowing-up another polarized surface. Using the above results (1),
(2), we determine whether such cases actually occur or not.

The author would like to thank Professor T. Fujita for invaluable comments during
the preparation of this paper and Doctor M. Kobayashi for finding suitable ten points in
(5.3.2).

1991 Mathematics Subject Classification. Primary 14C20; Secondary 14J25.
Key Words and Phrases. Blowing-up, Nakai’s criterion, polarized surface.



524 K. YokoyAamMA

Notation, convention and terminology.

Basically we use the customary notation in algebraic geometry. Throughout this
paper a surface is a smooth projective algebraic surface defined over the complex
number field C. The pull-back of a line bundle L on Y by a morphism f: X — Y is
denoted by Ly, or sometimes by L if confusion is impossible or harmless. For a vector
bundle # of rank n on a surface S we denote by Ps(#) or P(#) the P" '-bundle
defined by # and denote the tautological line bundle by H(%) or H.

§1. General case.

(1.1) For a given polarized surface (Sy,Lo) := (S, L), we consider a sequence of
blowing-ups S=8S -8 | —-—8—>8 —S:=8 LetS; — S, bethe blowing-
up of S; at p;e S,y and let L;:=L;_; —a;E; be a line bundle on S; for i=1,...,r,
where a; is a positive integer and E; is the (—1)-curve over p,. Moreover we assume the
following.

(1) For each i, the sum of g;’s at points p;’s on E; is less than a;.

2) (L)?*=L*- ST a? >0, where we denote L := L.

(1.2) Using Nakai’s criterion, we can easily see that L is ample if and only if
L -Z > 0 for any irreducible reduced curve Z on S, where Z denotes the strict transform
of Z on S.

(1.3) Let m; be the multiplicity of Z on p; for i=1,...,r. Then L-Z=
L-Z->_am=L-Z—(1/2)>_,a;—> i ai(m;—(1/2)). Schwarz’  inequality

gives L-Z>L-Z— (/)Y ai—+/> 0, al-z\/Zl.rzl(mi —(1/2))*>. On the other
hand ¢(Z) = g(Z) = (1/2) X mi(mi = 1) = 0. So 2(Z) + (r/4) =1 (m; — (1/2))%.

Combining them, we get L-Z>L-Z—(1/2)Y a;— /> a>\/29(Z) + (r/4) =
\/(L-Z— (1/2) S a;)? — \/(2g(Z) + (r/4)) Y- a?. Therefore if Z is a bad curve, then

(L-Z—(1/2)a)* = (29(Z) + (r/4)) Y. a? < 0. Consequently we obtain

(1.4) Lemma. (L-2)* =S a(L-2) = 29(2) S a2 + (1/8) (XN a)* —rYa?) <0 if
Z is a bad curve.

(1.5) Next we consider the numerical equivalence classes that contain bad curves,
which are determined independently of the position of p,...,p,.

(1.6) PrOPOSITION. For fixed ay,as,...,a,, the number of numerical equivalence
classes that contain a bad curve is finite.

ProoF. We denote Y a; by o and Y. a? by wp. For any curve Z, we have

1

the following inequality by using the genus formula together with the Hodge index
theorem:

1
(L-2)*=on(L-Z) = 2329(2) + (2 = 122) > (1 ~ %) (L-2)%+ (—ouL—u:Ks) - Z+ ¢
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for some constant ¢; independent of Z. On the other hand, mL — o L — 0, K is ample
for sufficiently large m > 0 because L is ample. So (mL —o;L — 0yKy) - Z > 0 for any
Z. Hence

(L-2)* —oy(L-Z) —2mg(Z) +%(a12 — rop) > (1 —%> (L-2)*—m(L-Z)+c

for some constant ¢, independent of Z. 1 — ay/L2, the coefficient of (L - Z)?, is positive
since (L)>=L2—a>0. So (L-Z)*—oy(L-Z)—2mg(Z) + (1/4)(a? — roz) > 0 for
sufficiently large (L-Z). By (1.4) these Z cannot be a bad curve, hence {L-Z|Z is a
bad curve} is bounded, and it follows that the number of numerical equivalence classes
containing a bad curve is finite, since L is ample. Therefore the genera of bad curves
are bounded, so the multiplicities of them on each p, is bounded. Hence the number of
numerical equivalence classes that contain the strict transform of some bad curve is also
finite.

