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1. Introduction.

The forward Cauchy problem for the operator with real coefficients Hu(z, x)
=0.u(t, x)+a(x)02u(t, x)+b(x)0,ult, x)+c(x)u, x) with the datum on a line t=0
is L% and H>-wellposed if and only if a(x)<0.

We consider the same problem for the operator with real coefficients

(L) Au, x) = 0.u(t, x)+03u®, x)+a(x)0iu(t, x)+b(x)d,ult, x)+c(x)ult, x).

which is obtained by adding the dispersive term odu(t, x) to Hu(, x). Our
problem is under which conditions on the coefficient a(x) the forward Cauchy
problem for Au(t, x) is L? or H*-wellposed.

Similar problems arise for the Schrodinger type operator

Su(t, x) = 0.u(, x)+i02u, x)+Ax)0 . ult, x)+B(x)u, x).

In this case, the following condition on the imaginary part of A(x): JA(x) is
necessary and sufficient for the L:[resp. H~]-wellposedness;
There exists some constant C satisfying

‘SZSA(x)dx\ <C [resp.lSZi}A(x)dxl < Clog(lx—y|+2)J
for any x, yER,

while for the operator 0.u(t, x)+A(x)d,u(t, x)+B(x)u(t, x) the necessary and
sufficient condition is JA(x)=0 (see W. Ichinose and [2], S. Mizohata
and J. Takeuchi [6).

In the following, we consider only real-valued functions and operators with
real coefficients with some obvious exceptions.

Now we formulate the forward Cauchy problem for the operator A defined
by (1.1):

For the given datum g(x) and right-hand side f(t, x) of the equation, find
a solution u(¢, x) satisfying
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Ault, x) = f(, x) (t, x) € [0, TIXR
© {

u(0, x) = g(x) xre R
where T is some positive number and all the coefficients a(x), b(x), and c(x)

of A belong to B>: the space of bounded C* functions defined on R=(—o0, 4 0)
with bounded derivatives of any order.

THEOREM 1. If the Cauchy problem (C) is L* [resp. H>]-wellposed, then
the following inequality holds with some positive constant K

(N) K= g: a(s)ds
[resp.
(N®) Klog(y—x+2) = SZa(s)ds]

for any x, yER satisfying y=x.

follows from the same arguments as that for the Schrédinger
type operator (see S. Mizohata [4, Lecture VI] or J. Takeuchi [7]). Therefore

we mention only the form of the asymptotic solution which we use in the
proof of [Theorem 1|: that is

u(t, x, &) = exp(\/:T(gst—}-fx)-f—%-Ewma(s)ds)
x(ualx+36%)+ S ualt, x+367%, 9)

where u,(x) is a suitably chosen function and for n=1 wu,(, x, & are defined
successively by

0:u(t, x, &) = EP\(x, x—3%, 0)un_i(t, x, )+ Py(x, x—3&%, 0,)un_i(t, x)
where P,(x, x—3&%, 0,) and Py(x, x—3&%, 0,) are the differential operators
given by

Pi(x, x—38%, 0,;) = —+/—1e 5(30%2+2a(x—3&%1)0, +b(x —3&%))eS
Py(x, x—38%, 0,) = —e 503+ a(x—36%)02+b(x—3%)0 . +c(x —3&%))eS

. | (=
with S= ggz_sena(s)ds.

On the other hand, concerning the sufficiency of the condition (N) or (N*)
we show two results.

THEOREM 2. If the coefficient a(x) satisfies (N), then the Cauchy problem
(C) is L2-wellposed. '

And
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THEOREM 3. If the coefficient a(x) satisfies (N*), then the Cauchy problem
(C) is H>-wellposed.

Here we say that the Cauchy problem (C) is X-wellposed if and only if
for any datum g(x) in X and any right-hand side f(¢, x) which is X-valued
continuous function on [0, 7], that is to say, f(f, x)C([0, T], X), there exists
one and only one solution u(t, x)eC([0, T], X) of the problem (C) satisfying
the following estimate: For any continuous semi-norm p,(-) on X, there exists
a continuous semi-norm p,(:) on X satisfying:

out, ) = pa(g()+| pul (s, s

for any te[0, T] where the semi-norm p,(-) is chosen independently of g(x),
f@, x) and u(t, x).
We denote by L? the space of square integrable functions on R=(—co, 4-c0)

with the inner product (v(x), w(x)):SRv(x)w(x)dx and the norm [ f()|={(f(x),
F(x)}'? and by H'! the space defined by {f=L?; || f(-)],<+co} with the norm
[-Il; where [[f(-)]. is defined by <5R1<5>‘f(§)12d5)1/2 with the Fourier transform

f© of f(x) and ©=vI+[EE We put H*= wcicH".

