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1. Introduction.

Let M™ be an n-dimensional oriented closed minimal submanifold in the
unit sphere S**?(1). We denote the square of the length of the second funda-
mental form by S. It is well known that if S<n/(2—1/p) on M, then
S=0 and hence M is isometric to the unit sphere S™(1). Further discussions in
this direction have been carried out by many other authors ([4], [7], [12], etc.),
but all these results have pointwise condition for S. It seems to be interesting
to study the L, -pinching condition for S. By using eigenvalue estimate, Shen
[9] proved the following

THEOREM A. Let M*—S**Y(1) be an oriented closed embedded minimal hyper-
surface with Ricy=0. If SMS”/2<C{(n), where Ci(n) is a positive universal con-
stant, then M is a totally geodesic hypersurface.

By using Gauss-Bonnet Theorem and a generalized Simons’ inequality, Lin
and Xia [6] proved the following

THEOREM B. Let M?™ be an even dimensional oviented closed minimal sub-
manifold in S*™*?(1). If the Euler characteristic of M is not greater than two,

and SMS"’<C§(m, D), where Ci(m, p) is a positive universal constant depending on

m_and p, then M is totally geodesic.

In the present paper, we will study the L, -pinching problem for n-dimen-
sional compact submanifolds with parallel mean curvature in the unit sphere
S**?(1). Now we define our pinching constants as follows

2na(n)

C¥n)[(a(n)b(n, H))’l/2+(1+d(n))”2(2+b(n, e (1.1

aln, H) =
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where a(n)=(n+2)(n—2)*[2n(n—1)]"%, b(n, H)=(n—2H*[2(n—1)(1+H?*]', H=
mean curvature of M, C(n)=2"(1+n)""(n—1)"'g;! and ¢,=volume of the unit
ball in R™.

() = ST s O
where d(n)=((n—2)*Q2n—2)"".
B D = et TG £ =2 (9
10 D)= o= e i 7 (r 207" ¢4
a™?*(n,H), for H#0,n=3 and p=1,
Jmin{a"’z(n, H), B*'*(n, p)}, for H+0,n=3 and p=2,
Ci(n, p, H, AM)) =
r*%n, p), for H=0 and n=3,
8r+4rx|UM)], for n=2, (1.5)
where (M) is the Euler characteristic of M.
at’¥(n), for H+#0, n=3 and p=1,
min {@?/%(n), *'¥n, p)}, for H=0, n=3 and p=2,
Coln, p) = \1""*(n, p), for H=0 and n=3, (1.6)
167, for n=2 and the genus g(M)=0,
8, for n=2 and the genus g(M)=1.

By using a different argument, we obtain the following

THEOREM 1. Let M™ be an n-dimensional oriented closed submanifold with
parallel mean curvature in S**?(1). If SM(S—nHZ)"/2<C1(n, p, H, X(M)), then M
is a totally wmbilical submanifold, and hence M is isometric to the sphere
S™(1/+/1+H?).

THEOREM 2. Let M™ be an oriented closed submanifold with parallel mean
curvature in S™*?(1). If SM(S——nHZ)"’2<C2(n, D), then M is totally umbilical.
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at Fudan University. The author wishes to express his gratitude to Professor
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2. Preliminaries.

Let M™ be an n-dimensional compact manifold immersed in an (n+p)-

dimensional unit sphere S**?(1). We will always take M to be oriented, and
make use of the following convention on the range of indices:

léA’ B? C’ §n+p: 1§l, j, k) "'_S_Tl, n+1§a; ﬁ: I8 '”én_‘_p'

We choose a local field of orthonormal frames e, es, -+, €n.p in S**P(1) such
that, restricted to M, the vectors e, e, ---, ¢, are tangent to M. Let {w,} and
{w4p} be the field of dual frames and the connection 1-forms of S**?(1) respec-
tively. Restricting these forms to M, we have

wf= 2 hjw;, h = hj;, 2.1
J
Rijkl - 51'1;5;1—5115;1;4!‘ ; (/’Lfkhﬁ zlh %) s (2-2)
Ragr = Z(hfkh%gz tlh %) (2.3)
B= 3 hjoQoQe &= 3 hiee, 2.4
a,t,J a,t

where Rijzi, Ragri, B and § are the curvature tensor, the normal curvature
tensor, the second fundamental form and the mean curvature vector of M re-
spectively. We define

S=|BlI*, H=I&l, H*="Haxa. (2.5)

M is called a submanifold with parallel mean curvature if & is parallel in the
normal bundle of M. In particular, M is called minimal if §=0 identically.
When £+#0, we choose e,,; such that e,.,//&, tr H**'=nH and tr Hf=0,

n+2<B=<n+p. The following propositions will be used in the proof of our
theorems.

