
J. Math. Soc. Japan
Vol. 51, No. 1, 1999

On commutators of foliation preserving homeomorphisms

Dedicated to Professor Hiroyasu Ishimoto on his 60th birthday

By Kazuhiko Fukui and Hideki Imanishi

(Received Nov. 15, 1996)

(Revised Apr. 25, 1997)

Abstract. We consider the group of foliation preserving homeomorphisms of a foliated

manifold. We compute the first homologies of the groups for codimension one folia-

tions. Especially, we show that the group for the Reeb foliation on the 3-sphere is perfect

and the groups for irrational linear foliations on the torus are not perfect.

1. Introduction.

Let M be an n-dimensional connected closed topological manifold. By HðMÞ we

denote the group of all homeomorphisms of M which are isotopic to the identity by an

isotopy fixed outside a compact set.

In this note we treat certain subgroups of HðMÞ. Let R
n ¼ fðx1; . . . ; xnÞ j xi A Rg

be an n-dimensional Euclidean space and F0 the p-dimensional foliation of R
n whose

leaves are defined by xpþ1 ¼ constant; . . . ; xn ¼ constant ð1U pU nÞ. A p-dimensional

topological foliation F of M is defined to be a maximal set of C0-charts:

fðUl; hlÞ;Ul is open in M; hl : Ul ! R
n
; l A Lg of M such that hl � h

ÿ1
m : hmðUl VUmÞ

! hlðUl VUmÞ preserves the leaves of foliations which are restrictions of F0 to

hmðUl VUmÞ and hlðUl VUmÞ.

A homeomorphism f : M ! M is called a foliation preserving homeomorphism (resp.

a leaf preserving homeomorphism) if for each point x of M, the leaf through x is mapped

into the leaf through f ðxÞ (resp. x), that is, f ðLxÞ ¼ Lf ðxÞ (resp. f ðLxÞ ¼ LxÞ, where Lx

is the leaf of F which contains x. Let F ðM;FÞ (resp. LðM;FÞ) denote the group of

foliation (resp. leaf ) preserving homeomorphisms of ðM;FÞ which are isotopic to the

identity by a foliation (resp. leaf ) preserving isotopy fixed outside a compact set.

In §2, we consider the homologies of LðM;FÞ, that is, the homology groups of the

group LðM;FÞ and show that the homologies of LðRn
;F0Þ vanish in all dimension

>0. This is a generalization of a result of Mather[M] to the case of foliated manifolds.

In §3, first we show that any f A LðM;FÞ can be expressed as f ¼ f1 � f2 � � � � � fr,

where each fi is a leaf preserving homeomorphism with support in a small ball. Next

we show from the above result and the result in §2 that LðM;FÞ is perfect, i.e., is equal

to its own commutator subgroup.

In §4, we consider FðM;FÞ and compute the first homology of FðM;FÞ for

codimension one foliations. Especially we show that for the Reeb foliation FR of S3,

F ðS3;FRÞ is perfect and for a foliation F of T n defined by a 1-form o ¼
P

ai dxi,
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F ðT n;FÞ is not perfect if one of ai=aj is irrational, indeed in this case the first homology

of F ðT n;FÞ is isomorphic to R=a1Z þ � � � þ anZ.

2. Homologies of LðRn;F0Þ.

We recall that if G is any group, then there is a standard chain complex CðGÞ whose

homology is the homology of G.

Let CrðGÞ be the free abelian group on the set of all r-tuples ðg1; . . . ; grÞ, where

gi A G. The boundary operator q : CrðGÞ ! Crÿ1ðGÞ is defined by

qðg1; . . . ; grÞ ¼ ðgÿ1
1 g2; . . . ; g

ÿ1
1 grÞ þ

Xr

i¼1

ðÿ1Þ iðg1; . . . ; �ggi; . . . ; grÞ:

Then we have q2 ¼ 0. The symbol HrðGÞ will stand for the r-th homology group of

this chain complex.

