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Abstract. We consider the group of foliation preserving homeomorphisms of a foliated
manifold. We compute the first homologies of the groups for codimension one folia-
tions. Especially, we show that the group for the Reeb foliation on the 3-sphere is perfect
and the groups for irrational linear foliations on the torus are not perfect.

1. Introduction.

Let M be an n-dimensional connected closed topological manifold. By # (M) we
denote the group of all homeomorphisms of M which are isotopic to the identity by an
isotopy fixed outside a compact set.

In this note we treat certain subgroups of #(M). Let R" = {(x,...,x,)|x; € R}
be an n-dimensional Euclidean space and %, the p-dimensional foliation of R" whose
leaves are defined by x,.| = constant, ..., x, = constant (1 < p <n). A p-dimensional
topological foliation % of M is defined to be a maximal set of CP%-charts:
{(U;,h;),U; is open'in M, h; : U, — R", i e A} of M such that h; o h;l :h, (U, NU,)
— h;(U,NU,) preserves the leaves of foliations which are restrictions of Z, to
hﬂ(U,l N Uﬂ) and h,1<U2 N Uﬂ).

A homeomorphism f : M — M is called a foliation preserving homeomorphism (resp.
a leaf preserving homeomorphism) if for each point x of M, the leaf through x is mapped
into the leaf through f(x) (resp. x), that is, f(Ly) = Ly, (resp. f(Ly) = L), where L,
is the leaf of % which contains x. Let F(M, %) (resp. L(M, %)) denote the group of
foliation (resp. leaf) preserving homeomorphisms of (M, %) which are isotopic to the
identity by a foliation (resp. leaf) preserving isotopy fixed outside a compact set.

In §2, we consider the homologies of L(M, %), that is, the homology groups of the
group L(M,%) and show that the homologies of L(R", %) vanish in all dimension
>0. This is a generalization of a result of Mather[M] to the case of foliated manifolds.

In §3, first we show that any f € L(M, %) can be expressed as f = fj o f,o---0 f,
where each f; is a leaf preserving homeomorphism with support in a small ball. Next
we show from the above result and the result in §2 that L(M, %) is perfect, i.e., is equal
to its own commutator subgroup.

In §4, we consider F(M,%) and compute the first homology of F(M,%) for
codimension one foliations. Especially we show that for the Reeb foliation % of S3,
F(S3,7R) is perfect and for a foliation # of T" defined by a l-form w =" a;dx;,
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F(T",7) is not perfect if one of a;/a; is irrational, indeed in this case the first homology
of F(T",#) is isomorphic to R/a1Z + ---+ a,Z.

2. Homologies of L(R", Z).

We recall that if G is any group, then there is a standard chain complex C(G) whose
homology is the homology of G.

Let C,(G) be the free abelian group on the set of all r-tuples (gi,...,¢,), where
gi € G. The boundary operator 0: C.(G) — C,_1(G) is defined by

a(gb o 7gr) - (g;1g27- .. 7gf1gr) + Z(_l)i<gla o agz'? s agr)-
i=1

Then we have > =0. The symbol H,(G) will stand for the r-th homology group of
this chain complex.

Let R" = {(x1,...,x,)|x; € R} be an n-dimensional Euclidean space and %, the p-
dimensional foliation of R" whose leaves are defined by x,,1 = constant,... x, =
constant (1 < p <m). Let L(R",%,) denote the group of leaf preserving homeo-
morphisms of (R",%,) which are isotopic to the identity by a leaf preserving isotopy
fixed outside a compact set.

If ¢=>ki(91,---,9r), (kj € Z) be an element of the chain group C.(L(R", %)),
we define the support of ¢, supp(c), by supp(c) = UiJ supp(gij)-

Let U= U'x R", where U’ is an open rectangle in R” (c R’ x R"” = R").

Then supp(c) = U if and only if supp(g;) = U for each i, .

We put Ly(R", #y) ={f € L(R", %) |supp(f) < U}.

THEOREM 2.1. The homology groups H.(L(R",%,)) =0 forr> 0.

Before we prove this theorem, we need a lemma. Let:: Ly(R", %)) — L(R", %))
denote the inclusion map, and let 1 : H,(Ly(R", %)) — H,(L(R", %)) denote the
induced homomorphism. We have the following.