PROPOSITION 1. Let M™ be a submanifold with parallel mean curvature in
Sn*i(1). Denote 3. ;(h%™)? and 2. ;. gens1 (h8)? by Sy and S; respectively. Then
(1) If H=0, then

1 1
F452 = (hgj,,)Z—(z—E)suns,

a,t.§. k

(ii) If H=0, then

n(n—2)H

1
FASn 2 3, R+ Sa—nt)| 4 20k - 5= Rt

VS=7 HZ]
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-;:AS,_Z_ 3 (htnH, 3 tr [HY(HA ]~ 5 [ (" HA:
ﬁli';H-l

+nS,— (2—-;1—1) . for pl.

ProOOF. (i) If H=0, see [10, §5.3].
(ii) If H+0, then ®,,1,,=0, for all @. This together with and the
structure equations of S**2(1) (see [12, I, p. 348]) implies

Riiiani =0, for all a, &, [. (2.6)
Following [12, I, p. 351], we have
Ahij = kZ hngmijk+k2 h?’mRmk]’k'F kzﬂhfiRﬂajk . (27)

It follows from [2.2), and (2.7) that

FASy = 3 (W3 nSu—Sh—nH*+nH tr(H*1)

‘ﬁEﬂEtrmn“Hﬁnz : 2.8)

Let {e;} be a frame diagonalizing the matrix (A7) such that A}'=2,0;, 1=i
jgn. Set ﬂi:H—'xi, Ak:Ei li and Bk:'Zi ﬂ’:. Then

’

B, =0, B, = A,—nH?, By =3HA,—2nH*—A,. 2.9)

By using Lagrange’s method, we have B;<(n—2)[n(n—1)]"*?B}®. Combining

2.8), and this, we obtain

1 n(n—2)

- > iy L 2_Q_ _M\h—4) 1/2

FASx Z 3, (W) + B n+2nH'—S T HB |

2 3, (i +Su—nH nontr—s - 2B 5= |

When p=2, it is straightforward to see from [2.2), [(2.3), [2.6) and (2.7) that

TAS; = B (Wb +nH S tr [HHA]— 5 [te(H™ HA+nS,

2 ﬁi#[fl B#n+1 B#En+1

— 3 tr(H*HP—HPH*)? — 2 [tr(H*H?®)]2.
a, B#En+1 a, BEn+1

Using the same argument as in the proof of [10, Lemma 5.31], we get

@, B#n+1 -1

S tr(H*HP—HEH*? + ﬁ;ﬂ[tr(H“Hﬁ)jzg( p-l )S%.
So
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1AS; = 3 (hbr+nH S tr [HHAI— 3 [tr(HHA)P
2 ﬁiLkl B#En+1 B#En+1
st
PROPOSITION 2 ([5, Theorem 2.1]). Let M*—N"*? be a compact submanifold
with boundary. Suppose N is a simply connected and complete manifold with

nonposttive sectional curvature. Then for all feC M), f=0 and f|3%=0, f
satisfies

+nS;

(], )" = el avsi+rm).

3. Proof of the theorems.

LEMMA 1. Let M™ be a submanifold with parallel mean curvature in S™*?(1).
Set f.=(Sp—nH?’+ne®)'?, g.=(S1+n(p—L1)e*'? and h.=(S+npe?)l2,
(i) If H+O0, then

2
PG "+ A
2
2, btz 2 va0n for pl.
B#n+1

(i) If H=O0, then
n+2

(h$)?* 2 |Vhe|®.

a,i.j. k

Proor. If H+0, putting x}''=h}'—H0,;+¢€0:;, we have

%kt = hiE, 3.1)
E (X3 = Ek(h?ﬁ;‘)z—- (3.2)
Let {e;} be a frame diagonalizing the matrix (A%") such that hA%'=21,0;;, 1=4,
j<n. Then
x3t = (Ai—H+¢€)dy;, 3.3
2 (x% = r2, (3.4)