Let Rn ¼ fðx1; . . . ; xnÞ j xi A Rg be an n-dimensional Euclidean space and F0 the p-

dimensional foliation of R
n whose leaves are defined by xpþ1 ¼ constant; . . . ; xn ¼

constant ð1U pU nÞ. Let LðRn;F0Þ denote the group of leaf preserving homeo-

morphisms of ðRn;F0Þ which are isotopic to the identity by a leaf preserving isotopy

fixed outside a compact set.

If c ¼
P

kjðg1j ; . . . ; grjÞ, ðkj A ZÞ be an element of the chain group CrðLðR
n;F0ÞÞ,

we define the support of c, suppðcÞ, by suppðcÞ ¼ 6
i; j suppðgijÞ.

Let U ¼ U 0 � R
nÿp, where U 0 is an open rectangle in R

p ðHR
p � R

nÿp ¼ R
nÞ.

Then suppðcÞHU if and only if suppðgijÞHU for each i; j.

We put LUðR
n;F0Þ ¼ f f A LðRn;F0Þ j suppð f ÞHUg.

Theorem 2.1. The homology groups HrðLðR
n;F0ÞÞ ¼ 0 for r > 0.

Before we prove this theorem, we need a lemma. Let i : LUðR
n;F0Þ ! LðRn;F0Þ

denote the inclusion map, and let i� : HrðLUðR
n;F0ÞÞ ! HrðLðR

n;F0ÞÞ denote the

induced homomorphism. We have the following.

Lemma 2.2. i� is an isomorphism.

Proof. First we show that i� is surjective. Let h A HrðLðR
n;F0ÞÞ, and let c A

CrðLðR
n;F0ÞÞ be a cycle representing h. Choose a homeomorphism j A LðRn;F0Þ

which satisfies jðsuppðcÞÞHU .

Let Ij be the inner automorphism of LðRn;F0Þ, given by IjðgÞ ¼ jgjÿ1. Since any

inner automorphism induces the identity on homology, ðIjÞ�ðhÞ ¼ h. ðIjÞ�ðhÞ is rep-

resented by the cycle IjðcÞ and suppðIjðcÞÞ ¼ jðsuppðcÞÞHU . Hence h ¼ i�h
0, where

h 0
A HrðLUðR

n;F0ÞÞ is the homology class represented by IjðcÞ.

Next we show that i� is injective. Suppose that h A HrðLUðR
n;F0ÞÞ satisfies i�h ¼ 0

and let c be a cycle in CrðLUðR
n;F0ÞÞ representing h. Then there is a chain c 0 A

Crþ1ðLðR
n;F0ÞÞ such that qðc 0Þ ¼ c. Since suppðcÞHU , it is easy to see that there is a

homeomorphism f A LðRn;F0Þ such that f is the identity in a neighborhood of suppðcÞ

and fðsuppðc 0ÞÞHU .

Then we have qðIfðc
0ÞÞ ¼ Ifðqc

0Þ ¼ IfðcÞ ¼ c and Ifðc
0Þ A Crþ1ðLUðR

n;F0ÞÞ.

This completes the proof.
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Proof of Theorem 2.1. We put U ¼ ð1; 2Þ � ðÿ1; 1Þpÿ1 � R
nÿp HR

n. Take a

homeomorphism f A LðRn;F0Þ given by

fðx1; . . . ; xnÞ ¼
1

3
x1; . . . ;

1

3
xp; xpþ1; . . . ; xn

� �

for ðx1; . . . ; xp; xpþ1; . . . ; xnÞ A Bð0; pþ 3Þ � Cð0;KÞ for some K > 0, where Bð0; pþ 3Þ ¼

fðx1; . . . ; xpÞ A R
p j ðx1Þ

2 þ � � � þ ðxpÞ
2 < ðpþ 3Þ2g and Cð0;KÞ ¼ fðxpþ1; . . . ; xnÞ j jxij <

K ði ¼ pþ 1; . . . ; nÞg. We set Uj ¼ f jðUÞ ¼ ð1=3 j; 2=3 jÞ � ðÿ1=3 j ; 1=3 jÞpÿ1 � R
nÿp;

ð j ¼ 0; 1; 2; . . .Þ. Note that U0 ¼ U .

