J. Math. Soc. Japan
Vol. 49, No. 1, 1997

Ineffability and partition property on .

By Shizuo KAMO

(Received Aug. 29, 1994)
(Revised Jan. 20, 1995)

1. Introduction.

Magidor [11] proved that if part*(x, 2) holds, then & is A-ineffable. Abe
proved that the reverse implication also holds under the assumption of that 2 is
ineffable. In this paper, we shall prove the following two theorems.

THEOREM 1. [If k is completely A<F-ineffable, then part*(k, A<*) holds.

THEOREM 2. Assume that there exists an a<r such that 2°<6% for all 6<k.
Then, if & is 2<*-ineffable, then part*(k, 1<*) holds.

In order to prove [Theorem 1, we need to study a hierarchy of ideals which
are associated with partition property and ineffability, and the correspondence
between P.A and A<,

The hierarchy of ideals will be dealt in sections 4 and 5 and the corre-
spondence in section 6. The theorems will be proved in section 7.

2. Notation and basic facts.

Throughout this paper, £ denotes a regular uncountable cardinal. Let 4 be
an ideal on a set S. 9* denotes the dual filter of 4 and 4* the set P(S)\J.
A subset W of 4 is JI-disjoint, if XNY &y for all distinct X, YeW. An
C-maximal J4-disjoint subset is called an J-partition. For any set XCS, 9*|X
denotes J*NP(X). For any f:S—T, f«(J) denotes the ideal {YCTT|f Y €9}
on T.

Let A be a set such that kxC A. 2. A denotes the set {xCA||x|<k}. Let
Y be a subset of ®,A. [Y]? denotes the set {(x, v)&Y?|xCy and x+#y}. For
any function F:[Y]*—2, a subset H of YV is said to be homogeneous for F, if
|F’[H]*|<1. For any BDA, the function p: ®,B— ®.A which is defined by
p(»)=yNA is called the projection. For each x=%,A, % denotes the set
(yvelAlxCy and x+#y} and Q. the set {{Cx||t|<|xNk|}. I. . denotes the
ideal {(XC P Al XNP=@, for some y=P.A}. An element of [}, is called
unbounded. A subset of ®,A is called cl/ub, if it is unbounded and closed under
unions of C-increasing chains with length <x. A subset X of #,4 is called
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stationary, if XN C+@ for any club subset C of ¥, A. NS, 4 denotes the ideal
{Xc e, Al X is non-stationary}.

For any indexed family {X,|a< A} of subset P, A, the diagonal union V,caX.
(the diagonal intersection A,caX o) denotes the set {xe P, A|x&X,, for some a= x}
({xep.AlxeX,, for all acx}). Similarly, for any indexed family {X,|us P A}
of subset ¥, A, the strong diagonal union V,ee 4X, and the strong diagonal
intersection Ayee,4X, denote the set {reP AlxeX,, for some ueq.} and
{xeeAlxeX,, for all usQ,}, respectively. A k-complete ideal on ®.A is
said to be normal (strongly normal), if it contains I, 4 and closed under diagonal
unions (strong diagonal unions). For any ideal 9, V3(9) (S(9)) denote the smallest
normal (strongly normal) ideal which includes 4. For any 7: AXA— @A, cl(7)
denotes the set {xeP A|t"xXxCx}. Similarly, for any 7:®*.A— P.A, clit)
denotes {(x=PA|VucsQ (t(u)Cx)}.

Menas proved that, for any club subset C of ®.A, there exists a
7: AXA— @A such that cl(z)CC. It is known that NS, 4=V*(, 4). The
notion of strong normality was introduced by Carr [5]. Carr and Pelletier [6]
gave structural characterizations of strongly normal ideals. There is another
characterization of strongly normal ideals in [10].

3. Operations NI, NS/ and NP.

Jech [8] introduced the notion of A-ineffability and almost A-ineffability and
partition property. After that, Carr gave the ideal theoretic characteriza-
tions of A-ineffability and almost A-ineffability. She introduced the ideals N/n,, ;
and NAIn. ;. Itis known that the partition property also has the ideal theoretic
characterization. These ideals were obtained from NS, ; and /. ; by using
some operations. In order to treat these ideals uniformly, we fixed these
operations.

