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Introduction.

The theory of complex dynamical systems defined by holomorphic maps on
complex projective spaces, which generalizes the iteration theory of one variable
rational functions, has been studied by several authors [FS1], [FS2], [HP], [U3].
Concerning Julia sets and Fatou sets, analogies to the one variable case are
pursued to some extent. There are also many problems which we encounter
first in higher dimensional case.

In this paper, we prove two fundamental results on Fatou sets for complex
dynamical systems of degree greater than 1 on complex projective spaces: Fatou
sets are pseudoconvex, hence Stein (Theorem 2.3); Fatou sets are Carath\’eodory
hyperbolic, hence Kobayashi hyperbolic (Theorems 2.5 and 2.6). With the latter
theorem, we can derive some results analogous to the one dimensional case. It
is proved that the immediate basin of an attractive periodic point contains critical
points. The same result is proved for a parabolic periodic point in two dimen-
sional case under an additional condition.

TO prove the above fundamental theorems we employ the method originated
by Hubbard and Papadopol [HP]. Namely we consider, for a holomorphic map
$f$ on $P^{n}$ , the corresponding homogeneous polynomial map $F$ on $C^{n+1}$ and the
Green function $h$ with respect to $F$. It is shown in Theorem 2.2 that a point
$p\in P^{n}$ is in the Fatou set if and only if the Green function is pluriharmonic in
a neighborhood of the fiber $\pi^{-1}(p)$ of the projection $\pi:C^{n+1}-\{O\}arrow P^{n}$ . The
“only if” part is proved in [HP, Proposition 5.4] and the “if” part provides the
answer to a problem posed in [HP, below Prop. 5.4].

The outline of the present paper is as follows: In section 1, properties of
homogeneous maps and Green functions are described. Using these, we prove
the two main theorems on Fatou set in section 2. As applications of the hy-
perbolicity, results on the critical points in the Fatou sets are proved in section
3. Although the results on Green functions are due to [HP], we include the
proofs for the sake of completeness.

The author would like to thank Professors S. Ushiki, T. Terada and Y.
Nishimura for helpful suggestions and discussions.
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1. Homogeneous maps.

Let $C^{n+1}$ denote the space of $n+1$ tuples $x=(x_{0}, \cdots x_{n})$ of complex numbers.
A holomorphic map $F:C^{n+1}arrow C^{n+1}$ is said to be a homogeneous map of degree
$d$ if $F$ is defined by an $n+1$ tuple $F(x)=(f_{0}(x), \cdots, f_{n}(x))$ of homogeneous
polynomials of degree $d$ . A homogeneous map $F$ is said to be degenerate if
$F(x)=O$ for some $x\neq O$ , where $O$ denotes the origin $(0, \cdots 0)$ . Otherwise $F$ is
said to be non-degenerate.

We denote a point in the complex projective space $P^{n}$ by homogeneous co-
ordinates $p=[x_{0}$ : $\cdots$ : $x_{n}]$ . The projection $\pi:C^{n+1}-\{O\}arrow P^{n}$ given by $\pi(x_{0}, \cdots, x_{n})$

$=[x_{0}$ : $\cdots$ : $x_{n}]$ defines a holomorphic $c*$-bundle over $P^{n}$ . See [FS2] for the
proof of the folIowing proposition.

PROPOSITION 1.1. For a non-degenerate homogeneous map $F:C^{n+1}arrow C^{n+1}$

there exists a unique holomorphic map $f:P^{n}arrow P^{n}$ such that $\pi\circ F=f\circ\pi$ . Conversely,

for a holomorphic map $f:P^{n}arrow P^{n}$ there exists a non-degenerate homogeneous
map $F:C^{n+1}arrow C^{n+1}$ such that $\pi\circ F=f\circ\pi$ . Such a map $Fis$ unique up to a non-zero
constant.

In this section, we study (non-degenerate) homogeneous maps $F$ to know
properties of the corresponding holomorphic maps $f$ .

We define the Euclidean norm of $x=(x_{0}, \cdots x_{n})\in C^{n+1}$ by

$||x||=(|x_{0}|^{2}+\cdots+|x_{n}|^{2})^{1/2}$ .