Then we have that U j VUk ¼ q if j 6¼ k and fU jg shrinks to the ðnÿ pÞ-

dimensional subspace 0� R
nÿp HR

n as j goes to y.

For any g A LUðR
n;F0Þ and i ¼ 0; 1, we define ciðgÞ as follow;

ciðgÞðxÞ ¼
f jgfÿjðxÞ ðx A U j; jV iÞ

x ðx B 6
jVi

U jÞ.

(

Note that ciðgÞ is a well-defined element of LðRn;F0Þ and ci : LUðR
n;F0Þ ! LðRn;F0Þ

is a homomorphism for i ¼ 0; 1.

Since c1ðgÞ ¼ fc0ðgÞf
ÿ1, c0 and c1 are conjugate, so we have

ðc0Þ� ¼ ðc1Þ� : HrðLUðR
n;F0ÞÞ ! HrðLðR

n;F0ÞÞ:

Following Mather [M], we define

h : LUðR
n;F0Þ � LUðR

n;F0Þ ! LðRn;F0Þ

by hðg; hÞ ¼ gc1ðhÞ.

As two homeomorphisms with disjoint supports commute and suppðgÞHU ,

suppðc1ðhÞÞH6
jV1

Uj, we have gc1ðhÞ ¼ c1ðhÞg. Hence h is a group homomorphism.

Let D : LUðR
n;F0Þ ! LUðR

n;F0Þ � LUðR
n;F0Þ denote the diagonal homomor-

phism. We have easily that c0 ¼ h � D.

Now the proof proceeds by an induction on r. It is vacuous for r ¼ 0. For the

inductive step, we assume that HsðLðR
n;F0ÞÞ ¼ 0 for 1U sU rÿ 1.

By Lemma 2.2, it follows that HsðLUðR
n;F0ÞÞ ¼ 0 for 1U sU rÿ 1.

By the Künneth formula, we have

HrðLUðR
n;F0Þ � LUðR

n;F0ÞÞ ¼ HrðLUðR
n;F0ÞÞlHrðLUðR

n;F0ÞÞ:

For any h A HrðLUðR
n;F0ÞÞ, D�h ¼ hl h, thus ðc0Þ�ðhÞ ¼ h�D�ðhÞ ¼ h�ðhl hÞ ¼ i�ðhÞ

þðc1Þ�ðhÞ ¼ i�ðhÞ þ ðc0Þ�ðhÞ. Hence i�ðhÞ ¼ 0. From Lemma 2.2, it follows that

h ¼ 0. Thus we have HrðLUðR
n;F0ÞÞ ¼ 0. From Lemma 2.2, it follows that

HrðLðR
n;F0ÞÞ ¼ 0, which completes the induction.

Corollary 2.3. LUðR
n;F0Þ and LðRn;F0Þ are perfect groups.

Proof. This is an immediate consequence of Theorem 2.2 because that H1ðGÞ ¼

G=½G;G� for any group G.

3. Commutators of leaf preserving homeomorphisms.

In this section, first we show the following theorem following the proof of Lemma

4.1 in [E-K].
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Theorem 3.1. Let ðM;FÞ be a foliated manifold. Any f A LðM;FÞ can be

expressed as f ¼ f1 � f2 � � � � � fr, where each fi is a leaf preserving homeomorphism with

support in a small ball.

Proof. First we prepare some notations. Let Bp ¼ ½ÿ1; 1�p HR
p. In general, let

aBp ¼ ½ÿa; a�p for a > 0. We regard S1 as the space obtained by identifying the

endpoints of ½ÿ4; 4� and we let e : R ! S1 denote the natural covering projection, that

is, eðxÞ ¼ ðxþ 4Þðmod 8Þ ÿ 4. Let T p be the p-fold product of S1. Then aBp can be

regarded as a subset of T p for a < 4. Let e ¼ ep : Rp ! T p denote the product

covering projection.