LEMMA 2.2. 1, is an isomorphism.

Proor. First we show that iz, is surjective. Let he H,(L(R", %)), and let ce
C,(L(R",Z#y)) be a cycle representing h. Choose a homeomorphism ¢ e L(R", %)
which satisfies p(supp(c)) < U.

Let 1, be the inner automorphism of L(R", %), given by I,(g) = pgp~!. Since any
inner automorphism induces the identity on homology, (1,),(h) =h. (I,),(h) is rep-
resented by the cycle I,(c) and supp(I,(c)) = ¢(supp(c)) = U. Hence h =1.h’', where
h' e H(Ly(R", %)) is the homology class represented by I,(c).

Next we show that i, is injective. Suppose that h e H,(Ly(R", %)) satisfies 1.h =0
and let ¢ be a cycle in C,(Ly(R", %)) representing h. Then there is a chain ¢’ €
Cr1(L(R", #y)) such that d(¢’) = ¢. Since supp(c) = U, it is easy to see that there is a
homeomorphism ¢ € L(R", %) such that ¢ is the identity in a neighborhood of supp(c)
and ¢(supp(c’)) = U.

Then we have 0(Iy(c’)) = I4(0c’) = I4(c) = ¢ and I,(c') € Cop1(Lu(R", F9)).

This completes the proof.
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PROOF OF THEOREM 2.1. We put U =(1,2)x (=1,1)’' x R"” < R". Take a
homeomorphism ¢ € L(R", #,) given by

1 |
A(X1,. .. X)) = (gX],...,gxp,le,l,...,xn)

for (x1,...,Xp, Xps1,...,%,) € B(0, p+ 3) x C(0,K) for some K > 0, where B(0, p + 3) =
{((x1,.. ;%) €R” | (x1))* + -+ (x,)* < (p+3)*} and C(0,K) = {(xp41,---, %) | || <
K(i=p+1,....n)}. We set U =¢U)=(1/3,2/3)x(=1/3,1/3)""" x R",
(j=0,1,2,...). Note that Uy = U.

Then we have that UjNUy = if j#k and {U;} shrinks to the (n-— p)-
dimensional subspace 0 x R"7” < R" as j goes to oo.

For any ge Ly(R", %) and i = 0,1, we define ;(g) as follow;

bgw = { #9070 e D2
! X (x¢ 2.0
Note that y;(g) is a well-defined element of L(R", %) and ¥, : Ly(R", %) — L(R", Fy)
is @ homomorphism for i =0, 1.
Since ¥,(g) = (Mo(g)qﬁ*l, Y, and Y, are conjugate, so we have
o). = (1), : H(Lu(R", 79)) — H(L(R", 79)).
Following Mather [M], we define
n:Ly(R", 7)) x Ly(R", #4) — L(R", 7,)
by (g, h) = g, (h).
As two homeomorphisms with disjoint supports commute and supp(g) < U,
supp(y,(h)) < szl U;, we have gy, (h) =y (h)g. Hence # is a group homomorphism.
Let 4:Ly(R", %) — Ly(R",Fy) x Ly(R", #,) denote the diagonal homomor-
phism. We have easily that y, =7 o 4.
Now the proof proceeds by an induction on r. It is vacuous for »r = 0. For the
inductive step, we assume that H (L(R",Z%,)) =0 for 1 <s<r—1.
By Lemma 2.2, it follows that Hy(Ly(R", %)) =0 for 1 <s<r—1.
By the Kiinneth formula, we have

H,(Ly(R", ) x Ly(R", 7)) = H,(Ly(R", 7)) ® H,(Ly(R", 7y)).

For any he H.(Ly(R", %)), 4.h =h@ h, thus (), (h) = n,4.(h) = n.(h @ h) = 1.(h)
+(y), () = .(h) + (Yy), (k). Hence 1,(h) =0. From [Lemma 2.2, it follows that
h=0. Thus we have H,(Ly(R",Zy))=0. From [Lemma 2.2 it follows that
H,(L(R",#,)) =0, which completes the induction.

COROLLARY 2.3. Ly(R",Fy) and L(R",F,) are perfect groups.

Proor. This is an immediate consequence of Theorem 2.2 because that H;(G) =
G/[G,G] for any group G.
3. Commutators of leaf preserving homeomorphisms.

