Ineffability and partition property on $\mathcal{Q}_{\kappa\lambda}$

By Shizuo KAMO

(Received Aug. 29, 1994) (Revised Jan. 20, 1995)

1. Introduction.

Magidor [11] proved that if $part^*(\kappa, \lambda)$ holds, then κ is λ -ineffable. Abe [1] proved that the reverse implication also holds under the assumption of that λ is ineffable. In this paper, we shall prove the following two theorems.

THEOREM 1. If κ is completely $\lambda^{<\kappa}$ -ineffable, then part* $(\kappa, \lambda^{<\kappa})$ holds.

THEOREM 2. Assume that there exists an $\alpha < \kappa$ such that $2^{\delta} \leq \delta^{+\alpha}$ for all $\delta < \kappa$. Then, if κ is $\lambda^{<\kappa}$ -ineffable, then part* $(\kappa, \lambda^{<\kappa})$ holds.

In order to prove Theorem 1, we need to study a hierarchy of ideals which are associated with partition property and ineffability, and the correspondence between $\mathcal{P}_{\kappa}\lambda$ and $\mathcal{P}_{\kappa}\lambda^{<\kappa}$.

The hierarchy of ideals will be dealt in sections 4 and 5 and the correspondence in section 6. The theorems will be proved in section 7.

2. Notation and basic facts.

Throughout this paper, κ denotes a regular uncountable cardinal. Let $\mathcal G$ be an ideal on a set S. $\mathcal G^*$ denotes the dual filter of $\mathcal G$ and $\mathcal G^+$ the set $\mathcal L(S) \setminus \mathcal G$. A subset W of $\mathcal G^+$ is $\mathcal G$ -disjoint, if $X \cap Y \in \mathcal G$ for all distinct $X, Y \in W$. An \subset -maximal $\mathcal G$ -disjoint subset is called an $\mathcal G$ -partition. For any set $X \subset S$, $\mathcal G^+ \mid X$ denotes $\mathcal G^+ \cap \mathcal L(X)$. For any $f: S \to T$, $f_*(\mathcal G)$ denotes the ideal $\{Y \subset T \mid f^{-1}Y \in \mathcal G\}$ on T.

Let A be a set such that $\kappa \subset A$. $\mathscr{D}_{\kappa}A$ denotes the set $\{x \subset A \mid |x| < \kappa\}$. Let Y be a subset of $\mathscr{D}_{\kappa}A$. $[Y]^2$ denotes the set $\{(x, y) \in Y^2 \mid x \subset y \text{ and } x \neq y\}$. For any function $F \colon [Y]^2 \to 2$, a subset H of Y is said to be homogeneous for F, if $|F''[H]^2| \leq 1$. For any $B \supset A$, the function $p \colon \mathscr{D}_{\kappa}B \to \mathscr{D}_{\kappa}A$ which is defined by $p(y) = y \cap A$ is called the projection. For each $x \in \mathscr{D}_{\kappa}A$, \hat{x} denotes the set $\{y \in \mathscr{D}_{\kappa}A \mid x \subset y \text{ and } x \neq y\}$ and Q_x the set $\{t \subset x \mid |t| < |x \cap \kappa|\}$. $I_{\kappa,A}$ denotes the ideal $\{X \subset \mathscr{D}_{\kappa}A \mid X \cap \hat{y} = \emptyset$, for some $y \in \mathscr{D}_{\kappa}A\}$. An element of $I_{\kappa,A}^+$ is called unbounded. A subset of $\mathscr{D}_{\kappa}A$ is called club, if it is unbounded and closed under unions of \square -increasing chains with length $<\kappa$. A subset X of $\mathscr{D}_{\kappa}A$ is called

stationary, if $X \cap C \neq \emptyset$ for any club subset C of $\mathcal{Q}_{\kappa}A$. $NS_{\kappa,A}$ denotes the ideal $\{X \subset \mathcal{Q}_{\kappa}A \mid X \text{ is non-stationary}\}$.

For any indexed family $\{X_a \mid a \in A\}$ of subset $\mathcal{P}_{\kappa}A$, the diagonal union $\nabla_{a \in A}X_a$ (the diagonal intersection $\Delta_{a \in A}X_a$) denotes the set $\{x \in \mathcal{P}_{\kappa}A \mid x \in X_a, \text{ for some } a \in x\}$ ($\{x \in \mathcal{P}_{\kappa}A \mid x \in X_a, \text{ for all } a \in x\}$). Similarly, for any indexed family $\{X_u \mid u \in \mathcal{P}_{\kappa}A\}$ of subset $\mathcal{P}_{\kappa}A$, the strong diagonal union $\nabla_{u \in \mathcal{P}_{\kappa}A}X_u$ and the strong diagonal intersection $\Delta_{u \in \mathcal{P}_{\kappa}A}X_u$ denote the set $\{x \in \mathcal{P}_{\kappa}A \mid x \in X_u, \text{ for some } u \in Q_x\}$ and $\{x \in \mathcal{P}_{\kappa}A \mid x \in X_u, \text{ for all } u \in Q_x\}$, respectively. A κ -complete ideal on $\mathcal{P}_{\kappa}A$ is said to be normal (strongly normal), if it contains $I_{\kappa,A}$ and closed under diagonal unions (strong diagonal unions). For any ideal $\mathcal{F}_{\kappa}A$, $\mathcal{F}_{\kappa}A$ is denote the set $\{x \in \mathcal{P}_{\kappa}A \mid \tau''x \times x \subset x\}$. Similarly, for any $\tau : A \times A \to \mathcal{P}_{\kappa}A$, $cl(\tau)$ denotes the set $\{x \in \mathcal{P}_{\kappa}A \mid \tau''x \times x \subset x\}$. Similarly, for any $\tau : \mathcal{P}_{\kappa}A \to \mathcal{P}_{\kappa}A$, $cl(\tau)$ denotes $\{x \in \mathcal{P}_{\kappa}A \mid \forall u \in Q_x(\tau(u) \subset x)\}$.

Menas [12] proved that, for any club subset C of $\mathcal{L}_{\kappa}A$, there exists a $\tau: A \times A \to \mathcal{L}_{\kappa}A$ such that $\operatorname{cl}(\tau) \subset C$. It is known [3] that $NS_{\kappa,A} = \nabla^2(I_{\kappa,A})$. The notion of strong normality was introduced by Carr [5]. Carr and Pelletier [6] gave structural characterizations of strongly normal ideals. There is another characterization of strongly normal ideals in [10].

3. Operations NI, NSI and NP.

Jech [8] introduced the notion of λ -ineffability and almost λ -ineffability and partition property. After that, Carr [4] gave the ideal theoretic characterizations of λ -ineffability and almost λ -ineffability. She introduced the ideals $NIn_{\kappa,\lambda}$ and $NAIn_{\kappa,\lambda}$. It is known that the partition property also has the ideal theoretic characterization. These ideals were obtained from $NS_{\kappa,\lambda}$ and $I_{\kappa,\lambda}$ by using some operations. In order to treat these ideals uniformly, we fixed these operations.

DEFINITION 3.1. Let \mathcal{I} be an ideal on $\mathcal{P}_{\kappa}A$. Define the ideals $NI(\mathcal{I})$, $NSI(\mathcal{I})$ and $NP(\mathcal{I})$ by

$$NI(\mathcal{S}) = \{X \subset \mathcal{D}_{\kappa}A \mid \exists s_x \subset x \quad (\text{for } x \in X) \\ \forall S \subset A(\{x \in X \mid s_x = S \cap x\} \in \mathcal{S})\},$$

$$NSI(\mathcal{S}) = \{X \subset \mathcal{D}_{\kappa}A \mid \exists s_x \subset Q_x \quad (\text{for } x \in X) \\ \forall S \subset \mathcal{D}_{\kappa}A \{x \in X \mid s_x = S \cap Q_x\} \in \mathcal{S}\},$$

$$NP(\mathcal{S}) = \{X \subset \mathcal{D}_{\kappa}A \mid \exists F \colon [X]^2 \to 2 \ \forall H \in \mathcal{S}^+ \upharpoonright X$$

$$(H \text{ is not homogeneous for } F)\}.$$

Following Carr [4], we denote $NI(NS_{\kappa,A})$ by $NIn_{\kappa,A}$ and $NI(I_{\kappa,A})$ by $NAIn_{\kappa,A}$. κ is said to be A-ineffable, (almost A-ineffable), if the ideal $NI(NS_{\kappa,A})$ ($NI(I_{\kappa,A})$) is proper. We denote by part*(κ , A) the statement " $NP(NS_{\kappa,A})$ is proper". It is easy to see that $NI(\mathcal{I}) \subset NSI(\mathcal{I})$. Magidor [11] proved that if part*(κ , λ) holds, then κ is λ -ineffable. The same proof yields a proof of that, if \mathcal{I} is normal, then $NI(\mathcal{I}) \subset NP(\mathcal{I})$. Carr [4, Theorem 1.2] proved that, if an ideal \mathcal{I} contains $I_{\kappa,A}$, then $NI(\mathcal{I})$ is normal. By a similar argument in her proof, it holds that if an ideal \mathcal{I} contains $I_{\kappa,A}$, then $NSI(\mathcal{I})$ is strongly normal. It is easy to see that, if \mathcal{I} is normal, then $NP(\mathcal{I})$ is normal. I do not know whether $NP(\mathcal{I})$ is normal or not without the assumption of that \mathcal{I} is normal.

QUESTION 1. Let \mathcal{I} be an ideal containing $I_{\kappa,A}$.