@feINfel)? = IVfel* = 42 & XX
S PHCH MY (xZ)' ] =41 3[1'2;‘ (x7)] . (3.5)
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On the other hand, we have

3, () 222 (1R B () (3.6)

For each fixed 2, we have

D) = S WY+ 2l — 2D x i)

i ik i itk
2 (xn+1 2+( 2 xn+1 2
< DY+ (n—1) 3 (xTEH%. (3.7
i+k i+k
Combining [3.2), [3.5), [(3.6) and [3.7), we obtain

n+2 2( n+1)2> n+2

3, = /AP

If H+0 and p=2, we put x8;=h%+ed;;, n+2<B<n+p. By using the argu-
ment above, we obtain

V(@IS — (g VL2, b, 3.8)

1.5, k

where gf=[3); (x8)?]¥%. From we have
IVgi| < 52 |V(g8)|

#n+1

=2,/.05, 5 et 3, (bt

< 2\/—”—<gz>”2[ 3 (R
n+2 ﬁlazzj;fx

It follows that

U AL P
ﬁi;e;f-fl

If H=0, by repeating the arguments again, we get

5 ez 252 wn

a, o R

LEMMA 2. Let M™ be a closed Riemannian manifold. If the following
Sobolev inequality holds for any compact subdomain DM

(§,7772)"" "< con (197148, for al feCD), £20 and f1ap=0,

then for all feC M), =0, f satisfies
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(San/(n_l))m—n/n < C(n)SM(IVf|+Hf).

PrOOF. Let B(p, &) and B(p, 2¢) be geodesic balls centered at p with radius
e and 2¢ respectively. For any feC'M), f=0, we put f.=X.f, where X, is
a smooth cut-off function, and

0, for xeB,,
L.=1<1, for xe M\B,.,
2(x) e [0, 1], and |VX.| < —i— for x&B,\B..

Hence f.20, f.lsnp,=0. By the hypothesis, we have

(SM\B(ID,s)fg/(n-l))(n_l)/n = C(n)SM\B(p.n(lvfel +Hfo)

<cofl, ,  1mmir+|, o navs+Hp)

M\B(p

Vol (B(p, 2¢)) +S
€

< C(my{max /- XAVFI+HDL 39)

M\B(D.¢

Suppose that Ricy=—~(n—1)r, >0. By using the comparison theorem for
volume (see [8, p. 13]), we get

V(B(p, 2¢)) < wn_lszs[z-w sinh (v/21)]-1d¢

0

2T
_ _ap(Sinh e /7)\*! (2e4/7)"
= @nT /2( 2e+/7 n

This means that lim.., V(B(p, 2¢))/¢é=0. Therefore, as ¢—0, the assertion of
the lemma follows from [3.9).

LEMMA 3. Let M™ be a closed submanifold in N**?, n=3. Suppose N is a
simply connected and complete manifold with nonpositive sectional curvature. Then
for all teR* and feCYM), f=0, f satisfies ‘

(fl“)zz()l:t)[ C}(n)nf H%n/(n-m—Hg(H%)” f”g] ,

VA Z 4

where Hy=maX. ey H.

ProOOF. By Proposition 2 and Lemma 2, we have
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(SMgn/w-h)("'”’" < C(n)SM(IVgl-{-Hg), for all geCYM), g=0. (3.10)

Substituting g=2""v/=® into (3.10), we get

<SMon/<n-2>>(n_mn < 2(71 1) C(n )S fn/(n—z)|Vf|+C(n)SMHf2<n-1)/(n-z>.

By using Hoélder’s inequality, we obtain
2(n—1)

1 fllsnrcnony < C(n )[ HVfllz+HolIng]

This implies

£ wns < [ XS w1+ P)is] . @D

The lemma follows.

LEMMA 4. Let M?™ be a closed submanifold in S**?(1). Then for all f=
CY{M), =0, f satisfies

(n=2¢ 1 o1 LY fie
/182 it gy M ern-o— Q-+ HD(1+ P )IA1E] . @12

- PROOF. We consider the composition of isometric immersions M™ iS"*”(l)
S R»*?+1 where 7 is the standard isometric embedding of S"*?(1) into R"*P*%,
We denote the mean curvature and the relative mean curvature of ie¢p by H
and Hy respectively. It is easy to see that |Hg|<1. Therefore H*=H?+H}
<Hi+1. By (3.12) holds for all f&CY(M), f=0.