DEFINITION 3.1. Let Y be an ideal on @, A. Define the ideals NI(.9), NSI(9)
and NP(9) by

NI ={Xc®A]|ds.Cx (for x € X)
VSc Al{x € X | s, = SNz} € 9)},
NSIYW) ={XC PA|3ds,CQ, (for x € X)
VSC P A{x € X | s, =SNQ.} € 4},
NPW ={XCPA|IF: [ X]"-2 VHe X

(H is not homogeneous for F)}.
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Following Carr [4], we denote NI(NS, 4) by NIn, 4 and NI(I, 4) by NAIn, 4.
k is said to be A-ineffable, (almost A-ineffable), if the ideal NI(NS, 1) (NI(1, 4))
is proper. We denote by part*(x, A) the statement “NP(NS, 4) is proper”. It
is easy to see that NI(J9)CNSI(9). Magidor proved that if part*(x, 4) holds,
then & is A-ineffable. The same proof yields a proof of that, if 4 is normal,
then NI(9)CNP(9). Carr [4, Theorem 1.2] proved that, if an ideal 4 contains
I, 4, then NI(9) is normal. By a similar argument in her proof, it holds that
if an ideal 4 contains I, 4, then NSI(JY) is strongly normal. It is easy to see
that, if 4 is normal, then NP(J) is normal. I do not know whether NP(J) is
normal or not without the assumption of that 4 is normal,

QUESTION 1. Let 4 be an ideal containing /I, 4.
1. Does it hold that NS, «CNP(J9)?
2. Is NP(9) normal?

Using the normality of an ideal NI(J9), Carr [4, Corollary 1.3] proved

LEMMA 3.1. Assume that I, ,C9. Then, for any XeNI(9)" and any f,:
x—x (for x&X), there exists an f: A— A such that {x=X|f.Cfl=g". 0

A similar argument gives

LEMMA 3.2. Assume that I, 9. Then, for any XeNSI(Y)" and any f,:
Q.— Q. (for x&X), there exists an f: P, A— P.A such that {(xeX|f,C [} 9.

O
The following lemma can be easily proved.

LEMMA 3.3. Let ACB and p:P.B— P.A the projection. Then, for any
ideal 9 on PB, NI(px(F)NC p«(NI(4)) and NSI(px(F))C px(NSI(H)). O

QUESTION 2. Let ACB, p: P.B— P A the projection and 4 an ideal on
®.B. Does it hold that NP(p«(9)C px(NP(9))?

LEMMA 3.4. Let 9 be an ideal containing NS, 4+ and X NI(Y)*., For each
acs A, let W, be an d-partition of X which satisfies that |W | <|Al. Then, there
exists g&laca Wa such that Ageqgla)sdt.

Proor. First, we dealt the case that
Wae=1{Xas, Xa 1is a partition of X, for all a= A.
For each x=X, define f,: x—2 by
0, if x € Xq,
fola) = )
1, if xeX,,.

Since XeNI(9)*, there exists a g: A—2 such that
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Y={xeX]| f.Cg} 9.

By the choice of f, (for x=X), we have that YCA,es X4 ;. Hence
Aa.EA-Xa.,g((L)chr’-~

Now, we deal the general case. Assume that

W,=1{X.5| b A} is an J-partition of X, for each ¢ = A.

Take a bijection 7: AXA— A. Since NS, 4CdJ, without loss of generality, we
may assume that VxeX (r”’xXx=x). For each c¢=1(a, b A, set

Yc,o = Xa,b; Yc,l = X\Xa,b and Vc = {Yc.o; YC,I}-
By the virtue of the previous case, there exists g: A—2 such that

Y = AcEA Yc,g(c) e J*.

CLAIM., Va € A3b e A(g(t(a, b)) = 0).
PrOOF OF CLAIM. To get a contradiction, assume that

a e A and g(r(a, b)) =1, for all b= A.
Set Z=A,c4(X\Xa.»). Then, it holds that

N\

YNi{a} © Z and ZNX, , = 9, for all b A.
This contradicts that W, is an J-partition of X. QED of Claim.

By the Claim, take h: A— A such that, for all a= A, g(c(a, h(a)))=0. Define
g,EHaEAWa bY

g'(a) =Xanw, forall a e A
Then, it is easy to check that
xeY | hxCx} CAicag’(a.
Since {xeP.A|h"xCx} 9% we have that A,c,g'(0)E9". O

By a similar argument, we have

LEMMA 3.5. Let 4 be an ideal containing S(NS,. 4) and X&NSI(9)*. For
each uePA, let W, be an JI-partition of X which satisfies that |W, | < | A<
Then, there exists g&1luee, aWau such that Ayce 4 g(w)EI*. [

4, The ideals 4.k, A) and J.(k, A).

DEFINITION 4.1. By induction, on a< On define the ideals J,(k, A), .k, A)
on ?.A as follows:
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JO(ICJ A) = NS/:,A,
Iarile, A) = NI(Io(x, A)),
Ik, A) = Us<a delk, A), for limit a,
Folk, A) =S(NS, 1),
S ari(k, A) = NSI(F (&, A)),
Fak, A) = Ueca Felk, A), for limit a.
Note that U,con Jolk, A) and \Uqscon Fo(k, A) are normal ideals on @, A.
Following Johnson [9], # is said to be completely A-ineffable, if the completely
ineffable ideal \Ja.conda(k, A) is proper. She proved that this ideal is the
smallest normal ideal which satisfies the (4, 2)-distributive law. In this section,

we shall prove two theorems concerning relations on these ideals. First, we
show

THEOREM 4.1. Let £k<d<A and 0 be a regular cardinal. Then, for any
a<A, it holds that

VX € Juk, 1) ({y € PsANE | XNPeY € Joranyy(®, ¥)'} € Ia(0, D) ).

