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1. Introduction.

In a recent paper [P], the second named author showed that an estimate
of the form
JuN, H)=o(NH?*)  for Hz=N’, (1)

where 0<f<1 and
2N
1N, 1) = g+ H)— g0 —H 7dx,
follows from an estimate of the form

N 2 — N3 1-0
SN Bx, D*dx = o(—p)  for T=N'YIL. (2)
Here L=logN and E(x, T) denotes the remainder term in the classical explicit
formula

0
$x)=x— 3 T +Ex, T)
ir1sT p
where p=pg-r runs over the non-trivial zeros of the Riemann zeta function.

It is well known, see e.g. ch.17 of Davenport [D], that

E(x, T) « Z198% (3)
T
Since (2) is only a power of L stronger than the estimate which follows from
(8), it may appear somewhat surprising that a bound of the form (2) implies a
bound of the form (1), for every 0<8<1.
In this paper we give a partial explanation of the above implication. Indeed,
in [K-PJ] we obtain the following new form of the explicit formula. Let 0<
e<1/4,

1 Ogugl 1 u>0
wlu) = sgn(u) =4 0 u=0
—1 u<0
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o sinu

Gx, T, n)= %S:ﬂg du dr,

tilogcx/nyl U

N <T<N'¢, N/2<x<4N and 1= MZ L min(N'Y'¢, T'/®). Then

_ 7INE L o
¢ =x— 3 w(-7 )p +R(x, T) (4)
where
1 N
R, Ty=— 5  Awsgax—nG, T, m+0(757) (5

see the in [K-P]. The main feature of the above explicit formula
is that the error term consists of a “local problem” involving prime numbers
plus a good error, thus providing a link between the quantities in (1) and (2).
Using (4) and (5) we will show that estimates of the type (1) and (2) are in
fact equivalent.

Let

Az, H) = ¢(x+H)—(x)—H
Aoz, H) = $lx+H)—2¢(x)+(x —H)

denote the “first” and “second” difference of primes in short intervals, and let

2N
JoN, H) = SN |Ag(x, )| *dx

2N
IN, T) = SN |R(x, T)*dx.

Since the function G(x, T, n) behaves like min(1, (N/(T |n—x]))?), see
1 of [K-P], it is clear from (5) that R(x, T) is closely related to —A,(x, H)
with H around N/T. Therefore, since

A(x, H) = A(x, H)—A(x—H, H),

one expects that a non-trivial bound for J,(N, H) implies a non-trivial bound
for I(N, T) with T around N/H. Indeed we have

THEOREM 1. Let 0<e<l/4, N.<T <N ¢ and 1SMENe5. Then

N® /log(M+1)\2
IN, T) < MLN, H)+ (2557
where H=N/TM.

In the opposite direction, one cannot in general obtain non-trivial bounds
for A(x, H) from non-trivial bounds for A,(x, H). For example, Maier’s
construction of short intervals containing more (resp. less) primes than expected
apparently does not affect the behavieur of A,(x, H). Moreover, it is not
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difficult to construct a sequence of integers, whose global behaviour reflects
the behaviour of primes, for which J,(NV, H)=0o(NH?) but J(N, H)=2(NH?)
for suitable values of H. Such an example will be given in section 4. However,
the following result provides an implication from I(N, T) to J,(N, H). Given
0<e<1/4 and H, K=1 let

J= [IOg(L”ZKJ\“‘”z/H)]
- log 2

and, for j=I1, ---, J, let
J 7
2H T N

B=grer 1= 1008,

THEOREM 2. Let 0<e<l/4, N:<H<N'¢ agnd 1<K=<exp(cL'*), ¢>0 an
absolute constant. Then
NH?

J
JUN, H) < H* ZHPIN, T+ 5

In view of the example in sect. 4 and the above mentioned relation between
I(N, T) and J.N, H), we see that the result in depends on the
particular structure of the primes.

Define

0, =inf{@ =0, 1): JAN, H) & JNH*L 4 for H= N% and A>0}

3
0, = sup{@ e, D: IIN, T) < 4 % L4 for T < N? and A>0}.

From Theorems 1 and 2 we easily obtain
COROLLARY. 6,+6,=1.

One expects that #,=0 and 6,=1, which would follow from the Density
Hypothesis, see e.g. [P]. From an unconditional viewpoint, we only know
that #,<1/6, see e.g. [H-B], and hence #,=5/6.