LEMMA 1.2. Let $F:C^{n+1}arrow C^{n+1}$ be a homogeneous map of degree $d$ .
(1) There exists a constant $M>0$ such that $||F(x)||\leqq M||x||^{a}$ for all $x\in C^{n+1}$ .

If $F$ is non-degenerate, then there exists a constant $m>0$ such that $||F(x)||\geqq m||x||^{a}$

for all $x\in C^{n+1}$ .
(2) If $d\geqq 2$ , then there exists a constant $r>0$ such that

$||F(x)||< \frac{1}{2}||x||$ whenever $||x||<r$ .

If $F$ is non-degenerate and $d\geqq 2$ , then there exists a constant $R>0$ such that

$||F(x)||>2||x||$ whenever $||x||>R$ .

PROOF. (1) Let $M:= \sup_{||x||=1}||F(x)||$ . Since $F$ is homogeneous of degree $d$ ,
it follows that

$|IF(x)||=||x||^{a}||F(x/||x||)||\leqq M||x||^{a}$ .

If $F$ is non-degenerate, then $m:= \inf_{NxN=1}||F(x)||>0$ . Hence

$|1F(x)||=$ I $x||^{l}(||^{1}||F(x/||x||)||$ lli $m||x||^{a}$ .
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(2) We choose $r$ so that $0<r\leqq(2M)^{-1/(a-1)}$ . Then

$||F(x)||$ $ $M||x||(f<Mr^{d-1}||x||$ $ $(1/2)||x||$ for $||x||<r$ .
When $F$ is non-degenerate, we choose $R$ so that $R\geqq(2m)^{-1/(d-1)}$ . Then

$||F(x)||$ ;li $m||x||^{d}>mR^{a-1}||x||\geqq 2||x||$ for $||x||>R$ . $\square$

DEFINITION. For a homogeneous map $F$ of degree $d\geqq 2$ , we define the basin
of attraction $\mathcal{A}$ of the origin $O$ by

$\mathcal{A}=$ { $x\in C^{n+1}|F^{j}(x)arrow O$ as $jarrow\infty$ }.

PROPOSITION 1.3. (1) $\mathcal{A}$ is non-empty and pseudoconvex.
(2) $\mathcal{A}$ is a complete circular domain, i. e., if $x\in \mathcal{A}$ and $c\in C$ with $|c|\leqq 1$ ,

then $cx\in \mathcal{A}$ .
(3) $\mathcal{A}$ is bounded if and only if $F$ is non-degenerate.

PROOF. We put $B_{r}=\{x\in C^{n+1}|||x||<r\}$ . Then $\mathcal{A}$ is the union of the in-
creasing sequence of pseudoconvex open sets $F^{-j}(\ovalbox{\tt\small REJECT}_{r}),$ $j=1,2,$ $\cdots$ Hence $\mathcal{A}$ is
pseudoconvex. It follows immediately from the homogeneity of $F$ that A is a
complete circular domain. If $F$ is non-degenerate, then $\mathcal{A}$ is contained in the ball
$\{x\in C^{n+1}|||x||\leqq R\}$ , hence bounded. If $F$ is degenerate, then there exists an $x\neq 0$

such that $F(x)=O$ , and $F(cx)=O$ for all $c\in C$ ; hence $\mathcal{A}$ is unbounded. $\square$

THEOREM 1.4. There exists a unique function $h:C^{n+1}arrow R\cup\{-\infty\}$ with the
following properties:

(i) $\alpha(x)=h(x)-\log||x||$ is homogeneous of degree $0,$ $i.e.,$ $\alpha(cx)=\alpha(x)$ for
$x\in C^{n+1}-\{O\},$ $c\in C^{*}$ .

(ii) $\mathcal{A}=\{x\in C^{n+1}|h(x)<0\}$

PROOF. We set

$\rho(x)=\sup\{a>0|ax\in \mathcal{A}\}$

and
$h(x)=-\log\rho(x)$ .