(1.7) Next we give a sufficient condition for L to be ample for r points DPiy---, Py 1N
a general position, which means that L is ample for p,,..., p, outside a Zariski closed
proper subset of S":=8 x---x S.
H—/
r times
(1.8) THEOREM. We further assume ay =---=a, =1 and there is an irreducible

reduced member C of |L| such that g(C) > h'(Os). Then L is ample for r generic points
Pis---> D, 00 S.

PrOOF: Ampleness is an open condition, so it is sufficient to show the existence of
an r-tuple p,,...,p, such that L is ample. Let p,,...,p, be r generic points on C, and
blow-up S at these points. (If C is singular, we replace C with C\ Sing(C) from
here). Let Z be a bad curve, and m; be the multiplicity of Z at p;. By (1.6) there are

only finitely many possibilities for m := (my,...,m,). We fix one such m. By the
assumption h!(0¢) > h'(0s), we can show that the linear equivalence class of >, m;p;
is not contained in the image of Pic(S) — Pic(C) for a general choice of p,,...,p,.

Assume that there is a bad curve Z, then 0 > L-Z = C-Z, where C, Z are strict
transforms of C, Z. So CNZ =, and 0= (z*Z — 3 ., mjE;)¢. Therefore Z|. =

er:l m;p; in Pic(C). This contradicts the above choice of py,...,p,. So there is no

bad curve for a general choice of p,,...,p,.

§2. Classification of polarized surfaces with sectional genus two.

In the following sections, we will treat polarized surfaces with sectional genus two.

(2.1) DermNniTION.  The sectional genus ¢(S,L) of a polarized surface (S,L) is
defined to be (1/2)L-(Ks+ L)+ 1, where Kg is the canonical bundle of S.

(2.2) DEerINITION. A polarized surface (S’,L’) is called the simple blowing-up of
a polarized surface (S,L) at py,...,p,, if S’ is the blowing-up of S at p,,...,p, and
L'=Ls —E; —---—E,, where E; is the (—1)-curve over p;.

(2.3) REMARK.
(1) For a simple blowing-up of a polarized surface (S, L), there are at most L? — 1
points to blow-up because (L')* > 0.
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(2) If there is a curve Z such that L-Z = 1, then there exists no simple blowing-up
of (S,L) at a point on Z.

(2.4) DEFINITION. A polarized surface (S, L) is a scroll over a curve C if S is a P!-
bundle over C and L-F =1 for any fiber F of § — C.

For ¢g(S,L) < 1, we have a complete classification of (S, L) (c.f. [F1]). As for the
case ¢g(S,L) =2, we know the following fact (c.f. [BLP], [F2]).

(2.5) THEOREM. Any polarized surface (S,L) with g(S,L) =2 satisfies one of the
following conditions.

(0) There is another polarized surface (So,Ly) with sectional genus two such that
(S,L) is a simple blowing-up of (S, Lo) at a point.

(1) The canonical bundle K of S is numerically equivalent to L and L* = 1.

(1) S is a minimal elliptic surface and KL = L*> = 1.

(21) S is the Jacobian of a curve C of genus two, and L is the class of a translation
of the O-divisor.

(21) S~ Cy x G, for some elliptic curves Ci,Cy, and L = [Fy + F], where F; is a
fiber of S — C;.

(25) S is a hyperelliptic surface and L = [Z + F)|, where F is a fiber of the Albanese
fibration o : S — AlIb(S) and Z is a section of .

(23) There is a finite double covering f : S — P? branched along a smooth curve of
degree six and L= f"Op:(1).

(24) S is an Enriques surface and its K3-cover S is a finite double covering of
P; Xle branched along a smooth member of |4H,+4H.|. Lg is the pull-back of
H, + H,.

(3) There is a rank two ample vector bundle F on an elliptic curve C such that
c(F)=1,(S,L) ~ (P(F),3H(F) — As) for some A € Pic(C) with deg(4) =1. L* = 3.

(4) There is a rank two vector bundle F on an elliptic curve C such that S ~ P(F)
and L = 2H(F) + Bs for some B e Pic(C) with (¢|(F),degB) = (1,0) or (0,1). L> = 4.

(5) There is a rank two vector bundle F on an elliptic curve C together a point p on
P:=P(F) such that ¢\(7)=1,S is the blowing-up of P at p and L=5H(F )¢ —
245 — 2E,, where A is a line bundle on C with deg(A) =1 and E, is the (—1)-curve over
p. L*>=1.