We will prove this theorem by induction on a. The following two lemmas
serve in the cases that «=0 and that a is a successor ordinal.

LEMMA 4.2. Let £k<0<A and 0 be a regular cardinal. Then,
vX NS,;_/z({y & PsANE | Xﬂ&’,y = NS: ZI} e NS;. 2).

PrROOF. Let X&NS, ;. Take ¢:i1XA— @A such that cllo)NX=@. Set
D={ye PANk ]| d"yXy C Py}.
Since 9>« is regular, D is a club subset of ®;4. So, it suffices to show that
DNy € 4Nk | XNPy € NSE ) =D

If not, then there is a y&D such that XN®@.y=NS;, ,. Since yeD, clle)N\P,y
is a club subset of #,y. So, we have that cl(e)NPyNX+¢@. But this
contradicts the choice of o. O

LEMMA 4.3. Let £<d<A and 0 be a regular cardinal. Let 9 and % be an
ideal on PsA and Pk, respectively. For each y=Psh, let 9, be an ideal on P.y.
Suppose that

VXed({ye PNk | XNPy e gt €9).
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Then, it holds that

VX e NI(%) ({y € @Psank | XN@Py € NI(J,)'} € NI(9) ).

PrROOF. Let XeNI(%). Take s.Cx (for x=X) such that

VSci(ixeX|s.=SN\xte4).

Set
Y = {y € ANk | XNP,y € NI(J,)*}

For each yeY, take S,Cy such that
(x e XNPy | s. =S5,Nx} € 93,
We will complete the proof by showing that
VSca2{yeY |S,=Snyted).
To show this, let SCA. Set X'={xeX|s,=SNx}. Since X'€4, by the
assumption, we have that
Y={ye PNk | X'NPy eI}l € 4.

By this and the fact that {yeY|S,=Sny}CY", it holds that {yeY |S,=SNy}
e4d. O

PROOF OF THEOREM 4.1. We show this theorem by induction on a¢<A. It
holds for «=0 and « a successor ordinal by [Lemma 4,2 and [Lemma 4.3,
respectively. So, we assume that a is a limit ordinal. Let XeJ4,(k, 1). Take
£<a such that XeJ.(x, 1). By the induction hypothesis, it holds that

Y = {y € Ps4Nk | XNPy € Joz(yr\e)(/‘f; e ‘56(5: A).
Since {yEPANE | XNPYEIorynar (8, ¥)*} CY, we have that

{y € PoANE | XNLPY € Jorcynar (K, 9)T} € Je(d, 4) T 406, D). O

COROLLARY 4.4. Let k<6<2and 0 be a regular cardinal. If VE<J (Ielk, &)
is proper) and 9,(0, A) is proper, then J;(k, A) is proper.

Proor. The case of that k=0 is clear. So, we assume that x<d. To get
a contradiction, assume that 4;(k, ) is not proper. Then, since P, A€9,(, ),
by the theorem, it holds that

Y ={y € PNk | Py E Jorry(k, ¥)} € 520, 2).

By the assumption, we have that Yy ®;AN&(Ioryy(k, ¥) is proper). So, it holds
that Y =®;ANk. This contradicts that J,(d, A) is proper. O
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THEOREM 4.5. Let k<2 and a=y+n<Ai, where y is a limit ordinal and
n<w. Then, it holds that

{(x € X | XNQ: € Jottanny(ENX, X)} E Iyiansilk, 2), for all X C P.A.

As in the proof of the previous theorem, we first deal the cases that a=0
and that a is a successor ordinal.

LEMMA 4.6. {x€X|XNQ.ENS;n:, .} ENSINS,, ), for all XCPA.
ProOF. To get a contradiction, assume that there is an XC @4 such that
Y={xeX|XNQ, € NSi:,:} € NSI(NS, :)*.

For each yeY, take ¢,:yXy—Q, such that clle )NXNQ,=@. Since
Y eNSI(NS,, ;)*, there is a function ¢ : AX1— @A such that

Z={yeY |o,=0alyXy} & NSt,.