- 1. Does it hold that $NS_{\kappa,A} \subset NP(\mathcal{G})$?
- 2. Is $NP(\mathcal{J})$ normal?

Using the normality of an ideal $NI(\mathcal{I})$, Carr [4, Corollary 1.3] proved

LEMMA 3.1. Assume that $I_{x,A} \subset \mathcal{G}$. Then, for any $X \in NI(\mathcal{G})^+$ and any $f_x : x \to x$ (for $x \in X$), there exists an $f: A \to A$ such that $\{x \in X \mid f_x \subset f\} \in \mathcal{G}^+$. \square

A similar argument gives

LEMMA 3.2. Assume that $I_{\kappa,A} \subset \mathcal{G}$. Then, for any $X \in NSI(\mathcal{G})^+$ and any f_x : $Q_x \to Q_x$ (for $x \in X$), there exists an $f: \mathcal{Q}_{\kappa}A \to \mathcal{Q}_{\kappa}A$ such that $\{x \in X | f_x \subset f\} \in \mathcal{G}^+$.

The following lemma can be easily proved.

LEMMA 3.3. Let $A \subseteq B$ and $p: \mathcal{P}_{\kappa}B \to \mathcal{P}_{\kappa}A$ the projection. Then, for any ideal \mathcal{G} on $\mathcal{P}_{\kappa}B$, $NI(p_{*}(\mathcal{G})) \subset p_{*}(NI(\mathcal{G}))$ and $NSI(p_{*}(\mathcal{G})) \subset p_{*}(NSI(\mathcal{G}))$.

QUESTION 2. Let $A \subset B$, $p: \mathcal{P}_{\kappa}B \to \mathcal{P}_{\kappa}A$ the projection and \mathcal{S} an ideal on $\mathcal{P}_{\kappa}B$. Does it hold that $NP(p_{*}(\mathcal{S})) \subset p_{*}(NP(\mathcal{S}))$?

LEMMA 3.4. Let \mathcal{J} be an ideal containing $NS_{\kappa,A}$ and $X \in NI(\mathcal{J})^+$. For each $a \in A$, let W_a be an \mathcal{J} -partition of X which satisfies that $|W_a| \leq |A|$. Then, there exists $g \in \prod_{a \in A} W_a$ such that $\Delta_{a \in A} g(a) \in \mathcal{J}^+$.

PROOF. First, we dealt the case that

 $W_a = \{X_{a,0}, X_{a,1}\}$ is a partition of X, for all $a \in A$.

For each $x \in X$, define $f_x : x \to 2$ by

$$f_x(a) = \begin{cases} 0, & \text{if } x \in X_{a,0}, \\ 1, & \text{if } x \in X_{a,1}. \end{cases}$$

Since $X \in NI(\mathcal{J})^+$, there exists a $g: A \to 2$ such that

$$Y = \{x \in X \mid f_x \subset g\} \in \mathcal{G}^+.$$

By the choice of f_x (for $x \in X$), we have that $Y \subset \Delta_{a \in A} X_{a, g(a)}$. Hence $\Delta_{a \in A} X_{a, g(a)} \in \mathcal{J}^+$.

Now, we deal the general case. Assume that

$$W_a = \{X_{a,b} \mid b \in A\}$$
 is an \mathcal{S} -partition of X , for each $a \in A$.

Take a bijection $\tau: A \times A \to A$. Since $NS_{\kappa,A} \subset \mathcal{S}$, without loss of generality, we may assume that $\forall x \in X \ (\tau''x \times x = x)$. For each $c = \tau(a, b) \in A$, set

$$Y_{c,0} = X_{a,b}, \quad Y_{c,1} = X \setminus X_{a,b} \quad \text{and} \quad V_c = \{Y_{c,0}, Y_{c,1}\}.$$

By the virtue of the previous case, there exists $g: A \rightarrow 2$ such that

$$Y = \Delta_{c \in A} Y_{c, g(c)} \in \mathcal{J}^+.$$

CLAIM. $\forall a \in A \exists b \in A(g(\tau(a, b)) = 0).$

PROOF OF CLAIM. To get a contradiction, assume that

$$a \in A$$
 and $g(\tau(a, b)) = 1$, for all $b \in A$.

Set $Z = \Delta_{b \in A}(X \setminus X_{a,b})$. Then, it holds that

$$Y \cap \{\widehat{a}\} \subset Z \text{ and } Z \cap X_{a,b} \in \mathcal{J}, \text{ for all } b \in A.$$

This contradicts that W_a is an \mathcal{I} -partition of X.

QED of Claim.

By the Claim, take $h:A\to A$ such that, for all $a\in A$, $g(\tau(a,h(a)))=0$. Define $g'\in \prod_{a\in A}W_a$ by

$$g'(a) = X_{a,h(a)}$$
, for all $a \in A$.

Then, it is easy to check that

$$\{x \in Y \mid h''x \subset x\} \subset \Delta_{a \in A} g'(a).$$

Since $\{x \in \mathcal{Q}_{\kappa}A \mid h''x \subset x\} \in \mathcal{J}^*$, we have that $\Delta_{a \in A} g'(a) \in \mathcal{J}^+$.

By a similar argument, we have

LEMMA 3.5. Let \mathcal{I} be an ideal containing $S(NS_{\kappa,A})$ and $X \in NSI(\mathcal{I})^+$. For each $u \in \mathcal{L}_{\kappa}A$, let W_u be an \mathcal{I} -partition of X which satisfies that $|W_u| \leq |A|^{<\kappa}$. Then, there exists $g \in \prod_{u \in \mathcal{L}_{\kappa}A} W_u$ such that $\Delta_{u \in \mathcal{L}_{\kappa}A} g(u) \in \mathcal{I}^+$.

4. The ideals $\mathcal{J}_{\alpha}(\kappa, A)$ and $\mathcal{J}_{\alpha}(\kappa, A)$.

DEFINITION 4.1. By induction, on $\alpha \in On$ define the ideals $\mathcal{I}_{\alpha}(\kappa, A)$, $\mathcal{J}_{\alpha}(\kappa, A)$ on $\mathcal{L}_{\kappa}A$ as follows:

$$\begin{split} &\mathcal{G}_0(\mathbf{k},\ A) = NS_{\mathbf{k},\,\mathbf{A}}, \\ &\mathcal{G}_{\alpha+1}(\mathbf{k},\ A) = NI(\mathcal{G}_\alpha(\mathbf{k},\ A)), \\ &\mathcal{G}_\alpha(\mathbf{k},\ A) = \bigcup_{\xi < \alpha} \mathcal{G}_\xi(\mathbf{k},\ A), \quad \text{for limit } \alpha, \\ &\mathcal{G}_0(\mathbf{k},\ A) = \mathbf{S}(NS_{\mathbf{k},\,\mathbf{A}}), \\ &\mathcal{G}_{\alpha+1}(\mathbf{k},\ A) = NSI(\mathcal{G}_\alpha(\mathbf{k},\ A)), \\ &\mathcal{G}_\alpha(\mathbf{k},\ A) = \bigcup_{\xi < \alpha} \mathcal{G}_\xi(\mathbf{k},\ A), \quad \text{for limit } \alpha. \end{split}$$

Note that $\bigcup_{\alpha \in On} \mathcal{J}_{\alpha}(\kappa, A)$ and $\bigcup_{\alpha \in On} \mathcal{J}_{\alpha}(\kappa, A)$ are normal ideals on $\mathcal{P}_{\kappa}A$. Following Johnson [9], κ is said to be completely A-ineffable, if the completely ineffable ideal $\bigcup_{\alpha \in On} \mathcal{J}_{\alpha}(\kappa, A)$ is proper. She proved that this ideal is the smallest normal ideal which satisfies the $(\lambda, 2)$ -distributive law. In this section, we shall prove two theorems concerning relations on these ideals. First, we show

THEOREM 4.1. Let $\kappa < \delta < \lambda$ and δ be a regular cardinal. Then, for any $\alpha \leq \lambda$, it holds that

$$\forall X \in \mathcal{J}_{\alpha}(\kappa, \lambda) \ (\{y \in \mathcal{Q}_{\delta}\lambda \cap \hat{\kappa} \mid X \cap \mathcal{Q}_{\kappa}y \in \mathcal{J}_{ot(\alpha \cap \nu)}(\kappa, y)^{+}\} \in \mathcal{J}_{\alpha}(\delta, \lambda) \).$$

We will prove this theorem by induction on α . The following two lemmas serve in the cases that $\alpha=0$ and that α is a successor ordinal.

LEMMA 4.2. Let $\kappa < \delta < \lambda$ and δ be a regular cardinal. Then,

$$\forall X \in NS_{\kappa, \lambda}(\{y \in \mathcal{Q}_{\delta}\lambda \cap \hat{\kappa} \mid X \cap \mathcal{Q}_{\kappa}y \in NS_{\kappa, y}\} \in NS_{\delta, \lambda}).$$

PROOF. Let $X \in NS_{\kappa, \lambda}$. Take $\sigma : \lambda \times \lambda \to \mathcal{P}_{\kappa}\lambda$ such that $cl(\sigma) \cap X = \emptyset$. Set $D = \{ y \in \mathcal{P}_{\delta}\lambda \cap \hat{\kappa} \mid \sigma''y \times y \subset \mathcal{P}_{\kappa}y \}.$

Since $\delta > \kappa$ is regular, D is a club subset of $\mathcal{P}_{\delta} \lambda$. So, it suffices to show that

$$D \cap \{ y \in \mathcal{Q}_{\delta} \lambda \cap \hat{k} \mid X \cap \mathcal{Q}_{\kappa} y \in NS^{+}_{\kappa, y} \} = \emptyset.$$

If not, then there is a $y \in D$ such that $X \cap \mathcal{L}_{\kappa} y \in NS^+_{\kappa, y}$. Since $y \in D$, $\operatorname{cl}(\sigma) \cap \mathcal{L}_{\kappa} y$ is a club subset of $\mathcal{L}_{\kappa} y$. So, we have that $\operatorname{cl}(\sigma) \cap \mathcal{L}_{\kappa} y \cap X \neq \emptyset$. But this contradicts the choice of σ .