We prove the above theorem in the following three steps.

Step 1. Let h : 4Bp ! R
p be the inclusion and let Ið4Bp;R

pÞ denote the space

of imbeddings of 4Bp into R
p with the compact open topology. Let NðeÞ ¼ fh A

Ið4Bp;R
pÞ j khðxÞ ÿ xk < e ðx A 4BpÞg for e > 0.

In the following, for a su‰ciently small e, we will construct an isotopy Cðh; tÞ of h

to the identity, which satisfies Cðh; tÞ ¼ h on q4Bp and Cðh; 1Þ ¼ id on Bp.

Let D
p
1 ;D

p
2 ;D

p
3 and D

p
4 be four concentric p-cells in T p ÿ 2Bp such that D

p
j H

int D
p
jþ1 for each j.

As is well-known, there exists an immersion a : T p ÿD
p
1 ! int 3Bp. Then we can

assume that ae ¼ id on 2Bp.

If h A NðeÞ for a small e, then h can be covered in a natural way by an imbedding

h1 : T
p ÿD

p
2 ! T p ÿD

p
1 as follows:

T p ÿD
p
2 ÿ!

h1
T p ÿD

p
1

a
?

?

y

?

?

y

a

4Bp ÿ!
h

R
p
:

Note that h1 is an imbedding lifting h and depends continuously on h. It is an

inclusion map if h is the one.

We have that h1ðintD
p
4 ÿD

p
2 ÞI qD

p
3 if e is small. From the canonical Schoenflies

theorem (Proposition 3.1 of [E-K]), we see that h1ðqD
p
3 Þ bounds canonically a p-ball in

D
p
4 . By coning, we can extend h1jT pÿD

p

3
to a homeomorphism h2 : T

p ! T p canonically

if e is small.

Note that h2 depends continuously on h and if h is the inclusion, then h2 ¼ id.

Now if h2 is su‰ciently close to id, then h2 lifts in a natural way to a bounded

homeomorphism h3 : R
p ! R

p so that the following diagram commutes:

R
p ÿ!

h3
R

p

e
?

?

y

?

?

y

e

T p ÿ!
h2

T p;

where bounded means that jh3ðxÞ ÿ xj < constant for any x A R
p. Note that h3 depends

continuously on h2 and if h2 ¼ id, we assume h3 ¼ id.

Let g : int 3Bp ! R
p be a homeomorphism which is a radial expansion outside a

neighborhood of 2Bp and is the identity on 2Bp. Define a homeomorphism h4 : R
p
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! R
p by

h4ðxÞ ¼
gÿ1 � h3 � gðxÞ ðx A int 3BpÞ

x ðx A R
p ÿ int 3BpÞ.

(

The continuity of h4 follows from the fact that h3 is bounded. Note that (1) h4
depends continuously on h and if h ¼ h, then h4 ¼ id, and (2) aegh4ðxÞ ¼ haegðxÞ ¼ hðxÞ

for x A 2Bp V hÿ1
4 ð2BpÞ.

From (1), we have h4ðB
pÞH 2Bp for a small e. Since aeg ¼ id on 2Bp, we have

that h4 ¼ h on Bp.

We put g ¼ h4. Using the Alexander trick, we define an isotopy

gt : R
p ! R

p
; t A ½0; 1�;

from the identity to g,

gtðxÞ ¼
tg

1

t
x

� �

ðt > 0Þ

x ðt ¼ 0Þ.

8

<

:

Define a deformation

C : NðeÞ � ½0; 1� ! Ið4Bp
;R

pÞ

by Cðh; tÞ ¼ gÿ1
t � h.

If e is small, we may assume that hðq4BpÞV 3Bp ¼ q for h A NðeÞ. Thus we have

Cðh; tÞ ¼ h on q4Bp.