It can be easily verified that $h$ satisfies the required properties. $\square$

DEFINITION. $h$ is said to be the Green function for the homogeneous map $F$.
THEOREM 1.5. Let $F$ be a homogeneous map of degree $d\geqq 2$ .
(1) If $h_{0}(x)$ is a function on $C^{n+1}-\{O\}$ such that $h_{0}(x)-\log||x||$ is bounded,

then $d^{-j}h_{0}(F^{j}(x))$ converges to the Green function $h(x)$ .
(2) The Green function $h$ is plurisubharmonic on $C^{n+1}$ and satisfies the

equation

$(*)$ $h(F(x))=d\cdot h(x)$ .
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(3) If $F$ is non-degenerate, then the convergence in (1) is uniform and the
Green function $h$ is continuous on $C^{n+1}-\{0\}$ .

PROOF. First we consider the case where $F$ is non-degenerate. Put

$\gamma(x):=h_{0}(F(x))-d\cdot h_{0}(x)$ .

Then $\gamma$ is bounded in $C^{n+1}-\{O\}$ by Lemma 1.2, (1), and

$d^{-1}h_{0}(F(x))=h_{0}(x)+d^{-1}\gamma(x)$ .
Replacing $x$ by $F^{k-1}(x)$ and multiplying by $d^{-(k-1)}$ , we have

$d^{-k}h_{0}(F^{k}(x))=d^{-(k- 1)}h_{0}(F^{k-1}(x))+d^{-k}\gamma(F^{k-1}(x))$ .

Adding up this for $k=1,$ $\cdots$ $j$ we obtain

$d^{-j}h_{0}(F^{j}(x))=h_{0}(x)+d^{-1}\gamma(x)+\cdots+d^{-j}\gamma(F^{j-1}(x))$ .

Since $\gamma(x)$ is bounded and $d\geqq 2$ , the right-hand side converges uniformly as $J^{arrow\infty}$ .
We write

$\tilde{h}(x)=\lim_{jarrow\infty}d^{-j}h_{0}(F^{j}(x))$ .

This limit does not depend on the choice of $h_{0}$ . Indeed, if $h_{1}$ is another such
function then $h_{1}(x)-h_{0}(x)$ is bounded and hence $d^{-j}h_{1}(F^{j}(x))-d^{-j}h_{0}(F^{j}(x))$ con-
verges to $0$ as $jarrow\infty$ .

Consider the particular case $h_{0}(x)=\log||x||$ . We know that $d^{-i}\log||F^{j}(x)||$

is plurisubharmonic, continuous on $C^{n+1}-\{0\}$ and $d^{-j}\log||F^{j}(x)||-\log||x||$ is
homogeneous of degree $0$ . Hence the limit $\tilde{h}(x)$ has the same properties. It is
clear from the construction that $\tilde{h}$ satisfies the equation $(*)$ .

NOW we show that $\tilde{h}$ coincides with the Green function $h$ . It suffices to
show that $x\in \mathcal{A}$ if and only if $\tilde{h}(x)<0$ . But this is clear from the equation $(*)$ .

In the case $F$ is degenerate, we start with the function $h_{0}=\log||x||-A$ ,

where $A$ is a sufficiently large positive number. Then $\gamma(x)$ is negative and
$d^{-j}h_{0}(F^{j}(x))$ is a decreasing sequence of plurisubharmonic functions and converges
to a plurisubharmonic function. The rest of the proof is the same as in the
non-degenerate case. $\square$

2. Fatou sets.

Let $f$ be a holomorphic map on $P^{n}$ of degree $d$ . We will always assume
that $d\geqq 2$ . Let $F$ be the corresponding non-degenerate homogeneous map on
$C^{n+1}$ and $h$ the Green function for $F$.

DEFINITION. We define

$\mathcal{H}:=$ { $x\in C^{n+1}|h$ is pluriharmonic in a neighborhood of $x$ }
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and
$\Omega:=\pi(\mathcal{H})$ .

It is clear that $\pi^{-1}(\Omega)=\mathcal{H}$ , i. e. the set $\mathcal{H}$ is a cone.

PROPOSITION 2.1. A point $p_{0}\in P^{n}$ is contained in $\Omega$ if and only if there are
a neighborhood $V$ of $p_{0}$ and a holomorphic map $s:Varrow C^{n+1}$ such that $\pi\circ s=id$ .
and that $s(V)\subset\partial \mathcal{A}$ . Such a holomorphic map $s$ is unique up to a constant factor
with absolute value 1.