Since cl(¢) is a club subset, cl(¢)\Z is unbounded. So, XNcl(e)=@. This
contradicts the fact that Xe NS} ;. 0

LEMMA 4.7. Let 4 be an ideal on P.A which includes NS, 4. For each
xeP A, let 9, be an ideal on Q,. Assume that

xeX | XNQ.ed9,} =4, foral X PA.
Then, it holds that
xeX | XNQ, s NI(Y,)} € NSIXS), forall XC @A
where NSI*F) denotes the ideal NSI(NSI(#)).
ProoF. To get a contradiction, assume that there is an XC®,A such that
Xo={xe X | XNQ. < NIJ,)} « NSI¥4)".

Since ¢ becomes A-ineffable, # is an inaccessible cardinal. For each x&X,, take
stcu (for ueXNQ,) such that

VSCx({fue Q.NX | s =SNu} € 49,).
For each ueX, set
Yis)={xeX,|ues Q, and sz =s}, for sC u,
Wy ={Yy(s) | sC u},
Then, it holds that
W, is an NSI(4)-partition of X, and |[W,| <k, for all u € X.
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So, by there exists a sequence {s,|u&X) such that
Y = Auex Yu(sy) € NSI(H)*.

Since Y&NSI(4)", take an SC A such that
Z={uecY |s,=SNu} €I

By the assumption, it holds that
xeZ|ZNQ. €49, € 4.

So, we can take x=Z such that ZNQ.<9%. Let s=SNx.

CLaiM 1. ZNQ.C {u e XNQ. | st = sNu}.

ProorF OoF CLAIM 1. Let u=ZNQ.. It holds that x=Y ,(s,). Hence sf=s,,.
By this and the fact that u=Z, we have that si=S"\u=SNxNu=sNu.

QED of Claim 1

Claim 1 contradicts the choice of sZ (for ueXNQ.,). O

PROOF OF THEOREM 4.5. We prove this theorem by induction on a<<4. By
the virtue of the previous two lemmas, we only need to deal the case that «
is a limit ordinal (i.e., n=0). Let

Z = {x € PA| ot(xNa) is a limit ordinal}.
It holds that Z=NS¥ ;. Let XC®.A. By induction hypothesis, it holds that
Xe={x € X1 XNQ: € Jotarerx(XNE, x)} E Fer0lk, A) T Fulk, 4),
for all £ < a.
Hence, Y =Vec, X;€F,.:(x, ). By this and the fact that
{x e X | XNQ: € Jotenay(xNE, XNZC Y,
we have that {xeX|XNQ .S Yotznay(xNEK, 2)} EF 4.i(k, A). O
COROLLARY 4.8. {x € @A | Jorrr(xNkK, x) is proper} & V2H (&, A)*.

PROOF. Let Z={xePAlot(x) is a limit ordinal} (€NS¥;). For each a<i,
let

Xo= {2 € LA | Jotznw(xMk, x) is proper}.

By the theorem, it holds that X,=4:(k, A%, for all a<id. So, A,<;X.E
V24 .k, A)*. By this and the fact that

Apci XaNZ C {x € PA| Jorr(xNE, x) is proper},

we have that {xEP.A|Ioier(x MK, x) is proper} ViS4 (k, )*. J



Inejfability and partition property 133

5. The ideals X ,(x, A) and L, (x, A).

DEFINITION 5.1. By induction on a< On, define the ideals K ,(k, A), L.k, A)
as follows:
Kok, A) = NSg 4,

Hasilk, A) = NP(Kq(&, A)),
Kok, A) = VHUe<ca Ke(k, A)), for limit a,
Lok, A) =S(NS 1),
Lasilk, A) = NP(L,(x, 4)),
Lok, A) = S(Ue<a Lelk, A)), for limit a.
Note that 9.k, A)CTKH(k, A)L,(k, A), for all a=O0n. Set NCP, 4=

UaGOn Jca(lcx A)' %
For 4, aCP(P.A), A—(8B)* denotes the statement:

VXeaVf:[X]*—>2 dHe 8 (HC X and H is homogeneous for f).

By the definition, it follows directly that NP(J9) is the smallest ideal 4
which satisfies g*i(ﬂ*)z. So, NCP, 4 is the smallest normal ideal which

*
satisfies that NCP} ,—(NCP} o)®. Menas proved that, under the assump-
tion of that ¢ is 2*<"-supercompact, there exists a normal ultrafilter U on %4

* = . .
which satisfies U — (U)%.. A similar argument in gives a proof of that, if
x is A-supercompact, then NCP, 4 is proper.

QUESTION 3. In the result of Menas, can the assumption be weakened to
that « is A-supercompact? l.e., does one can prove the existence of a normal

*
ultrafilter U on @4 which satisfies U — (U)?, under the assumption of that x is
A-supercompact ?

Now we give two results concerning relations between 4 .(k, 4) and .L,(x, 4).
THEOREM 5.1. For any a<<i, and any X< .L . (k, A),

(x € Pl | XNQ: € Lottarnn ENX, X)} E Farilk, H*.