In this section, first we show the following theorem following the proof of [Lemmal

4.1 in [EX]
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THEOREM 3.1. Let (M,%) be a foliated manifold. Any f e L(M,Z#) can be
expressed as [ = fy o fy0---0 f., where each f; is a leaf preserving homeomorphism with
support in a small ball.

Proor. First we prepare some notations. Let B? = [—1,1]” = R”. 1In general, let
aB? = [~a,a)’ for a>0. We regard S' as the space obtained by identifying the
endpoints of [—4,4] and we let e¢: R — S' denote the natural covering projection, that
is, e(x) = (x +4)(mod 8) —4. Let T” be the p-fold product of S'. Then aB” can be
regarded as a subset of 77 for a<4. Let e=e”:RP — T? denote the product
covering projection.

We prove the above theorem in the following three steps.

Step 1. Let n:4B” — R? be the inclusion and let 7(4B”, R”) denote the space
of imbeddings of 4B’ into R’ with the compact open topology. Let N(¢) ={he
I(4B?,R?) | ||h(x) — x|| <& (x€4B?)} for ¢ > 0.

In the following, for a sufficiently small &, we will construct an isotopy ¥(h,t) of h
to the identity, which satisfies ¥ (h,7) =h on 04B? and ¥(h,1) =id on B’.

Let D{,Dj,Df and Dj be four concentric p-cells in 77 —2B” such that D/
int D}, for each ;.

As is well-known, there exists an immersion o : T7? — DY — int3B”. Then we can
assume that ae =id on 2BP’.

If he N(e) for a small ¢, then /& can be covered in a natural way by an imbedding
hy: TP — DY — T? — D! as follows:

7D M e pP

al la
4gr o pe.

Note that /; is an imbedding lifting # and depends continuously on 4. It is an
inclusion map if 4 is the one.

We have that hy(int Dy — DY) > dDY if ¢ is small. From the canonical Schoenflies
theorem (Proposition 3.1 of [E-K]), we see that /;(0D}) bounds canonically a p-ball in
Df. By coning, we can extend /|y, prtoa homeomorphism 4, : T? — TP canonically
if ¢ 1s small.

Note that /&, depends continuously on % and if 4 is the inclusion, then &, = id.

Now if &, is sufficiently close to id, then h; lifts in a natural way to a bounded
homeomorphism /3 : R — R? so that the following diagram commutes:

h 3

R? — R?

TP L T?,
where bounded means that |h3(x) — x| < constant for any x € R”. Note that /3 depends
continuously on /4, and if hy = id, we assume h; = id.
Let y:int3B” — R?” be a homeomorphism which is a radial expansion outside a

neighborhood of 2B? and is the identity on 2B”. Define a homeomorphism /4 : R?
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— R by

“lohyoy(x) (xeint3B’
hax) = 4 7 M y(x) ( ')
X (x € R" —int3BP).

The continuity of A4 follows from the fact that /3 is bounded. Note that (1) /Ay
depends continuously on 4 and if &4 = #, then hy = id, and (2) aeyhs(x) = haey(x) = h(x)
for x € 2B? Nh;'(2B?).

From (1), we have hs(B?) — 2B? for a small ¢. Since oey =id on 2B”, we have
that iy = h on B?.

We put g = hy. Using the Alexander trick, we define an isotopy

g[:Rp_>RP’ IG[O,I],

from the identity to g,

Define a deformation
Y :N(e) x[0,1] — I(4B”, R?)

by Y (h,t) = g;l oh.

If ¢ is small, we may assume that #(04B”)N3B? = (J for he N(¢). Thus we have
Y(h,t) =h on 04BP".

Note that (1) ¥(,t) = 5 for any ¢, and (2) ¥(h,0) = h and ¥(h,1) = g~! o h, which
is the identity on B?”.

Step 2. Now we consider a foliated version. Let 4B” x 2B"? be a foliated chart,
that is, {(x,y) = (X1, -+, Xp, Y15y Vyp) €4BP X 2B" P | py =150y Yy = Cup} giVES
a connected component of a leaf in this chart. Let #:4B” x2B"7? — R’ x R"? be
of the form (h(x,y),y) (x€4BP,y€2B"7) and close to the inclusion. We put h, =
h( ,y). Note that for each y € 2B"?, h, : 4B? — R” is close to the inclusion #. Then
performing the procedure in Step 1, we construct g, canonically from 4, for each
ye2B"P. Using the Alexander trick again, we define

Gy.i(x) = zgny) (t>0)

X (t=0), where x € 4B?.