The rest of this paper is devoted to the proofs of and 3. The
outline of the proofs is the following. We transform the given operator A to
an operator with a non-positive coefficient a(x) for which the Cauchy problem
(C) is L?, H= and Schwartz space S-wellposed, by the change of unknown
function u(t, x)=exp(D(x))v(t, x) with some appropriate function D(x) (see Sec.
2). For the proof of [Theorem 3, we need another observation that, roughly
speaking, the regularity of solution implies the decay of solution in the space
variable (see Sec. 3).

In the following we denote by C or suffixed Cx an arbitrary constant which
may be different according to the contexts and <{x) denotes VIFTx]%

2. The proof of Theorem 2.
The proofs of and 3 are based on the following proposition.

PROPOSITION 4. If the coefficient a(x) of the operator A defined by (1.1) is
non-positive, then the forward Cauchy problem (C) is L?, H* and S-wellposed.

PROOF. Let v(x) € S or v(x) e H*. Noting a(x)d2v(x) = 0,a(x)0,v(x)—
a’(x)0.v(x), we have



146 S. TARAMA

(03v(x)+ a(x)0%v(x)+b(x)8.v(x)+c(x)v(x), v(x))
= —(a(x)8,v(x), axv(x))—l-({%a”(x)———é—b’(x)-{-c(x)}v(x), v(x)).
Hence under a(x)<0, for any real A
(Av(x)+ Bu(x), v(x)) = A—C)|v(x)|*?,

where we put Buv(x)=0d3v(x)+a(x)02v(x)+b(x)0v(x)+c(x)v(x).
On the other hand, from the ellipticity of B, we see

{v(x) € L*; Bv(x) e L% = H?®

The above facts and S. Mizohata [5, Ch. 6, Sec. 4] imply that —B is a
generator of C° semi-group on L% Then the problem (C)is L2 -wellposed. We
see also the problem (C) is H<>-wellposed, because v(x)eH"™ is equivalent to
“Bw(x)e L® for any [=0”. The S-wellposedness follows almost directly from
the results in Kato [3, Section 8 and Appendix A.3]. Indeed we have only to
show that —TBT"! is a generator of C° semigroup on L? with its domain H?,
where Tv(x)=((—02)Y +<{x>Mv(x) with N=1. This claim follows from

TBT = B+4+2Na’(x)0.(—02)¥T*
(2Na’(x)0.(—02)NT-Y)*+(2Na’(x)0,(—02)*T ) =0
mod L? bounded operators. M
Under the condition (N) we construct some function d(x)< B® satisfying,

2.1 d(x) = a(x) xR
2.2) S:d(y)dy is bounded in R.

This property (2.2) means that the multiplication by exp (g:d(y)dy/S) is an

automorphism of L? and of H*. Then the L? or H<>-wellposedness of the
Cauchy problem (C) for the operator A defined by

ﬁu(t, x) = exp (%S: d(y)dy)Aexp(———gl—S: d(y)dy)u(t, x)

2.3) = d.ut, x)+03ult, x)+(—d(x)+a(x))0%u(t, x)
+5(x)0ult, x)+E(x)ult, x)
with some b(x) and ¢(x)= B®
is equivalent to that of the Cauchy problem for AL And according to Proposi-
tion 4, and [2.3), the Cauchy problem (C) for A is L:-wellposed. Therefore

the proof of [Theorem 2)is completed if we can construct a function d(x) verify-
ing and (2.2).
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For this purpose we prepare one lemma.

LEMMA 5. Let I(t) be a non-negative and non-decreasing function on [1, 4+ co).
If two sequences of non-negative numbers {A%} noy.2.. and {Az}n=1.23 .. Satisfy

In—m+1) = kzn‘, (AF—Ap) for nzmz=1,
then there exists a sequence {0} n<1 ... in [0, 17 such that for any n
24) Un) 2 33 (Af =0, 47) 2 0.

PrROOF. We put

o
-t

if AT—A7 <0,
1 if AT—A7=0.
For n=2, we define 6, inductively by

_ 2RAE 0.4+ A7

if ’g(Ag_akA;)JrA;_A; <0
6,=1
it 3 (A — 0,40+ Af— 47 2 0.
We see inductively that for any n=>1
(2.5) é (Af —0,47) = 0.