As in the proofs of theorems in the previous section, we first deal the cases
of that =0 and that a is a successor ordinal.

LEMMA 5.2. Let & be an inaccessible cardinal.
1 {xelA | XNQ, < NSin, o} & NSE4, for any X € NS, 4.
(2) {X = -CExA | XﬂQz = S<Nsxf\xz)} e S(NSK,A)*) f07’ any X & S<NS::A)
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PrOOF. (1) and (2) can be proved by a similar argument. So, we deal
only (1). Let X&NS, 4. Take ¢: AXA—P.A such that clle)"X=@. Take
7: AXA— @A such that

o(a, b) € Qrw.p, forall a, bes A

We claim that
clrc {ixre Al XNQ. € NSz, 2} -

To show this, let xecl(z). Then, for any a, bex, since a(a, H)EQrw.» and
(a, b)Cx, o [ (x Xx) is a function from xXx to Q.. So, clle)NQ,=NS¥;. ..
By this, since cl(6)N\X=¢, we have that X"\Q.ENS;nz. 2. 0

LEMMA 5.3. Let 4, X be ideals on P.A which include NS, 4. For each
xEPA, let K, be an ideal on Q.. Suppose that

VXeX({ye Al XNQ, € X,} = 4%.
Then, it holds that
VX € NP(X){y € 2, A | XN\Q, = NP(X,)} = NSI(4)*).

Proor. To get a contradiction, suppose that there is an X&NP(X) such
that
Y={yePA| XNQ, e NP(X,)*'} « NSI(4)".

Take F:[X]?—2 such that
VH < X* ' X (H is not homogeneous for F).

For each yeY, take H,eX}(XNQ,) and e¢,<2 such that F’[H,]*={e,}.
Since YeNSI(4)*, there exist HC®P.A and e¢<2 such that

Y'={yeY|H,=HNQ, and ¢, =¢} = §°.
Since I, 4C &, it holds that
Hc X and H is homogeneous for F.
By the choice of F, H=X. So, by the assumption, we have that
Z={ye®A| HNQ, € X,} = *.
By this, there is a yeZNY’, since Y'e4*. Then, it holds that
HNQ, e £, and H,= HNQ,.
This contradicts the choice of H,. O

COROLLARY 5.4. Assume that part*(x, A) fails. Then, it holds that



Ineffability and partition property 135
{x & P.A | part*(x Nk, x) fails} & NSIINS,, »)*.
ProOF. The case that « is not inaccessible is trivial. We assume that &
is inaccessible. So, by [Lemma 5.2%(1) and Lemma 5.3, we have that
(xe P A| XNQ, & NP(NS:n )} € NSI(NS,, 0*, for all X € NP(NS, 4.
Assume that part*(k, A) fails. Then, since 2, A=NP(NS, ,), we have that
i.e.,, {x e PA|part*(xNk, x) fails} & NSI(NS, »)*. ]
PrROOF OF THEOREM 5.1. By induction on a<A.
Case . a=0.

To get a contradiction, suppose that there is an Xe.Lyk, ) (=SNS,. )

such that
Y={xe Pl XNQ. € LikNx, x)} & &, D*.

Then, ¥ becomes A-ineffable. So, x is inaccessible. By [Lemma 5.2, Y €S(NS,. 1)*.
This contradicts that S(NS, )T ., A).

Case II. a is a successor ordinal.

This case follows from the induction hypothesis and Lemma 5.3.

Case III. «a is a limit ordinal.

Let Z={xe®A|ot(xNa) is a limit ordinal}. Let Xe.L, (&, 2). Take X,&
Usp<a L5k, ) (for ueP.2) and X’'&\Jg<q Lk, 2) such that XCV,eg 2 X, UX'.
It holds that '

X(\QI C VuGQI(Xquz)U(XIK\\QJJ ’ fOI‘ 811 X e ﬂdxl-
By the induction hypothesis, it holds that

Yu - {x & g)xlz ! XquQx = Uﬁexr\a -Eot(x(\ﬂ)(’ﬂf\x, X)}' & ga(’f; /2>*;
for all u € 2.4,

and
YI - {x = ‘CPICZ l leQx = Iot(xf\a)(xm/c’ )C)} = ga('f; '2)*

S0, Avee 2 YuEHF ik, AH*. By this and the fact that
Y'NZNAuee 1 Vu C {x € 241 XNQ: € Lorenm (XN, 1)},
we have that {x€PAXNQ.E Lotcznamy(XNE, 1)} EF uii(k, D O
COROLLARY 5.5. For any X&\J <1 Lok, ),

{x € LA XNQ: € Uscorny Le(x Mk, x)} € F1(k, A)*. O
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Carr [5, Theorem 4.2(1)] proved that, under the assumption of that A<f=4,
VX € 49,(k, H* (Gf V(x, y) e [X]® (x € Q,), then X & KX,(k, )*).
The same argument gives a proof of that
VX € 4.k, H* (f V(x, y) € [X]? (x € Q,), then X € L1k, 1)Y).
We generalize her result]as the following theorem.