Note that g, ; is continuous on y.
Let A:2B" 7 — [0,1] be a continuous function such that

(=)
M‘{o (vl =2).

For the deformation ¥ (h,t)(x, y) = (g;lt o hy(x), y), we define a new deformation @ by
D(h,1)(x,y) = P (h,A(»)1)(x,y) (xe4B’ ye2B"7).
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This satisfies that (1) @(h,0) =h, (2) ®(h,1)(x,») = (g}, o hy(x), ), which is the
identity on B” x B"?, and (3) ®@(h,t) =h on 0(4B? x 2B"P).

Step 3. Now we prove the theorem. Take a foliated chart U, (= int(5B? x 3B"7)
S 4B? x 2B"?), for (M,#). Let feL(M,%). We can assume that fis close to the
identity. We put h = f|,gp,op»- Then we can regard i as the map in Step 2. We
put f, = @(h,1) and f;, = fof_l_l. Since f| = f on 0(4B? x 2B"P), f, can be extended
to an element of L(M, %) by using /. Then supp(f,) is contained in 4B” x 2B"? < Uj.

Next taking another chart U,(= int(5B? x 3B" 7)), we perform the procedure in
Step 2 for f; ' o f and U, to get f, and f, = £ ofofz_l. Then supp(f,) is contained
in Us. Note that the identity part of f, increases definitely than that of f,, since the
deformation @ keeps the identity part of f, fixing. Since the support of f is compact,
continuing this procedure finite times, we can get leaf preserving homeomorphisms
fis /2y, f, such that the support of each f; is contained in a small ball and
f=hofoof.

This completes the proof.

We have the following theorem from and [Theorem 3.1.

THEOREM 3.2. L(M,F) is perfect.

Proor. Let fe L(M,%). We may assume that fis close to the identity. From
Theorem 3.1, we have f = fjofyo---of, where each f; is a leaf preserving
homeomorphism whose support is contained in a small ball.

Hence we can assume that f; € L(R", %) for each i. From [Corollary 2.3, we have

that f; is in the commutator subgroup of L(R", %) and hence f is in the commutator

subgroup of L(M,%). Thus L(M,%) is perfect.

4. H,\(F(7)) for codimension one foliations.

In this section, we consider the first homology of F(M, %) for a codimension one
foliation #. Let M be a compact topological manifold without boundary and # a
codimension one foliation of M. Hereafter we simply write F(%), L(Z) instead of
F(M,7), L(M,Z) respectively.

By Theorem 6.26 of [S], there exists a one dimensional foliation 7 of M transverse
to #. The following lemma is easy to prove.

LEMMA 4.1.  Let f be an element of F(F) sufficiently close to the identity. Then f is
uniquely decomposed as f = g o h, where h (resp. g) is an element of F(F)NL(T) (resp.
L(F)) and h and g are also close to the identity.

LEMMA 4.2.  Let f be an element of F(F) and L a leaf of #. If (L) # L, then the
holonomy group of L is trivial.

Proor. It is sufficient to prove the lemma for f close to the identity. Consider a
path {f,}o.,.; in F(#) from the identity to . Let f, = g, o h; be the decomposition of
and C be a closed curve in L. Then 4,(C) is closed for any 7 (0 <7< 1),
hence the holonomy along C is trivial. This proves the lemma.
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We define the subset Sy of M by

So = {x € M | there exists an element [ of F(F) such that f(L.) # Ly}.

By definition, Sy is an open % -saturated set and by [Lemma 4.2, all leaves in Sy
have trivial holonomy.

THEOREM 4.3. Let S be a connected component of Sy. Then clearly S is invariant
under the action of F(F) and S is one of the following three types.

Type P: S is homeomorphic to L x (0,1) and the foliations F |g and T |¢ correspond
to the product structure of L x (0,1).

Type R: There exists a closed transverse curve C in S such that C meets each leaf of
F|g at exactly one point and the natural map

p:S—C, px)=LNC
is a fibration and T |g is a connection of the fibration p.