(60) S=~P,xPjand L=2H,+3Hp L>=12.

(61) S~2X)=P(F) with F ~[H:|® O on Pé and L =2H(F)+2H:. L*=12.

(62) S~ =P(F) with F ~2H:]® 0 on P} and L =2H(F) + H:. L*>=12.

(7) —K is ample, K* =1 and L = -2K. L?>=4.

(8) There is a del Pezzo surface (S”,L") with (L")* = 1 and two points p,, p, on S"
such that S is the blowing-up of S” at these points and L = 3L" — 2E, — 2E,, where each
E; is the (—1)-curve on p, for i=1,2. L>=1.

(9) (S,L) is a scroll over a curve of genus two.

A polarized surface of type (0) is obtained as a simple blowing-up of a polarized
surface of another type, in fact, one of the types (2;),(23),(24),(3),(4), (60), (61), (62),
(7) in (2.5) by (2.3). But the existence of a simple blowing-up of each of these types
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was unknown, for the ampleness may be destroyed by the blowing-up. Similarly, the
existence of the types (5) and (8) was unknown too.

We will consider this existence problem for the types (21),(23),(24) in §3, (3), (4),
(5) in §4, and (60), (61), (62),(7),(8) in §5.

§3. The case K =0 and L> = 2.

In this section we consider the existence of simple blowing-ups obtained from the
types (21), (23), (24). Since L? = 2, a polarized surface obtained from these types must
be a simple blowing-up at one point. We prove the existence of these polarized
surfaces:

(3.1) THEOREM. There is a simple blowing-up of polarized surfaces of the types
(21),(23),(24) in (2.5) at one point. More precisely, for any polarized surface (S,L) of
these types and for any general point p on S, L =n"L — E, is ample on S.

The proof is given in (3.2) and (3.3).

(3.2) Let (S, L) be of the type (23) or (24). Then g(S,L) > h'(CUs) =0, so we can
apply (1.8) if there is an irreducible reduced member of |L|. This is obvious in case (23)
by Bertini [Theoreml

In case (24), we have dim|L| =1 by Riemann-Roch and Vanishing
Theoreml Hence a general member D of |L| is irreducible or of the form D =
D+ D), L-Dy=L-D,=1 and Df >0, since L-D =2 and L is ample. But D;-
D, >0 since D is connected, so L-D; =1 implies D;-D, =1 and D12 =0, hence
D3 =0. We may assume that D; is not a fixed component, and then D? =0 implies
that |D;| has no base point, therefore D, ~ P! since D;-D,=1. This contradicts
D3 =0. Thus any general member D must be irreducible, as desired.

(3.3) When (S,L) is of the type (2;), we cannot apply (1.8) since ¢(S,L)=
h'(0s) =2. So we will show directly that there is no bad curve. Since there is
no rational curve on S, we have 1 <g(Z) for any bad curve, where we employ
the same notation as in §1. Hence we obtain 0> (L-Z)*— (L-Z)—2(9(Z) — 1)>
(1/2)(L-Z)((L-Z) —2) as in (1.3) and (1.6). Thus we should consider the following
two cases:

(a) Z is an elliptic curve and L-Z =1,

(b) Z is a singular curve of genus two and L-Z = 2.

We will show that neither of the types really exists.

(3.3.1) In case (a), the inclusion Z<— S is a group homomorphism, so by taking
the quotient Z' = S/Z we obtain a fibration S — Z’ whose fiber is isomorphic to
Z. On the other hand C e |L| is a section of this map since L-Z =1. This con-
tradicts ¢g(C) = 2.

(3.3.2) In case (b), the resolution Z; of Z is an elliptic curve and we have the
following commutative diagram induced by Zy — Z— S.
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Zy —f> S

hol Jh

Alb(Z)) — Alb(S)
0
Then ho f(Zy) ~ Z is a singular curve, but f, o hy(Zy) ~ Z, is a non-singular curve.
This is absurd.
Thus both cases (a) and (b) cannot occur, and the proof of (3.1) is completed.

§4. The case of scrolls over an elliptic curve.
In this section we will show the following theorem.

(4.1) THEOREM.

