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§0 Introduction.

In [3], [1] and [5] we have obtained the Gevrey regularizing effect for the solution of
a non-linear Schrédinger equation

(1)

O+ idu = f(u),
u(0, x) = up(x).
In these papers, we treat Schrodinger equations whose non-linear terms depend only on
the value of the unknown functions. In the present paper, we investigate Gevrey
regularizing effect for the equation

Lu=0du+ i@iu = f(u, Oxu),
(2) {

u(0,x) = up(x)

in one space dimension, whose non-linear term depends also on the derivatives of the
unknown functions.

The existence of the solution for the equation (2) are obtained in [2] and [4] in case
that f(u,v) is a polynomial in the argument (u,#,v,7). In the general case for f(u,v),
however, we can also obtain the existence of the solution as follows:

THEOREM 0. Assume that a C®-function f(u,v) satisfies 0;f(u,v) =0 and
f(0,0) =08,f(0,0) =0. Then, for any Ry there exists a constant T = T(Ry) such that,
for any initial data uy = ug(x) with |ug||3 < Ro and || xug|| < Ry, the solution u(t,x) of (2)
exists in [0,T] and it belongs to C([0,T]; H*)NC!([0,T]; H").

Our concern is the Gevrey regularizing effect for the solution of (1). So, we omit
the proof of Theorem 0 and, in the following, we treat only the Gevrey regularizing
effect for the solution (2). The conditions of f(u,v) are the following:

(A.0) f(u,v)isa C*® complex valued function in C2, which is holomorphic with respect
to v. Moreover, it satisfies f(0,0) = J,/(0,0) =0.
(A.1) Let s satisfy s > 1. For any positive number K, there exist constants C = C(K)
and 4 = A(K) such that
16565 05" f (u, v)| < CAF " KBK'PE" for |ul, |v] < K.

u-u v
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(A.2) For s in (A.l), the constant o satisfies max (l,5s/2) <o <s. Then, for any
positve number K, there exist constants C = C(K) and 4 = A(K) such that

|00k 0" f(u, v)| < CAFF+¥" K1k K"  for |u|,|v] < K.

u'u v
Denote by H” = H™(R!) a Sobolev space in R! and || - ||, is its norm. We also
denote || - || = || - |lo (L*-norm). Then, we can state our main theorems as follows:

THEOREM 1. Assume that (A.0)-(A.1). Let u(t,x) e C([0,T]; H*)NC([0, T]; H')
be a solution of (2). Then, if the initial value uy(x) satisfies

3 { I (x0)'uolls < CATY,
|| x(x0x) uo|| < CA'IY,

u(t,x) satisfies

) | Plulls < CA'1¥,

where P = 2t0, + x0 is a dilation operator.

THEOREM 2. Let o satisfy max(s/2,1) <o <s and assume (A.0)-(A.2). Then,
under the condition (3) the solution u(t,x) of (2) satisfies the following property: For any
positive number R there exist constants C = Cr and A = Ag such that

”a_:u(t, x)”Hl(—R,R) < CA%al? for t# 0.
RemARk. For the examples of f(u) (in case f(u,v) is independent of v) and of
initial values up(x), see [5].
The plan of this paper is as follows: In §1 we give preliminaries and in §2 and §3 we
give proofs of Theorem 1 and Theorem 2.
§1. Preliminaries.

In this section, we give several preparatory properties, whose proofs are omitted
without mentioned.

ProposITION 1.1. Let a(t,x), ai(t,x) and ay(t,x) be functions in C([0,T];#R°)
with the properties 0xa,0xa;,0.a€ C([0,T];H™ ) for m>1, and let w(t,x)e
C([0,T;; H")NC' ([0, T); H™2) be a solution of

(1.1) Lw = adyw + ayw + axw + f (¢, x)
with f € C([0,T]; H™). Assume
(1.2) xa(t,x) € C([0, T]; L?).

Then, there exists a constant Cy = Cy,, such that

(1.3) [w(B)[lm < CI{HW(O)“m + JO IIf(T)IImdt}
holds.
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ReMARK. Takeuchi and Mizohata obtained in [6], [7], [8], [9] that for the L?-well-
posedness of the Cauchy problem of the Schrodinger equation (1.1) it is necessary and
sufficient that the integral Im f_xoo a(t,y)dy is bounded in R.. We note that (1.2)
guarantees the boundedness of Im [* _a(z,y)dy.