Note that (1) Cðh; tÞ ¼ h for any t, and (2) Cðh; 0Þ ¼ h and Cðh; 1Þ ¼ gÿ1 � h, which

is the identity on Bp.

Step 2. Now we consider a foliated version. Let 4Bp � 2Bnÿp be a foliated chart,

that is, fðx; yÞ ¼ ðx1; . . . ; xp; y1; . . . ; ynÿpÞ A 4Bp � 2Bnÿp j y1 ¼ c1; . . . ; ynÿp ¼ cnÿpg gives

a connected component of a leaf in this chart. Let h : 4Bp � 2Bnÿp ! R
p � R

nÿp be

of the form ðhðx; yÞ; yÞ ðx A 4Bp; y A 2BnÿpÞ and close to the inclusion. We put hy ¼

hð ; yÞ. Note that for each y A 2Bnÿp, hy : 4B
p ! R

p is close to the inclusion h. Then

performing the procedure in Step 1, we construct gy canonically from hy for each

y A 2Bnÿp. Using the Alexander trick again, we define

gy; tðxÞ ¼
tgy

1

t
x

� �

ðt > 0Þ

x ðt ¼ 0Þ; where x A 4Bp.

8

<

:

Note that gy; t is continuous on y.

Let l : 2Bnÿp ! ½0; 1� be a continuous function such that

lðyÞ ¼
1 ðkykU 1Þ

0 ðkyk ¼ 2Þ.

�

For the deformation Cðh; tÞðx; yÞ ¼ ðgÿ1
y; t � hyðxÞ; yÞ, we define a new deformation F by

Fðh; tÞðx; yÞ ¼ Cðh; lðyÞtÞðx; yÞ ðx A 4Bp
; y A 2BnÿpÞ:
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This satisfies that (1) Fðh; 0Þ ¼ h, (2) Fðh; 1Þðx; yÞ ¼ ðgÿ1
y;lðyÞ � hyðxÞ; yÞ, which is the

identity on Bp � Bnÿp, and (3) Fðh; tÞ ¼ h on qð4Bp � 2BnÿpÞ.

Step 3. Now we prove the theorem. Take a foliated chart U1ðG intð5Bp � 3BnÿpÞ

I 4Bp � 2BnÿpÞ, for ðM;FÞ. Let f A LðM;FÞ. We can assume that f is close to the

identity. We put h ¼ f j4Bp�2Bnÿp . Then we can regard h as the map in Step 2. We

put f 1 ¼ Fðh; 1Þ and f1 ¼ f � f
ÿ1

1 . Since f 1 ¼ f on qð4Bp � 2BnÿpÞ, f 1 can be extended

to an element of LðM;FÞ by using f. Then suppð f1Þ is contained in 4Bp � 2Bnÿp
HU1.

Next taking another chart U2ðG intð5Bp � 3BnÿpÞÞ, we perform the procedure in

Step 2 for f ÿ1
1 � f and U2 to get f 2 and f2 ¼ f ÿ1

1 � f � f
ÿ1

2 . Then suppð f2Þ is contained

in U2. Note that the identity part of f 2 increases definitely than that of f 1, since the

deformation F keeps the identity part of f 1 fixing. Since the support of f is compact,

continuing this procedure finite times, we can get leaf preserving homeomorphisms

f1; f2; . . . ; fr such that the support of each fi is contained in a small ball and

f ¼ f1 � f2 � � � � � fr.

This completes the proof.

We have the following theorem from Corollary 2.3 and Theorem 3.1.

Theorem 3.2. LðM;FÞ is perfect.

Proof. Let f A LðM;FÞ. We may assume that f is close to the identity. From

Theorem 3.1, we have f ¼ f1 � f2 � � � � � fr, where each fi is a leaf preserving

homeomorphism whose support is contained in a small ball.

Hence we can assume that fi A LðRn
;F0Þ for each i. From Corollary 2.3, we have

that fi is in the commutator subgroup of LðRn
;F0Þ and hence f is in the commutator

subgroup of LðM;FÞ. Thus LðM;FÞ is perfect.