(i) Let (S,L) be of the types (3), (4) in (2.5), and assume that F #* Oc @® O¢. Let
P1sDys---, D, be points on S in a general position, where r < L*>. Then the simple
blowing-up of (S, L) at these points is actually a polarized surface, ie., L=n*L —>.I_| E;

is ample on S.
(i) There is no polarized surface of the type (5) in (2.5).

The rest of this section is devoted to the proof of this theorem. We denote a fiber
of S— C by F.

(4.2) Let (S,L) be of the type (3). Since h'(0s) =1,L is ample if there is an
irreducible reduced member of |L| by (1.8). Since L =3H(Z)— F, any irreducible
component Z of a member of |L| is numerically equivalent to one of H(#),2H(#) — F
or 3H(#)—F. To show the existence of an irreducible reduced member of |L| we
will compute the dimension of the complete linear systems that contain such curves.
Since H(#)— Ks,3H(F) — F — Kg are ample, we obtain h'(H(F)) = h*>(H(F)) =
WQBH(F)—F)=h*3H(F)— F) =0 by using the Kodaira vanishing theorem. So we
have h°(H(#)) =1 and h°(3H(F) — F) = 2 by the Riemann-Roch theorem. Hence a
generic member of |L| is irreducible and reduced if there are at most finitely many Z
with Z =2H(Z) — F. We will show this by constructing explicitly the surface of the

type (3) in (2.5).

(4.2.1) We can get the exact sequence 0 — (¢ — F — O¢(p) — 0, if necessary, by
replacing % with % ® [G] for a suitable line bundle G and a point p on C. Since
Ext'(Oc(p),0c) ~ C, S is essentially unique. Next we fix the origin o of C and
identify C with the Jacobian of it. Then we have the two-fold symmetric product
S%(C) of C defined by the involution (x,y) := (y,x), and we obtain the following
commutative diagram:

CxC —L5 §20)

hcl lh
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where 4 and hy are defined by (x,y)— x+y. S*(C) — C is a P'-bundle over C
because |[x] + [y]| = P! for every (x,y)e Cx C. We set H := g({o} x C), which is a
section of h. Then H is ample since g*(H) = ({o} x C) + (C x {o}) is. Moreover
H?=(1/2)(({o} x C)+ (C x {o}))* =1, so the above (S,H) is isomorphic to
(S,H(F)) of the type (3) in (2.5). More precisely, H(Z) is numerically equivalent to
H and there is a translation of C which induces a bijection t: S — S with ©*H = H(%).

(4.2.2) For any point ¢ on C, we denote by F, the fiber of S — C over ¢q. For
any member Z, of |g*(2H — Fy)| and any point x on C, Z/ - ({x} x C) = g*(2H — F)-
({x} x €)=1. Since Z, does not contain ({x} x C), Z, meets ({x} x C) at one point.
Let us denote the point by y. Then [y] =[g9"(2H — Fy)]\«c = 2[0] — [g — x], so y =
x —¢q by Abel’s theorem. Hence Z, = {(x,x —¢q) e C x C}, .. Now Z is r-invariant
if and only if 2g =0. In case g =0, g*(9(Z))) =2Z). Hence |2H — F,| # ¢ if and
only if 2¢9=0 and ¢ #o0. So there are exactly three points ¢;,q»,q3 such that
2H — F,,| # . Consequently there are only three curves that are numerically
equivalent to 2H — F. Hence a general member of |L| is irreducible and reduced, and
our assertion is true for the type (3) by (1.8).

4.3) Let (S,L) be of the type (4) with (¢;(#),deg B) = (1,0). The surface S and
ample line bundle H(Z) is the same as those in (4.2.1). So we employ the same
notation as there. To prove the ampleness of L, it is enough to show that there is an
irreducible reduced member of |L| as in (4.2). Since L =2H, any irreducible com-
ponent Z of a member of |L| is one of the following: Z = H,2H — F,2H, or
F. Obviously we have h°(F)=1. On the other hand H — K5 and 2H — K are
ample. So we have h°(H) =1 and 41°(2H) = 3 by the Kodaira vanishing theorem and
the Riemann-Roch theorem. For only three points ¢ = ¢qi, ¢2, ¢3, there is a member of
2H — F,| as we have seen in (4.2.2). Since h°(L) =3, a generic member of |L| is
irreducible and reduced. So (1.8) applies.