THEOREM 5.6. For any a=0n and XE & o..(k, A)*, if YV(x, y)e[X]* (x€Q,),
then Xe& L, (k, A) .

ProoF. By induction on a< On.
Case I. a=0.
This case is clear.
Case II. a=g+1.
Let XEg ...k, A satisfy V(x, y)e[X]* (x€Q,). Let F:[X]*—2. For
each x=X, set
sz ={ueXNQ; | Flu, x) =0}.

Since X4 ,..:(k, A)*, we can take an SCX such that
Y ={xe X |s,=SNQ.} € Sk, A)".

By the induction hypothesis, Y =.L4(k, A)*. It is easy to see that F/[SNY ]
={0} and F”[Y\S]*={1}. Since YNSe.Lyk, A)* or Y\S&.Ls(k, A)*, we have
that XL, A)*.

Case III. « is a limit ordinal.

Let X4 ..., A)* satisfy V(x, v)e[X]* (x=Q,). To get a contradiction,
assume that Xe.L,(x, A). Take X,&\Ujp<a L3k, A) (for uesPA) and X'e
Usp<a L&, A) such that XCVyee (X, \UX'. Without loss of generality, we
may assume that

X, CX, for all u e A and X' X.

By the induction hypothesis, it holds that
Xu € Upca Fpuilk, A) = Fok, A), for all u € P A and X' € S,k A).

By this and the fact that 4,..(x, A) is strongly normal, it holds that Viee 4 X.
EF 41k, A). So, X&4,..(k, A). This is a contradiction. O

COROLLARY 5.7. For any X&4,(k, A%, if V(x, y)e[X]* (x=Q,), then X<
(Ua<l -£a(’€) 2))+- O

6. Correspondence between #,4 and 2.A<".

This section is a proof of the following theorem.
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THEOREM 6.1. Let k<A, 0=1<F and p: P.0— P4 the projection. Then,
for any ordinal a>0,

(D) Fal&, 2) = px(IJalx, 0)).

(2) Lok, ) = px(K ok, 9)).

Let k<4, 6=2<¢ and p: @0 — LA the projection. Theorem is trivial, if &
is not inaccessible. So, we assume that & is inaccessible. In order to prove
this theorem, we need the canonical correspondence between .0 and P4
which was introduced by Abe [2].

Take a bijection A: 6 — PA. Define p: ®.0 — P4 and 7. PA— P06 by

e(y)=Uh"y, mx)=hr70Q,
and set
D={xe®id|2Cx}, E=xn"D.

The following can be easily checked (see [10, Lemma 3.6] for (2)).
(1) =D is a bijection from D to E and px D is an identity function.
(2) X e S(NS,,;) iff "X & NS, s, for all X @A

LEMMA 6.2. Let 9 be an ideal on P.0 such that E=9*. Then,
(1) NSI(p«(9)) = px(NI(9)). '

(2) NP(px(9) = px(NP(J9)).

(3) S(p«(9) = px(V¥(J9)).

Proor. Let XCP.A. Note that Depy(9)*, since E=n"DCp™'D. So, we
may assume that XCD. Set VY=r"X (=ENp~'X).

(1c) Let XeNSI(p«(9)). Take f,:Q,—2 (for x&X) such that
(xeX| f.C f} €px9), for any f:PA—2.
For each yeY, define g,: y—2 by

gy(a) = f o (h(a)).

CbamM 1. {yeY|g,Cgtedy, foral g:0—2.
PrROOF OF CLAIM 1. Let g: 8 —2. Define f:®.A—2 by

flw) = g(h™(w))
and set
X'={xeX|f.Cf}.

Since X'€p4«(9), it holds that p7'X’=4. Since {yeY | g,Cg}Cp™*X’, we have
that {yeg| g,CI} 4. QED of Claim 1

By Claim 1, o' XNE=Y&NI(J). ... o7 XENIY). .. XEpu(NI.9).
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(1D) Let XEp«(NI(9). Since YENI(Y), we can pick g,: y—2 (for y€Y)
such that
{yveY|g,Cgley, forall g:0—2.

Define f,: Q.—2 (for x=X) by
f2(u) = grn(h7Hw)).
CLAIM 2. {x&X|f.Cf}px9), for all f: PA—2.
PrOOF OF CLAIM 2. Let f: ®,A—2. Define g: 6§ —2 by

gla) = f(h(a)).
Then, it holds that

Enp*ixeX|f.CflciyeY g, Cgl.
So p7H{xeX | f,Cf}ed. Hence {x&X | f.Cf}€p«J). QED of Claim 2

By Claim 2, it holds that XeNSI(p«(9)).
(2, 3) Similar to (1). O

Define Cc@.0 by
C={yePb|Vacy (ha) € Qpy) and p(y) = p(y)}.
Note that C is a club subset of ¢, and VyeC (yCrp(y)).
LEMMA 6.3. E = S(NS, 5)*.