LEMMA 5. Let M™ be a closed submanifold with parallel mean curvature in
S™*P(1), n=3. Suppose that H#0 and |S—nH?| . .<a(n, H), where a(n, H) is
defined by (1.1). Then M is pseudoumbilical. In particular, if p=1, then M is
a hypersphere in S**'(1).

Proor. By Proposition 1| and Lemma 1, we have

l n+1\2 - 2 2 n(n 2)H
FASu 2 B, (EY+Su—nH )[n+2nH —s-Th

/5= nH2] (3.13)

where Sp=3;; (hF)

Z (hn+1)2 > n+2

[Vfel® 3.14)

where f.=(Sp—nH*+ne&*)'%. Putting f=(Sg—nH?*'? from (3.13), and
we have
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o- 1]

- (n+2)(n—2)2[ 1

: . 1 ,
= 4n(n—1)2(l-l-t) Cz(n)”fe“2n/(n-—z)"‘(1+H )(1-*—}—)“][5“2]

[n(n—Z)ZH2

2 2 2 __l
+SMf {n—}—nH —(S—nH?) P

. 2
5 +#(S—nH )]} (3.15)
for all reR*. As &¢—0, (3.15) implies

0> (n+2)(n—~2)2[ 1
T An(n—12)(A+41t) LC:n)
n(n—2)2H?
2r(n—1)
[ 202
T dn(n—12C¥n)1+1)

1 s o~ (Lot H( L )i £1]

+[ntnmr— [t (14 S )1 ) S— s

o ) [ 19 [T
n(n—2"H* (n+2)(n—2)*(1+H?)
2r(n—1) dn(n—1)%

We take t=i(r)=n+2)(n—22/4n*(n—1)*[1—(n—2)*H?/2r(n—1)(1+H?],
r>(n—2):H?/2(n—1)(1+H?). This together with yields

[ (n+2)(n—2)>*
dn(n—1C*(n)1+1)

Therefore, under the assumption

et ntre- Jiss. (3.16)

—(1+_72’-)“S-nH2“n/2]Hf21|n/(n—2) <0.

IS—nH |22 < aln, H)
_ _ 2na(n) 7
= Cm)a(m)b(n, B +1+a(m) @+ b(n, H)"T’

(n+2)(n—2)*
o e Dn(n—1yCAm@Er1+Hr)’

2(n—1) (1+H?2)

it is easy to see that f=0 and M is a pseudoumbilical submanifold.

PrROOF OF THEOREM 1. If H+0, n=3 and p=1, the theorem follows im-
mediately from
If H#0 and p=2, by Proposition 1, we have
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LAS, = 2 (hBr+nH S tr [HAHSY
2 ﬁi%{?:fl frn+

1
n+ ﬁ 2 - — 2 :
3, [ (HP T HPP4nS, —(2 5 -)st, (3.17)

where S;=3.; gen+1 (h8)%  Since |S—nH?|,.:<a(n, H), one sees from Lemmal
" 5 that Sy=nH?, namely H"*'=HI, where I is the unit matrix. This together

with implies

ZAS, 2 3, (b (2= 52p)S:[ 51+ 75

25 (n+nH2)] (3.18)

Putting g=S¥2, from (3.18) and Lemma 1, we obtain

R e L e e (R R L) R

where g.=(S;+n(p—1)e»)¥2. It follows from (3.19) and Lemma 4 that

0252 mars(om )

25— 3("+"H2)]

(n+2)n—2 [_1 2
2472(”__1)2(1_”) [Cz(n)”ge“m/(n »—(1+H )(1+ )”gﬁ]]z]

(2= 52 IS =t H sl scnmn -+ n g
As ¢—0, this implies

[ (n+2)(n—2)"

1 ) .
02 | Zm—TrcmisD “(2‘ 3;:)“5‘_‘ nH Hm}ilg lnscn-2

v

4dn(n—1)%
By taking t=(n+2)(n—2)?/4n*(n—1)%, we have

{ n(n+2)(n—2)°
C*m)[4n¥(n—1)*+(n+2)(n—2)%]

From the assumption

—(2— Tz)i_l)us_nHQHn/z}”gz}}n/(n—z) =<0.