We finally remark that the non-trivial bound J.,(N, H)=0(NH?) implies, via
Theorem 1, the non-trivial bound I(N, T) = o(N?*/T?), where H and T are
suitably related. In the opposite direction, from Theorem 2 we see that in
order to obtain the non-trivial bound J.(N, H)=0(NH? we need to assume the
estimate I(N, T)=0o(N?*/T?L), where H and T are again suitably related. This
appears to be a defect of our method, due to the dissection argument at the
beginning of the proof of Theorem 2. It would be desirable to obtain J,(N,
H)=0(NH?) from I(N, T)=0o(N®*/T?).

This paper was written when the first named author was a C.N.R. Visit-
ing Professor at the University of Genova. He would like to thank the C.N.R.
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and the University of Genova for providing an excellent work environment.

2. Proof of Theorem 1.

In the sequel ¢ will denote a positive absolute constant, whose value will
not necessarily be the same at each occurrence.

LEMMA 1. Let 1SM'<T<NM™ N/2<x<4N and
2= Y sgn(x—n)G(x, T, n).

r-NM/T<n<x+NM T

Then
N
2 < oar
ProOF. C(learly
(= sinu 1
SM? U du < M2

Hence, since M?3*>r|log(x/n)| for T/2<t<T and |n—x|<NM/T, we have
that

2 ¢T M2 sinu N
2 o TST/Z(I—NJ[/T<2ngx+NM/TSgn(x—n>gz|10g(x/n)| u du) dT+O( TAI)
2T sruz sinu N
=7, =2 a)dero(gp), (6)
where
3, = 3 sgn(x—mn).
x—-NM/T<ngsx+NM/T
llog(x/n) isul/t
For |n—x|<NM/T we have
x|  In—x| M?
110g;‘ o x +O(T2 )’
hence for T/2<t<T and 0ZusM?
L o < M X _u| _ o . NM ux
K n—x| < T logn < TH-—Hn [ n xlgmm( T 7 )}l
NM?
+0( s ) (7)

The sum of sgn(x—n) over an interval symmetrical upon x is O(1). Hence
replacing the range of summation in 33, by the set which appears in the ex-
pression on the right hand side of (7), from (7) we get
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N 11" V
From (6) and (8) we get
NlogM N N

> <L logM+ + £

TM?® TM TM
The proof of is now as follows. We subdivide the interval
(x—NM/T, x+NM/T] into P<M? intervals of the form

’\J

I; = (n;, n;4K], K= —— TM’

i— xi].K, ] - 17 T P
(the two extreme intervals may be smaller). We may suppose that either [,
0, x] or I;,c[x, 4o0) for every 7, hence sgn(x—n) is constant on each I;.
If N°<T<N'*® and 1<M<N°*", then the conditions of and (4)
and (5) are satisfied, hence by (5) and we have
1

N
—_ {
Rx, T)=— 3 (Am=-1)sgnx—m)+0. (TM)

P
< 316, T, n)l| S (Um-D)|
= nelj

+ 5 3 A0I66, T, =G, T, )+ (9)
By of we have
1 1<;<M
Gx, T, n) < { <A71)2 M<i<P (10)

and, for nelj,

Mt 1Z;£M
Gx, T, n)—Gx, T, nj < (1n
v M<£;j=P.

Hence from (9), (11) and the Brun-Titchmarsh inequality we get

N log(M+1),

RGx, T) € 16, T, njl | T (Am=DI+

so that by the Cauchy-Schwarz inequality and (10) we obtain that

]7\1723 (log(%—}-l)>2
;7: <log %—%—1))2’

i, T <Ml (Z166 T g Am=DI*)dx+

(12)

<MZaf] g m-Ditdxt
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where

1 l<i<M
aj:

MY mM<ji<p.
(5)

Using the substitution x+ ;7K =y in the integral we finally obtain that

. P eN«jK | y+K 2 N? /log(M+1)\2
IV, T < M Z a7 S ()| dy+ (2T
P 2N |z+K 2 ]\]3 log(A{.i_l) Z

< A4<J§1aj>gl\’ n§.r (/1(71)—1)‘ dx+ T? ( M )

N /log(M+1)\
2
< MEJUN, K+ (25 )

and follows.

3. Proof of Theorem 2 and Corollary.
We proceed on the lines of [P]. Let e(x)=exp(2rix),

S(a) = :gNNA(H)e(na), Lia) = T;V‘;le(—*ma),

T(a)=n§e(na) and SN, H):Si/;|(S(a)—T(a))L(a)|2da.