Thus PN A —0,. A7)+ Ar—A7<0 implies A;>0 and 0<6,<1. Hence 6,
[0, 1] and

2.6) é}l(A,;-‘—ﬁkA;) =0 if 6,<]1.

If 8,=1 for 1<k <n, the left inequality of is evident. Otherwise, let
k, be the maximum of % satisfying 1<k<n and 6,<1, then by and 6,=1
for >k, we see that

S =04 = 3 (AF—4p)

1 k=kg+1
= {(n—ky)
and, since {(¢) is non-decreasing,
< l(n).

In the case k,=n, the same inequality follows from and /(n)=0. m
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Now we assume the coefficient a(x) satisfies (N). Put for n=1, 2, ---

a (x)dx

@7 Ab = S:_1a+(x)dx, Az = S

where a*(x)=max{a(x), 0} and e (x)=max{—a(x), 0}.
Then the condition (N) implies for n>m

n

3 (At-A7) < K.

k=m

asserts that there exist a sequence {6,}-1.... in [0, 1] such that for
any nz=1

Ms

2.8) 0< (A,j«ﬁkA,;) <K.

k

1

1
Similarly, by setting for n=1, 2, ---

2.9) B’g:S " atdx B;:S’””a—mdx

we see that there exists a sequence {0} =1 .. in [0, 1] such that for any n=1
2.10) 0< i(B,j—akB;) <K.
k=1

We define a function A(x) on R by

6, xe[n—1, n)
hix) = {
On xe[—n, —n+l)

for n=1, 2, ---. And we put d(x)=a*(x)—h(x)a (x). Then we have
(2.11) a*(x) = a(x) = a(x)

and

2.12) K+M = §:a<y>dy >_M x>0

(2.13) M= S:d(y)dy > _K-M x<0

with M=sup.ecr|a(x)].
Indeed follows from 0<h(x)<1 and a~(x)=0.
Since for any integer n=1

[fatax = 2 (4i-0.45)
0 k=1
and for t=0

|S:+ld(X)dx1 < fi‘é%"l(x)l,
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we see from [2.8). Similarly follows from [2.10).

Now we regularize @(x) by the convolution with a smooth non-negative

function p(x) supported in [—1/2, 1/2] satisfying Snp(x)dx:l. And we define
the desired function d(x) by

(2.14) d = [ amox—dy—{ ampt—dy+a).
Then d(x) satisfies the followings

(2.15) d(x) = a(x) xeR

and with the same constants in and

2.16) K+4M = SO d(y)dy = —4M for x =0,
@.17) AM > S:d(y)dy > _4M—K for x<0.

Proors oF [2.15), (2.16) AND [2.17). From and p(x)=0 follows [2.15).

We have also from |(2.11)
(2.18) lal < M.

Thus (2.16) is valid for 0<x<1. Taking into account the support of p(x) and
and [2.1I8), we have for 1<x
0

K+M2z= SR"@(S zd(y)dy)dz =-M

and

[,0@(| awdy)dz| <M.

Then from
‘({ a@pi—2dz)dy = o@({""aay+{ aay)ez
0 R R 0 z
we see that for x=0
0

2.19) K+2M = S (SRd(z)p(y—z)dz)dy > oM.
Noting | a(@o(y—2)dz—a()=| p@(ay—2—a(mdz,
lS:(SRa(z)p(y—Z)dz—a(y))dy\

= HRMZ)(—S:_Z a<y)dy+S:a<y)dy) dZ.
<2M.
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From the above estimate and we have (2.16). The estimate follows
similarly.

Now we have seen the existence of a function d(x) verifying the properties
and (2.2), the proof of is completed.

The above arguments show also the following.

PROPOSITION 6. If the coefficient a(x) of A satisfies the assumptions (N*),
then there exists a function d(x)e B> verifying

(2.20) d(x) = a(x)
@2.21) K log(x+2)+4M = S:d(y)dy > —4M  for 120
and

2.22) AM = S:d(y)dy > _Klog(|x|+2)—4M  for x<0.

Indeed we apply with [(t)=K log(t+2) to the sequences {A%} 1. ..
and {B3} =15, .. defined by and [2.9). Then the arguments drawing (2.15),
(2.16) and show that d(x) defined by satisfies [2.20), [2.21) and [2.22).