LEMMA 4.3. Let $\kappa < \delta < \lambda$ and δ be a regular cardinal. Let $\mathcal S$ and $\mathcal H$ be an ideal on $\mathcal P_{\delta}\lambda$ and $\mathcal P_{\kappa}\lambda$, respectively. For each $y \in \mathcal P_{\delta}\lambda$, let $\mathcal S_y$ be an ideal on $\mathcal P_{\kappa}y$. Suppose that

$$\forall X \in \mathcal{A}(\{y \in \mathcal{Q}_{\delta}\lambda \cap \hat{\kappa} \mid X \cap \mathcal{Q}_{\kappa}y \in \mathcal{J}_{y}^{+}\} \in \mathcal{J}).$$

Then, it holds that

$$\forall X \in NI(\mathcal{A}) \ (\{y \in \mathcal{Q}_{\delta}\lambda \cap \hat{k} \mid X \cap \mathcal{Q}_{\kappa}y \in NI(\mathcal{J}_{y})^{+}\} \in NI(\mathcal{J}) \).$$

PROOF. Let $X \in NI(\mathcal{H})$. Take $s_x \subset x$ (for $x \in X$) such that

$$\forall S \subset \lambda \ (\{x \in X \mid s_x = S \cap x\} \in \mathcal{A} \).$$

Set

$$Y = \{ y \in \mathcal{Q}_{\delta} \lambda \cap \hat{\kappa} \mid X \cap \mathcal{Q}_{\kappa} y \in NI(\mathcal{J}_{y})^{+} \}$$

For each $y \in Y$, take $S_y \subset y$ such that

$$\{x \in X \cap \mathcal{Q}_x y \mid s_x = S_y \cap x\} \in \mathcal{G}_y^+$$

We will complete the proof by showing that

$$\forall S \subset \lambda \ (\{y \in Y \mid S_y = S \cap y\} \in \mathcal{J}).$$

To show this, let $S \subset \lambda$. Set $X' = \{x \in X \mid s_x = S \cap x\}$. Since $X' \in \mathcal{A}$, by the assumption, we have that

$$Y' = \{ y \in \mathcal{Q}_{\delta} \lambda \cap \hat{k} \mid X' \cap \mathcal{Q}_{\kappa} y \in \mathcal{J}_{y}^{+} \} \in \mathcal{J}.$$

By this and the fact that $\{y \in Y \mid S_y = S \cap y\} \subset Y'$, it holds that $\{y \in Y \mid S_y = S \cap y\} \in \mathcal{S}$.

PROOF OF THEOREM 4.1. We show this theorem by induction on $\alpha \leq \lambda$. It holds for $\alpha = 0$ and α a successor ordinal by Lemma 4.2 and Lemma 4.3, respectively. So, we assume that α is a limit ordinal. Let $X \in \mathcal{G}_{\alpha}(\kappa, \lambda)$. Take $\xi < \alpha$ such that $X \in \mathcal{G}_{\xi}(\kappa, \lambda)$. By the induction hypothesis, it holds that

$$Y = \{ y \in \mathcal{P}_{\delta} \lambda \cap \hat{\kappa} \mid X \cap \mathcal{P}_{\kappa} y \in \mathcal{J}_{ot(y \cap \xi)}(\kappa, y)^{+} \} \in \mathcal{J}_{\xi}(\delta, \lambda).$$

Since $\{y \in \mathcal{Q}_{\delta} \lambda \cap \hat{k} \mid X \cap \mathcal{Q}_{\kappa} y \in \mathcal{J}_{at(y \cap \alpha)}(\kappa, y)^{+}\} \subset Y$, we have that

$$\{y \in \mathcal{Q}_{\delta}\lambda \cap \hat{\kappa} \mid X \cap \mathcal{Q}_{\kappa}y \in \mathcal{G}_{ot(y \cap \alpha)}(\kappa, y)^{+}\} \in \mathcal{G}_{\xi}(\delta, \lambda) \subset \mathcal{G}_{\alpha}(\delta, \lambda). \qquad \Box$$

COROLLARY 4.4. Let $\kappa \leq \delta < \lambda$ and δ be a regular cardinal. If $\forall \xi < \delta$ ($\mathcal{G}_{\xi}(\kappa, \xi)$ is proper) and $\mathcal{G}_{\lambda}(\delta, \lambda)$ is proper, then $\mathcal{G}_{\lambda}(\kappa, \lambda)$ is proper.

PROOF. The case of that $\kappa = \delta$ is clear. So, we assume that $\kappa < \delta$. To get a contradiction, assume that $\mathcal{G}_{\lambda}(\kappa, \lambda)$ is not proper. Then, since $\mathcal{G}_{\kappa}\lambda \in \mathcal{G}_{\lambda}(\kappa, \lambda)$, by the theorem, it holds that

$$Y = \{ y \in \mathcal{Q}_{\delta} \lambda \cap \hat{k} \mid \mathcal{Q}_{\kappa} y \in \mathcal{J}_{ot(y)}(\kappa, y)^{+} \} \in \mathcal{J}_{\lambda}(\delta, \lambda).$$

By the assumption, we have that $\forall y \in \mathcal{Q}_{\delta} \lambda \cap \hat{\kappa}(\mathcal{J}_{ot(y)}(\kappa, y))$ is proper). So, it holds that $Y = \mathcal{Q}_{\delta} \lambda \cap \hat{\kappa}$. This contradicts that $\mathcal{J}_{\lambda}(\delta, \lambda)$ is proper.

Theorem 4.5. Let $\kappa \leq \lambda$ and $\alpha = \gamma + n < \lambda$, where γ is a limit ordinal and $n < \omega$. Then, it holds that

$$\{x\in X\mid X\cap Q_x\in \mathcal{G}_{\mathfrak{ot}(\alpha\cap x)}(\kappa\cap x,\ x)\}\in \mathcal{G}_{\gamma+2n+1}(\kappa,\ \lambda)\,,\quad for\ all\ X\subset \mathcal{Q}_\kappa\lambda.$$

As in the proof of the previous theorem, we first deal the cases that $\alpha=0$ and that α is a successor ordinal.

LEMMA 4.6. $\{x \in X \mid X \cap Q_x \in NS_{\kappa \cap x, x}\} \in NSI(NS_{\kappa, \lambda}), \text{ for all } X \subset \mathcal{Q}_{\kappa}\lambda.$

PROOF. To get a contradiction, assume that there is an $X \subset \mathcal{Q}_{\kappa}\lambda$ such that

$$Y = \{x \in X \mid X \cap Q_x \in NS_{x \cap x, x}\} \in NSI(NS_{x, \lambda})^+.$$

For each $y \in Y$, take $\sigma_y : y \times y \to Q_y$ such that $\operatorname{cl}(\sigma_y) \cap X \cap Q_y = \emptyset$. Since $Y \in NSI(NS_{\mathfrak{r},\lambda})^+$, there is a function $\sigma : \lambda \times \lambda \to \mathcal{Q}_{\mathfrak{r}}\lambda$ such that

$$Z = \{ y \in Y \mid \sigma_y = \sigma \upharpoonright y \times y \} \in NS^+_{\epsilon, \lambda}.$$

Since $cl(\sigma)$ is a club subset, $cl(\sigma) \cap Z$ is unbounded. So, $X \cap cl(\sigma) = \emptyset$. This contradicts the fact that $X \in NS_{\epsilon, \lambda}^+$.

LEMMA 4.7. Let \mathcal{J} be an ideal on \mathcal{Q}_xA which includes $NS_{\kappa,A}$. For each $x \in \mathcal{Q}_{\kappa}A$, let \mathcal{J}_x be an ideal on Q_x . Assume that

$$\{x \in X \mid X \cap Q_x \in \mathcal{G}_x\} \in \mathcal{G}, \text{ for all } X \subset \mathcal{Q}_{\kappa}A.$$

Then, it holds that

$$\{x \in X \mid X \cap Q_x \in NI(\mathcal{J}_x)\} \in NSI^2(\mathcal{J}), \text{ for all } X \subset \mathcal{D}_{\epsilon}A$$

where $NSI^{2}(\mathcal{J})$ denotes the ideal $NSI(NSI(\mathcal{J}))$.

PROOF. To get a contradiction, assume that there is an $X \subset \mathcal{L}_{\kappa}A$ such that

$$X_0 = \{x \in X \mid X \cap Q_x \in NI(\mathcal{J}_x)\} \in NSI^2(\mathcal{J})^+.$$

Since κ becomes A-ineffable, κ is an inaccessible cardinal. For each $x \in X_0$, take $s_u^x \subset u$ (for $u \in X \cap Q_x$) such that

$$\forall S \subset x (\{u \in Q_x \cap X \mid s_u^x = S \cap u\} \in \mathcal{G}_x).$$

For each $u \in X$, set

$$Y_u(s) = \{x \in X_0 \mid u \in Q_x \text{ and } s_u^x = s\}, \text{ for } s \subset u,$$

$$W_u = \{Y_u(s) \mid s \subset u\}.$$

Then, it holds that

 W_u is an $NSI(\mathcal{J})$ -partition of X_0 and $|W_u| < \kappa$, for all $u \in X$.