We may assume that H=N. Using the Parseval identity and the Brun-Titch-
marsh inequality we get

JuN, H) = S(N, H)+0(H?). (13)

Hence we study S(N, H). Let 0<£<1/2 to be chosen later on. Then by
the Parseval identity we have
NL
52

(1" L s@-r@n L)t < (14

—-1/2

and
[ 1 S@-T@) L@l da < H" |S@-T|*da, (15)
since
. 1
Lia) < mm(H, m)
Now we dissect the interval (—§, & into 2/41=0(L) subintervals of the form

A°:<_ Nll-s/z' Nll—ﬁlz) and Aj:(i—éff—" i2f'1>’ =L
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where J=[log,EN'"¢/*] and ¢>0 sufficiently small. Due to the symmetry of
|S(a)—T(a)| we will consider only A;=(§/27, £/2’-'). By Gallagher’s lemma,
see e.g. ch.1 of [Mo], we have

1

SAOIS(a)—T(a)IZda < i

[ 19+ Nem— gy = e 2

and hence by standard techniques, see e.g. [H-B], we obtain that
LO |S(a@)—T(@)|*da < Nexp(—cL'). (16)
For every non-trivial zero p of {(s) we define
T () = ;gvan,pe(na), Un, = S:Htﬂ-ldt

and let T,e[N¢/*, N'=*/*], j=1, ---, J, be parameters to be chosen later on.
For ac A; we write

S@-T@ =~ 5 w4 )T+ R@

where the remainder R;(a) is defined by

Ri(a) = ZZN a;(me(na), a;n)=An)-14+ 3 w( [71 )a
J Mg e J ’ J . oo

15T

Hence

[, 1s@-T@ida < ( 3 (], 1Tl da) ")+, 1R )@
j STjNJ4; i
= E:(N+E.(),
say, so that by we get
S: |S(@)—T(a)|*da £ é}l (E\()+Es()+Nexp(—cL*). 17)
In order to estimate E.(j) we need the following
LEMMA 2. Let 0<e<l/4, N**<T<N*'¢/* and
IN, Ty= 33 |R(m, T)I*.
Then

3
IN, T) € JI(N, T)+ —gz—exp(—cLW).
PrOOF. Let N<x=<2N. For n#[x] we have sgn(x—n)=sgn([x]—mn), and
the intervals |x—n|<MN/T and |[x]—n|<MN/T differ at most for the two
endpoints. By (5) we have
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R(x, T)—R(x], T)

:%—KM_IEMN/T_A(n)sgn(a—nxcu T, n)—G({x1, T, n)) +0(TZL)
- N I (R d“)d”*f%

T . x|gMA/TA(n>H10g l llo TM

<<Z = A(n)+ N & M~ ———+ N

TM TM"

ﬁJ|n -X|=MN/T

Hence, choosing M =exp(cL'*), for any m&[N, 2N] we have that

| R(m, T)|2<<S:_IIR(x, T)|*dx+ v -exp(—c L")

7W
and [Lemma 2 follows summing over m.

Let
£ a;n) N<n<2N
&= i1 H; = @2&)™" and b;(n) = .
0 otherwise.
By Gallagher’s lemma we have
2 —2 2 "
EG) < [ IR@Ida < HP[T 15 bmldx. (8)

If 0<h<H; and N<y, y+h<2N, from (4) we get
2 bin)=¢dly+h)—¢d(y)—h+0Q1)

y<nsy+h

LS w( ITT?>([y+h]+1)!:’—([y]+1)P

K L+R[y+h]1+1, THI+IRCyI+1, Tyl (19)
From [19), and the estimate R(x, T)<N/T, where N/2<x<3N and
Net<T<<N'-¢/* (see the [Corollary| in [ K-P]), we obtain that

2N 2 7 N 174 7T 2 Az
S bm|*dx <IN, T+ g exp(—e L)+ NL*+Hy

I71sT

N-Hj; z<nsz+H
[Ju
<IN, T+ gexp(—cL'). (20)
j
Hence from |(18) and we get

E,(j) < HF?I(N, T )+ cL'*). (21)

pv3
T, P

Now we estimate E,(j). Let P be a sufficiently large but fixed integer.
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Then, as in [P], we have
2N P 1 oN
T () = gNn”"e(na)—l- > T 2 (o—1)--(p—k+1)n°*e(na)+O(NF-1%)

(o—=1)--(p—k+1) ..

=T, )+ 3, -

T o 1 (@)+O(NE),

say. By Abel’s inequality
T, i@ K NE-F max | 3 e(f,(m)],
N<Y<2N NzxznsgY
where
fon)= ———logn—{—an
Since T;<N we have that

T (@) < Nf=' max |L,(a)]+NF-1, (22)

NgY<2N

where

L@ = 3] e(f ,(n).