3. The proof of Theorem 3.

First of all, we show the uniqueness of solutions under the assumptions of
[Theorem 3. From follows the existence of a function d(x)
verifying (2.20), (2.21) and [2.22). From [2.21), and d(x)e B~ we see that

the multiplication by exp(S:d(y)d y/3) is an automorphism of S. On the other

hand by and we see the S-well posedness of the Cauchy
problem (C) for the operator A defined by [2.3). Hence the Cauchy problem

for the operator A itself is S-wellposed. This claim is also valid for the back-
ward Cauchy problem for the formal adjoint A* of A;

A*(, x) = f(t, x) ¢, x)e [0, TIXR

3.D
(T, x) = g(x)
where

A*(t, x) = —0w(t, x)—03v({t, x)+0i(a(x)v(t, x))
—0(b(x)v(t, x)+c(x)t, x),
because by the change of the variable /=7 —s we have the forward Cauchy
problem for the operator which satisfies the assumptions of [Theorem 3.
Hence by the duality method we see the uniqueness of solutions in C([0, T'],
S”) for the forward Cauchy problem for A (see S. Mizohata [5, Proof of Theorem
4.27).
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In the following we show the existence and estimate of solutions.

PROPOSITION 7. Let e(x) be a smooth function such that

d =1, 2 d d
We(x) (=12 ) an exp(e(x))m—e(x)

are bounded on R.

If the coefficient a(x) of A is non-positive and the datum and the right hand
side of the problem (C) satisfy: for some integer N =0

exp(ke(x))g(x) € H”
exp(ke(x))f(t, x) € C({0, T], H*) for any k=0,1,2,--- N
then the solution u(t, x) of the Cauchy problem (C) satisfies
exp(ke(x))ut, x) = C([0, T}, H*) k£=0,1,2, -, N
and for any integer [=0 and any t<[0, T]
B.2)  llexp(Ne(x)u(t, x)|.

<C, > l(llexp(fe(x))g(x)ﬂk+§:l[exp(fe<x))f(s, x)des)

0SjsN.2j+ks2eN+

PROOF. asserts L? and H<=-wellposedness of the Cauchy
problem (C). Thus u(t, x)=C([0, T], H).
Set u,,o(, x)=exple(x))u(t, x). Then u, ,(t, x) satisfies the equation;

(8.3)  suyolt, X)+03us,o(t, X)+a(x)02uy,o(t, X)+b(x)0,uy,o(t, x)

+&(x)uy o, x) = 3exple(x))e’(x)02ult, x)+exple(x))f (¢, x)
3.4) u1,0(0, x) = exp(e(x))g(x)
with some b(x) and ¢(x)eB*=, where we used

d3u(t, x)+3e’/(x)03u(t, x)
= exp(—e(x)){03uy, o, x)+k(x)0u1,o(t, x)+ko(x)uy o, x)}
with  k,(x) = —3{e’(x)}2—3e”(x)
ko(x) = 2{e’(x)}*—e"(x)

and the assumption of e(x).
From the assumptions on f(f, x), g(x) and e(x) and u(t, x)eC([0, T], H),
the right hand side of (3.3) belongs to C([0, T], L? and u, 0, x)eH™.

Since a(x)<0, the Cauchy problem (3.3) and is L2-wellposed. The
above mentioned uniqueness in C([0, T], S’) implies

u,o(t, x) C[0, T], L?
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and
s, )1 = Cu.of lexpiee)g(0)1+{ (12uts, 21+ lexple(e) (s, x)Dds}.

Since the original Cauchy problem for u(f, x) is also L*wellposed and u(t, x)
and f(¢, x)eC({0, T], H®) and g(x)eH>, we have

02utt, 1 = Coo 3 (1088@I+{ 10875, 2)lds).
Thus

o, ) S Cro, 33 {lexpie()0sg(x) 1+ lexplie()as f(s, »lds}.

=2

Inductively we can show similar claim for u; (¢, x) = exp(e(x))0?u(t, x) with
m=1. Generally we have, by the induction, for /=0, 1, ---, N and m=0,

ur, n(t, x) = exple(x))oru(t, x) € C([0, T], L?),
and

e, m@, )1

< Cim, 3 {lexpet)dte@)*+| lexpGe)aifes, mitds). m

j+hs2l+
Jsl

In the following we use in the case e(x)=log{x—p> with an
integer p. That is to say;

COROLLARY 8. If the supports of g(x)eH> and f(t, x)eC([0, T], H*) are
compact, the solution u(t, x) of the problem (C) for the operator A with a non-
positive coefficient a(x) satisfies: for any integers N=0, [=0 and p and any te
[0, 7]

3.5  IKx=p>Yult, 0

< Cu» (
’ 0sjsN.2j+kg2N+1

[<x—pY gt | I<e =Y (s, 2)lads)
where the constant C;, y is independent of p.