So, by Lemma 3.5, there exists a sequence $\langle s_u | u \in X \rangle$ such that

$$Y = \Delta_{u \in X} Y_u(s_u) \in NSI(\mathcal{J})^+$$
.

Since $Y \in NSI(\mathcal{J})^+$, take an $S \subset A$ such that

$$Z = \{u \in Y \mid s_u = S \cap u\} \in \mathcal{G}^+.$$

By the assumption, it holds that

$$\{x \in Z \mid Z \cap Q_x \in \mathcal{G}_x\} \in \mathcal{G}.$$

So, we can take $x \in \mathbb{Z}$ such that $\mathbb{Z} \cap Q_x \in \mathcal{G}_x^+$. Let $s = S \cap x$.

CLAIM 1.
$$Z \cap Q_x \subset \{u \in X \cap Q_x \mid s_u^x = s \cap u\}$$
.

PROOF OF CLAIM 1. Let $u \in Z \cap Q_x$. It holds that $x \in Y_u(s_u)$. Hence $s_u^x = s_u$. By this and the fact that $u \in Z$, we have that $s_u^x = S \cap u = S \cap x \cap u = s \cap u$.

QED of Claim 1

Claim 1 contradicts the choice of
$$s_u^x$$
 (for $u \in X \cap Q_x$).

PROOF OF THEOREM 4.5. We prove this theorem by induction on $\alpha < \lambda$. By the virtue of the previous two lemmas, we only need to deal the case that α is a limit ordinal (i.e., n=0). Let

$$Z = \{x \in \mathcal{P}_{\kappa} \lambda \mid ot(x \cap \alpha) \text{ is a limit ordinal}\}.$$

It holds that $Z \in NS_{\kappa,\lambda}^*$. Let $X \subset \mathcal{L}_{\kappa}\lambda$. By induction hypothesis, it holds that

$$X_{\xi} = \{x \in X \mid X \cap Q_x \in \mathcal{G}_{\mathit{ot}(x \cap \xi)}(x \cap \kappa, \ x)\} \in \mathcal{F}_{\xi+\omega}(\kappa, \ \lambda) \subset \mathcal{F}_{\alpha}(\kappa, \ \lambda) \,,$$
 for all $\xi < \alpha$.

Hence, $Y = \nabla_{\xi \leq \alpha} X_{\xi} \in \mathcal{J}_{\alpha+1}(\kappa, \lambda)$. By this and the fact that

$$\{x \in X \mid X \cap Q_x \in \mathcal{G}_{at(x \cap a)}(x \cap \kappa, x)\} \cap Z \subset Y$$

we have that $\{x \in X \mid X \cap Q_x \in \mathcal{G}_{ot(x \cap a)}(x \cap \kappa, x)\} \in \mathcal{G}_{a+1}(\kappa, \lambda)$.

COROLLARY 4.8. $\{x \in \mathcal{Q}_{\kappa} \lambda \mid \mathcal{G}_{ot(x)}(x \cap \kappa, x) \text{ is proper}\} \in \nabla^2 \mathcal{J}_{\lambda}(\kappa, \lambda)^*$.

PROOF. Let $Z = \{x \in \mathcal{Q}_{\kappa} \lambda \mid ot(x) \text{ is a limit ordinal}\}\ (\in NS_{\kappa, \lambda}^*)$. For each $\alpha < \lambda$, let

$$X_{\alpha} = \{x \in \mathcal{P}_{\kappa} \lambda \mid \mathcal{G}_{ot(x \cap \alpha)}(x \cap \kappa, x) \text{ is proper}\}.$$

By the theorem, it holds that $X_{\alpha} \in \mathcal{J}_{\lambda}(\kappa, \lambda)^*$, for all $\alpha < \lambda$. So, $\Delta_{\alpha < \lambda} X_{\alpha} \in \nabla^2 \mathcal{J}_{\lambda}(\kappa, \lambda)^*$. By this and the fact that

$$\Delta_{\alpha \leq \lambda} X_{\alpha} \cap Z \subset \{x \in \mathcal{P}_{\kappa} \lambda \mid \mathcal{G}_{ot(x)}(x \cap \kappa, x) \text{ is proper} \}$$

we have that $\{x \in \mathcal{P}_{\kappa} \lambda | \mathcal{S}_{ot(x)}(x \cap \kappa, x) \text{ is proper}\} \in \nabla^2 \mathcal{J}_{\lambda}(\kappa, \lambda)^*$.

5. The ideals $\mathcal{K}_{\alpha}(\kappa, A)$ and $\mathcal{L}_{\alpha}(\kappa, A)$.

DEFINITION 5.1. By induction on $\alpha \in On$, define the ideals $\mathcal{K}_{\alpha}(\kappa, A)$, $\mathcal{L}_{\alpha}(\kappa, A)$ as follows:

$$\begin{split} \mathcal{K}_0(\mathbf{k},\ A) &= NS_{\mathbf{k},A}\,,\\ \mathcal{K}_{\alpha+1}(\mathbf{k},\ A) &= NP(\mathcal{K}_\alpha(\mathbf{k},\ A))\,,\\ \mathcal{K}_\alpha(\mathbf{k},\ A) &= \nabla^2(\bigcup_{\xi<\alpha}\,\mathcal{K}_\xi(\mathbf{k},\ A))\,,\quad \text{for limit }\alpha\,,\\ \mathcal{L}_0(\mathbf{k},\ A) &= S(NS_{\mathbf{k},A})\,,\\ \mathcal{L}_{\alpha+1}(\mathbf{k},\ A) &= NP(\mathcal{L}_\alpha(\mathbf{k},\ A))\,,\\ \mathcal{L}_\alpha(\mathbf{k},\ A) &= S(\bigcup_{\xi<\alpha}\,\mathcal{L}_\xi(\mathbf{k},\ A))\,,\quad \text{for limit }\alpha\,. \end{split}$$

Note that $\mathcal{J}_{\alpha}(\kappa, A) \subset \mathcal{K}_{\alpha}(\kappa, A) \subset \mathcal{L}_{\alpha}(\kappa, A)$, for all $\alpha \in \mathbf{On}$. Set $NCP_{\kappa, A} = \bigcup_{\alpha \in \mathbf{On}} \mathcal{K}_{\alpha}(\kappa, A)$.

For \mathcal{A} , $\mathcal{B} \subset \mathcal{P}(\mathcal{P}_{\kappa}A)$, $\mathcal{A} \xrightarrow{*} (\mathcal{B})^2$ denotes the statement:

$$\forall X \in \mathcal{A} \ \forall f : [X]^2 \to 2 \ \exists H \in \mathcal{B} \ (H \subset X \ \text{and} \ H \ \text{is homogeneous for} \ f).$$

By the definition, it follows directly that $NP(\mathcal{G})$ is the smallest ideal \mathcal{G} which satisfies $\mathcal{G}^+ \stackrel{*}{\to} (\mathcal{G}^+)^2$. So, $NCP_{\kappa,A}$ is the smallest normal ideal which satisfies that $NCP_{\kappa,A}^+ \stackrel{*}{\to} (NCP_{\kappa,A}^+)^2$. Menas [13] proved that, under the assumption of that κ is $2^{\lambda < \kappa}$ -supercompact, there exists a normal ultrafilter U on $\mathcal{L}_{\kappa}\lambda$ which satisfies $U \stackrel{*}{\to} (U)^2$. A similar argument in [13] gives a proof of that, if κ is A-supercompact, then $NCP_{\kappa,A}$ is proper.

QUESTION 3. In the result of Menas, can the assumption be weakened to that κ is λ -supercompact? I.e., does one can prove the existence of a normal ultrafilter U on $\mathcal{P}_{\kappa}\lambda$ which satisfies $U \xrightarrow{*} (U)^2$, under the assumption of that κ is λ -supercompact?

Now we give two results concerning relations between $\mathcal{J}_{\alpha}(\kappa, A)$ and $\mathcal{L}_{\alpha}(\kappa, A)$.

THEOREM 5.1. For any $\alpha < \lambda$, and any $X \in \mathcal{L}_{\alpha}(\kappa, \lambda)$,

$$\{x \in \mathcal{Q}_{\kappa}\lambda \mid X \cap Q_x \in \mathcal{L}_{ot(\alpha \cap x)}(\kappa \cap x, x)\} \in \mathcal{J}_{\alpha+1}(\kappa, \lambda)^*.$$

As in the proofs of theorems in the previous section, we first deal the cases of that $\alpha=0$ and that α is a successor ordinal.

LEMMA 5.2. Let κ be an inaccessible cardinal.

- (1) $\{x \in \mathcal{P}_{\kappa}A \mid X \cap Q_x \in NS_{\kappa \cap x, x}\} \in NS_{\kappa, A}^*, \text{ for any } X \in NS_{\kappa, A}.$
- $(2) \quad \{x \in \mathcal{L}_{\kappa}A \mid X \cap Q_x \in S(NS_{\kappa \cap x, x})\} \in S(NS_{\kappa, A})^*, \quad \text{for any } X \in S(NS_{\kappa, A}).$

PROOF. (1) and (2) can be proved by a similar argument. So, we deal only (1). Let $X \in NS_{\kappa,A}$. Take $\sigma: A \times A \to \mathcal{L}_{\kappa}A$ such that $\mathrm{cl}(\sigma) \cap X = \emptyset$. Take $\tau: A \times A \to \mathcal{L}_{\kappa}A$ such that

$$\sigma(a, b) \in Q_{\tau(a, b)}$$
, for all $a, b \in A$.