4. H1ðFðFÞÞ for codimension one foliations.

In this section, we consider the first homology of F ðM;FÞ for a codimension one

foliation F. Let M be a compact topological manifold without boundary and F a

codimension one foliation of M. Hereafter we simply write FðFÞ, LðFÞ instead of

F ðM;FÞ, LðM;FÞ respectively.

By Theorem 6.26 of [S], there exists a one dimensional foliation T of M transverse

to F. The following lemma is easy to prove.

Lemma 4.1. Let f be an element of FðFÞ su‰ciently close to the identity. Then f is

uniquely decomposed as f ¼ g � h, where h (resp. g) is an element of F ðFÞVLðTÞ (resp.

LðFÞ) and h and g are also close to the identity.

Lemma 4.2. Let f be an element of FðFÞ and L a leaf of F. If f ðLÞ 6¼ L, then the

holonomy group of L is trivial.

Proof. It is su‰cient to prove the lemma for f close to the identity. Consider a

path f ftg0UtU1 in F ðFÞ from the identity to f. Let ft ¼ gt � ht be the decomposition of

Lemma 4.1 and C be a closed curve in L. Then htðCÞ is closed for any t ð0U tU 1Þ,

hence the holonomy along C is trivial. This proves the lemma.
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We define the subset S0 of M by

S0 ¼ fx A M j there exists an element f of F ðFÞ such that f ðLxÞ 6¼ Lxg:

By definition, S0 is an open F-saturated set and by Lemma 4.2, all leaves in S0

have trivial holonomy.

Theorem 4.3. Let S be a connected component of S0. Then clearly S is invariant

under the action of F ðFÞ and S is one of the following three types.

Type P: S is homeomorphic to L� ð0; 1Þ and the foliations FjS and TjS correspond

to the product structure of L� ð0; 1Þ.

Type R: There exists a closed transverse curve C in S such that C meets each leaf of

FjS at exactly one point and the natural map

p : S ! C; pðxÞ ¼ Lx VC

is a fibration and TjS is a connection of the fibration p.

Type D: All leaves of F in S are dense in S and there exists a one parameter

subgroup fjtg of F ðFjSÞ whose orbits are leaves of TjS.

Here we make some preparations. By the results of Siebenmann [S], many devices

used in the study of di¤erentiable codimension one foliations are available in topological

case. For example if C is a closed curve transverse to F, then a transversal foliation

T
0 is chosen so that C is a leaf of T

0. So the argument of [I] works for topological

case. Since we are interested in the set S0 of the leaves with trivial holonomy, we can

assume that T is orientable. Then it is easy to construct a topological flow fctg on M

whose orbits are leaves of T. By using fctg, we can define the notion of holonomy

map and we have the following facts.

Fact I. Let x be a point of M, y ¼ ct0
ðxÞ and suppose that the holonomy of LctðxÞ

is trivial for 0U tU t0, then Ly is homeomorphic to Lx via holonomy maps. (This

follows from [I] Corollary 3.1.)

Fact II. Let C be a closed curve transverse to F. Suppose that any leaf in the F-

saturation of C;SðCÞ, has trivial holonomy, then a leaf in qSðCÞ has a non-trivial

holonomy. (This is a special case of [I] Lemma 3.6.)

Fact III. Let C be as above. Suppose that there exists a leaf L such that LVC is

infinite, then either (i) there exists an exceptional leaf L0 in SðCÞ and all leaves in

SðCÞ ÿ L0 are proper leaves or (ii) all leaves in SðCÞ are dense in SðCÞ and there exists

a one parameter group fjtg of F-preserving homeomorphisms of SðCÞ whose orbits are

leaves of TjSðCÞ. (This follows from the proof of [I] Lemma 2.1 and Theorem 1.3.)

Proof of Theorem 4.3. Suppose that there is no closed curve transverse to FjS,

then any leaf T of TjS is homeomorphic to an open interval ð0; 1Þ and T VL is one

point. So by Fact I, S is homeomorphic to L� ð0; 1Þ.