Type D: All leaves of & in S are dense in S and there exists a one parameter
subgroup {¢,} of F(Z|g) whose orbits are leaves of 7 |.

Here we make some preparations. By the results of Siebenmann [S], many devices
used in the study of differentiable codimension one foliations are available in topological
case. For example if C is a closed curve transverse to %, then a transversal foliation
7" is chosen so that C is a leaf of 7'. So the argument of [I] works for topological
case. Since we are interested in the set Sy of the leaves with trivial holonomy, we can
assume that 7 is orientable. Then it is easy to construct a topological flow {y,} on M
whose orbits are leaves of 7. By using {y,}, we can define the notion of holonomy
map and we have the following facts.

Fact 1. Let x be a point of M, y =, (x) and suppose that the holonomy of Ly (.
is trivial for 0 <t <y, then L, is homeomorphic to L, via holonomy maps. (This
follows from [I] Corollary 3.1.)

Fact II.  Let C be a closed curve transverse to . Suppose that any leaf in the % -
saturation of C,S(C), has trivial holonomy, then a leaf in dS(C) has a non-trivial
holonomy. (This is a special case of [I] Lemma 3.6.)

Fact III.  Let C be as above. Suppose that there exists a leaf L such that LN C is
infinite, then either (i) there exists an exceptional leaf Ly in S(C) and all leaves in
S(C) — Ly are proper leaves or (ii) all leaves in S(C) are dense in S(C) and there exists
a one parameter group {¢,} of Z -preserving homeomorphisms of S(C) whose orbits are
leaves of 7 gc). (This follows from the proof of [I] Lemma 2.1 and Theorem 1.3.)

PrROOF OF THEOREM 4.3. Suppose that there is no closed curve transverse to 7 |q,
then any leaf T' of 7 |¢ is homeomorphic to an open interval (0,1) and 7N L is one
point. So by Fact I, S is homeomorphic to L x (0,1).

If there exists a closed transverse curve C in S, then we have S = S(C) by Fact
II. Suppose that CN L is finite. Then we can modify C to C’ such that C'N L is one
point. Then for any leaf L’ in S, we have L' N C’ = one point. In fact if L' C’ has
two points, then we can construct a closed transverse curve C” such that S(C")NL =
. But this contradicts to S = S(C”). So we have a natural map p : S — C’ and this
is a fibration by Fact L.
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Suppose that CN L is infinite. If there exists an exceptional leaf L, in S, then as in
the proof of [Lemma 4.2, all nearby leaves of Ly, must be exceptional but this contradicts
to Fact III. So by Fact III, all leaves in S are dense in S. This completes the proof.

LEMMA 4.4. An orientation preserving homeomorphism f of [0,1] is a commutator.

PrOOF. Suppose that f(x) > x for any x€(0,1). Then there exists a homeo-
morphism 4 of (0,1) onto R such that ho foh™'(f)=¢+1. Let r be a rotation of
S!'=R/Z of angle 2ro..  If o # 1/2, then by Proposition 5.1 of [W] we have r = [g1, 2],
where g, € #(S') (the homeomorphism group of S'), (¢ =1,2). Let g, be the lift of g,
to a homeomorphism of R and define ¥ = [g,,§,]. Then we have 7(s) =s+n+ o for
some integer n. By changing the coordinate s to ¢ by (n+ a)t = s, we have 7(z) =t + 1.
Thus f=h10[G,,g))oh is a commutator. If f(x)<x for any xe(0,1), then
consider f~'. If f has fixed points in (0,1), consider the restriction of f to each
connected component of {x|f(x) # x} and we see that any f is a commutator.

LEMMA 4.5. Let 2# (R) be the group of periodic homeomorphisms of R of period
1. Then any element of ?# (R) which is close to the identity is expressed as a product of
two commutators.

ProOF. Let f be an element of 2 (R) close to the identity. If f'has a fixed point,
then as in the proof of [Lemma 4.4, /' is a commutator. If / has no fixed points, there
exists a small translation ¢ of R such that 7o f has a fixed point. Then ¢ is a
commutator (W]). Thus f ia represented by two commutators.

THEOREM 4.6. Let F be a codimension one foliation of a compact manifold M.
Suppose that F has no components of type D and has only a finite number of components
of type R. Then F(F) is perfect.