We claim that

$$\operatorname{cl}(\tau) \subset \{x \in \mathcal{Q}_{\kappa}A \mid X \cap Q_x \in NS_{\kappa \cap x, x}\}.$$

To show this, let $x \in \text{cl}(\tau)$. Then, for any $a, b \in x$, since $\sigma(a, b) \in Q_{\tau(a, b)}$ and $\tau(a, b) \subset x$, $\sigma \upharpoonright (x \times x)$ is a function from $x \times x$ to Q_x . So, $\text{cl}(\sigma) \cap Q_x \in NS^*_{\kappa \cap x, x}$. By this, since $\text{cl}(\sigma) \cap X = \emptyset$, we have that $X \cap Q_x \in NS_{\kappa \cap x, x}$.

LEMMA 5.3. Let \mathcal{J} , \mathcal{K} be ideals on $\mathcal{P}_{\kappa}A$ which include $NS_{\kappa,A}$. For each $x \in \mathcal{P}_{\kappa}A$, let \mathcal{K}_x be an ideal on Q_x . Suppose that

$$\forall X \in \mathcal{K}(\{y \in \mathcal{Q}_{\kappa}A \mid X \cap Q_y \in \mathcal{K}_y\} \in \mathcal{J}^*).$$

Then, it holds that

$$\forall X \in NP(\mathcal{K})(\{y \in \mathcal{Q}_{\kappa}A \mid X \cap Q_y \in NP(\mathcal{K}_y)\} \in NSI(\mathcal{J})^*).$$

PROOF. To get a contradiction, suppose that there is an $X \in NP(\mathcal{X})$ such that

$$Y = \{ y \in \mathcal{Q}_{\kappa} A \mid X \cap Q_y \in NP(\mathcal{K}_y)^+ \} \in NSI(\mathcal{J})^+.$$

Take $F: [X]^2 \rightarrow 2$ such that

$$\forall H \in \mathcal{K}^+ \upharpoonright X \ (H \text{ is not homogeneous for } F).$$

For each $y \in Y$, take $H_y \in \mathcal{K}_y^+ \upharpoonright (X \cap Q_y)$ and $e_y < 2$ such that $F''[H_y]^2 = \{e_y\}$. Since $Y \in NSI(\mathcal{J})^+$, there exist $H \subset \mathcal{Q}_{\kappa}A$ and e < 2 such that

$$Y' = \{ y \in Y \mid H_y = H \cap Q_y \text{ and } e_y = e \} \in \mathcal{G}^+.$$

Since $I_{\kappa,A} \subset \mathcal{J}$, it holds that

$$H \subset X$$
 and H is homogeneous for F.

By the choice of $F, H \in \mathcal{X}$. So, by the assumption, we have that

$$Z = \{ y \in \mathcal{Q}_{\kappa} A \mid H \cap Q_y \in \mathcal{K}_y \} \in \mathcal{J}^*.$$

By this, there is a $y \in Z \cap Y'$, since $Y' \in \mathcal{J}^+$. Then, it holds that

$$H \cap Q_y \in \mathcal{K}_y$$
 and $H_y = H \cap Q_y$.

This contradicts the choice of H_y .

COROLLARY 5.4. Assume that part*(k, A) fails. Then, it holds that

$$\{x \in \mathcal{P}_{\kappa}A \mid \text{part}^*(x \cap \kappa, x) \text{ fails}\} \in NSI(NS_{\kappa,A})^*.$$

PROOF. The case that κ is not inaccessible is trivial. We assume that κ is inaccessible. So, by Lemma 5.2(1) and Lemma 5.3, we have that

$$\{x \in \mathcal{P}_{\kappa}A \mid X \cap Q_x \in NP(NS_{x \cap \kappa, x})\} \in NSI(NS_{\kappa, A})^*, \text{ for all } X \in NP(NS_{\kappa, A}).$$

Assume that part*(κ , A) fails. Then, since $\mathcal{P}_{\kappa}A \in NP(NS_{\kappa,A})$, we have that

$$\{x \in \mathcal{Q}_{\kappa}A \mid Q_x \in NP(NS_{x \cap \kappa, x})\} \in NSI(NS_{\kappa, A})^*,$$

i.e.,
$$\{x \in \mathcal{P}_{\kappa}A \mid \text{part}^*(x \cap \kappa, x) \text{ fails}\} \in NSI(NS_{\kappa, A})^*$$
.

PROOF OF THEOREM 5.1. By induction on $\alpha < \lambda$.

Case I. $\alpha = 0$.

To get a contradiction, suppose that there is an $X \in \mathcal{L}_0(\kappa, \lambda)$ (= $S(NS_{\kappa, \lambda})$) such that

$$Y = \{x \in \mathcal{P}_{\kappa} \lambda \mid X \cap Q_x \in \mathcal{L}_0(\kappa \cap x, x)\} \notin \mathcal{J}_1(\kappa, \lambda)^*.$$

Then, κ becomes λ -ineffable. So, κ is inaccessible. By Lemma 5.2, $Y \in S(NS_{\kappa, \lambda})^*$. This contradicts that $S(NS_{\kappa, \lambda}) \subset \mathcal{G}_1(\kappa, \lambda)$.

Case II. α is a successor ordinal.

This case follows from the induction hypothesis and Lemma 5.3.

Case III. α is a limit ordinal.

Let $Z = \{x \in \mathcal{P}_{\kappa} \lambda \mid ot(x \cap \alpha) \text{ is a limit ordinal}\}$. Let $X \in \mathcal{L}_{\alpha}(\kappa, \lambda)$. Take $X_u \in \bigcup_{\beta < \alpha} \mathcal{L}_{\beta}(\kappa, \lambda)$ (for $u \in \mathcal{P}_{\kappa} \lambda$) and $X' \in \bigcup_{\beta < \alpha} \mathcal{L}_{\beta}(\kappa, \lambda)$ such that $X \subset \nabla_{u \in \mathcal{P}_{\kappa} \lambda} X_u \cup X'$. It holds that

$$X \cap Q_x \subset \nabla_{u \in Q_x}(X_u \cap Q_x) \cup (X' \cap Q_x)$$
, for all $x \in \mathcal{Q}_{\kappa} \lambda$.

By the induction hypothesis, it holds that

$$Y_{u} = \{x \in \mathcal{P}_{\kappa} \lambda \mid X_{u} \cap Q_{x} \in \bigcup_{\beta \in x \cap \alpha} \mathcal{L}_{ot(x \cap \beta)}(\kappa \cap x, x)\} \in \mathcal{J}_{\alpha}(\kappa, \lambda)^{*},$$
 for all $u \in \mathcal{P}_{\kappa} \lambda$

for all $u \in \mathcal{D}_{\kappa} X$

and

$$Y' = \{x \in \mathcal{P}_{\kappa} \lambda \mid X' \cap Q_x \in \mathcal{L}_{ot(x \cap \alpha)}(x \cap \kappa, x)\} \in \mathcal{J}_{\alpha}(\kappa, \lambda)^*.$$

So, $\Delta_{u\in\mathcal{Q}_{\mathbf{r}}\lambda}Y_u\in\mathcal{J}_{\alpha+1}(\mathbf{r},\lambda)^*$. By this and the fact that

$$Y' \cap Z \cap \Delta_{u \in \mathcal{Q}_{r}\lambda} Y_{u} \subset \{x \in \mathcal{Q}_{r}\lambda \mid X \cap Q_{x} \in \mathcal{L}_{ot(x \cap a)}(x \cap \kappa, x)\},$$

we have that
$$\{x \in \mathcal{Q}_{\kappa} \lambda | X \cap Q_x \in \mathcal{L}_{ot(x \cap \alpha)}(x \cap \kappa, x)\} \in \mathcal{J}_{\alpha+1}(\kappa, \lambda)^*$$
.

COROLLARY 5.5. For any $X \in \bigcup_{\alpha < \lambda} \mathcal{L}_{\alpha}(\kappa, \lambda)$,

$$\{x \in \mathcal{P}_{\kappa} \lambda \mid X \cap Q_x \in \bigcup_{\xi < ot(x)} \mathcal{L}_{\xi}(x \cap \kappa, x)\} \in \mathcal{J}_{\lambda}(\kappa, \lambda)^*.$$

Carr [5, Theorem 4.2(1)] proved that, under the assumption of that $\lambda^{<\kappa} = \lambda$, $\forall X \in \mathcal{G}_1(\kappa, \lambda)^+$ (if $\forall (x, y) \in [X]^2$ $(x \in Q_y)$, then $X \in \mathcal{K}_1(\kappa, \lambda)^+$).

The same argument gives a proof of that

$$\forall X \in \mathcal{J}_1(\kappa, \lambda)^+ \text{ (if } \forall (x, y) \in [X]^2 \text{ } (x \in Q_y), \text{ then } X \in \mathcal{L}_1(\kappa, \lambda)^+).$$

We generalize her result as the following theorem.

THEOREM 5.6. For any $\alpha \in On$ and $X \in \mathcal{G}_{\alpha+1}(\kappa, A)^+$, if $\forall (x, y) \in [X]^2$ $(x \in Q_y)$, then $X \in \mathcal{L}_{\alpha}(\kappa, A)^+$.