PROOF. We choose an open ball $V$ with center $p_{0}$ with respect to a locaI
coordinate system. Then the restriction to $V$ of the $c*$ -bundle $\pi:C^{n+1}arrow P^{n}$ is
trivial. We identify $\pi^{-1}(V)$ with $V\cross C^{*}$ and denote the points in $\pi^{-1}(V)$ by $(p, z)$ .
Then the function $h|\pi^{-1}(V)$ takes the form

$h(p, z)=\log|z|+\eta(p)$ .

Here $\eta(p)$ is a plurisubharmonic function on $V$ and it is pluriharmonic if and
only if $h(p, z)$ is pluriharmonic on $\pi^{-1}(V)$ .

Suppose that $s(p)=(p, \sigma(p))$ is a holomorphic map satisfying the condition
of the theorem. Then $0=h(s(p))=\log|\sigma(p)|+\eta(p)$ . Hence $\eta(p)=-\log|\sigma(P)\}$

is pluriharmonic.
Conversely suppose that $\eta(p)$ is pluriharmonic. Then there is a pluriharmonic

function $\eta^{*}$ on $V$ such that $\eta+i\eta^{*}$ is holomorphic. We define $\sigma(p)=\exp(-\eta(p)$

$-i\eta^{*}(p))$ and $s(p)=(p, a(p))$ . Then $h(s(p))=\log|\sigma(p)|+\eta(p)=0$ . This implies
$s(V)\subset\partial \mathcal{A}$ . Since $\eta^{*}$ is unique up to an additive real constant, $\sigma$ is unique up
to a constant of absolute value 1. $\square$

THEOREM 2.2. We define the sets $\Omega’,$ $\Omega’$ as follows:

$\Omega’=\{p\in P^{n}|_{f^{j}|V}^{there}existsaneighborhoodVofpsuch(j=1,2,\cdots)isanormalfam\iota lythat\}$ ,

$\Omega^{\chi}=\{p\in P^{n}|_{convergent}^{thereexist}subsequencef^{j_{\nu}}|VaneighborhoodV(\nu=1,2,\cdot)ofpand..auniformly\}$ .

Then $\Omega=\Omega’=\Omega’’$ .

DEFINITION. The set $\Omega=\Omega’=\Omega^{n}$ is said to be the Fatou set of $f$ . Each con-
nected component of $\Omega$ is said to be a Fatou component.

PROOF OF THEOREM 2.2. It is clear by definition that $\Omega’\subseteqq\Omega$ “. We will
prove that $\Omega’’\subseteqq\Omega$ and $\Omega\subseteqq\Omega’$ .

First we prove that $\Omega’’\subseteqq\Omega$ (cf. [HP, Proposition 5.4]). Let $p\in\Omega’’$ and
choose a neighborhood $V$ of $p$ and a uniformly convergent subsequence $\{f^{j_{\nu}}|V\}$ .
Put $\varphi=\lim_{\nuarrow\infty}(f^{j_{\nu}}|V)$ . Choose a hyperplane $H$ which does not contain $\varphi(p)$ .
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Taking a suitable homogeneous coordinates $[x_{0}$ : $\cdots$ : $x_{n}]$ , we suppose that $H=$

$\{x_{0}=0\}$ . We choose an $\epsilon$ neighborhood” $N_{\epsilon}=\{|x_{0}|<\epsilon||x||\}$ of $H$ so that $\varphi(P)$

$\not\in N..$ By shrinking $V$ , we suppose that $f^{j_{\nu}}(V)\cap N.=\emptyset$ for sufficiently large $\nu$ .
We define

$h_{0}(x):=\{$

$\log||x||$ for $x\in\pi^{-1}(N_{\text{\’{e}}})$ ,

$\log(|x_{0}|/\epsilon)$ for $x\in\pi^{-1}(P^{n}-N_{\text{\’{e}}})$ .