(4.4) Let (S,L) be of the type (4) with (¢;(F),degB) = (0,1). If # ~0c @ O,
then S~ C x P! and C- L =1 for any fiber C of the second projection. Hence there is
no simple blowing-up of (S,L). So we assume # %* Oc @ Oc. We will show that
there is an irreducible reduced member of |L|. This is enough as in (4.2) and (4.3). As
L =2H + F, any numerical equivalence class of an irreducible component Z of a
member of |L| is one of 2H + F,2H,H + F,H, or F. For 2H + F and H + F, we can
apply the Kodaira vanishing theorem together with the Riemann-Roch theorem, and
obtain h°(2H + F) =3 and h°(H +F) =2. And obviously /°(F) =1. In order to
study divisors which are numerically equivalent to 2H and H, we consider the extension
type of #. If necessary, we replace # by # @ [G] for a suitable line bundle G on C so
that we have an exact sequence 0 — O¢c — F — (O¢(A4) — 0, where A4 is a line bundle

on C with deg(4) =0. Then we have
C (4=0)
Ext'(0c(4),0¢) = ’
Xt (Oc(4), Oc) {0 (4 #0).

(4.4.1) When 4 =0,7 is indecomposable since # % Oc @ Oc. In this case we
have the following:
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LEMMA. For any G e Pic’(C), we have

(a) K(H + Gs) = {(1) Eg Z 8;
1 (G=0),

(b) h°(2H+GS):{O (G0

ProoF. (a) Since h'(S,H + Gs) = h'(C,7 ® [G]), we calculate h'(C,7 ® [G]).
We have the following exact sequence:

0— H(C,G)— H°(C,7 ®|G]) — H*(C,G)

— HY(C,G) - H(C,7 ®[G]) - H'(C,G) = 0

If G=0, we have h°(C,G)=h'(C,G)=1. So by the above exact sequence
h°(C,7)=h'(C,#)=1 or 2. Suppose that h1°(C,#)=2. This yields Bs|H| = ¢,
and |H| defines a morphism S — P'. Hence we obtain the following commutative
diagram:

S — P'xcC

|

C —— C,

where P' x C — C is the second projection. This contradicts that % is indecom-
posable. Hence h°(S,H) = h'(S,H) =1,

If G#0, we have #°C,G)=h'(C,G)=0. Hence h’(S,H+ Gs)=
h'(S,H + Gs) = 0.

(b) We denote by C the member of |H|. For any G ePic’(C), we have the
following exact sequence:

0— HYS,H + Gs) — H°(S,2H + Gs) — H°(C, G)
— H'(S,H + Gs) — H'(S,2H + Gs) — H'(C,G) — 0.

If G=0, then h°(S,2H) = h'(S,2H) =1 or 2. Suppose h°(S,2H) =2. Then we
have Bs|2H| = & and we can define the finite morphism S — P' x C of degree two
similarly as above. Now all of the members in |2H| are irreducible and reduced except
for 2C, so the branch locus of the morphism is of the form {p} x C for some point p on
P'. This contradicts [{p} x C]¢2-Pic(P! x C). Hence h°(S,2H) = h'(S,2H) = 1.

When G # 0, we have h'(H + Gs) = hi(C,G) =0 for i=1,2. Hence h°(H+Gs) =
h°(C,G) = 0.

By this lemma, we easily see that a general member of || is irreducible and reduced
since h°(L) =3. So (1.8) applies.

(4.4.2) When 4 # 0, we have & ~ O¢c ® O¢(A) since Ext! (0c(A4),0¢) = 0. Since
h°(H 4 Gs) = h°(C,0c(G) @ Oc(A + G)), we have

1 (G=0,—-4),

h°(H + Gs) =
(H + Gs) {O (otherwise).
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And by h°(2H + Gs) = h°(C,0c(G) ® Oc(A + G) @ 0c(24 + G)), we have
I (G=0,—4,-24),

1) if 24 #0,h°2H + Gs) =
(1) i # 0,17 (2H + Gs) {0 (otherwise),

2 (G=0),
2) if24=0,I"QH+Gs)=< 1 (G=0,-4),
0 ( otherwise).

By direct calculation, we see that any general member of |L| is irreducible and reduced.
Hence (1.8) applies.

4.5) Now we should show that the case (5) in (2.5) does not occur. Let
(P(F),H(F)) of the type (5). Similarly as in (4.2.1), P(%) is isomorphic to the 2-fold
symmetric product of C. In this case, we will show that there is a morphism P(%) —
P' and L-F' =2 for its fiber F'.