PROOF. By induction on $\alpha \in On$.

Case I. $\alpha = 0$.

This case is clear.

Case II. $\alpha = \beta + 1$.

Let $X \in \mathcal{J}_{\alpha+1}(\kappa, A)^+$ satisfy $\forall (x, y) \in [X]^2$ $(x \in Q_y)$. Let $F: [X]^2 \to 2$. For each $x \in X$, set

$$s_x = \{ u \in X \cap Q_x \mid F(u, x) = 0 \}.$$

Since $X \in \mathcal{J}_{\alpha+1}(\kappa, A)^+$, we can take an $S \subset X$ such that

$$Y = \{x \in X \mid s_x = S \cap Q_x\} \in \mathcal{G}_{\alpha}(\kappa, A)^+.$$

By the induction hypothesis, $Y \in \mathcal{L}_{\beta}(\kappa, A)^{+}$. It is easy to see that $F''[S \cap Y]^{2} = \{0\}$ and $F''[Y \setminus S]^{2} = \{1\}$. Since $Y \cap S \in \mathcal{L}_{\beta}(\kappa, A)^{+}$ or $Y \setminus S \in \mathcal{L}_{\beta}(\kappa, A)^{+}$, we have that $X \in \mathcal{L}_{\alpha}(\kappa, A)^{+}$.

Case III. α is a limit ordinal.

Let $X \in \mathcal{J}_{\alpha+1}(\kappa, A)^+$ satisfy $\forall (x, y) \in [X]^2$ $(x \in Q_y)$. To get a contradiction, assume that $X \in \mathcal{L}_{\alpha}(\kappa, A)$. Take $X_u \in \bigcup_{\beta < \alpha} \mathcal{L}_{\beta}(\kappa, A)$ (for $u \in \mathcal{P}_{\kappa}A$) and $X' \in \bigcup_{\beta < \alpha} \mathcal{L}_{\beta}(\kappa, A)$ such that $X \subset \nabla_{u \in \mathcal{P}_{\kappa}A} X_u \cup X'$. Without loss of generality, we may assume that

$$X_u \subset X$$
, for all $u \in \mathcal{L}_{\mathfrak{s}}A$ and $X' \subset X$.

By the induction hypothesis, it holds that

$$X_u \in \bigcup_{\beta < \alpha} \mathcal{J}_{\beta+1}(\kappa, A) = \mathcal{J}_{\alpha}(\kappa, A), \text{ for all } u \in \mathcal{L}_{\kappa}A \text{ and } X' \in \mathcal{J}_{\alpha}(\kappa, A).$$

By this and the fact that $\mathcal{J}_{\alpha+1}(\kappa, A)$ is strongly normal, it holds that $\nabla_{u \in \mathcal{D}_{\kappa} A} X_u \in \mathcal{J}_{\alpha+1}(\kappa, A)$. So, $X \in \mathcal{J}_{\alpha+1}(\kappa, A)$. This is a contradiction.

COROLLARY 5.7. For any
$$X \in \mathcal{G}_{\lambda}(\kappa, \lambda)^+$$
, if $\forall (x, y) \in [X]^2 (x \in Q_y)$, then $X \in (\bigcup_{\alpha \leq \lambda} \mathcal{L}_{\alpha}(\kappa, \lambda))^+$.

6. Correspondence between $\mathcal{L}_{\kappa}\lambda$ and $\mathcal{L}_{\kappa}\lambda^{<\kappa}$.

This section is a proof of the following theorem.

THEOREM 6.1. Let $\kappa \leq \lambda$, $\theta = \lambda^{\kappa}$ and $p: \mathcal{P}_{\kappa}\theta \to \mathcal{P}_{\kappa}\lambda$ the projection. Then, for any ordinal $\alpha > 0$,

- (1) $\mathcal{J}_{\alpha}(\mathbf{k}, \lambda) = p_{*}(\mathcal{J}_{\alpha}(\mathbf{k}, \theta)).$
- (2) $\mathcal{L}_{\alpha}(\kappa, \lambda) = p_{*}(\mathcal{K}_{\alpha}(\kappa, \theta)).$

Let $\kappa \leq \lambda$, $\theta = \lambda^{<\kappa}$ and $p: \mathcal{Q}_{\kappa}\theta \to \mathcal{Q}_{\kappa}\lambda$ the projection. Theorem is trivial, if κ is not inaccessible. So, we assume that κ is inaccessible. In order to prove this theorem, we need the canonical correspondence between $\mathcal{Q}_{\kappa}\theta$ and $\mathcal{Q}_{\kappa}\lambda$ which was introduced by Abe [2].

Take a bijection $h: \theta \to \mathcal{Q}_{\kappa}\lambda$. Define $\rho: \mathcal{Q}_{\kappa}\theta \to \mathcal{Q}_{\kappa}\lambda$ and $\pi: \mathcal{Q}_{\kappa}\lambda \to \mathcal{Q}_{\kappa}\theta$ by

$$\rho(y) = \bigcup h''y$$
, $\pi(x) = h^{-1}Q_x$

and set

$$D = \{x \in \mathcal{Q}_{\kappa} \lambda \mid 2 \subset x\}, \quad E = \pi'' D.$$

The following can be easily checked (see $\lceil 10, \text{ Lemma } 3.6 \rceil$ for (2)).

- (1) $\pi \upharpoonright D$ is a bijection from D to E and $\rho \pi \upharpoonright D$ is an identity function.
- (2) $X \in S(NS_{\kappa, \lambda})$ iff $\pi''X \in NS_{\kappa, \theta}$, for all $X \subset \mathcal{P}_{\kappa}\lambda$.

LEMMA 6.2. Let \mathcal{I} be an ideal on $\mathcal{P}_{\kappa}\theta$ such that $E \in \mathcal{I}^*$. Then,

- (1) $NSI(\rho_*(\mathcal{S})) = \rho_*(NI(\mathcal{S})).$
- (2) $NP(\rho_*(\mathcal{S})) = \rho_*(NP(\mathcal{S})).$
- (3) $S(\rho_*(\mathcal{G})) = \rho_*(\nabla^2(\mathcal{G})).$

PROOF. Let $X \subset \mathcal{Q}_{\kappa}\lambda$. Note that $D \in \rho_{*}(\mathcal{J})^{*}$, since $E = \pi''D \subset \rho^{-1}D$. So, we may assume that $X \subset D$. Set $Y = \pi''X$ $(=E \cap \rho^{-1}X)$.

(1 \subset) Let $X \in NSI(\rho_*(\mathcal{G}))$. Take $f_x : Q_x \to 2$ (for $x \in X$) such that

$$\{x \in X \mid f_x \subset f\} \in \rho_*(\mathcal{J}), \text{ for any } f: \mathcal{P}_\kappa \lambda \to 2.$$

For each $y \in Y$, define $g_y : y \to 2$ by

$$g_{y}(\alpha) = f_{\rho(y)}(h(\alpha))$$
.

CLAIM 1. $\{y \in Y \mid g_y \subset g\} \in \mathcal{G}, \text{ for all } g : \theta \to 2.$

PROOF OF CLAIM 1. Let $g: \theta \to 2$. Define $f: \mathcal{P}_{\kappa} \lambda \to 2$ by

$$f(u) = g(h^{-1}(u))$$

and set

$$X' = \{x \in X \mid f_x \subset f\}.$$

Since $X' \in \rho_*(\mathcal{J})$, it holds that $\rho^{-1}X' \in \mathcal{J}$. Since $\{y \in Y \mid g_y \subset g\} \subset \rho^{-1}X'$, we have that $\{y \in g \mid g_y \subset \mathcal{J}\} \in \mathcal{J}$. QED of Claim 1

By Claim 1, $\rho^{-1}X \cap E = Y \in NI(\mathcal{J})$. $\therefore \rho^{-1}X \in NI(\mathcal{J})$. $\therefore X \in \rho_*(NI(\mathcal{J}))$.

(1 \supset) Let $X \in \rho_*(NI(\mathcal{S}))$. Since $Y \in NI(\mathcal{S})$, we can pick $g_y : y \to 2$ (for $y \in Y$) such that

$$\{y \in Y \mid g_y \subset g\} \in \mathcal{G}, \text{ for all } g: \theta \to 2.$$

Define $f_x: Q_x \rightarrow 2$ (for $x \in X$) by

$$f_x(u) = g_{\pi(x)}(h^{-1}(u))$$
.

CLAIM 2. $\{x \in X \mid f_x \subset f\} \in \rho_*(\mathcal{I}), \text{ for all } f: \mathcal{P}_{\kappa} \lambda \to 2.$

PROOF OF CLAIM 2. Let $f: \mathcal{Q}_{\kappa} \lambda \to 2$. Define $g: \theta \to 2$ by

$$g(\alpha) = f(h(\alpha))$$
.

Then, it holds that

$$E \cap \rho^{-1} \{x \in X \mid f_x \subset f\} \subset \{y \in Y \mid g_y \subset g\}.$$

So $\rho^{-1}\{x \in X \mid f_x \subset f\} \in \mathcal{J}$. Hence $\{x \in X \mid f_x \subset f\} \in \rho_*(\mathcal{J})$. QED of Claim 2

By Claim 2, it holds that $X \in NSI(\rho_*(\mathcal{G}))$.

Define $C \subset \mathcal{Q}_{\kappa} \theta$ by

$$C = \{ y \in \mathcal{P}_{\mathbf{x}}\theta \mid \forall \alpha \in y \ (h(\alpha) \in Q_{p(y)}) \text{ and } p(y) = \rho(y) \}.$$

Note that C is a club subset of $\mathcal{P}_{\kappa}\theta$ and $\forall y \in C \ (y \subset \pi p(y))$.