Then $h_{0}(x)-\log||x||$ is bounded since OS $h_{0}(x)-\log||x||\leqq\log(1/\epsilon)$ . Therefore by
Theorem 1.5, $d^{-j_{\nu}}h_{0}(F^{j_{\nu}}(x))$ converges uniformly to the Green function $h(x)$ as
$\nuarrow\infty$ . If $x\in\pi^{-}$ $(V)$ , we have $F^{j_{\nu}}(x)\in\pi^{-1}(P^{n}-N_{\epsilon})$ . Hence $h_{0}(F^{j_{\nu}}(x))$ is
pluriharmonic on $\pi^{-1}(V)$ . Therefore the limit $h$ is pluriharmonic on $\pi^{-1}(V)$ . Thus
$p\in\Omega$ .

NOW we prove $\Omega\subseteqq\Omega’$ . Suppose that $p\in\Omega$ and choose $V$ and $s$ : $Varrow C^{n+1}$

as in ProPosition 2.1. Since $F^{j}(s(V))\subset\partial \mathcal{A}$ , the sequence $\{F^{j_{\circ}}s\}$ is uniformly
bounded, hence is a normal family. Suppose that $\{F^{j_{\nu}}\circ s\}$ is a subsequence which
is uniformly convergent on compact sets and let $\Phi$ : $Varrow C^{n+1}$ be its limit map.
Then $\Phi(V)\subset\partial \mathcal{A}\subset C^{n+1}-\{O\}$ . Hence $\pi\circ\Phi$ is well defined and the sequence
$\{f^{J_{\nu=}}\pi\circ F^{j_{\nu}}\}$ converges to $\pi\circ\Phi$ uniformly on compact sets. This proves that
$\{f^{j}|V\}$ is a normal family. Thus $p\in\Omega’$ . $\square$

REMARK. In the one dimensional case, the equality $\Omega’=\Omega^{\nu}$ has been proved
as the corollary to the theorem that the Julia set $P^{1}-\Omega’$ is the closure of the
set of repelling periodic points (see $[M$ , \S 11]).

THEOREM 2.3. The Fatou set $\Omega$ is Stein, hence all Fatou comPonents are
also Stein.

PROOF. In general, an open set $\Omega\neq P^{n}$ in $P^{n}$ is Stein if and only if it is
pseudoconvex([F], [T], [U1]). To Show tbat $\Omega$ is pseudoconvex, it suffices
to prove that $\mathcal{H}=\pi^{-1}(\Omega)$ is pseudoconvex. This is shown by the following
lemma. $\square$

LEMMA 2.4. Let $h$ be a plurisubharmonic function on $C^{m}$ and let

$\mathcal{H}=$ { $x\in C^{m}|h$ is pluriharmonic in a neighborhood of $x$ }.

Then $\mathcal{H}$ is pseudoconvex (if it is non-empty).

PROOF. TO show the pseudoconvexity of $\mathcal{H}$ it suffices to prove the follow-
ing assertion:

Let $\Delta$ be a polydisk with respect to a local coordinate system in $C^{m}$ :

$\Delta\cong\{x=(z_{1}, \cdots z_{m})||z_{i}|<1, i=1, \cdots m\}$
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and let $V$ be a “Hartogs figure” in $\Delta$ :
$V=$ { $x\in\Delta|$ either $r<|z_{i}|<1$ or $\max_{i=2\ldots.,m}|z_{i}|<r’$ } , $(0\leqq r, r’\leqq 1)$ .

Then $V\subseteqq \mathcal{H}$ implies $\Delta$ I $\mathcal{H}$ .

TO prove this assertion, suppose $V\subseteqq \mathcal{H}$ . Then $h|V$ is pluriharmonic and
hence it is a real part of a holomorphic function on the simply connected domain
$V$ , which is continued analytically to $\Delta$ . Therefore there is a pluriharmonic
function $\hat{h}$ on $\Delta$ such that $\hat{h}|V=h|V$ . Put $u(x)=h(x)-\hat{h}(x)$ for $x\in\Delta$ . Then $u$

is plurisubharmonic and $u|V\equiv 0$ . Considered as a function of the single variable
$z_{l}$ , the function $u$ is subharmonic on $|z_{1}|<1$ and vanishes identically on $r<|z_{1}|$