If there exists a closed transverse curve C in S, then we have S ¼ SðCÞ by Fact

II. Suppose that C VL is finite. Then we can modify C to C 0 such that C 0 VL is one

point. Then for any leaf L 0 in S, we have L 0 VC 0 ¼ one point. In fact if L 0 VC 0 has

two points, then we can construct a closed transverse curve C 00 such that SðC 00ÞVL ¼

q. But this contradicts to S ¼ SðC 00Þ. So we have a natural map p : S ! C 0 and this

is a fibration by Fact I.
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Suppose that C VL is infinite. If there exists an exceptional leaf L0 in S, then as in

the proof of Lemma 4.2, all nearby leaves of L0 must be exceptional but this contradicts

to Fact III. So by Fact III, all leaves in S are dense in S. This completes the proof.

Lemma 4.4. An orientation preserving homeomorphism f of ½0; 1� is a commutator.

Proof. Suppose that f ðxÞ > x for any x A ð0; 1Þ. Then there exists a homeo-

morphism h of ð0; 1Þ onto R such that h � f � hÿ1ðtÞ ¼ tþ 1. Let r be a rotation of

S1 ¼ R=Z of angle 2pa. If a 6¼ 1=2, then by Proposition 5.1 of [W] we have r ¼ ½g1; g2�,

where ge A HðS1Þ (the homeomorphism group of S1), ðe ¼ 1; 2Þ. Let ~gge be the lift of ge
to a homeomorphism of R and define ~rr ¼ ½~gg1; ~gg2�. Then we have ~rrðsÞ ¼ sþ nþ a for

some integer n. By changing the coordinate s to t by ðnþ aÞt ¼ s, we have ~rrðtÞ ¼ tþ 1.

Thus f ¼ hÿ1 � ½~gg1; ~gg2� � h is a commutator. If f ðxÞ < x for any x A ð0; 1Þ, then

consider f ÿ1. If f has fixed points in ð0; 1Þ, consider the restriction of f to each

connected component of fx j f ðxÞ 6¼ xg and we see that any f is a commutator.

Lemma 4.5. Let PHðRÞ be the group of periodic homeomorphisms of R of period

1. Then any element of PHðRÞ which is close to the identity is expressed as a product of

two commutators.

Proof. Let f be an element of PHðRÞ close to the identity. If f has a fixed point,

then as in the proof of Lemma 4.4, f is a commutator. If f has no fixed points, there

exists a small translation t of R such that t � f has a fixed point. Then t is a

commutator ([W]). Thus f ia represented by two commutators.

Theorem 4.6. Let F be a codimension one foliation of a compact manifold M.

Suppose that F has no components of type D and has only a finite number of components

of type R. Then FðFÞ is perfect.

Proof. We can suppose that the transverse foliation T has a closed leaf Ci on

each component Si of type R which intersects each leaf of FjSi
at one point. Moreover

we can define an F-preserving flow jt on Si such that orbits are leaves of TjSi
and

LjtðxÞ
¼ Ljtþ1ðxÞ

. Suppose that f is close to identity and let f ¼ g � h be the decom-

position of Lemma 4.1. Then choosing a leaf L of FjSi
, h induces a periodic

homeomorphism ĥh i of R such that hðjtðxÞÞ ¼ j
ĥh iðtÞðxÞ for any x A L and t A R. Since ĥh i

is close to the identity, by Lemma 4.5 we have ĥh i ¼ ½h i
1; h

i
2�½h

i
3; h

i
4�, where h i

e
A PHðRÞ

ðe ¼ 1; 2; 3; 4Þ. For any y A Si, we choose t satisfying jÿtðyÞ A L and put ~hh i
e
ðyÞ ¼

jh i
e
ðtÞðjÿtðyÞÞ. Then we have h jSi

¼ ½~hh i
1;
~hh i
2�½
~hh i
3;
~hh i
4�.