The term N#-'° in contributes to E,(5) at most O(NN exp(—cL*). Since

IA

| Fm] = | B

by Lemma 4.8 of we have

7
2nn Ta

Y
L@ = e(f,(x)dx+0).
Choosing T;=N/(100H,), we have that

< 2
27zn | = 1007

and ag—é;i

for any p with |7|<T,, n€[N, 2N] and a=A,. Hence |f,(n)|»|al, and by
Lemma 4.2 of and we get
g1
T @) « S,
||
Using Ingham’s density estimate (see ch.12 of [Mo]), Vinogradov’s zero-
free region and writing

CYEA]'.

N, T)=I{p = B+ir: Lp) =0, B= ¢ and |7] < T}|

we obtain
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E) < (B, HI*N7") « LHN*(sup N°N(o, T,)?

1712T; (23)
& Nexp(—cL').
From (14), and (23) we obtain that
, S s NL .
S(N, H) « H* SYHF*IN, T+ g +NH? exp(—c LM (24)
j=

follows now from and (24), choosing é=L'?K/H, where 1<K
<exp(cL'*).

REMARK. We point out that in order to obtain the estimate (23) it is
sufficient to use a density estimate of the form

N(o, T) L T?*?7Le.

The proof of the is very simple. Let >0 be a sufficiently small
constant and A>0 be arbitrary. Choose M =L4 in [Theorem 1. Then

L-A

Ny NN
TM)+ L«

[(]V, T) <L lwzjx(Ny T? T2

provided T<N*-%1-9L4  Hence we have #,=1—6,—3. On the other hand,
choose K=L* in [Theorem 2. Then

J
J«(N, H) €< H? E%H;U(N, TH)+NH?L™* & NH?L4+!
j=

provided H=N*"%+9[4+/> which gives #,<1—6,+0. Hence 1—06<6,+6,<1+
0, and the follows since 0>0 is arbitrarily small.

4. An example.

In this section we construct a sequence of “prime-like” numbers having
the following properties

i) the global behaviour reflects the global behaviour of primes

ii) the mean-square of the first and the second differences behave in quali-
tatively different ways.
For sake of simplicity we define such numbers only in the interval [N, 2N7],
but it is of course possible to define them in [1, + o).

Let N*.<H<N'* be fixed and define

l(1—}—~1-sin(—2lt>> N<£t<2N

f(t)={ NV oz H
0 otherwise,
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F(x)= waf(l‘)dl‘-
For k=1 define |
. N
Dy = mm{m =2N: T Fm) z k}:

Fx)= X1

Prsx
~ O - K
Alx, K)= 7r(x+K)——7r(x)—l—
A(x, K) = Ai(x, K)—A(x—K, K).

We will briefly sketch a proof of the following estimates

ﬁ(x+K)—ﬁ(x)~% if H=o(K) and x < [N, 2N] (25)
, S 1 NK? | |
FN 10 = 1A, K)PMde ~ o i K= o(H) (26)
v 2N . K\2 NK* . _
JuUN, K) = SN |Bux, K)l*dx < () o +N i K= o(H). ©7)

Choosing e.g. H=N'" we see that the properties i) and ii) are satisfied for
suitable values of K.
Let
Dec1 <X = pp <o < P = x+K < Drrsr.
Since

1
Fm+1)—F(m) € N’
we have that
1

YRy =+0(3) @8)

and
pini—p; = O(L). 29)

From [28) and we get
Fx+K)—#7(x)=k'—k+0Q1)

= P+ KO~ F)+00)

- %S:“(H%sm(z—gi))dﬁoa)

~S(so(2)
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which gives [25). In a similar way we get

Ax, K) = %S:”{(H%sin(%ﬁ)) dt—{g——I-O(l)

—-_ %(cos(wf;‘_—[{—q —cos( 2}? )) +0(1). (30

Hence by well known trigonometric identities we obtain

Fu, 1) = s sind(EO) s (EEEIY o (M

1 NK*

8 L*’
which gives [26). Finally, from and well known trigonometric identities
we obtain that

A 2x+K . 2
|, B € g sint(Z8)|sin( FEEER ) _gin (FEEHOY
2 [ raeT+ KD/
L K2 SQ )Hcostdt‘z—i—l
L rQ2x-K)/H

K® K\
<r(m)
and follows by integration over [N, 2N].
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