$<1$ . Hence, by the maximum principle, we have $u\leqq 0$ on $\Delta$ . Since $u$ takes the
value $0$ in $\Delta$ , we conclude that $u\equiv 0$ , again by the maximum principle. Thus
$h\equiv\hat{h}$ is pluriharmonic on $\Delta$ and $\Delta\subseteqq \mathcal{H}$ . $\square$

For the definition and fundamental properties of Kobayashi pseudodistance,
we refer the readers to Kobayashi [K]. A complex manifold $M$ is called Ko-
bayashi hyperbolic if the Kobayashi pseudodistance on $M$ is a (non-degenerate)

distance. Here we will use the following facts: (1) If $M$ is a bounded domain
in $C^{m}$ , then $M$ is Kobayashi hyperbolic. (2) If $M$ is Kobayashi hyperbolic and
$\alpha:Narrow M$ is an injective holomorphic map, then $N$ is Kobayashi hyperbolic.
(3) $M$ is Kobayashi hyperbolic if there is a covering manifold $\tilde{M}$ (unramified and
without relative boundary) of $M$ which is Kobayashi hyperbolic.

THEOREM 2.5. The Fatou set $\Omega$ is Kobayashi hyperbolic.

PROOF. It suffices to show that each Fatou component $U$ is Kobayashi hy-
perbolic. Let $p_{0}$ be a point in $U$ and choose $V$ and $s:Varrow C^{n+1}$ as in Proposi-
tion 2.1. Since $s$ is unique up to a constant factor, this map $s$ can by continued
analytically along all curves in $U$ . Therefore the analytic continuation of $s$

defines a covering manifold $\alpha:\tilde{U}arrow U$ of $U$ , and a holomorphic map $s\sim:\tilde{U}arrow C^{n+1}$

such that $\pi\circ S=\alpha$ . Since $s\sim$ is injective and the image $s\sim(\tilde{U})\subset\partial \mathcal{A}$ is bounded, it
follows that $O$ is Kobayashi hyperbolic. Consequently $U$ is also Kobayashi hy-
perbolic. $\square$

This result can be slightly strengthened as follows: A complex manifold $M$

is said to be Carath\’eodory hyperbolic if there exists a covering manifold $\tilde{M}$ of
$M$ such that the Carath\’eodory pseudodistance on $\tilde{M}$ is a (non-degenerate) dis-
tance. Since the Caratheodory pseudodistance on $\tilde{U}$ is a distance, we have the
following theorem.

THEOREM 2.6. The Fatou set $\Omega$ is Caratheodory hyperbolic.

This contains Theorem 2.4 since Carath\’eodory hyperbolicity implies Koba-
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yashi hyperbolicity in general.

REMARK. If $f:P^{n}arrow P^{n}$ is of degree 1, $i$ . $e.$ , if $f$ is a projective transforma-
tion, then the set $\Omega$ is not defined. The set $\Omega’=\Omega’’$ is in general neither Stein
nor Kobayashi hyperbolic.

3. Critical points in Fatou sets.

Let $f:P^{n}arrow P^{n}$ be a holomorphic map of degree $d\geqq 2$ . A point $p\in P^{n}$ is
said to be a critical point if the rank of the differential $df(p):T_{p}P^{n}arrow T_{f(p)}P^{n}$

of $f$ at $P$ is less than $n$ . The set of all critical points of $f$ is given by the
equation $\det(\partial f_{i}/\partial x_{f})_{i.j-0}^{n}=0$ , hence is a non-empty algebraic set of codimension 1.

A Fatou component $U$ is said to be periodic if there is an integer $j>0$ such
that $f^{j}(U)=U$ . The least of such $j$ is said to be the period of $U$ . If $U$ is a
periodic Fatou component of period $m$ , then $U_{i}=f^{i-1}(U),$ $i=1,$ $\cdots,$ $m$ are also
periodic Fatou components and $f(U_{i})=U_{i+1}(i=1, \cdots, m-1)$ and $f(U_{m})=U_{1}$ . The
ordered set $\{U_{i}\}_{\iota^{n}=1}^{7}$ is said to be a cycle of Fatou components.