We remark that is already shown in T. Kato [3, Section 8].
We use also the following lemma owing to T. Kato [3, Section 10].

LEMMA 9. Under the assumptions of Corollary 8 on g(x), f(t, x) and the
coefficient a(x) of A, the solution u(t, x) of the problem (C) satisfies: for any
b=0

eu(t, x) € C([0, T, H®)

(3.6) le=utt, )l < C(Ie=g(0)l+{ 1% £(s, )luds)
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for any integer [=0 and any t<[0, T].

With a smooth function %(x) satisfying 1=X(x)=0, X(x)=1 for x=1, and
X(x)=0 for x<0, we define a partition of unity {@,(x)}n=0, 1, s, .. defined by

Pn(x) = Ux—n+1)—A(x—n).

We decompose the datum g(x)eH= and the right-hand side f(t, x)eC(0, T],
H=) of the problem (C) in the following way. Let for n=0, +1, +2, -

gn(x) = @a(x)g(x)
fn(t; X) - ¢n(x)f(t; X) .

As we remarked at the beginning of this section, under (N*) the problem (C)
is S-wellposed. There exists the solution u,(t, x)C(0, T1], S) of the problem

3.7

o (Aunt, x)=falt, 5) @ ) [0, TIXR
Cn
1 a0, 1) = g2(@) x<R.

PROPOSITION 10. There exists an integer N=0 such that for any integers
[=0, m and n and any t<[0, T]

38)  Ipntualt, Dl = Cotm—m>(Iga@lisn+{ 1 £a(s, Dliswds)
where the constant C, is independent of m and n.

Using we show that the sum 352 .u,(f, x) is a solution of
the problem (C) belonging to C([0, TJ], H™).

First we remark that for any h(x)eH> and any integers /=0 and s and
t satisfying s<t,
t+1

89 |Zs.0rw)] = C(ZIgwre0l) " = C,

=38

Bal0R(x)|

n=38-1

with positive constants C, and C, which are independent of s and ¢, where
we used the following properties of ¢,(x):

@A)~ GaORN =0 for |n—m| 2 2.
(3.10) Sa()=0 for |x—n|=1
and
(3.11) ST Ga(n) = M —s+2)—A(x—1—1)

n=3§-1

=1 on [s—1,t+1].
From (3.9) and we see that
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(3.12 (& 1galtn) " = Cla@lia,
400 1/2
(3.13) (S 12t Dltew) < CIAE Do

From [(3.13) we see that the /%-valued function on [0, T']

t—> {”fﬂ(ty x)”l-&-N} nEZ

is continuous, where /% is a space of all square summable sequences {a,}.cz.
Thus we have from [3.13)

(3.14) { 8. ((15ats, Dawds)} =[5 2hiawds
From and we have
{1 Niew+ ) 17065, Devwds} e r.

On the other hand for any fixed m
{{m—n>? ez €.

Hence we see from (3.8) that, for any m, 2332 @ .(x)u,(t, x) is an absolutely
convergent series in C([0, 7], HY). Taking (3.11) into account, we see thatlfor
any k=0

S uat, x) & C(QO, T1, H'(—k, k).

n=-

Let u(t, x)=232_«u,(, x). Noting that 332 _.g.(X)=g(x) and 232 . (¢, x)
=f(t, x), we see from (C,) that u(¢, x) is a solution of the problem (C).

Next we show that u(t, x) € C([0, T], HY). Since 2 .(md2< 4o,
Hausdorff-Young inequality and (3.8) imply that

1/2

(3.15) { Z.(Z1gn@u, 0l)}

+ 1/2

= o £ (1es@liew+ {1 fals, Dliends)
from and
< C(lg@en+{ 176, li.nds).
Since [[@n()ult, V) SXFZ ll@n(x)ualt, x)||;, we have from [3.15
316 (& Inut, ) = (180 x+{ 176, Dlisnds).

For any t=[0, T], from (3.9), and (3.16) we see that
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(3.17) ut, x) = lim ékgbm(x)u(t, x) e H!
and
e, )l = C(Igeewn+{ 165, 2)levnds).

The convergence of is uniform on [0, 7], because, putting

An=C{ § m—m(lga@liawt| 1 £as, liewds)},

we see that

[n()ult, ) £ An  on [0, T]
and

o0

S A% < 4o,

m=-—ca

Hence u(t, x)eC([0, T], HY).
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Since the above argument is valid for any integer /=0, we see that u(f, x)
eC([0, T]1, H*) and that u(t, x) is a solution of the problem (C) satisfying the

desired estimates.