PrROOF. Set
(1.4) a(t, %) =exp<—%lm J at,y) dy)

and set
1 1/2
Wil = !lléa;'c”wll2 + Z IlﬁiWIIZ] ,
=0

which is an equivalent norm of ||w||,, by means of (1.2). From (1.1) and (1.4) we have

m—1
%|||w|||,3, - 2Re{(aa;"a,w, aorw) + > (8low, a;w)}
j=0

< 2Re(@%0] (—idtw + aduw + ayw + ayiw + f ), O'w)
+ CL (Wl + 1L W) 11

< 2Re{il|@dr ' w||? + ((2iaa’ + aa)o] " w, 87'w)}
+ LW + 1 ) ]

< Y19l + 1F ) 1191

Hence, we get

d 1
271 < 5 U1 + 1/ 11m)

and (1.3). Q.E.D.
LemMmA 1.2. There exists a constant C, without depending on | such that

1 <C 1
> L2 .
v (1) +2)? (7+1)°

LemMMA 1.3. i) Let ue H' and ve H™, m=0,1. Then, there exists an absolute
constant C3 such that
luvllm < Csllullillv]lm, m=0,1

hold.
ii) Let ue H' and b= b(t,x) € B° satisfy 0.be L,. Then, bu belongs to H' and
satisfies
[bully < Csllull1(|6] g0 + [|0xb]| L2)-

Lemma 1.4. Let | >2 and assume |u|m < Co and

(1.5) | Prullm < Cod*'kl(k — )P/ (k+1)* forl <k <!
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for A satisfying A > m. Then, there exists a constant Cy such that for k with 1 <k <m
we have

(1.6) | (P'0% — 0 P Yut||m—r < CsCod210(1 — 1)1 /(1 +1)2.
PrOOF. From Pdy = 0x(P — 1) we have Pd; = 0;(P— k) and

Pla: = a;(P_ K)l’
which implies
! I (! IV’ Ak pl’
(1.7) Pk —arp =" (l,>(—x) P’
1"=0

Write I” =1 — 1. Then, since 1/1"! <5/(I" +1)?, we have
l l 1_1 l l ! !
P35 = P uler < 3 ()R NP bl

I'=0

< S2CANI -1 YT /(1 + )27 + 1)

I'1"=1
< 5K2CrCod 21 - 1) /(1 + 1),
This proves the lemma. Q.E.D.

LEMMA 1.5. Let 1 >2 and assume that u(t,x) satisfies |u|l1 < Co and (1.5).
Moreover, let b(t,x) € B°([0,T] x R') satisfy d,b(t,x) € C([0,T];L,) and

b g0, 10xb]| < Cs,
(1.8) | P%b| go, || 0 P*B|| < CsCod* 'Kk — 1)1/ (k+1)2 for 1 <k <,
|P'b| 4o, ||0xP'b|| < CsCod' 211 — 1)1 /(1 + 1)

Then, we have

(1.9) | P!(bu) — bP'u||; < CsCod' 2101 — 1)1 /(1 + 1)2.

ProoF. From Lemma 1.3-ii)) we get

Z (l’) Py . pl'y '

I'=0

I1-1

) n . /

<G) (,,)(IP’ "b g0 + 3P B) | P"ul]y
1I'=0

< CsCod 211 = 1)1 /(1 + 1)

||Pl(bu) bPIqu =

This proves the lemma. Q.E.D.
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§2. Proof of Theorem 1.

By the usual method, we obtain P'u e C([0, T]; H;) and xP'u e C([0, T'|; H>) under
the condition (3). So, in order to prove Theorem 1, we have only to prove, by the
induction on /

(2.1) | Pulls < Cod™'N(I = D¥ /1 +1)* forl>1,
and, in addition, we will prove

(2.2) | xPlul|; < Cod! NI = 1)L /(I+1)2 forl>1,
with appropriate constants Cp and 4. Now, let / > 2 and assume
(2.3) | PXulls < Cod* 'Kk — D) J(k+1)? forl <k <1,
(2.4) | xP*ul|; < Cod*kl(k — 1) /(k+1)* forl <k <.

We also assume that the constant C, be taken such that

i) |ulls < G,
(2.5)
ii) ||xu||2 < Gy.

In the following, we assume that the constant Cp be taken such that (2.5) hold and
{ [ Pull3 < Co/4,
[|xPul|2 < Co/4,

which is the case of kK =1 for (2.3)-(2.4). We fix such a constant Cy throughout this
section and take a constant 4 large enough according to the context.