(p=Dn(n+2)(n—2)°
(2p—3)C¥(n)[4n*(n—1)*+(n+2)(n—2)*]’
we see that g=0. Therefore S—nH?=0 and M is totally umbilical.

If H=0 and n=3, by [Proposition 1l and Lemma 1, we have
1 n+2 1
SAS 2 T2 VA4 nS— (2—5)52,

where h.=(S+npe?)'/% By using an analogous argument, we can prove that if

IS—nH?|ne < B(n, p) =
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pn(n+2)(n—2)°

@Cp—1C*(n)[4n* (n—1*+(n+2)(n—2)*]"
then M is totally geodesic.

If n=2, it follows from [2, Theorem 2.1 on p. 106] that M is one of the
following surfaces

(i) minimal surfaces in S?**?(1),

(ii) minimal surfaces in S™*?(1/+/1+H?)CS**?(1), p=2, or

(iii) surfaces with constant mean curvature in S*(1/4/¢)CS?**P(1).

From the Gauss equation, we have

ISHne <

S (2+4H?—S) = 25 Ky = 8x(1—g(M)),
M M
where g(M) is the genus of M. Hence

SM<S—2H2) — 21+ HYV(M)+87(g(M)—1). (3.20)

If M is a minimal surface with genus zero in S?**?(1) and SMS<167r, it is

clear from that
V(M) < 12=x. 3.21)

From and [1, Theorem 5.5], we see that M is a great 2-sphere in S™*?(l).
If M is a minimal surface with genus zero in S'*?(1/4/1+H?) and SM(S—nHZ)

<16m, by a similar argument, we can show that M is a great 2-sphere in
S*?(1/+~/T+H?. Hence M is a small 2-sphere in S**?(1).

If M is a surface with constant mean curvature in S*%1/+4/¢) and g(M)=0,
then M is a 2-sphere in S2*?(1) (see [12, I, Theorem 5]).

If g(M)=1, it is easy to see from [2, Theorem 3.2 on p. 220]

4r
7 o
VM) = T

Substituting into [3.20), we have
SM(S——ZH?) > 8rg(M) = 8.
Therefore, if n=2 and SM(S—2H2)<87r+87t|g(M)—1l, then M is totally um-

bilical. This completes the proof of [Theorem 1.

PROOF OF THEOREM 2. It is easy to prove that

(n12)(n—2)
2 e I C e~ D@

= a(n),
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where {(r)=(n+2)(n—2)*/4n*(n—1)*[1—(n—2)*/2(n—1)r]. This implies
Cl(n; p’ H} X(M)) 2 CZ(n; p)'
Therefore the assertion follows from [Theorem 1.

THEOREM 3. Let M™ be an oriented closed submanifold with parallel mean
curvature in S™*?(1). Suppose M is not totally umbilical. Then

| s—nHY2 2 Cun, p),
M

0 nH? \n/2
SMS 2= Cyn, j))-l'wn(l—m) )
where w,= Area(S™).

PrOOF. The first inequality follows immediately from
Since S—nH?*=0, we know that S**=(S—nH?*»""*+(nH*"'%2, On the other
hand, we see from [2, Theorem 3.2 on p. 220] that

Wy
YO0 = Ty

Therefore
S Sni2 > S (S—nHZ)nlz—f—S (nHz)n/z
M M M

= Cy(n, p)+n"?H"V(M)
nH? \n/2
1+H2>
Let f: M—G,..., be the Gauss map associated to the immersion ¢ : M—S"*?,
The energy density is given by e(f)=|df||®. By a direct computation, one

sees that e(f)=S. If f is harmonic, then M is minimal (see [3, Theorem 2]).
Hence we get the following ‘

= Cyn, 1))+wn(

THEOREM 4. Let M™ be an oriented closed submanifold in S™*P(1). If the

Gauss map f: M—Gy,1 p is harmonic, then either f is constant or SMe”/Z(f)g
CZ(n: p)‘

REMARK. When n=2 and g(M)=0, the pinching constant C(n, p) is the
best possible. For an example, we consider the standard minimal immersion

M=5%~/3)—S*1). Then S=4/3, V(M)=12z and SMS:167r:C2(n, p).
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