We employ the same notation as in (4.2.1). Let ¢: C x C — C be the map such
that o(x,y) =x—y and let g’ : C — P! be the rational map defined by |20|. Since
g'(=x) = ¢'(x), the map g’ og: C x C — P' factors through P(#) = C x C/1, and we
get the following commutative diagram:

CxC—Ls P(F)

c —— P!
g/
Let F' be the fiber of ¢’ over ¢'(p). Then (SH-2F)-F' = (1/2)g"(SH —2F)- g*F'
—=2. Hence L-F' =0 for any p on P(%), where F' is the proper transform of F’.
So we have no polarized surface of the type (5) in (2.5).

§5. Rational case.

In this section we will show the following

(5.1) THEOREM.

(a) Let (S,L) be of the types (69),(61),(62),(7) in (2.5). Let py,ps,...,p, be
points on S in a general position, where r < L>. Then the simple blowing-up of (S,L) at
these points is actually a polarized surface.

(b) There exists a polarized surface of the type (8) in (2.5).

The proof is as follows.
(5.2) It is easy to see that the assertion (a) follows from (1.8).

(5.3) To see the case (8) really occurs, we fix a minimalization S” — P? of S”,
which is an eight-points blowing-up of P?>. To follow the same notation as in (1.1), we
denote (S, L) by (S,L) and (P*,9H) by (S,L). Let the following sequence of blowing-
ups be as in (1.1).

S'::S10—>S9—>Sg::S"—>S7—>---—>S0::P2
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Let L=Lyy:=9H —3E; —---— 3Ey — 2Ey — 2Ey,. For a bad curve Z of degree d, we
have d? — 12d — 164 < 0 by (1.4), hence 0 < d <20. We can compute the degree d and
the multiplicity m; at each p; of the bad curve by the aid of a computer. (In fact, we

enumerate all the multiples (d,(my,...,my)) such that 2¢(Z) = (d —1)(d —2)—

S mi(mi—1)=0 and L-Z=9d -3 % m; —2(mg+mp) <0). The result is
listed below:
degree (my - myo)
(1) 1 (111000000 0)
(2) 2 (1111110000
1) 3 (2111111100)
32 3 (1111111111)
(4) 4 (2221111111
(3) 5 (2222221111
61) 6 (3222222211
62) 6 (2222222222)
63 6 (2222222221
(7) 7 (3332222221)
(8) § (3333332221
91) 9 (4333333321
92) 9 (3333333332
(100 10 (4433333333)
(11) 11 (4444433333)
(1211) 12 (5444444333)
(122) 12 (4444444442
(123) 12 (4444444433)
(13) 13 (5554444433
(14) 14 (5555554433)
(15 15 (6555555533)
(18) 18 (666666665 4)

To show that there is no such curve for any ten points in a general position, we use
the following result due to Xu:

., be r points on P* in a general position, and Z be
Then d* > Y., m?

(5.3.1) ProPOSITION.  Let py,...
an irreducible reduced curve of degree d with mult, (Z) = m;.
for any qe{l,... r} such that my; > 0.

For the proof, see [Xu].

This proposition rules out the above cases except for the cases (3-2), (6-3) and
(12-3).

In case (3-2), we have A°(3H) = 10, so h°(3H — Y}°| E;) = 0, hence this case does
not occur.

In case (6.3), we have Ze | = 2K" —2E9 — E}o|, where K" is the canonical bundle
of the Del Pezzo surface S” = Sg. Note that /°(—2K") =4 and | — 2K"| has no base
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point by Reider’s criterion. Let p:S” — P be the induced morphism. A member of
| — 2K" — 2Eq — Ej| corresponds to a (hyper)plane in P* which is tangent to p(S”) at
p(pg) and passes p(p,,). Clearly there is no such plane, thus this case is ruled out.

(5.3.2) The case (12-3) is ruled out by the following direct computation.
H°(12H — 4E, — --- — 4E3 — 3Ey — 3Ey) is a subspace of H(12H) ~ C*!, satisfying 92
linear equations. By the aid of computer we can show that there is no solution for the
ten points (0,0), (1,0), (0,1), (1,1), (2,1), (3,2), (=2,3), (=1,5), (1,-2), (-=3,2) e P> —
H,, = C?, for example. So there is no curve of this type for any ten points in a general
position.

Hence there exists a polarized surface of the type (8) in (2.5).
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