PROPOSITION 2.1. Let [ >2. Then, if the solution u(t,x) satisfies (2.3) and (2.5)-1),
we have

(2.6) | Plul|y < C;CoA21(1 = 1)1 /(1 +1)2,

Proor. Using LP = (P + 2)L and the formula of the differentiation of composite
function, we get

(2.7) LP'u= (P+2)"{f(u,d,u)}
= fuP'u + f;Pu + £,0.P'u + g(t, x),

(2.8) gi(t,x) = 2'f (u, )
-1
I ' "
+Z Z _;_721_1 0%k 0" f (u, 0xu) Up g pr ien
U'=1 k+k'+k"=1 (l - l ).
1
I
+ ; 25k+k!+k”51/ (l - l,)!k!kl!k”!

+fo(P'dx — 05P")u,

! ! n
21_1 658;“ 6,’,‘ f(u, 6xu) UI’,k,k’,k”
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| —

Py

k
(2.9) Uriirer = . |1

|
htoth o=l j=1 J

=~

i #
k+k' 1 k+k'+k”
j=k+1 7" j=k+k'+1 7°

From (2.3), (2.5)-i)) and Lemma 1.4 we have
| P*3ull2 < [[(P¥65 — 8,P*)ullz + 1| 6:P*ul
< GCod* kl(k — 1)/ (k+1)* forl<k <l
and get
lgrllz < CoCod211(1 = 1)¥7 /(1 + 1)

if we take A large enough. Combining this with

(x0x) uo||2 < Crod"21¥/(1 + 1),

which is derived from the assumption (3) of the initial condition, we get (2.6) from
Proposition 1.1. Q.E.D.

PROPOSITION 2.2. Let | > 2 and assume (2.3)—(2.5) and (2.6). Then, we have
(2.10) | xP'u||1 < C11Cod' 2101 = 1)1 /(1+1)2
for a constant Cy;.

ProoF. Set w = xP'u. Then, we have from (2.7)

Lw = xLP'u + 2i9, P'u
= fuw + fiW + fo,0xw — foP'u + xg; + 2i0,P'u.

Noting (2.8)—-(2.9) and using (1.7) for xP*d,u we get
(2.11) xgill1 € CraCod™ 2001 — 1)1 /(1 +1)2
and from (2.6) we also have
(2.12) 12i0,P'ul|y < Ci13Cod' 2111 = 1)1 /(1 4+ 1)2.
Moreover from (3) we get
(2.13) | x(x0,) ug||2 < CA'21¥ /(1 + 1)
Combining this with (2.11)-(2.12), we get (2.10) by means of (1.3). Q.E.D.

Now, we define

214) o) = [ e, ), e ) dy
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and

(2.15) b(t, x) = exp <§b1(t, x)).

Since f,(0,0) = 0, we can write

@16) ol 2) = o 0+ 200+ fos a2
and

@.17) bilt, ) Foali i+ | 10> o (o

+ < Yoz () — (0xfo3)u} dy.
This implies the well-definedness of b(z,x). Now, note

(2.18) Pb, = r (P+ 1)f, dy.
—0
Then, using (2.18) we get
LemMA 2.3. Assume (2.3)-(2.5), (2.6) and (2.10). Then, b;(t,x) satisfies

|61] g0, [|0xb1 ]| < Cia,

(2.19) | P*b1 | 4o, || 6xP*by || < CraCod*'ki(k — 1)/ (k+1)* for1 <k <,
|P'b1| go, [|8xP'b1 || < CraCod'211(1 — 1)1 /(1 + 1),

and the weight function b(t,x) of (2.15) satisfies (1.8).

ProOF. From (2.18) we have

(2.20) P"b1=Jx (P + 1)*{ £, (u, 0xu)} dy

—a0

x k k' ’ "
= [H+ - (83058, 1) Upr v vr, v | dy.
J_Oo [ v &= 1$v+v’2+v”$k, (k — kl)!v!vl!vll! u-u-v v, v,y

Hence, using the same discussion of (2.16)—(2.17) to the first term of the last member of
(2.20) and noting that Uy, , , is an L!-function from (2.4) and (2.10), we get the
estimate of |P¥b;| 40 and |P'b;|40. Differentiating (2.20) with respect to x, we also get
the estimate of ||0,P*b;| and ||0,P'by||. Finally, we get (1.8) for b(z,x) of (2.15) from
(2.19). Q.E.D.