Similarly we can define ~hh i
e
A FðFjSj

ÞVLðTjSj
Þ on each component Sj of type P such

that hjSj
¼ ½~hh j

1;
~hh
j
2�½
~hh
j
3;
~hh
j
4�, where ~hh i

3 and ~hh i
4 are the identity. Then we can define

he A F ðFÞVLðTÞ by he ¼ ~hh i
e
on component Si of type R and P and by heðxÞ ¼ x for

x B S0. Then we have h ¼ ½h1; h2�½h3; h4� and by Theorem 3.2, F ðFÞ is perfect. This

completes the proof.

Remark 4.7. From Theorem 4.6, we see that FðS3;FRÞ is perfect for the Reeb

foliation FR of S3. In contrast with topological case, di¤erentiable case is as fol-

lows. Let F rðS3;FRÞ be the group of foliation preserving C r-di¤eomorphisms of
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ðS3;FRÞ isotopic to the identity by a foliation preserving isotopy. Then Lemma 1 of

[F-U] implies that F rðS3;FRÞ is not perfect for rV 1.

For a type D-component S, we define a submodule PerðSÞ of R by

PerðSÞ ¼ ft A R j jtðLÞ ¼ L for one and all leaves L in Sg

PerðSÞ depends on the parametrization of fjtg but the quotient group R=PerðSÞ is

determined by FjS and, as a set, this is the space of leaves of FjS.

Theorem 4.8. Let S be a type D-component. Then there exists a homomorphism p

of FðFÞ onto R=PerðSÞ and we have ker p ¼ f f A FðFÞ j f ðLÞ ¼ L for any leaf L in Sg.

Proof. Let f be an F-preserving homeomorphism of M and suppose that f is

su‰ciently close to the identity and f ¼ g � h be the decomposition of Lemma 4.1. Then

hðxÞ ¼ jtðxÞ for some t A R and any x A S and we define pð f Þ ¼ t. For general f, f is

decomposed as f ¼
Q

fi, where fi are su‰ciently close to the identity and we define

pð f Þ ¼
P

pð fiÞ. This depends on the decomposition of f but pð f Þ modPerðSÞ is

uniquely determined by f and clearly p is a homomorphism. For any t A R we

define f A FðFÞ by f ðxÞ ¼ jtðxÞ for x A S and f ðxÞ ¼ x for x B S. Then pð f Þ1

tmodPerðSÞ, so p is surjective.

Let p : FðFÞ !
Q

R=PerðSiÞ denote the homomorphism defined by pð f Þ ¼
Q

pið f Þ

for f A FðFÞ, where pi is a homomorphism in the above lemma for a type D-

component Si and the product is taken for all type D-components Si of F. Then

p induces a homomorphism p� of H1ðF ðFÞÞ to H1ð
Q

R=PerðSiÞÞG
Q

R=PerðSiÞ. Then

we have the following.

Theorem 4.9. The homomorphism p� of H1ðF ðFÞÞ to
Q

R=PerðSiÞ is surjective.

This is an easy consequence of Theorem 4.8 and a non-zero element of ker p� is

represented by a leaf preserving homeomorphism which is not isotopic to the identity via

leaf preserving homeomorphisms. For a very simple case, we have the following.

Theorem 4.10. Let F be a foliation of the torus T n defined by a 1-form o ¼
P

ai dxi.

If one of ai=aj is irrational, then H1ðFðFÞÞ is isomorphic to R=a1Z þ � � � þ anZ.

Proof. In this case, T n is the component of type D, PerðT nÞ ¼ a1Z þ � � � þ anZ

and T and jt can be defined by q=qx1 if a1 B 0. Let f be an element of ker p. We can

suppose that f is close to the identity and let f ¼ g � h be the decomposition of Lemma

4.1. Then hðxÞ ¼ jtðxÞ for some t A PerðT nÞ. Since jt is a parallel translation on each

leaf of F, f is contained in LðFÞ. So by Theorem 3.2, f is in the commutator subgroup

of LðFÞ. In particular, f represents a zero element. This completes the proof.
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