PrOOF. We can suppose that the transverse foliation 7 has a closed leaf C; on
each component S; of type R which intersects each leaf of #|¢ at one point. Moreover
we can define an 7 -preserving flow ¢, on S; such that orbits are leaves of 7 |g and
Ly =Ly, (v Suppose that fis close to identity and let /' =goh be the decom-
position of [Lemma 4.1. Then choosing a leaf L of F|g, h induces a periodic
homeomorphism /' of R such that h((p,(x)) = Vi )( x) for any xe L and te R. Since A’

is close to the identity, by Cemma 4.3 we have i’ = [h!, hi][hi, hi], where hi € #'(R)
(e=1,2,3,4). For any yeS; we choose ¢ satisfying ¢_,(y) € L and put izs’(y) =
Oy (0_(). Then we have h|s = [hf, i), ).

Similarly we can define ! € F (Z|5,)NL(7|s,) on each component S; of type P such
that hlg = = (i), B})[W}, h}], where i and hi are the identity. Then we can define
h,e F(Z)NL(Z) by h,=h! on component S; of type R and P and by /,(x) = x for
x¢Sp. Then we have h = [hl,hz][h3,h4] and by [Theorem 3.2, F(#) is perfect. This
completes the proof.

ReMARK 4.7. From [Theorem 4.6, we see that F(S3 #g) is perfect for the Reeb
foliation %z of S3. In contrast with topological case, differentiable case is as fol-
lows. Let F’(S3 Zg) be the group of foliation preserving C’-diffeomorphisms of
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(S3, Fr) isotopic to the identity by a foliation preserving isotopy. Then Lemma 1 of
[F-U] implies that F’(S3, %) is not perfect for r > 1.

For a type D-component S, we define a submodule Per(S) of R by

Per(S)={teR|¢,(L) = L for one and all leaves L in S}

Per(S) depends on the parametrization of {¢,} but the quotient group R/Per(S) is
determined by Z|; and, as a set, this is the space of leaves of Z|s.

THEOREM 4.8. Let S be a type D-component. Then there exists a homomorphism ©
of F(F) onto R/Per(S) and we have kern = {f € F(F)| f(L) = L for any leaf L in S}.

PrOOF. Let f be an Z-preserving homeomorphism of M and suppose that f is
sufficiently close to the identity and f = g o & be the decomposition of [Lemma 4.1. Then
h(x) = ¢,(x) for some t€ R and any x € S and we define n(f) =t For general f, f is
decomposed as f =[] f;,, where f; are sufficiently close to the identity and we define
n(f)=>_n(f;). This depends on the decomposition of f but 7z(f) mod Per(S) is
uniquely determined by f and clearly = is a homomorphism. For any re R we
define f e F(#) by f(x)=¢,(x) for xe S and f(x)=x for x¢S. Then zn(f)=
tmod Per(S), so 7 is surjective.

Let 7 : F(#) — [[ R/Per(S;) denote the homomorphism defined by zn(f) =[] 7:(f)
for fe F(#), where n; is a homomorphism in the above lemma for a type D-
component S; and the product is taken for all type D-components S; of &#. Then
n induces a homomorphism 7, of H,(F (%)) to H (][ R/Per(S;)) = [[ R/Per(S;). Then
we have the following.

THEOREM 4.9. The homomorphism n. of H|(F(F)) to [[R/Per(S;) is surjective.

This is an easy consequence of and a non-zero element of kerm, is
represented by a leaf preserving homeomorphism which is not isotopic to the identity via
leaf preserving homeomorphisms. For a very simple case, we have the following.

THEOREM 4.10. Let F be a foliation of the torus T" defined by a 1-form @ = a; dx;.
If one of a;/a; is irrational, then H\(F(Z)) is isomorphic to R/a\Z + --- + a,Z.

PrOOF. In this case, 7" is the component of type D, Per(T")=a\Z +--- + a,Z
and 7 and ¢, can be defined by d/0x! if a; ¢ 0. Let f be an element of kerz. We can
suppose that f'is close to the identity and let f = g o & be the decomposition of
4.1. Then h(x) = ¢,(x) for some ¢ € Per(T"). Since ¢, is a parallel translation on each
leaf of 7, fis contained in L(Z#). So by [Theorem 3.2, f'is in the commutator subgroup
of L(#). In particular, f represents a zero element. This completes the proof.
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