LemMMA 2.4, Assume (2.3)—(2.5), (2.6) and (2.10). Then, we have
]Lb|g°, “abe” < C15a
(2.21) | P¥Lb| 4o, |0 P*Lb|| < CisCod* 'kl — )P /(k+1)* for 1 <k <1,
|P'Lb| 4o, |0P'Lb|| < C1sCod™211(1 = 1)1 /(1 + 1)2.
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ProoF. From Lu =f, we have

L{f} = fouf +Joaf +fonOrf + 2if "
+ i foas () + foaa(@)? + o (")
+ 2f ittt + 2yt v” + 2f i’ u”' }.
Since Lby = [* L{f,}dy, we get
Lby = fo f + 2if i’
+ | Ut i - 0.4 fudef — 20l fahit
i fous)? + fiaa(@)? + fown (")
+ 2ath ' + 2 ottt + 2f i’ u"}] dy
and
0x(Lb1) = L{ f}.
This shows that we can operate L to b; and get
(2.22) |Lb1|go, || 0xLb1 || < Cis.
Moreover, from (2.3)-(2.5), (2.6) and (2.10) we also get

023 |PXLby | 4o, || 0xP¥Lby || < Ci6Cod* Ik — 1)1/ (k+1)* for1 <k <1,
' |P'Lby| go, || 0xP'Lby || < C16Cod' =211 — 1)1 /(1 + 1)2.

Finally, we note
i i
Lb = 3 bLb; — 1

Then, we get (2.21) by (2.22)-(2.23), (2.18) and (1.8) for b. Q.E.D.
LemMmA 2.5. Assume (2.3)—(2.5), (2.6) and (2.10). Then, we have

bb{?.

(2.24) | P'%u||y < CrrCod" 2101 — 1)1/ (1 4+ 1)
ProoF. From Lu = f(u,u’) we obtain
Lu" = fo + foou" + fot” +fi" + 04"
with
{fz,l (u,t') = fro (1, u" Y + 2 (u, '@’ + frz(ua, u')id"?

Sa2(u,u') = 2f i (u, u' V' + 2f g (u,u’)it' + £, (u, u').
Set w = bu"” with b = b(t,x) in (2.15). Then, we have

(2.25) Lw = farb+ {fo2 + (L)™' Yw + fub™' W’ +fubb ™ .
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For k with k </, we have from Lemma 1.5
IP*wlli = || P*(Bu") |l < [|6P*u" ||1 + || P*(bu") — bPu" ||,
< CigCod* Kk — 1)1/ (k + 1),

since b(z,x) satisfies (1.8). Now, we apply the method of proving Proposition 2.1.
Then, from Proposition 1.1 we get

| P'w||1 < CieCod' 2101 — 1)P1 /(1 + 1)2.
Finally, we apply Lemma 1.5 again to estimate
|6P"W" |1 < |P'w||1 + ||bP'u" — P'(bu")||;.
Then, we get (2.24). Q.E.D.

Next, we use the discussion of proving Proposition 2.2 to the equation (2.25) with
the initial condition

I(x(x3:)'w) (0, )| < Caod"21¥/(1+1)?,
which is guaranteed from (2.13) and (1.8) for 4. Then, we get
LEMMA 2.6. Assume (2.3)—(2.5), (2.6), (2.10) and (2.24). Then, we have
(2.26) | xP'02u|| < Cy Cod' 2101 — 1)~ /(1 + 1)2
Now, we are prepared to prove Theorem 1.
ProOF OF THEOREM 1. From Lemma 2.5 and Lemma 1.4 we have
103 P ully < || P'ogulls + [I(03P" — P8} )ullx
< (Ci7 + Ca)Cod 21 - 1P /(14 1) 2
Combining this with (2.6) we get
| Plul|3 < CnCod™211(1 — )P /(1 + 1)
Similarly, we get from (2.10) and (2.26)
| XxP'ul2 < CrsCod210(1 — 1)1 /(1 + 1)2

Finally, we take the constant A4 satisfying 4 > Cy and 4 > C;3. Then, we get (2.1)
and (2.2) for I QE.D

§3. Local Gevrey regularity.