Generalizing Siegel disks and Herman rings of the one variable case, Fornaess
and Sibony [FS2] defined the following concept:

DEFINITION. A Fatou component $U$ is said to be a Siegel domain if there
exists a subsequence $\{f^{j_{\nu}}|U\}$ that converges uniformly to the identity map id. :
$Uarrow U$ on compact sets.

It is clear that a Siegel domain $U$ is periodic. If $m$ is its period, then the
components $U_{i}=f^{i-1}(U)(i=1, \cdots, m)$ constitute a cycle of Siegel domains and
$f|U_{i}$ : $U_{i}arrow f(U_{i})$ are biholomorphic maps.

REMARK. Examples of holomorphic maps on $P^{2}$ which have Siegel domains
can be constructed by the method of [U3, Section 4] from rational functions on
$P^{1}$ which have Siegel disks or Herman rings.

THEOREM 3.1. Let $\{U_{i}\}_{i=1}^{m}$ be a cycle of Fatou components and suPPose that
$\hat{U}=U_{i=1}^{m}U_{i}$ satisfies the following conditions:

(i) $O$ contains no critical points.
(ii) There exist a Point $p_{0}\in\hat{U}$ and a subsequence $\{f^{j_{\nu}}(p_{0})\}$ which converges to

a point in $\theta$.
Then $\{U_{i}\}$ is a cycle of Siegel domains.

PROOF. By considering $f^{m}$ in place of $f$ , the theorem can be reduced to the
case of period 1. So we assume that $m=1$ and write $U=U_{1}=\hat{U}$.

Let $d_{U}$ denote the Kobayashi distance on $U$ and we choose a positive num-
ber $\epsilon$ so that the $\epsilon$ neighborhood $V=\{p\in U|d_{U}(p, p_{0})<\epsilon\}$ of $p_{0}$ is relatively
compact in $U$ . Let $q_{0}$ be the limit point of $\{f^{j_{\nu}}(p_{0})\}$ and let $B\subset U$ be a ball with
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center $q_{0}$ with respect to a local coordinate system. Let $d_{B}$ denote the Kobayashi
distance on $B$ and put $W=\{q\in B|d_{B}(q, q_{0})<\epsilon/2\}$ . By shifting to a subsequence,
we can assume that $f^{j_{y}}|U$ is uniformly convergent on compact sets and that
$f^{j_{\nu}}(p_{0})\in W$ for all $\nu$ .

We wlll first show that $W\subseteqq f^{j_{\nu}}(V)$ . Let $V_{\nu}$ denote the connected component
of $f^{-j_{v}}(B)$ that contains $p_{0}$ . Since $U$ contains no critical points, $f^{j_{\nu}}|U$ is a
covering. Hence $f^{j_{\nu}}|$ V. : V.– $B$ is a biholomorphic map. Applying the decreasing
property of Kobayasbi distance to the inverse map $(f^{j_{\nu}}|V_{\nu})^{-1}$ : $Barrow U$ , we have

$d_{U}((f^{f_{\nu}}|V_{\nu})^{-1}(q), p_{0})\leqq d_{W}(q, f^{j_{\nu}}(p_{0}))$

$\leqq d_{W}(q, q_{0})+d_{W}(q_{0}, f^{j_{\nu}}(p_{0}))<\epsilon$

for $q\in W$ . This shows that $(f^{j_{d}}|V_{\nu})^{-1}(W)\subseteqq V$ ; hence $W\subseteqq f^{j_{\nu}}(V)$ .
We suppose that $j_{\nu+1}-j_{\nu}arrow\infty(\nuarrow\infty)$ by choosing a subsequence of $]_{\nu}$ . We

assert that the sequence $\{f^{j_{\nu+1}-J_{\nu}}|W\}$ converges uniformly on compact sets to
the identity. For $q\in W$ , choose $p\in V$ such that $q=f^{j_{\nu}}(p)$ . Then $f^{j_{\nu+1}-j_{\nu}}(q)=$

$f^{j_{\nu+1}}(p)$ . Therefore

$\sup_{q\in W}d_{U}(f^{j_{\nu+1}-j_{\nu}}(q), q)\leqq\sup_{p\in V}d_{U}(f^{j_{\nu+1}}(p), f^{j_{\nu}}(p))$ .