PrROOF. To get a contradiction, assume that E&S(NS, 4)*. Then, it holds
that

Y=C\E<SINS,p)*and VyeY (yC xp(y) and wp(y) # y).

For each yeY, take u,=Q,¢, such that A7'(u,)é&y. Since VyeY (v,€Qpp
C@Q,), we can choose u=®,4 such that

Z=1{yeY|u,=u €SNS,"

Set a=h"(u). Since Z is unbounded, there is a y=Z such that a=y. Since
u,=u, we have a=h""(u)=h"'(u,)é¢y. This is a contradiction. O

LEMMA 6.4.
(1) px(NI(NS,, 4)) = NSIS(NS;.2)). lLe., px(I:k, 0)) = &.(x, A).
(2) px(NP(NS, 4)) = NP(S(NS..2)). Le., px(Ki(k, 8)) = L\(x, 4).

PRrROOF. Define the ideal % on 2,6 by

H=1{Y TPl | YNE & NS, s}.
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CLAIM 1. px(#) = S(NS; 2).
PrROOF OF CLAIM 1. Let XcC%.A. Then, it holds that
X & pg(H) iff o' X e g iff p7'XNE & NS, iff 77X & NS,y
iff X e S(NS,.2). QED of Claim 1
CLAIM 2. NI(NS, ) = NI(¥) and NP(NS, 5) = NP(4).

PROOF OF CLAIM 2. Since #<*=4@, by a result of Carr [5, Theorem 3.6(2)],
NI(NS, ) is strongly normal. So, E&NI(NS, s)*CNP(NS, s)*. This claim
directly follows from this. QED of Claim 2

By Claims 1, 2 and we have that
Ox(NI(NS,.0)) = p(NI(I)) = NSI(px(H)) = NSIS(NS, 2))
and that
0x(NP(NSy, 9)) = px(NP(H)) = NP(px(I)) = NP(S(NS,, 1)) . 0
By induction on a>0, using Lemmas 6.2, we can prove that
Falk, ) = px(Ia(x, 8)) and L, (k, 2) = px(K (%, 0)).
So, the following fact completes the proof of [Theorem 6.1

Fact. For any ideal Jon Sand any f, g: S— T, if {s&S|f(x)=g(x)} 9%,
then f4(9)=gx(JI).

COROLLARY 6.5. Let £<2<0 and p: P.0— PA the projection. Then, it
holds that
px(Ia(k, 0)) D Falk, 2), for all a>0.

PrROOF. Let #=2<F and r: .0 — P, A the projection. The case of that «
is not d-ineffable is trivial. We may assume that & is d-ineffable. Then, by a
result of Johnson [9, Corollary 2.6], it holds that #=1<f<1*<d. So, let ¢:
P.0— P.0 be the projection.

Let a>0. Then, it holds that J,(&, 8)Cg«(Id.(k, 8)). By [Theorem 6.1, it
holds that 4,(k, 8)=rs«(9.(, 0)). By this and the fact that py=r«g«, we have
that pu(Jalx, 0)DF alx, 4). 0

7. Main Theorem.

This section is devoted to the proofs of Theorems 1, 3 which were men-
tioned in section 1. In the proofs, we need an w-Jénsson function. For any
set A, F:*A— A is called an w-Jdnsson function for A, if VSCA (f |S|=|A]l,
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then F”*S=A). Erdoés and Hajnal showed that every infinite set has an
-Jonsson function. Johnson [9, Lemma 2.3] proved that, if F is an w-Jénsson
function for A, then {x&®,A|F|“x is an w-Jénsson function for x} €NI(I, o)*.
(In fact, she proved a stronger result.)

follows directly from the following theorem.

THEOREM 7.1. If V24 .k, A) is a proper ideal, then \ Je<is Le(k, A) is proper.
PrROOF. To get a contradiction, assume that there exists &£ such that
Ji=k (V24 i(k, A) is proper and \Ug<; Le(k, 4) is not proper).

Take the least such k, and let A= such that
V24 (&, A) is proper and \Ug<: -Le(k, A) is not proper.

We denote V4 ;(k, 2) by H. Note that {x&P.Alx Nk is a regular cardinal} &
S(NS,. )*C w*. Take an w-Jonsson function F for A. Define XC 2,2 by

X={xe® | x satisfies (0)~(2)}, where

0) Vx e X (ot(x) and x Nk are cardinals).

(1) ¥Yxe X (Fl*x is w-Jonsson for x).