Lemma 6.3. $E \in S(NS_{\kappa, \theta})^*$.

PROOF. To get a contradiction, assume that $E \notin S(NS_{\kappa,\theta})^*$. Then, it holds that

$$Y = C \setminus E \in S(NS_{\kappa, \theta})^+$$
 and $\forall y \in Y \ (y \subset \pi p(y) \text{ and } \pi p(y) \neq y)$.

For each $y \in Y$, take $u_y \in Q_{p(y)}$ such that $h^{-1}(u_y) \notin y$. Since $\forall y \in Y \ (u_y \in Q_{p(y)} \subset Q_y)$, we can choose $u \in \mathcal{P}_{\kappa} \lambda$ such that

$$Z = \{ y \in Y \mid u_y = u \} \in S(NS_{\kappa, \theta})^+.$$

Set $\alpha = h^{-1}(u)$. Since Z is unbounded, there is a $y \in Z$ such that $\alpha \in y$. Since $u_y = u$, we have $\alpha = h^{-1}(u) = h^{-1}(u_y) \notin y$. This is a contradiction.

LEMMA 6.4.

- $(1) \quad \rho_*(NI(NS_{\kappa,\,\theta})) = NSI(S(NS_{\kappa,\,\lambda})). \quad I.e., \quad \rho_*(\mathcal{J}_1(\kappa,\,\theta)) = \mathcal{J}_1(\kappa,\,\lambda).$
- (2) $\rho_*(NP(NS_{\kappa,\theta})) = NP(S(NS_{\kappa,\lambda})).$ I.e., $\rho_*(\mathcal{K}_1(\kappa,\theta)) = \mathcal{L}_1(\kappa,\lambda).$

PROOF. Define the ideal \mathcal{H} on $\mathcal{Q}_{\epsilon}\theta$ by

$$\mathcal{H} = \{Y \subset \mathcal{P}_r \theta \mid Y \cap E \in NS_{r,\theta} \}.$$

CLAIM 1. $\rho_*(\mathcal{H}) = S(NS_{\kappa,\lambda})$.

PROOF OF CLAIM 1. Let $X \subset \mathcal{Q}_{\kappa}\lambda$. Then, it holds that

$$X \in \rho_*(\mathcal{H}) \text{ iff } \rho^{-1}X \in \mathcal{H} \text{ iff } \rho^{-1}X \cap E \in NS_{\kappa,\,\theta} \text{ iff } \pi''X \in NS_{\kappa,\,\theta}$$

$$\text{iff } X \in S(NS_{\kappa,\,\lambda}). \qquad \qquad \text{QED of Claim 1}$$

CLAIM 2. $NI(NS_{\kappa,\theta}) = NI(\mathcal{H})$ and $NP(NS_{\kappa,\theta}) = NP(\mathcal{H})$.

PROOF OF CLAIM 2. Since $\theta^{<\kappa} = \theta$, by a result of Carr [5, Theorem 3.6(2)], $NI(NS_{\kappa,\theta})$ is strongly normal. So, $E \in NI(NS_{\kappa,\theta})^* \subset NP(NS_{\kappa,\theta})^*$. This claim directly follows from this. QED of Claim 2

By Claims 1, 2 and Lemma 6.2, we have that

$$\rho_*(NI(NS_{\kappa,\theta})) = \rho_*(NI(\mathcal{H})) = NSI(\rho_*(\mathcal{H})) = NSI(S(NS_{\kappa,\lambda}))$$

and that

$$\rho_*(NP(NS_{\kappa,\,\theta})) = \rho_*(NP(\mathcal{A})) = NP(\rho_*(\mathcal{A})) = NP(S(NS_{\kappa,\,\lambda})). \quad \Box$$

By induction on $\alpha > 0$, using Lemmas 6.2, 6.4, we can prove that

$$\mathcal{J}_{\alpha}(\kappa, \lambda) = \rho_{*}(\mathcal{J}_{\alpha}(\kappa, \theta)) \text{ and } \mathcal{L}_{\alpha}(\kappa, \lambda) = \rho_{*}(\mathcal{K}_{\alpha}(\kappa, \theta)).$$

So, the following fact completes the proof of Theorem 6.1.

FACT. For any ideal \mathcal{G} on S and any f, $g: S \to T$, if $\{s \in S \mid f(x) = g(x)\} \in \mathcal{G}^*$, then $f_*(\mathcal{G}) = g_*(\mathcal{G})$.

COROLLARY 6.5. Let $\kappa \leq \lambda < \delta$ and $p: \mathcal{Q}_{\kappa}\delta \to \mathcal{Q}_{\kappa}\lambda$ the projection. Then, it holds that

$$p_*(\mathcal{I}_{\alpha}(\kappa, \delta)) \supset \mathcal{J}_{\alpha}(\kappa, \lambda)$$
, for all $\alpha > 0$.

PROOF. Let $\theta = \lambda^{<\kappa}$ and $r: \mathcal{P}_{\kappa}\theta \to \mathcal{P}_{\kappa}\lambda$ the projection. The case of that κ is not δ -ineffable is trivial. We may assume that κ is δ -ineffable. Then, by a result of Johnson [9, Corollary 2.6], it holds that $\theta = \lambda^{<\kappa} \leq \lambda^+ \leq \delta$. So, let $q: \mathcal{P}_{\kappa}\delta \to \mathcal{P}_{\kappa}\theta$ be the projection.

Let $\alpha>0$. Then, it holds that $\mathcal{J}_{\alpha}(\kappa, \theta) \subset q_*(\mathcal{J}_{\alpha}(\kappa, \delta))$. By Theorem 6.1, it holds that $\mathcal{J}_{\alpha}(\kappa, \theta) = r_*(\mathcal{J}_{\alpha}(\kappa, \theta))$. By this and the fact that $p_* = r_* q_*$, we have that $p_*(\mathcal{J}_{\alpha}(\kappa, \delta)) \supset \mathcal{J}_{\alpha}(\kappa, \lambda)$.

7. Main Theorem.

This section is devoted to the proofs of Theorems 1, 3 which were mentioned in section 1. In the proofs, we need an ω -Jónsson function. For any set $A, F: {}^{\omega}A \to A$ is called an ω -Jónsson function for A, if $\forall S \subset A$ (if |S| = |A|,

then F''''S=A). Erdös and Hajnal [7] showed that every infinite set has an ω -Jónsson function. Johnson [9, Lemma 2.3] proved that, if F is an ω -Jónsson function for A, then $\{x \in \mathcal{P}_{\kappa}A \mid F \upharpoonright^{\omega} x \text{ is an } \omega$ -Jónsson function for $x\} \in NI(I_{\kappa,A})^*$. (In fact, she proved a stronger result.)

Theorem 1 follows directly from the following theorem.

THEOREM 7.1. If $\nabla^2 \mathcal{G}_{\lambda}(\kappa, \lambda)$ is a proper ideal, then $\bigcup_{\xi < \lambda} \mathcal{L}_{\xi}(\kappa, \lambda)$ is proper.

PROOF. To get a contradiction, assume that there exists κ such that

 $\exists \lambda \geq \kappa \ (\nabla^2 \mathcal{J}_{\lambda}(\kappa, \lambda) \text{ is proper and } \bigcup_{\xi \leq \lambda} \mathcal{L}_{\xi}(\kappa, \lambda) \text{ is not proper}).$

Take the least such κ , and let $\lambda \ge \kappa$ such that

 $\nabla^2 \mathcal{J}_{\lambda}(\kappa, \lambda)$ is proper and $\bigcup_{\xi < \lambda} \mathcal{L}_{\xi}(\kappa, \lambda)$ is not proper.

We denote $\nabla^2 \mathcal{G}_{\lambda}(\kappa, \lambda)$ by \mathcal{M} . Note that $\{x \in \mathcal{L}_{\kappa} \lambda \mid x \cap \kappa \text{ is a regular cardinal}\} \in S(NS_{\kappa, \lambda})^* \subset \mathcal{M}^*$. Take an ω -Jónsson function F for λ . Define $X \subset \mathcal{L}_{\kappa} \lambda$ by

 $X = \{x \in \mathcal{P}_{\kappa} \lambda \mid x \text{ satisfies } (0) \sim (2)\}, \text{ where }$

- (0) $\forall x \in X \text{ (ot}(x) \text{ and } x \cap \kappa \text{ are cardinals)}.$
- (1) $\forall x \in X \ (F \upharpoonright^{\omega} x \text{ is } \omega\text{-Jonsson for } x).$
- (2) $\forall \alpha, \beta < \lambda \text{ (if } cof(\alpha) = \beta, \text{ then } \forall x \in X \cap \{\alpha\} \text{ } (\beta \in x \text{ and } cof(x \cap \alpha) = ot(x \cap \beta))).$

It holds that $X \in \mathcal{J}_1(\kappa, \lambda)^* \subset \mathcal{M}^*$. Set $X_1 = \{x \in X \mid \mathcal{J}_{\text{ot}(x)}(x \cap \kappa, x) \text{ is proper}\}$. By Corollary 4.8, it holds that $X_1 \in \mathcal{M}^*$. Set $X_2 = \{x \in X_1 \mid \bigcup_{\xi < \text{ot}(x)} \mathcal{L}_{\xi}(x \cap \kappa, x) \text{ is not proper}\}$. Since $\mathcal{L}_{\kappa}\lambda \in \bigcup_{\alpha < \lambda} \mathcal{L}_{\alpha}(\kappa, \lambda)$, by Corollary 5.5, we have that $X_2 \in \mathcal{M}^*$. By the leastness of κ , we have that

$$\forall x \in X_2 \ (\nabla^2 \mathcal{J}_{ot(x)}(x \cap \kappa, x) \text{ is not proper}).$$

CLAIM 1. $\forall (x, y) \in [X_2]^2 \ (x \in Q_y)$.