Therefore we have only to prove Proposition 10| in order to complete the

proof of [Theorem 3

PrROOF OF PROPOSITION 10. In the following we denote by C or a suffixed
C« a constant which is independent of m and n. We consider another problem

for the operator A defined by with d(x)=a(x), that is to say,

fNIu(t, x) = exp(—;—S:a(y)dy)Aexp(—— —;—S:a(y)dy>u(t, x)
= 0.ult, x)+03ult, x)+b(x)0,ult, x)+&(x)ul, x)

with some b(x) and &(x)eB~.

As exp(S:a(y)dy/3)gn(x)eS and exp(S:a(y)dy/B) Falt, x) € CCO, T1, S),

there exists a solution v,(t, x)C([0, T], S) of the problem

) Avat, 1) = exp(-gl-S: a(0)dy)falt, x) (¢, 1) [0, TIXR
Cn)
v,(0, x) = exp(%go a<y)dy)gn(x> xeR.

From (N*), we have

K log(x+2) = S:a(y)dy >_Mx for x>

and
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Mlxl;S:a(y)dy;—Klog(!x|+2) for x<0

with the constant K appearing in (N*) and M =sup.cr|a(x)].
Then

CLxyErl = exp(— —I—S a(y)dy> >e Mzl for x <0,
(3.18)
oMt 2 exp(— —S a(3)dy) = Cxy® for x20.

From and the above estimates, we see that exp(—S:a(y)d y/3)
X, x)eC([0, T], S) and this is a solution of (C,). Then the uniqueness of
the solution implies that u,(, x)=exp<——§0a(y)dy/3>vn(t, x).

As g,(x) and f,(, x) vanish for |x—n|=1 and a(x)e B>, we see that for
any integers N and /=0,

[x—n>* exo(5 [ a0)dr)gan)], = € exp (5] at)dr)lgutl,

[co—ny exp(5 e)dy) futt, 0], = € exp (5. a)an)1att, .
Thus it follows from [Corollary § that
319 =, Dl

< Cow exp(5{ 60)a9) (18w i+ {1 £als. levauds).

As @n(x) vanishes for |x—m|=1, we have

(3.20) ]l¢m<x>exp(—§ﬂf a()dy)oat, ),

< C exp(— 5" a)dy) m—m> Vg u(x)x—n>Vuutt, s

1¢m
<C exp(— §—So a(y)dy)<m—n>'NH<x—n>‘an(t, .
It follows from (3.19) and (3.20) that

(3.21) zl¢m<x)exp(~—;—5:a(y)dy)vn(t, x)”l
< € exp(31" e)dy) m=m" (1gaawact [ 1 ats, Dlavaads).
When n=>m, (N) implies that

exo (3] arts) mr 2 Camr
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Thus, by taking N—K/3=2, we see from (3.21) that for n=m

(3.22) [6(orexp (- %g:a@)dy)vn(t, 0|

A
< Con=n>*(Iga(@lawsit| | £as, Dlawards).
On the other hand, in the case where m>n, put
(3.23) b= Lsupla)|+1.
reR

3
From (3.7) and it follows that

e“exp(—é—gza(y>dy)gn(x)ﬂl+g e“exp(%S:a(y)dy)fn(s, x)]llds

< C exn(5 [ ady) e (lgull+ { 17:ts, Dluds).
Thus from the above estimate and [Lemma 9, we see that
328 10,0, vl < Cexp(5 1 a0)dr)em (1galit {1 £als, »iids),
From we have
[$nrrexo(—={  ardr)vatt, )

1¢m
< Cexp(— 5|, a)dy)emIgnxe=uatt, D)l

<C exp(— %S:L a(y)dy) e e v, ).

The above estimate and (3.24) imply that

lgnexn(— 5[ ards)oate, 0|
(3.25)

1pm :
= Cexp(— 3| ady) e (gt 1205, Dlds).
Since m>n, we see from that
exp(—— —?%Sma(y)dy>e‘b‘m‘"’ Le M < 2Wn—m)2.

Hence we see from (3.25) that is also valid for m>n.
Since u,(t, x):exp(—gxa(y)dy/i%)vn(t, x), we obtain (3.8). m
0

The author wishes to thank the referee for the invaluable remarks which
helped to improve the results of the earlier version of the text.
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