(2) Va, B<2 (if cof(a)=p, then YxeXN {a} (8= x and cof(xNa)=0t(x N B))).
It holds that XeJ4,(k, ¥ H*. Set X,={x&X|Ioexr)(xMNk, x) is proper}. By
it holds that X,eM*. Set X;={x<EX,|Us<otmy-Le(XxNk, x) is not

proper}. Since PAS\Jq<i Lok, A), by [Corollary 5.5, we have that X,=.¥u*.
By the leastness of x, we have that

VieX, (V4o (xMNk, x) iS not proper).
CLAIM 1. V(x, y) € [X:]® (x € Q).

PRrROOF OF CLAIM 1. Let (x, y)[X,]%. Since F[*x, F|*y are w-]Jénsson
for x, v, respectively, it holds that |x|<|y|. To get a contradiction, assume
that yN&e=ot(x). Then, I, ~(xNk, yNk) is proper. Since, Jor,y(¥ Nk, ¥) is
proper, by [Corollary 4.4, Joic,y(x\k, y) is proper. So, by

Forep(xMk, x) is proper. This is a contradiction, since V2Foem(xNk, x)C
Forip(XxNE, X). QED of Claim 1

Since X,eM*C M*, by the Claim and [Corollary 5.7, it holds that X,
Ue<a -Le(k, A)7. This contradicts the fact that U<y Le(k, 4) is not proper. [

COROLLARY 7.2 (Theorem 1). If & is completely A<*-ineffable, then part*(x, 1<%)
holds.

PrOOF. Assume that « is completely A<*-ineffable. Then, it holds that
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Ik, 2<F) is proper, for all acOn.
So, by [Theorem 6.1(1), it holds that
& .k, A) is proper, for all a=On.

So, by the previous theorem, \Uec;-L¢(k, 4) is proper. So, by Theorem 6.1(2),
we have that
Ue<a Ke(k, 4<F) is proper.

Especially, K,(k, A<*) is proper. l.e., part*(x, <<*) holds. O

DEFINITION 7.1. For any cardinal 6 and ordinal «, *" denotes the cardinal
which is defined by induction on a as follows:

0" =9,

Jr D — (§rayt

0** =sup{0*?|B < a}, for any limit ordinal a.
Recall the statement of Theorem 2 from section 1.

THEOREM 2. Assume that there is an a<x such that Yo<r (2°<0%%). Then,
if £ is A<*-ineffable, then part*(k, A<*) holds.

In order to prove this theorem, we need the following Lemma.

LEMMA 7.3. Under the same assumption in Theorem 2, there exists an
SC P(k) such that

(1) S is a partition of the set of infinite cardinals below k and |S|<k.

(2) For any SES and any d, n<ES, if 0<y, then 2"+<7;.

Proor. Easy. d

PrROOF OF THEOREM 2. Since (A<9)<r=2<* it suffices to show that

(*) VA=k (f ¢ is A<t-ineffable, then part*(x, 1) holds).

To get a contradiction, assume that (*) does not hold.

Take A=« such that £ is A<*-ineffable and part*(k, 4) fails. Take an w-J6nsson
function F for A. Define XC %A by

X={x=PA]|x satisfies the following (0)~(3)}.

(0) xNk and ot(x) are cardinals.

(1) Fl*x is w-Jénsson for x.

(2) xNk is almost x-ineffable.

(3) part*(xNk, x) fails.
By [10, Theorem 4.1] and Xo=4,(k, H)*. Take SCP(rk) which
satisfies (1), (2) in Lemma 7.3. For each S&sS, set
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Xs={x e X|otlx) e S}.
Since 4,(k, A) is k-complete, there exists an S&& such that Xs= 4.k, )"
CraiMm 1. V(x, y) € [Xs]® (x € Q).

PrOOF OF CLAIM 1. Let (x, y)&€[Xs]®. By (1), we have |x|<]|v|. So,
211" < |y|. To get a contradiction, assume that |yN\k|<|x|. Then, xNk is
almost yNk-ineffable. So, xMN\« is almost y-ineffable. Since 2'*'*<|y|, by a
result of Carr [4, Theorem 3.2], x Nk is x-supercompact. This contradicts
that part*(xM«, x) fails. QED of Claim 1

Since Xs=4.(x, )*, by Claim 1, we have that Xg&.L,(k, A)*. This con-
tradicts to that part*(x, 2) fails. O

COROLLARY 7.4. Under the same assumption in Theorem 2, for any £<0<A4,
if part*(x, ) holds, then part*(k, d) holds.

PrROOF. Let x<0<4 and part¥(x, ). By a result of Magidor [11], « is
A-ineffable. So, by a result of Johnson [9], 6<*<0"< 4. Hence, « is d<*-ineffable.

So, by [Theorem 2, part*(x, ) holds. O
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