PROOF OF CLAIM 1. Let $(x, y) \in [X_2]^2$. Since $F \upharpoonright^\omega x$, $F \upharpoonright^\omega y$ are ω -Jónsson for x, y, respectively, it holds that |x| < |y|. To get a contradiction, assume that $y \cap \kappa \leq \operatorname{ot}(x)$. Then, $\mathcal{G}_{y \cap \kappa}(x \cap \kappa, y \cap \kappa)$ is proper. Since, $\mathcal{G}_{\operatorname{ot}(y)}(y \cap \kappa, y)$ is proper, by Corollary 4.4, $\mathcal{G}_{\operatorname{ot}(y)}(x \cap \kappa, y)$ is proper. So, by Corollary 6.5, $\mathcal{G}_{\operatorname{ot}(y)}(x \cap \kappa, x)$ is proper. This is a contradiction, since $\nabla^2 \mathcal{G}_{\operatorname{ot}(x)}(x \cap \kappa, x) \subset \mathcal{G}_{\operatorname{ot}(y)}(x \cap \kappa, x)$. QED of Claim 1

Since $X_2 \in \mathcal{M}^* \subset \mathcal{M}^+$, by the Claim and Corollary 5.7, it holds that $X_2 \in \bigcup_{\xi < \lambda} \mathcal{L}_{\xi}(\kappa, \lambda)^+$. This contradicts the fact that $\bigcup_{\xi < \lambda} \mathcal{L}_{\xi}(\kappa, \lambda)$ is not proper. \square

COROLLARY 7.2 (Theorem 1). If κ is completely $\lambda^{<\kappa}$ -ineffable, then part* $(\kappa, \lambda^{<\kappa})$ holds.

PROOF. Assume that κ is completely λ^{κ} -ineffable. Then, it holds that

 $\mathcal{G}_{\alpha}(\kappa, \lambda^{<\kappa})$ is proper, for all $\alpha \in On$.

So, by Theorem 6.1(1), it holds that

 $\mathcal{J}_{\alpha}(\kappa, \lambda)$ is proper, for all $\alpha \in On$.

So, by the previous theorem, $\bigcup_{\xi < \lambda} \mathcal{L}_{\xi}(\kappa, \lambda)$ is proper. So, by Theorem 6.1(2), we have that

$$\bigcup_{\xi < \lambda} \mathcal{K}_{\xi}(\kappa, \lambda^{< \kappa})$$
 is proper.

Especially, $\mathcal{K}_1(\kappa, \lambda^{<\kappa})$ is proper. I.e., part* $(\kappa, \lambda^{<\kappa})$ holds.

DEFINITION 7.1. For any cardinal δ and ordinal α , $\delta^{+\alpha}$ denotes the cardinal which is defined by induction on α as follows:

$$\delta^{+0}=\delta$$
,
$$\delta^{+(\alpha+1)}=(\delta^{+\alpha})^+,$$

$$\delta^{+\alpha}=\sup\{\delta^{+\beta}\,|\,\beta<\alpha\}\,,\quad \text{for any limit ordinal α.}$$

Recall the statement of Theorem 2 from section 1.

THEOREM 2. Assume that there is an $\alpha < \kappa$ such that $\forall \delta < \kappa$ $(2^{\delta} \le \delta^{+\alpha})$. Then, if κ is $\lambda^{<\kappa}$ -ineffable, then part* $(\kappa, \lambda^{<\kappa})$ holds.

In order to prove this theorem, we need the following Lemma.

LEMMA 7.3. Under the same assumption in Theorem 2, there exists an $S \subset \mathcal{P}(\kappa)$ such that

- (1) S is a partition of the set of infinite cardinals below κ and $|S| < \kappa$.
- (2) For any $S \in S$ and any δ , $\eta \in S$, if $\delta < \eta$, then $2^{\delta^+} < \eta$.

PROOF OF THEOREM 2. Since $(\lambda^{<\kappa})^{<\kappa} = \lambda^{<\kappa}$, it suffices to show that

(*) $\forall \lambda \geq \kappa$ (if κ is $\lambda^{<\kappa}$ -ineffable, then part* (κ, λ) holds).

To get a contradiction, assume that (*) does not hold.

Take $\lambda \ge \kappa$ such that κ is $\lambda^{<\kappa}$ -ineffable and part* (κ, λ) fails. Take an ω -Jónsson function F for λ . Define $X \subset \mathcal{P}_{\kappa} \lambda$ by

$$X = \{x \in \mathcal{Q}_{\kappa} \lambda \mid x \text{ satisfies the following } (0) \sim (3)\}.$$

- (0) $x \cap \kappa$ and ot(x) are cardinals.
- (1) $F \upharpoonright^{\omega} x$ is ω -Jónsson for x.
- (2) $x \cap \kappa$ is almost x-ineffable.
- (3) part* $(x \cap \kappa, x)$ fails.

By [10, Theorem 4.1] and Corollary 5.4, $X_0 \in \mathcal{J}_1(\kappa, \lambda)^*$. Take $\mathcal{S} \subset \mathcal{L}(\kappa)$ which satisfies (1), (2) in Lemma 7.3. For each $S \in \mathcal{S}$, set

$$X_S = \{x \in X \mid \operatorname{ot}(x) \in S\}.$$

Since $\mathcal{J}_1(\kappa, \lambda)$ is κ -complete, there exists an $S \in \mathcal{S}$ such that $X_S \in \mathcal{J}_1(\kappa, \lambda)^+$.

CLAIM 1. $\forall (x, y) \in [X_s]^2 \ (x \in Q_y)$.

PROOF OF CLAIM 1. Let $(x, y) \in [X_s]^2$. By (1), we have |x| < |y|. So, $2^{|x|^+} \le |y|$. To get a contradiction, assume that $|y \cap \kappa| \le |x|$. Then, $x \cap \kappa$ is almost $y \cap \kappa$ -ineffable. So, $x \cap \kappa$ is almost y-ineffable. Since $2^{|x|^+} \le |y|$, by a result of Carr [4, Theorem 3.2], $x \cap \kappa$ is x-supercompact. This contradicts that part* $(x \cap \kappa, x)$ fails. QED of Claim 1

Since $X_S \in \mathcal{J}_1(\kappa, \lambda)^+$, by Claim 1, we have that $X_S \in \mathcal{L}_1(\kappa, \lambda)^+$. This contradicts to that part* (κ, λ) fails.

COROLLARY 7.4. Under the same assumption in Theorem 2, for any $\kappa \leq \delta < \lambda$, if part* (κ, λ) holds, then part* (κ, δ) holds.

PROOF. Let $\kappa \leq \delta < \lambda$ and part* (κ, λ) . By a result of Magidor [11], κ is λ -ineffable. So, by a result of Johnson [9], $\delta^{<\kappa} \leq \delta^+ \leq \lambda$. Hence, κ is $\delta^{<\kappa}$ -ineffable. So, by Theorem 2, part* (κ, δ) holds.

References

- [1] Y. Abe, Notes on $\mathcal{L}_{\kappa}\lambda$ and $[\lambda]^{\kappa}$, Tsukuba J. Math., 10 (1986), 155-163.
- [2] Y. Abe, Combinatoric on $\mathcal{P}_{\kappa}\lambda$, private communication.
- [3] D.M. Carr, The minimal normal filter on $\mathcal{L}_{\kappa}\lambda$, Proc. Amer. Math. Soc., 86 (1982), 316-320.
- [4] D.M. Carr, The structure of ineffability properties of $\mathcal{P}_{\kappa}\lambda$, Acta Math. Hungar., 47 (1986), 325-332.
- [5] D.M. Carr, $\mathcal{Q}_{\kappa}\lambda$ partition relations, Fund. Math., 128 (1987), 181-195.
- [6] D.M. Carr and D.H. Pelletier, Towards a structure theory for ideals on $\mathcal{P}_{\kappa}\lambda$, In Set Theory and its Applications, (eds. J. Steprans and S. Watson), Lecture Notes in Math., 1401, Springer-Verlag, 1987, pp. 41-54.
- [7] P. Erdös and A. Hajnal, On a problem of Jónsson, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, 14 (1966), 19-23.
- [8] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic, 5 (1973), 165-198.
- [9] C.A. Johnson, Some partition relations for ideals on $\mathcal{P}_{\kappa}\lambda$, Acta Math. Hungar., 56 (1990), 269-282.
- [10] S. Kamo, Remarks on $\mathcal{L}_{\kappa}\lambda$ -combinatorics, Fund. Math., 145 (1994), 141-151.
- [11] M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc., 49 (1974), 279-285.
- [12] T.K. Menas, On strong compactness and supercompactness, Ann. Math. Logic, 7 (1974), 327-359.
- [13] T.K. Menas, A combinatorial property of $\mathcal{P}_{\kappa}\lambda$, J. Symbolic Logic, 41 (1976), 225-234.

Shizuo KAMO

Department of Mathematics University of Osaka Prefecture Gakuen-chou, Sakai

Jap**a**n

(e-mail: kamo@center.osakafu-u.ac.jp)