In this section, we prove Theorem 2. For a positive constant R we take a C*-

function y(x) satisfying
1 for |x| <R,
x(x) =

0 for |x| >R+1.
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Then, in order to prove Theorem 2, we have only to prove for > 0

(3.1), llx(x)*6%P'ully < CoA* 27 (a +1 = 3)1°11"°  forany |

holds for any a with a > 3.
LEMMA 3.1. There exists a constant Cy such that an estmate (3.1), with a = 3 holds.
Proor. From Theorem 1 we have

(3.2) | x%0%Pul|; < CuA®H D (a+1—3) 191" for a=0,1,2

hold, where m, = max(m,0). Now, using

1 1
2 __L-——(P-—
(3.3) 0y iL > (P — x0y)

and LP! = (P +2)'L, we write

1 1 1
3pl, 1 ! n o I+1 I
0 P'u= ; O0x(P+2){f(u,u')} o 0P " u+ i Oxx0xP'u.
Then, we get (3.1); from (3.2). Q.E.D.

Now, we prove (3.1), for « >4 by the induction. Set o’ = a — 2 and write
(3.4)  x%0°P'u= x*0* 3*P'u
_1 o Ao ) I} 1 o’ pl+l 1 o Ao’ 1
=< (P+2){f(uu')} 5k o, P u+2tix 0% x0xP'u.
Then, we have as in [5]

Lemma 3.2 (cf. Theorem 4.4 and Theorem 4.5 of [5]). Assume (3.1)g for B < o and
(3.3) hold. Then, there exist constants Cyy and Cys such that the inequalities

(3.5) 220 P ul)y < CuClA* =1+ (o’ + 1 — 1)1°115-7,
(3.6) 1x20% X0 P'ul|; < CosCoAd* =147 (! + 1 — 1)19115=°
hold.

Now, we estimate y*3* (P + 2)'{f(u,u')}.

LemMMA 3.3. Assume (3.1)p for B < o and (3.3) hold. Then, there exists a constant
Cy¢ such that

(3.7) I2%0% (P +2)'{ f(u, ")} |1 < CosCoA* =167 (o + 1 = 1)1°115-7
holds for t > 0.

ProoF. From the assumption (3.1), of the induction we have for g with 3 < f < «

(3.8) IxP2Pul1 < Cry CaPH =2 P!
X (B+1—1DNB+1-2), 1 Ut~ /(B+ 1+ 1)
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and we note, from (3.2), the above inequalities (3.8) hold also for f=0,1,2 with
B+1>1. Now, we follow the discussions of proving Lemma 4.6 in [S]. Then, we have

x5 (P +2)'{ f ()}

I o

l’)lk|k'tk"121 "800 07 f ()]

<

I'=0 1<k+k'+k" <a’'+1' (l

k+k'

<2 LY ey

vl+...+vk+k/+kn=a’+ll ]=1 a]+l] =Vj
Vj Eé 0

k+k'+k"

LY e Pl

j=l+k+k' tx,-+lj—v,
where
u forj<k,
u =
77 la fork<j<k+k'.

Hence, we get
1x*8% (P +2)"{f (w,u")}1

! 1=
l' 2 'y k" o—
<> > ﬁ(,‘T).CiéH‘”‘ ke + K+ k= 1)!
I'=0 1<k+k'+k"<a’+l" ~ °

k+kl+kll
o; + [;)!
DY | S~
VitV e =a' -+ j=1  o+li=v; %ty

vj;éO

x Cyr ChA 1% (o + I — DI P /(o + [ + 1)

: : L + 11 2\
< CRCnCoA™ ™ (@ +1 - 1)!"-‘19-”2-————"(“ 1) (%)

I
C28C27C, k+k'+k"—1
1<k+k!+k" <a'+l’
ktk'+k"

x 2

2
vl+"'+Vk+kl+kll=d’+II _]=1 (v.] + 1)
Vj # 0

! -1
- o 017150 N+ (2
< CRCuC A1 (@ +1- 1)1y :l"(oc5+l’ +)1)2 (Z)
1'=0 .

X

A

1 <k+k'+k" <a!+1' (

< CCYA* 1 (o) 4+ 1= 1)1,



1026

K. TaANIGUCHI

if we take a constant A4 such that 4 >4 and 4 > C,C3Cy7Cj. This proves the lemma.

Q.E.D.
Now, we are prepared to prove Theorem 2.
ProoOF OF THEOREM 2. From (3.5)-(3.7) we have
()20 P'ully < (CoaT + Cas + CogT)CoA* H= 1%V + 1 — 1)1°115=°
= (CyuT + Cys + Cy6T) C(;A“+1_3t”°‘+1(a + 1 =3)19117°,

Now, we take A4 such that CpsT + Cys + C6T < A. Then, we get (3.1),. This proves
Theorem 2. Q.E.D.
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