Since $\{f^{j_{\nu}}|V\}$ is uniformly convergent, the right-hand side converges to $0$ . Hence
$\{f^{j_{\nu+1}-j_{\nu}}|W\}$ converges uniformly to the identity map. Since $\{f^{j_{\nu+1^{-}}j_{\nu}}|U\}$ is a
normal family

$\square by$

definition, this converges to the identity uniformly on compact
sets in $U$ .

An ordered set of points $\{p_{i}\}_{i=1}^{m}(m\geqq 1)$ is said to be a cycle if $f(p_{i})=p_{i+1}$

$(i=0, \cdots, m-1)$ , and $f(p_{m})=p_{1}$ . A cycle $\{p_{i}\}$ is said to be attractive if the
eigenvalues of the differential $df^{m}(p_{1})$ of $f^{m}$ at $p_{1}$ are all less than 1 in absolute
values. Then $p_{i}$ are all contained in the Fatou set. If we denote by $U_{i}$ the
Fatou component that contains $p_{i}$ , then $\{U_{i}\}$ is a cycle of Fatou components.
We call the set $U=U_{i=1}^{m}U_{i}$ the immediate basin of the attractive cycle $\{p_{i}\}$ .

COROLLARY 3.2. The immediate basin of an attractive cycle contains critical
$p_{oints}$ .

NOW we will show the same result for basins of parabolic cycles with an
additional condition in two dimensional case.

First let us recall some definitions and results in [U2]. Let $M$ be a complex
manifold of dimension 2 and $f:Marrow M$ a surjective holomorphic map. A fixed
point $p_{0}$ of $f$ is said to be semi-attractive of type $(1, b)_{1}$ if there is a local co-
ordinate system $(x, y)$ with center $p_{0}$ such that $f$ is expressed as

$(x, y)-(x+ \sum_{i+j>1}a_{if}x^{i}y^{j}, by+\sum_{i+j>1}b_{ij}x^{i}y^{j})$ , $0<|b|<1,$ $a_{20}\neq 0$ .
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(See [U2, Section 6].) If $p_{0}$ is a semi-attractive fixed point of type $(1, b)_{1}$ , then
there is a connected open set $D$ (base of uniform convergence) with the follow-
ing properties: (i) $f(D)\subset D$ ; (ii) $\{f^{j}|D\}$ converges uniformly to the constant
map $p_{0}$ ; (iii) if $\{f^{j}\}$ converges uniformly on some neighborhood of a point $p\in M$,

then there exists a $j_{0}$ such that $f^{j_{0}}(p)\in D$ ( $[U2$ , Proposition 7.2]). By the im-
mediate basin of convergence for $p_{0}$ we mean the Fatou component $U$ that con-
tains $D$ . This definition is independent of the choice of $D$ . In fact, if $D,$ $D’$

are two bases of uniform convergence, then $D\cap D’$ is non-empty by the pro-
perty (iii).

The following theorem can be proved in the same way as [U2, Theorem 10].

THEOREM 3.3. In the above situation, suppose further that $U$ contains no
critical points of $f$ . Then $U$ is biholomorphic to $C^{2}$ .

Let $\{p_{i}\}_{i=1}^{m}$ be a cycle of periodic points of $f$ . It is called semi-attractive
of type $(1, b)_{1}$ if $p_{1}$ is a semi-attractive fixed point of type $(1, b)_{1}$ of $f^{m}$ . For
such a cycle, we denote by $U_{i}$ the immediate basin of convergence of $p_{i}$ with
respect to $f^{m}$ and call the set $U_{i=1}^{m}U_{i}$ the immediate basin of the cycle $\{p_{i}\}$ .

Since $C^{2}$ is not Kobayashi hyperbolic, we have the following theorem:

THEOREM 3.4. Let $f:P^{2}arrow P^{2}$ be a holomorphic map of $degree\geqq 2$ . Then
the immediate basin of a semi-attractive cycle of type $(1, b)_{1}$ contains critical
$p_{0}ints$ .
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Added in Proof. After the submission of the manuscript the author was
informed by the referee and Prof. Sibony that Theorems 2.2 and 2.3 were proved
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